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Abstract

We study the privacy limitations of label differential privacy, which has emerged as
an intermediate trust model between local and central differential privacy, where
only the label of each training example is protected (and the features are assumed
to be public). We show that the guarantees provided by label DP are significantly
weaker than they appear, as an adversary can "un-noise" the perturbed labels.
Formally we show that the privacy loss has a close connection with Jeffreys’
divergence of the conditional distribution between positive and negative labels,
which allows explicit formulation of the trade-off between utility and privacy in
this setting. Our results suggest how to select public features that optimize this
trade-off. But we still show that there is no free lunch—instances where label
differential privacy guarantees are strong are exactly those where a good classifier
does not exist. We complement the negative results with a non-parametric estimator
for the true privacy loss, and apply our techniques on large-scale benchmark data
to demonstrate how to achieve a desired privacy protection.

1 Introduction
Differential Privacy (DP) has emerged as a de facto standard for anonymous data analysis. Depending
on the specific trust model, differential privacy can be further divided into two main types: central
and local differential privacy [6]. Central differential privacy assumes the existence of a curator of
data who can be trusted to faithfully execute differentially private algorithms on the raw data. On the
other hand, in local DP the user obscures their information before providing it to an analyst. The
analyst is never able to infer any information about any particular user, but can still make inferences
about aggregate statistics.

In this work we focus on a particular variant of local differential privacy, known as label differential
privacy. In this model every user has a public feature vector x ∈ X and a private binary attribute,
known as a label, y ∈ {0, 1}. This approach has received a lot of recent attention. Practically, it is
natural and captures common data release examples, for instance user surveys and private digital
advertising [2]. Specifically, in the former, individuals’ demographic information is often treated
as non-sensitive, as compared to the target of the survey (e.g. income, political preferences, etc.).
In the latter, user attributes are often public, transmitted as part of the ad request, but the specific
action of a click or a conversion is protected. Empirically, label differential privacy also gives better
performance while still providing differential privacy guarantees, and so has seen new methods
developed specifically for this model [1, 3, 7].

We show that guarantees offered by label differential privacy are weaker than they appear, as a user
experiences privacy loss due to both the public release of the features, as well as the private release of
the label. For an illustration consider the following simple example. Let X be a set of points on the
real line, and for each x ∈ X , its corresponding label is +1 if x ≥ 0 and −1 otherwise. Even after
flipping the labels with some probability (and thus achieving label DP), a classifier trained on the
data will almost surely predict the correct label y. This information can then be used by an attacker
to update their belief on the true label for any example.
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What the above example shows is that when the features are sufficiently predictive of the label,
obscuring the label is not enough, as a classifier can still be trained on such noisy data. We make this
connection between the achieved privacy and the potential utility (in terms of classification quality)
formal and show how the privacy guarantees depend on the distribution of η(x) = P(Y = 1|X = x).
We then develop a method for estimatin the the privacy leakage by using a non-parametric approach
and establish a connection between the privacy leakage and the Jeffreys divergence. Finally, we
validate these findings with exhaustive experiments.

2 Privacy in binary classification
We denote the conditional label distribution function by η(x) = P(Y = 1|X = x) and the marginal
of P over X by µ. That is µ(A) = P(X ∈ A). Throughout the rest of the paper, capital letters will
denote random variables and realizations of these will be denoted by lower case letters.

Let Dn = {xi, yi}i∈[n] be drawn i.i.d. from P, and denote by D̃n to be the privatized view where
each label is flipped independently with probability π ∈ [0, 1/2), i.e D̃n = {xi, ỹi}i∈[n], where
ỹi = Zyi + (1− Z)(1− yi) and Z is a Bernoulli random variable with parameter π. We now turn
our attention to the privacy definitions we will use throughout the paper.
Definition 1. Let ε > 0, we say a randomized mechanism M : Y → Y for is label-locally differen-
tially private if for any y ∈ Y e−ε ≤ P(M(Y )=y|Y=0)

P(M(Y )=y|Y=1) ≤ eε,where the probability is taken over the
randomness of M .

It is not hard to show that the noisy label mechanism M(Y ) := Ỹ previously described is ε label-
locally differentially private for ε = log 1−π

π . Local differential privacy is well known to provide
some of the strongest privacy guarantees as it is impossible for an adversary to know the true
label of a user from the output of the mechanism. More precisely, a well known property of local
differential privacy — which follows from a simple application of Bayes rule to Definition 1 — is
P(Y=y|Ỹ=y)

P(Y=1−y|Ỹ=y)
≤ eε P(Y=y)

P(Y=1−y) . That is, given a noisy label an adversary can only increase their
posterior knowledge about the true value of a user’s label by a factor of eε. In other words, one
can interpret ε as the privacy loss incurred by revealing Ỹ . If the labels are independent from the
feature vectors, then the privacy bound of label flipping is exactly as described above. However,
with knowledge of the conditional label distribution function η and π, an adversary can improve the
quality of label inference which in turns degrades the privacy guarantee given by Definition 1. To
formalize this, we introduce the notion of instance-based privacy loss.
Definition 2. A function ν : Y × Y × X → R is said to be the instance-based privacy loss of the
noisy label mechanism if P(Y=y|Ỹ=ỹ,X=x)

P(Y=1−y|Ỹ=ỹ,X=x)
= eν(y,ỹ,x) P(Y=y)

P(Y=1−y)

The privacy loss function ν(y, ỹ,x) formalizes the drop in uncertainty about the true label of x when
the noisy label and the feature vector are revealed, and it reduces to the no information case when
only the prior of the labels is known. Using Bayes’ theorem, we can rewrite instance-based privacy
loss as

ν(y, ỹ,x) = log P(Ỹ=ỹ|Y=y,X=x)

P(Ỹ=ỹ|Y=1−y,X=x)
+ log P(Y=y|X=x)

P(Y=1−y|X=x) − log P(Y=y)
1−P(Y=y) (1)

The three terms in (1) have clear semantics. The first reflects the uncertainty introduced by using the
noisy label mechanism. The second, the uncertainty reduction that can be obtained by knowing the
feature vector x. Finally, the third term represents the prior knowledge of an adversary. Observe that
a key quantity is the conditional dependence of the labels on the feature vectors. If the uncertainty
of a label is small given the feature vector, then the noisy label mechanism provides little privacy
protection.In an extreme case, when η(x) ∈ {0, 1}, we lose all privacy guarantees because the true
label is revealed by the feature vector. In what follows, we investigate the privacy guarantee that can
be achieved in this binary classification setup with label noise. We will devise several approaches to
analyze ν(Y, Ỹ ,X) with respect to the data distribution and noise, with the assumption that the data
publisher has unlimited access to data without noise.

3 Worst case privacy guarantees
Revealing the noisy label ỹ and feature vector x reduces the uncertainty of the true label y which
is expressed by the privacy parameter ν(x, y, y′) defined in (1). We begin by analyzing the worst
case privacy loss of the data which we define as νmax = maxy,ỹ∈{0,1} ess supx∈X ν(y, ỹ,x) where
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ess sup denotes the essential supremum of a function with respect to the marginal measure µ. By
definition of the essential supremum, it is not hard to see that if P(η(X) ∈ {0, 1}) > 0, then
νmax =∞. That is, the noisy label mechanism provides no privacy in the worst case. It is therefore
important for a data publisher to be able to estimate νmax. Next we show how to estimate νmax given
a finite sample of the data under a mild assumption which includes Hölder smoothness of η(x) which
we shall refer to as measure smoothness assumption.

We will work in the non-parametric regime using k-nearest neighbor estimator which is a plug-in
estimator, i.e. it estimates η(x) by using the conditional empirical distribution using the neighbors
of x. We will denote the estimate of η by η̂(x). The motivation for using plug-in estimates is that,
under mild assumptions, one can show that the L1 error of the estimator vanishes, therefore we do
not have to deal with approximation error. Given x ∈ X we let {τn,q(x)}q∈[n] be an enumeration
of [n] such that for each q ∈ [n− 1], ρ

(
x,Xτn,q(x)

)
≤ ρ

(
x,Xτn,q+1(x)

)
. In words, given x ∈ X ,

{τn,i(x)}i∈[n] sorts {X1, . . . ,Xn} in increasing order of ρ-distance to x.

The k-nearest neighbor regression estimator η̂n,k : X → [0, 1] is given by η̂n,k(x) := 1
k ·∑

i∈[k] Yτn,i(x).By using η̂n,k, we define an estimator for supremum and infinimum of the regression

function as M̂n,k(η) = maxi∈[n] {η̂n,k(Xi)} and m̂n,k(η) = mini∈[n] {η̂n,k(Xi)} .

Next, we can give a finite-sample, high probability bound on the supremum and infinimum of the
conditional label distribution function. This result is based on Theorem 4.1 of [8] and relies on the
pointwise estimation error and the continuity of η. The proofs are deferred to the full version.
Theorem 1. Suppose that the measure-smoothness assumption holds with parameters λ, Cλ. Given
k ∈ [n] with k ≥ 8 log(2/δ), with probability at least 1− δ over D = {Xi}i∈[n] we have∣∣M̂n,k(η)−sup

x∈X
η(x)

∣∣ <√ log 4n
δ

2k +2Cλ
(
2k
n

)λ
and

∣∣m̂n,k(η)− inf
x∈X

η(x)
∣∣ <√ log 4n

δ

2k +2Cλ
(
2k
n

)λ
4 Expected classification privacy loss
The previous section was concerned with the worst case privacy leakage. Another natural quantity
that might be relevant for a data publisher is the expected privacy leakage with respect to P. The
instance-based privacy loss ν defined by (1) can be viewed as a random variable ν(Y, Ỹ ,X).
Definition 3. We define the expected conditional instance-based privacy loss function ν : X → R to
be the expected value of ν(Y, Ỹ ,X) conditioned on X = x, i.e. ν(x) := E[ν(Y, Ỹ ,x)]

The expected conditional instance-based privacy loss measures expected privacy leakage of the noisy
label mechanism for a user with feature vector x. Simple calculation yields that the average instance-
based privacy loss conditioned on any x ∈ X is ν(x) = (2η(x) − 1)

[
log η(x)

1−η(x) − log p+
1−p+

]
+

(2π−1) log π
1−π . We can analyze the random variable ν(X) to measure the expected privacy leakage

across all users. Interestingly, this expectation is closely related to to the Jeffreys divergence [5]:
I = E

[
(2η(X)− 1)

(
log η(X)

1−η(X)

)]
. Indeed, using the fact that E[η(X)] = p+, a straightforward

calculation shows that
E[ν(X)] = I + h(π)− h(p+), (2)

where h(z) = (2z − 1) log z
1−z . The above expression can be readily used to obtain an upper bound

on the probability of having a user with privacy loss higher than a given threshold τ > 0. Using
Markov’s inequality we have: P(ν̄(X) ≥ τ) ≤ I+h(p+)−h(π)

τ . However,the Jeffreys divergence
may be infinite, making the bound vacuous. We introduce a different way of estimating J(τ) :=
P(ν̄(X) > τ) which remains valid when I is infinite. This quantity has clear semantics: what is
the probability that we observe an instance x which has expected instance-based privacy loss that is
higher than τ . Our estimator is based on the nearest neighbor estimator of Section 3 and it is defined
as

Ĵn,k(τ) =
1

n

n∑
i=1

I{η̂n,k(xi)− 2c(n) > tH}+ I{η̂n,k(xi) + 2c(n) < tL} (3)

where c(n) := c(n, k, δ) =
√

2 log 6n/δ
k −Cλ

(
2k
n

)λ
, tL = 1

eκ+1 and tH = 1
e−κ+1 . This estimator is

motivated by the the fact the J(τ) can be upper bounded by the marginal measure of certain set of
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Figure 1: (a) The thresholds for η(x) for various τ and π to compute J(τ). Based on Lemma 1, we can upper
bound P(ν(X) > τ) ≤ µ(GtL) + µ(GtH ). We plotted tH and tL with respect to τ . (b) High probability
upper bound for J(τ) with δ = 0.01. These graphs show Ĵn,k(τ) defined in (3), computed on the training data.
instances for which the conditional distribution is close to either 0 or 1 as this is presented by the next
lemma.
Lemma 1. For any τ > 0, it holds that J(τ) = P(ν(X) > τ) ≤ µ(GtL) + µ(GtH ) with
Gα = {x ∈ X : η(x) ≤ α} and Gα = {x ∈ X : η(x) ≥ 1 − α} where κ = κτ,π :=(√

e+1√
e−1
(
τ − h(π)

))2/3
+ log p+

1−p+ .

Next we compute a high probability error bound for the estimator of J(τ).
Theorem 2. Suppose that the measure-smoothness assumption holds with parameters λ, Cλ. Then
given k ∈ [n] with k ≥ 8 log(2/δ) and δ > 0, it holds with probability at least 1− δ over Dn that
J(τ) ≤ Ĵn(τ) +

√
1/2n log(6/δ) + δ/3.

5 Experiments
We present examples that show that the finite-sample estimator can help asses privacy violations and
tune the flipping probability π. We use four large scale binary classification datasets, as described in
Appendix A. For each dataset we computed an approximate k-nearest neighbor graph under the L2

distance, using k = 1000 for SUSY and k = 10000 for the rest.

In the first set of experiments we estimate the worst case privacy loss for various datasets. Table 2
in Appendix shows the estimated extreme values of the regression function and log ratios and their
confidence bounds based on Theorem 1. The last two columns of the table compute the worst case
privacy loss for these datasets for π = 0.01 and 0.001. In the absence of feature vectors, these values
of π provide ε differential privacy for ε = 4.59 and ε = 6.9 respectively. Our experiments show
that the true worst case privacy leakage when releasing feature vectors is approximately twice that
for the kag14 dataset and 5-7 times larger for the kdd12 dataset. This increase can be explained by
the fact that the regression function is close to 0 or 1 for these datasets. We also note how close the
confidence intervals of the minimum and maximum of the regression function are to each other. This
validates our believe that the techniques we developed can provide a data owner with the confidence
of understanding the risks of releasing noisy labels. Finally, notice that for kdd10 and SUSY, the
privacy leakage is infinite. That is due to the fact that there are feature vectors that can predict with
certainty the value of a label irrespective of the amount of noise we add to it.

Tuning π based on J(τ). As we have seen, the extreme values of the regression function can be
close to 0 and 1, which implies that in practice, controlling the worst case instance-based privacy loss
may not be achievable. On the other hand, if our privacy requirements allow us to release a small
subset of data with potentially high privacy loss, while giving stronger guarantees for the rest, then
we can tune the noise level by controlling the tail distribution of conditional Jeffreys’ divergence,
J(τ), as Theorem 2 suggests.

Figure 1 (a) shows the thresholds tH and tL for different τ values, as computed based on Lemma 1
and Figure 1 (b) shows the corresponding upper bounds of J(τ) according to Theorem 2. To interpret
the figures, consider the kag14 dataset with π = 0.01. If we want to know what is the probability
of observing an X for which P (ν(X) > 6), then µ(GtL) + µ(GtH ) needs to be estimated with
tL = 0.1 and tH = 0.9, the corresponding points on the graphs are indicated by black crosses. We
conclude that even though the worst case privacy guarantee for π = 0.01 on the SUSY dataset was
infinite, for more than 95% of users the true privacy leakage is approximately 6 which is very close
to the protection a user would get if features were not available (Figure 1 (b)). This same effect can
be observed for the kdd12 and kdd10 datasets. What these experiments show is that by using J(τ) to
measure the privacy leakage, a data owner can still protect the majority of its users while only adding
noise to the sensitive labels. In the kdd12 dataset the prior is a good predictor, which explains the low
privacy loss.

4



References
[1] Amos Beimel, Kobbi Nissim, and Uri Stemmer. Private learning and sanitization: Pure vs.

approximate differential privacy. CoRR, abs/1407.2674, 2014.

[2] Charlie Harrison. Github post: Conversion measurement api.

[3] Kamalika Chaudhuri and Daniel J. Hsu. Sample complexity bounds for differentially private
learning. In Sham M. Kakade and Ulrike von Luxburg, editors, COLT 2011 - The 24th Annual
Conference on Learning Theory, June 9-11, 2011, Budapest, Hungary, volume 19 of JMLR
Proceedings, pages 155–186. JMLR.org, 2011.

[4] Criteo. http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/,
2014.

[5] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer,
New York, 1996.

[6] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3–4):211–407, August 2014.

[7] Badih Ghazi, Noah Golowich, Ravi Kumar, Pasin Manurangsi, and Chiyuan Zhang. On deep
learning with label differential privacy. CoRR, abs/2102.06062, 2021.

[8] Henry Reeve and Ata Kaban. Fast rates for a kNN classifier robust to unknown asymmetric
label noise. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 5401–5409, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[9] Niculescu-Mizil A. Ritter S. Gordon G.J. Stamper, J. and K.R. Koedinger. Algebra i 2008-
2009. challenge data set from kdd cup 2010 educational data mining challenge. find it at http:
//pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp, 2010.

5

http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp


A Main statistics of benchmark datasets

Name #Train #Test #Feat. p+ Name #Train #Test #Feat. p+
kag14 40M 5.8M 1M 0.256 kdd12 118M 29.9M 54.6M 0.044
kdd10 19.2M 0.7M 29.8M 0.861 SUSY 4.5M 0.5M 18 0.457

Table 1: The main parameters of the benchmark datasets. Here p+ = P(Y = 1), i.e. the prior
probability of observing a positive label. Kag14 dataset used in Kaggle Display Advertising Challenge
and it is released by Criteo [4]. kdd12 dataset is the official dataset of KDD Cup 2012 Track 1and
released by Tencent Inc. kdd10 dataset is the official dataset of KDD Cup 2010 [9]. SUSY is taken
from UCI repository.

B Worst case privacy loss

Name [m̂L, m̂H ] [M̂L, M̂H ] log 1−m̂L
m̂H

log M̂H

1−M̂L
π = 0.01 π = 0.001

Train Test Train Test Train Test Train Test Train Test Train Test
kag14 [0.01,0.02] [0.01,0.02] [0.96,0.98] [0.95,0.98] 5.28 5.26 3.20 3.08 8.9 8.8 11.2 11.1
kdd12 [0.00,0.00] [0.00,0.00] [0.62,0.67] [0.62,0.67] 27.63 27.63 0.57 0.57 29.1 29.1 31.5 31.5
kdd10 [0.24,0.29] [0.25,0.29] [1.00,1.00] [1.00,1.00] 1.06 1.05 inf inf inf inf inf inf
SUSY [0.01,0.06] [0.01,0.06] [0.98,1.00] [0.98,1.00] 5.17 5.17 inf inf inf inf inf inf

Table 2: Extreme values of conditional label distribution function and lower bounds for their log like-
lihood ratio. We denote the lower and upper confidence bound of the estimate of m(η) = infx η(x)
by m̂L and m̂H , respectively. Similarly, for M(η) = supx η(x), we denoted the confidence interval
by [M̂L, M̂H ]. The worst case privacy loss νmax for π ∈ {0.01, 0.001} is reported in the last two
columns, respectively.
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