
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Scalable Algorithms for Forest-Based Centrality on Large Graphs
Anonymous Author(s)

Abstract

Centrality measures are essential for identifying important nodes
and edges within a network. In this paper, we focus on two forest-
based centrality measures on undirected graphs: forest node cen-
trality (FNC) and forest edge centrality (FEC), which capture the
influence of nodes and edges through their participation in span-
ning forests. Both centrality measures can be represented using
entries of the forest matrix. To address the challenge of comput-
ing the two measures on large networks, we propose two scalable
algorithms from different perspectives. The first algorithm IFGN
combines two variance reduction techniques to approximate the
entries of the forest matrix, which is applicable to both FNC and FEC.
The second algorithm FECE incorporates a new physical interpre-
tation of FEC, allowing for a better overall estimation. We provide
error guarantees for both algorithms and demonstrate their effi-
ciency and effectiveness through extensive experiments on various
real-world networks.

1 Introduction

Spanning trees and spanning forests of graphs play significant
roles in the field of graph data mining. Frequently cited exam-
ples include collaborative recommendation [17], opinion dynam-
ics [39, 47], graph density [36], node centrality [24, 43], and others.
The forest matrix, denoted as 𝛀 = (I + L)−1 [31, 46], captures im-
portant structural properties of graphs, with its entries establishing
a connection to the spanning forests of the graph through the forest
theorem [8, 12].

Centrality measures based on forests have been proposed and
extensively studied [22, 30, 32]. Previous literature has introduced
forest closeness centrality [24, 43], which is defined similarly to tra-
ditional closeness centrality but utilizes forest distances [11]. It has
been demonstrated that forest closeness centrality exhibits supe-
rior discriminating power compared to traditional node centrality
measures [6] and can be expressed in terms of the diagonal entries
of the forest matrix. Specifically, the forest closeness centrality of
node 𝑢 is positively correlated with the reciprocal of the 𝑢th diag-
onal entry of the forest matrix. Therefore, it can be directly used
to represent the importance of node 𝑢, which is defined as Forest
Node Centrality (FNC). This measure has been proven to physically
represent the average size of the connected component containing
node 𝑢 across all spanning forests rooted at 𝑢 in the graph [40].

In addition to node centrality, edge centrality serves as a cru-
cial metric in the realm of graph data mining, such as community
detection [21], knowledge discovery [37], and visualization of large-
scale graphs [15, 29]. Analogous to the definition of FNC, the Forest
Edge Centrality (FEC) of edge (𝑢, 𝑣) is defined as the average size of
the connected component containing edge (𝑢, 𝑣) across all forests
rooted at 𝑢 [5]. FEC exhibits excellent discriminative capabilities
for different edges, and it remains applicable even to disconnected
graphs, owing to the fact that a spanning forest can be defined on
a disconnected graph. Although enumerating satisfying spanning
forests can be time-consuming, it is shown that this metric can be

transformed into a combined form of the diagonal and off-diagonal
entries of the forest matrix [5].

Such results further underscore the benefits of the forest ma-
trix, indicating that as long as we can compute the entries of the
forest matrix, we can calculate FNC and FEC. However, the exact
computation of the forest matrix necessitates the calculation of the
inverse matrix, which costs 𝑂 (𝑛3) operations and 𝑂 (𝑛2) memory
and thus is impractical for relatively large networks. Therefore,
accurately and efficiently estimating the entries of the forest matrix
has recently been an important research focus. The mainstream
algorithms for approximating the entries of the forest matrix can
be categorized into two types, based on the Laplacian Solver and
Monte Carlo methods, respectively. Solver-based algorithms, due
to limitations in solver performance, do not yield satisfactory ap-
proximation results on large-scale networks (exceeding one million
nodes). In contrast, Monte Carlo-based sampling algorithms have
demonstrated superior performance in experiments and exhibit
greater potential.

Based on the forest theorem, the entry in the 𝑢th row and 𝑣 th

column of the forest matrix can be represented as the proportion
of forests in which 𝑢 rooted at 𝑣 across all spanning forests of the
graph. By incorporating the uniform forest sampling algorithm,
research in [40] constructs a simple estimator to approximate each
entry. This sampling-based method is applicable to both directed
and undirected graphs. Its potential lies in the ability to achieve
more precise results by optimizing the sampling process. One op-
timization approach involves integrating information from neigh-
boring nodes, which has been shown to reduce variance for the
estimation of both diagonal [40] and off-diagonal [41] entries and
demonstrates improved performance in experiments compared to
the original simple algorithm.

Existing methods for calculating forest matrix mainly focus on
directed graphs. However, the problem of fast computation of forest
matrix on undirected graphs is still of great importance. From the
theoretical perspective, FNC and FEC are defined solely on undi-
rected graphs. The matrices corresponding to undirected graphs
possess crucial properties, indicating that there is still room for
improvement in algorithms applied to directed graphs. From the
practical perspective, many downstream graph mining and learning
tasks are only defined on undirected graphs. For example, in the
task of smoothing graph signals [33], the estimators are proposed
on undirected graphs. Additionally, some image analysis tasks are
facilitated by undirected random forests [2].

Nevertheless, existing algorithms do not employ effective meth-
ods when dealing with undirected graphs. Additionally, for FEC, it
is not feasible to directly compute the centrality values for each
edge in a short time frame using its definition. Building upon these
two observations, we propose algorithms that compute FNC for
all nodes and FEC for all edges on undirected graphs. Our main
contributions of this paper are summarized as follows.

• We analyze the properties of spanning forests on undirected
graphs and devise new estimators for the entries of the forest

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW’25, April 28-May 02,2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

matrix. The variance of this estimator is smaller than that of the
simple estimator, enabling more precise estimation.

• We combine the strengths of our designed estimator with the
neighbor-based estimator[41] in a simple yet non-trivial way,
leading to a more accurate and faster estimator. Building on this,
we develop the algorithm IFGN.
• Based on the definition of FEC, we identify a new physical in-

terpretation that allows for better computation of FEC. Building
on this approach and our variance reduction technique on undi-
rected graphs, we introduce the algorithm FECE.

• We conduct numerical experiments on real-world networks, and
the results demonstrate that both IFGN and FECE improve accu-
racy and speed for the approximation of FNC and FEC.

2 Preliminaries

In this section, we introduce some useful notations and fundamental
concepts for the convenience of description and analysis.

2.1 Graph and Matrix Definitions

Let G = (𝑉 , 𝐸) denote an undirected unweighted graph, with node
set𝑉 and edge set 𝐸 ⊆ 𝑉 ×𝑉 . We define 𝑛 = |𝑉 | and𝑚 = |𝐸 | as the
number of nodes and edges in the graph, respectively. LetA ∈ R𝑛×𝑛
be the adjacency matrix of G, with the entry A𝑢𝑣 = 1 if there exists
an edge 𝑒 = (𝑢, 𝑣) from node𝑢 to node 𝑣 , andA𝑢𝑣 = 0 otherwise. For
a given node 𝑢, 𝑁𝑢 denote the set of the neighbors of 𝑢, meaning
𝑁𝑢 = {𝑣 : (𝑢, 𝑣) ∈ 𝐸}. The degree of node 𝑢 is 𝑑𝑢 =

∑𝑛
𝑣=1 A𝑢𝑣 .

The degree diagonal matrix of G is D = diag(𝑑1, 𝑑2, . . . , 𝑑𝑛). The
Laplacian matrix L of G is defined to be L = D − A.

2.2 Spanning Forest and Forest Matrix

For a graph G = (𝑉 , 𝐸), a rooted spanning tree is a connected
subgraph of G, where one node is designated as the root. An iso-
lated node is considered as a spanning tree with the root being
itself. A spanning forest of G is a subgraph of G whose connected
components are rooted spanning trees [1, 9].

We use F to denote the set of all rooted spanning forests. For a
given spanning forest 𝜙 ∈ F , we define a function 𝑟𝜙 (𝑢) : 𝑉 → 𝑉
mapping node 𝑢 to the root of its associated connected component.
Define F𝑢𝑣 as the set of rooted spanning forests in which nodes 𝑢
and 𝑣 are within the same connected component, rooted at node 𝑣 .
Formally, F𝑢𝑣 = {𝜙 : 𝑟𝜙 (𝑢) = 𝑣, 𝜙 ∈ F }. Let 𝑇𝜙 (𝑢) denote the set
of nodes in the connected component containing 𝑢.

The forest matrix is defined as 𝛀 = (I + L)−1 = (𝜔𝑢𝑣)𝑛×𝑛 . In
the context of undirected graphs, the forest matrix 𝛀 is symmetric
and doubly stochastic, meaning that the sum of each row and each
column equals 1, with all its entries satisfying 0 ≤ 𝜔𝑢𝑣 ≤ 𝜔𝑢𝑢 ≤ 1.
The entry 𝜔𝑢𝑣 can be encoded by the number of spanning forests,
expressed as 𝜔𝑢𝑣 = |F𝑢𝑣 | /|F | [8, 12].

2.3 Forest Node Centrality

Node centrality can be quantified through measures related to the
spanning forests of the graph. Previous literature has introduced the
concept of forest closeness centrality [24, 43], which is defined simi-
larly to traditional closeness centrality but through forest distances.
Specifically, forest closeness centrality is defined as the reciprocal
of the average forest distance from a node 𝑢 ∈ 𝑉 to all other nodes

in the graph G. This measure indicates that a node is more central
when it has shorter average distances to other nodes.

Definition 2.1 ([11, 24]). For a graph G = (𝑉 , 𝐸) and its corre-
sponding forest matrix 𝛀 = (𝜔𝑢𝑣)𝑛×𝑛 , the forest distance between
pair of nodes 𝑢 and 𝑣 is defined as: 𝜌 (𝑢, 𝑣) = 𝜔𝑢𝑢 + 𝜔𝑣𝑣 − 2𝜔𝑢𝑣 .
The forest closeness centrality C(𝑢) for node 𝑢 is defined as: C(𝑢) =

𝑛∑
𝑣∈𝑉 \{𝑢} 𝜌 (𝑢,𝑣) =

𝑛
𝑛𝜔𝑢𝑢+Tr(𝛀)−2 .

We observe that, in the context of forest closeness centrality,
the only term that varies across different nodes 𝑢 is 𝜔𝑢𝑢 , which
represents the 𝑢th diagonal entry of the forest matrix. Given that
the rest of the expression is constant for all nodes, we can simplify
the centrality measure by directly using

FNC(𝑢) = 1
𝜔𝑢𝑢

(1)

as the Forest Node Centrality (FNC) of node 𝑢. It is easy to verify
that using this simplified expression to rank nodes yields the same
results as using the original closeness centrality for ranking. In fact,
the quantity we defined carries physical significance. According
to [40], the reciprocal of 𝜔𝑢𝑢 is equal to the average size of the
connected component containing node 𝑢 over all spanning forests
rooted at 𝑢, expressed as 1

𝜔𝑢𝑢
=

∑
𝜙∈F𝑢𝑢 |𝑇𝜙 (𝑢) |
| F𝑢𝑢 | . Intuitively, a node

belonging to a larger connected component across all its spanning
forests is generally more central and essential.

2.4 Forest Edge Centrality

Forest Edge Centrality (FEC) quantifies the centrality of an edge
(𝑢, 𝑣) by considering its average contribution across all spanning
forests F𝑢𝑣 of the graph [5]. The formal definition of FEC is provided
in Definition 2.2.

Definition 2.2. Let G = (𝑉 , 𝐸) be an undirected, unweighted
graph. The FEC of edge (𝑢, 𝑣) is defined as the average size of the trees
containing (𝑢, 𝑣) over all spanning forests in F𝑣𝑢 , namely

FEC(𝑢, 𝑣) = 1
|F𝑣𝑢 |

∑︁
𝜙∈F𝑣𝑢 ,(𝑢,𝑣) ∈𝜙

|𝑇𝜙 (𝑢) |. (2)

Definition 2.2 indicates that FEC(𝑢, 𝑣) is equal to the expected
number of nodes in the tree including edge (𝑢, 𝑣), which is part of
a spanning rooted forest chosen randomly from F𝑣𝑢 . Since enumer-
ating all spanning forests is time-consuming, Lemma 2.3 proposes
a new formulation to calculate FEC by expressing the FEC of every
edge in terms of the entries for the forest matrix 𝛀.

Lemma 2.3 ([5]). Let G = (𝑉 , 𝐸) be an undirected unweighted
graphwith forest matrix𝛀 = (𝜔𝑢𝑣)𝑛×𝑛 . Then, for any edge (𝑢, 𝑣) ∈ 𝐸,
its forest edge centrality FEC(𝑢, 𝑣) is

FEC(𝑢, 𝑣) = 𝜔𝑢𝑢 + 𝜔𝑣𝑣 − 2𝜔𝑢𝑣
𝜔𝑢𝑣

. (3)

It has been proven that the upper bound of FEC for edge (𝑢, 𝑣)
is FEC(𝑢, 𝑣) ≤ 𝑑𝑢 + 𝑑𝑣 , where 𝑑𝑢 and 𝑑𝑣 are the degrees of nodes 𝑢
and 𝑣 , respectively. We find that both FNC and FEC can be expressed
in terms of the entries of the forest matrix, which can be obtained
by directly inverting the matrix (I + L). This algorithm is referred
to as Exact (with its pseudocode provided in the appendix). While

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Scalable Algorithms for Forest-Based Centrality on Large Graphs WWW’25, April 28-May 02,2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

straightforward, it has a time complexity of𝑂 (𝑛3), which is imprac-
tical for large-scale networks. Additionally, storing all entries of the
forest matrix requires𝑂 (𝑛2) space complexity. In practice, however,
only the 𝑛 diagonal entries and the𝑚 off-diagonal entries are nec-
essary for our calculations. In the following sections, we introduce
two novel approximation algorithms that achieve linear time and
space complexity, making them scalable for large networks.

3 Algorithms for Estimating Entries of Forest

Matrix on Undirected Graphs

Inspired by the forest theorem [8, 12], sampling-based methods
have been widely employed to estimate the diagonal entries [40],
trace [7] and column sum [39] of the forest matrix. In this section,
we propose a novel variance reduction technique and introduce a
new estimator for the entries of the forest matrix, leveraging the
concept of isomorphic forests.

3.1 Existing Sample-Based Methods

Existing sample-based methods consist of two main steps: generat-
ing a list of spanning forests uniformly, and estimating the entries
based on each sampled forest.

3.1.1 Wilson’s algorithm and its extension. Wilson’s sample algo-
rithm [44] and its extension [4] provides a method of sampling
spanning trees and forests uniformly, based on loop-erased random
walk [27]. It has been proven to sample a spanning forest in 𝑂 (𝑛)
time complexity [39], where 𝑛 is the number of nodes in the graph.

The procedure of the extension of Wilson’s algorithm is detailed
in [40]. Notably, in the implementation of the algorithm, we store
each forest using an array next of length 𝑛, which records the next
node for each node. Additionally, to quickly query the root of each
node, we need an array root of length 𝑛. Therefore, each forest
requires 𝑂 (𝑛) space complexity. Although we eventually sample a
list of forests, each forest is independent, and its contribution can be
recorded after every sampling. Thus, the overall space complexity
of the algorithm remains 𝑂 (𝑛).

3.1.2 Simple estimator. The entry𝜔𝑢𝑣 represents the probability of
node 𝑢 rooting at 𝑣 in a uniformly sampled spanning forest 𝜙 ∈ F .
In the work in [40], according to the probability interpretation of
𝜔𝑢𝑣 , a simple unbiased estimator 𝜔𝑢𝑣 (𝜙) was used to estimate 𝜔𝑢𝑣 ,
defined as 𝜔𝑢𝑣 (𝜙) = I{𝑟𝜙 (𝑢)=𝑣} , where I is a indicator function
taking the value 1 when 𝑢 is rooted at 𝑣 and 0 otherwise. 𝜔𝑢𝑣 (𝜙) is
an unbiased estimator of 𝜔𝑢𝑣 with the variance of 𝜔𝑢𝑣 − 𝜔2

𝑢𝑣 . The
algorithm that employs this estimator is referred to as SCF.

3.1.3 Neighbor-based estimation method. Although 𝜔𝑢𝑣 is an un-
biased estimator, its variance is quite large, leading to significant
errors in SCF. Research [41] proposed the algorithm SFQPlus with
a new estimator. For any node 𝑢 and 𝑣 , it considers whether 𝑣
and its neighbors can potentially become the root of 𝑢. Specifi-
cally, the new neighbor-based estimators for 𝜔𝑢𝑣 and 𝜔𝑢𝑢 are de-
fined as 𝜔𝑢𝑣 (𝜙) = 1

2+𝑑𝑣 (𝜔𝑢𝑣 (𝜙) +
∑

𝑤∈𝑁𝑣
𝜔𝑢𝑤 (𝜙)), and 𝜔𝑢𝑢 (𝜙) =

1
1+𝑑𝑢 (1 +

∑
𝑤∈𝑁𝑢

𝜔𝑢𝑤 (𝜙)) . It has been proven that the estimator
𝜔𝑢𝑣 (𝜙) is an unbiased estimator of 𝜔𝑢𝑣 and has a reduced variance
compared to that of 𝜔𝑢𝑣 (𝜙).

3.2 Isomorphic Forest Group and New

Estimators on Undirected Graph

Although existing works have established the relationship between
the entries of the forest matrix and spanning forests and have pro-
posed sampling algorithms to estimate them, there are still unique
properties and information on undirected graphs that require fur-
ther exploration. In this subsection, we introduce the concept of an
isomorphic forest group. Then, based on this concept we propose
new estimators for the entries of the forest matrix, which have
lower variance than those in previous works.

We begin by introducing definitions related to the isomorphic
forest group. Two trees 𝜏1 and 𝜏2 are considered isomorphic, de-
noted 𝜏1 ∼ 𝜏2, if they have the same set of nodes and edges, differing
only in their root nodes. For a given tree, the number of its iso-
morphic trees is equal to the number of its nodes, with each node
serving as a distinct root. Similarly, two forests 𝜙1, 𝜙2 are defined
as isomorphic if each tree within them has a one-to-one correspon-
dence of isomorphism, denoted as 𝜙1 ∼ 𝜙2. These forests together
form an isomorphic forest group.

Figure 1 illustrates a spanning forest 𝜙 and all its isomorphic
forests on a toy graph G with 7 nodes and 11 edges. The roots of
trees are marked in yellow. For the forest 𝜙 , we denote the tree
containing nodes {4, 5, 6} as 𝜏1, and the tree containing {1, 2, 3, 7} as
𝜏2. There are three trees that are isomorphic to 𝜏1, marked in blue,
and four trees that are isomorphic to 𝜏2. Therefore, the number of
forests isomorphic to 𝜙 is 3 × 4 = 12, and all isomorphic forests are
listed in Figure 1.

1
2

3

4

5
6

7

G
1

2

4

5

7
3

6

𝜙

1

Figure 1: A toy graph G, a spanning forest 𝜙 and its isomor-

phic forests.

We now examine the process of estimating the forest matrix en-
try 𝜔𝑢𝑣 . Consider a sampled forest 𝜙 consisting of 𝑘 trees, denoted
as 𝜙 = {𝜏1, 𝜏2, · · · , 𝜏𝑘 }. Suppose nodes 𝑢 and 𝑣 are in the same tree
𝜏𝑚 , but 𝑣 is not the root. In this situation, the simple estimator
𝜔𝑢𝑣 (𝜙) would fail to account for the contribution of such configu-
rations. However, since the extension of Wilson’s algorithm returns
a uniform spanning forest from F , the probability of obtaining a
tree isomorphic to 𝜏𝑚 , with 𝑣 as the root instead, is 1

|𝑇𝜙 (𝑢) | .
If we sample a forest in which 𝑢 and 𝑣 appear in the same tree,

we can consider that this forest contributes 1
|𝑇𝜙 (𝑢) | to 𝜔𝑢𝑣 for each

node 𝑣 in the connected component. Based on this, we propose a
new estimator ¥𝜔𝑢𝑣 (𝜙) for 𝜔𝑢𝑣 , expressed as

¥𝜔𝑢𝑣 (𝜙) = E{𝜔𝑢𝑣 (𝜙0) |𝜙0 ∼ 𝜙} =
I{𝑟𝜙 (𝑢)=𝑟𝜙 (𝑣) }��𝑇𝜙 (𝑢)�� .

For the case 𝑢 = 𝑣 , ¥𝜔𝑢𝑢 (𝜙) = 1
|𝑇𝜙 (𝑢) | . In practice, using this esti-

mator, sampling each forest 𝜙 is equivalent to obtaining
∏

𝜏𝑖 ∈𝜙
��𝑉𝜏𝑖 ��

distinct forests. Intuitively, with the number of samples remaining
3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW’25, April 28-May 02,2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

constant, this estimator is expected to yield more effective results.
Theorem 3.1 (whose proof is given in the appendix) demonstrates
that ¥𝜔𝑢𝑣 is an unbiased estimator with reduced variance.

Theorem 3.1. For a spanning forest 𝜙 ∈ F and 𝑢, 𝑣 ∈ 𝑉 , ¥𝜔𝑢𝑣 (𝜙)
is an unbiased estimator of 𝜔𝑢𝑣 , with a variance less than that of
𝜔𝑢𝑣 (𝜙).

3.3 Combined Variance Reduced Estimator

We observe that the variance reduction technique for undirected
graphs described in Section 3.2 and the neighbor-based sampling
method from Section 3.1.3 reduce variance from different perspec-
tives. For nodes 𝑢, 𝑣 ∈ 𝑉 , consider the estimation process of 𝜔𝑢𝑣
using different estimators. For the simple estimator 𝜔𝑢𝑣 , only the
cases where node 𝑢 is rooted at 𝑣 are considered. For the neighbor-
based estimator 𝜔𝑢𝑣 , forests where the root of 𝑢 is either 𝑣 or one
of the neighbors of 𝑣 are considered. For the estimator ¥𝜔𝑢𝑣 , all
forests where 𝑢 and 𝑣 belong to the same connected component
are taken into account. These two estimators (𝜔𝑢𝑣 and ¥𝜔𝑢𝑣) intu-
itively increase the number of considered samples from different
perspectives and have been proven to reduce variance indepen-
dently. Therefore, we can combine them in a simple yet non-trivial
way to construct a new estimator for approximating the entries of
the forest matrix on undirected graphs.

For a spanning forest 𝜙 and two nodes 𝑢, 𝑣 , we consider nodes
such that node𝑤 is in the same connected component as node𝑢, and
𝑤 is either 𝑣 or a neighbor of 𝑣 . This intuitively suggests that more
sampled forests contribute to the calculation of 𝜔𝑢𝑣 . Specifically,
our new estimators 𝜔𝑢𝑣 (𝜙) and 𝜔𝑢𝑢 (𝜙) are defined as follows:

𝜔𝑢𝑣 (𝜙) = 1
2 + 𝑑𝑣 (¥𝜔𝑢𝑣 (𝜙) +

∑︁
𝑤∈𝑁𝑣

¥𝜔𝑢𝑤 (𝜙))

=
1

2 + 𝑑𝑣
1��𝑇𝜙 (𝑢)�� (I{𝑟𝜙 (𝑢)=𝑟𝜙 (𝑣) } + ∑︁

𝑤∈𝑁𝑣

I{𝑟𝜙 (𝑢)=𝑟𝜙 (𝑤) }
)
,

𝜔𝑢𝑢 (𝜙) = 1
1 + 𝑑𝑢 (1 +

∑︁
𝑤∈𝑁𝑢

¥𝜔𝑢𝑤 (𝜙))

=
1

1 + 𝑑𝑢
(
1 + 1��𝑇𝜙 (𝑢)�� ∑︁

𝑤∈𝑁𝑢

I{𝑟𝜙 (𝑢)=𝑟𝜙 (𝑤) }
)
,

Theorem 3.2. For a spanning forest 𝜙 ∈ F and 𝑢, 𝑣 ∈ 𝑉 , 𝜔𝑢𝑣 (𝜙)
is an unbiased estimator of 𝜔𝑢𝑣 , with variances less than that of
𝜔𝑢𝑣 (𝜙). 𝜔𝑢𝑢 (𝜙) is an unbiased estimator of 𝜔𝑢𝑢 , with variances less
than that of 𝜔𝑢𝑢 (𝜙).

Theorem 3.2 demonstrates that 𝜔𝑢𝑣 and 𝜔𝑢𝑢 are unbiased esti-
mators of 𝜔𝑢𝑣 and 𝜔𝑢𝑢 , with variances less than the estimators in
Section 3.1.3, respectively, as proved in the appendix. It is notewor-
thy that computing the number of nodes 𝑘 that meet the require-
ments for each edge (𝑢, 𝑣) cannot be accomplished in 𝑂 (1) time.
For𝜔𝑢𝑣 (𝜙), counting requires only checking through the adjacency
matrix whether the root 𝑘 of 𝑢 is a neighbor of 𝑣 ; for ¥𝜔𝑢𝑣 (𝜙), it
suffices to determine whether𝑢 and 𝑣 belong to the same connected
component (i.e., whether their roots are identical). Both of the above
operations take 𝑂 (1) time for each entry in every sampling itera-
tion, resulting in an overall algorithm complexity of𝑂 ((𝑛 +𝑚)𝑙). In
contrast, our combined algorithm necessitates evaluating the size

of the intersection between the connected component set of 𝑢 and
the neighbor set of 𝑣 . Such an operation takes 𝑂 (𝑑𝑣) time.

3.4 Approximation Algorithm for FNC
Using the estimator for the diagonal entries, we can calculate
the FNC of nodes. Specifically, assume that we sample 𝑙 forests
to form a list L, and define 𝜂𝑢 = 1

𝜔𝑢𝑢
and the estimator 𝜂𝑢 (L) =

𝑙∑
𝜙∈L 𝜔𝑢𝑢 (𝜙) for each node 𝑢 ∈ 𝑉 . Using the Chernoff bound [13],

we provide a proper choice of the sample number 𝑙 and establish
an (𝜖, 𝛿)-approximation of 𝜂𝑢 (L) in Theorem 3.3 (the proof is pro-
vided in the appendix).

Theorem 3.3. For any 𝜖, 𝛿 ∈ (0, 1), if 𝑙 is chosen obeying 𝑙 =⌈(
2(1+𝜖)
3𝜖 + (1+𝜖)24𝜖2

)
ln 2

𝛿

⌉
, the following inequalities hold with proba-

bility at least 1 − 𝛿 :
1

1 + 𝜖 𝜔𝑢𝑢 ≤
1
𝑙

∑︁
𝜙∈L

𝜔𝑢𝑢 (𝜙) ≤ 2 + 𝜖
1 + 𝜖 𝜔𝑢𝑢 .

Then, the approximation 𝜂𝑢 of 𝜂𝑢 satisfies the following relation:

(1 − 𝜖)𝜂𝑢 ≤ 𝜂𝑢 (L) ≤ (1 + 𝜖)𝜂𝑢 .
Compared to𝜔𝑢𝑣 (𝜙) and𝜔𝑢𝑢 (𝜙), our proposed estimators,𝜔𝑢𝑣 (𝜙)

and 𝜔𝑢𝑢 (𝜙) , exhibit lower variance, thus requiring fewer expected
samples to achieve the same error guarantee. To further accelerate
the sampling process while maintaining the error bounds, we in-
troduce the empirical Bernstein inequality [3], which allows us to
tighten the theoretical bound without sacrificing accuracy.

Lemma 3.4. Let𝑋1, 𝑋2, · · · , 𝑋𝑛 be𝑛 independent random variables
satisfying 0 ≤ 𝑋𝑖 ≤ 𝑀 . If we denote 𝑋 and 𝑋var as the empirical
mean and the empirical variance of 𝑋𝑖 , then we have:

P
{ |𝑋 − E(𝑋) | ≥ 𝑓 (𝑛,𝑋var, 𝑀, 𝛿)} ≤ 𝛿,

where

𝑓 (𝑛,𝑋var, 𝑀, 𝛿) =
√︂

2𝑋var log(3/𝛿)
𝑛

+ 3𝑀 log(3/𝛿)
𝑛

.

Lemma 3.4 presents the empirical variance of random variables,
which is initially unknown but can be effectively tracked through-
out the sampling process. Specifically, we continue utilizing the
Chernoff bound for the necessary number of sampled forests to
guarantee that there is no loss of theoretical accuracy. By applying
the Bernstein inequality, with each forest sampled, we update the
empirical variance for each entry accordingly with each sampled
forest. If the empirical errors of all entries are less than the desired
error threshold, we terminate the sampling process. We introduce
Algorithm IFGN to estimate the FNC for each node.

Algorithm 1 named IFGN, utilizes the isomorphic forest group
(IFG) on undirected graphs along with neighbor (N) information
to estimate FNC. According to our analysis, the time complexity of
Algorithm 1 is𝑂 (𝑛𝑙𝑑), where 𝑙 is the number of predetermined num-
ber of samples, given by 𝑙 =

⌈(
2(1+𝜖)
3𝜖 + (1+𝜖)24𝜖2

)
ln 2

𝛿

⌉
. The space

complexity of the algorithm is 𝑂 (𝑛). Although IFGN has a theo-
retically longer running time than using the variance reduction
techniques discussed in Section 3.1.3 and Section 3.2 separately
(both having a time complexity of 𝑂 (𝑛𝑙), we find that its high ac-
curacy allows for earlier termination of sampling with relatively

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Scalable Algorithms for Forest-Based Centrality on Large Graphs WWW’25, April 28-May 02,2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 1: IFGN(G, 𝜖)
Input :G: an undirected unweighted graph,

𝜖 : an error parameter.
Output :𝜂: a vector of the approximate values of FNC for each node

𝑢 ∈ 𝑉 .
1 Initialize: 𝑙 ←

⌈(
2(1+𝜖)
3𝜖 + (1+𝜖)24𝜖2

)
log 2

𝛿

⌉
, 𝜂𝑢 ← 0 for 𝑢 ∈ 𝑉 . for

𝑘 = 1, 2, · · · , 𝑙 do
2 root, next←Wilson(G)
3 foreach 𝑢 ∈ 𝑉 do

4 𝑟 ← root𝑢
5 component𝑟 ← component𝑟 + 1
6 foreach 𝑢 ∈ 𝑉 do

7 𝑡𝑢 ← 𝑡𝑢 + 1
(1+𝑑𝑢) , 𝑟 ← root𝑢

8 for 𝑘 ∈ 𝑁𝑢 do

9 if 𝑟 = root𝑘 then

10 𝑡𝑢 ← 𝑡𝑢 + 1
(1+𝑑𝑢)

1
component𝑟

11 𝜂𝑢 ← 𝑘
𝑡𝑢

12 if 𝑓 (𝑘, var(𝜂𝑢), 2
1+𝑑𝑢 ,

1
𝑛) ≤ 𝜖 for all 𝑢 ∈ 𝑉 then

13 break

14 return 𝜂

fewer iterations due to the utilizing of Bernstein inequality, result-
ing in an overall running time that is faster than either method
used individually, as shown in our experiments.

4 Novel Interpretation and Approximation

Algorithm for FEC
We have proposed estimators for both the diagonal and off-diagonal
entries of the forest matrix, along with a fast algorithm for esti-
mating FNC. However, the structure of FEC is more complex, as it
involves combinations of these entries.

In this section, we propose a novel physical interpretation of FEC.
Based on this, we design a new estimator and a scalable algorithm
FECE to approximate FEC.

4.1 Review for FEC Definition

The definition of FEC inherently possesses physical interpretation.
As outlined in Definition 2.2, its value can be estimated through
statistical methodologies. Specifically, for a list of uniformly sam-
pled spanning forests, we can record the number of forests where 𝑣
is rooted at 𝑢. Additionally, we notice that during the execution of
the extension of Wilson’s algorithm, we maintained the array next,
which conveniently allows us to determine whether the edge (𝑢, 𝑣)
belongs to the forest. Define 𝜃𝑢𝑣 = FEC(𝑢, 𝑣), and assume that we
sample 𝑙 forests to form a list L. Then we can directly design an
estimator 𝜃𝑢𝑣 (L) as:

𝜃𝑢𝑣 (L) =
∑
𝜙∈L I{𝑟𝜙 (𝑢)=𝑣,next𝑣=𝑢} |𝑇𝜙 (𝑢) |∑

𝜙∈L I{root𝑣=𝑢}
This formulation provides a straightforward method for estimat-

ing the FEC based on its definition. While simple, the method can
yield significant errors in actual sampling because it only accounts
for the result when there is an edge (𝑢, 𝑣) in the forest while other

forests are discarded. When the number of samples is relatively
low, the accuracy of this estimation is compromised.

4.2 New Physical Interpretation and Estimator

Since FEC can be expressed in terms of entries of the forest ma-
trix, we proceed with further derivation from the expression in
Equation (3):

𝜃𝑢𝑣 =
𝜔𝑢𝑢 + 𝜔𝑣𝑣 − 2𝜔𝑢𝑣

𝜔𝑢𝑣
=
|F𝑢𝑢 | − |F𝑣𝑢 | + |F𝑣𝑣 | − |F𝑢𝑣 |

|F𝑢𝑣 | (4)

We observe that F𝑢𝑢 represents the set of all forests where 𝑢 is the
root, and F𝑣𝑢 is the set of forests where 𝑣 is rooted at 𝑢. Clearly,
F𝑣𝑢 is a proper subset of F𝑢𝑢 , denoted as F𝑣𝑢 ⊊ F𝑢𝑢 . Therefore,
we have |F𝑢𝑢 | − |F𝑣𝑢 | = |F𝑢𝑢 \ F𝑣𝑢 |. Likewise, it follows that
|F𝑣𝑣 | − |F𝑢𝑣 | = |F𝑣𝑣 \ F𝑢𝑣 |.

We define S𝑢\𝑣 = F𝑢𝑢 \ F𝑣𝑢 and S𝑣\𝑢 = F𝑣𝑣 \ F𝑢𝑣 . Through our
definition, we find that the set S𝑢\𝑣 represents the collection of
forests where 𝑢 is the root and 𝑣 is not in the same connected com-
ponent as 𝑢. In this way, even if 𝑢 and 𝑣 are in different connected
components, we can still consider that the forest contributes to the
significance of edge (𝑢, 𝑣).

This conclusion might be difficult to comprehend: why is the
size of the connected component containing the edge (𝑢, 𝑣) equal
to the sum of the sizes of the sets S𝑢\𝑣 and S𝑣\𝑢? By combining
the derivations and proofs from [5], we find that every forest 𝜙
that has 𝑢 as the root and includes the edge (𝑢, 𝑣) can be mapped
to |𝑇𝜙 (𝑢) | isomorphic forests that do not contain the edge (𝑢, 𝑣).
Moreover, these forests precisely constitute the union of the sets
S𝑢\𝑣 and S𝑣\𝑢 .

Figure 2 illustrates the specific process of this mapping. For a
sampled forest 𝜙 containing the edge (𝑣,𝑢), it contributes to the
size of the connected component, which effectively means that each
node within the component contributes a value of 1.

𝜙1 ∈ S𝑢\𝑣

𝜙2 ∈ S𝑣\𝑢

𝑢

𝑣

𝜙

1

Figure 2: A spanning forest 𝜙 and its mapped set.

Using the new physical interpretation, for a spanning forest
where 𝑢 and 𝑣 are in different trees, we record the number of times
𝑢 and 𝑣 being the root to estimate |F𝑢𝑢 \ F𝑣𝑢 | and |F𝑣𝑣 \ F𝑢𝑣 |.
Assumewe sample 𝑙 forests to form a listL. For each edge (𝑢, 𝑣) ∈ 𝐸,
define H𝑢𝑣 (L) = |S𝑢\𝑣+S𝑣\𝑢 |

| F | |L| and K𝑢𝑣 (L) = | F𝑢𝑣 |
| F | |L|. Then,

we define the estimator H̃𝑢𝑣 (L) and K̃𝑢𝑣 (L) as
H̃𝑢𝑣 (L) =

∑︁
𝜙∈L
(I{𝑟𝜙 (𝑢)≠𝑟𝜙 (𝑣),𝑟𝜙 (𝑢)=𝑢} + I{𝑟𝜙 (𝑢)≠𝑟𝜙 (𝑣),𝑟𝜙 (𝑣)=𝑣}),

K̃𝑢𝑣 (L) =
∑︁
𝜙∈L

I{𝑟𝜙 (𝑣)=𝑢} .

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW’25, April 28-May 02,2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Theorem 4.1. For edge (𝑢, 𝑣) ∈ 𝐸 and the list L of 𝑙 sampled
spanning forests, H̃𝑢𝑣 (L) and K̃𝑢𝑣 (L) are unbiased estimators of
H𝑢𝑣 (L) and K𝑢𝑣 (L), respectively.

We can still apply the variance reduction technique for undi-
rected graphs in Section 3.2. Specifically, for the estimation of
K𝑢𝑣 (L), whenever a sample places 𝑢 and 𝑣 within the same con-
nected component, we increment the value by 1

|𝑇𝜙 (𝑢) | . Similarly,
forH𝑢𝑣 (L), we avoid checking whether 𝑢 or 𝑣 is the root. Instead,
we add 1

|𝑇𝜙 (𝑢) | +
1

|𝑇𝜙 (𝑣) | for all forests where 𝑢 and 𝑣 are not in the
same connected component. Then, we can construct the estimator
H𝑢𝑣 (L) and K𝑢𝑣 (L) as

H𝑢𝑣 (L) =
∑︁
𝜙∈L

I{𝑟𝜙 (𝑢)≠𝑟𝜙 (𝑣) }

(
1

|𝑇𝜙 (𝑢) |
+ 1
|𝑇𝜙 (𝑣) |

)
,

K𝑢𝑣 (L) =
∑︁
𝜙∈L

I{𝑟𝜙 (𝑣)=𝑟𝜙 (𝑢) }
1

|𝑇𝜙 (𝑢) |
.

Theorem 4.2. For edge (𝑢, 𝑣) ∈ 𝐸 and the list L of 𝑙 sampled
spanning forests,H𝑢𝑣 (L) and K𝑢𝑣 (L) are unbiased estimators of
H𝑢𝑣 (L) and K𝑢𝑣 (L), respectively.

4.3 Algorithm Design and Analysis

According to Equation (4) and Theorem 4.2, we have𝜃𝑢𝑣 = E(H𝑢𝑣 (L))
E(H𝑢𝑣 (L))

.
Then, for each edge (𝑢, 𝑣) ∈ 𝐸, we can build a new estimator for
the FEC as 𝜃𝑢𝑣 (L) = H𝑢𝑣 (L)

K𝑢𝑣 (L)
. Below, we demonstrate that the esti-

mator 𝜃𝑢𝑣 , with a proper choice of sample number 𝑙 , can be used to
approximate FEC. Specifically, we establish an (𝜖, 𝛿)-approximation
of this estimator using Hoeffding’s inequality.

Lemma 4.3 (Hoeffding’s ineqality [23]). Let 𝑥1, 𝑥2, · · · , 𝑥𝑛
be 𝑙 independent random variables satisfying 𝑎 ≤ 𝑥𝑖 ≤ 𝑏 for all
𝑖 = 1, 2, · · · , 𝑛. Let 𝑥 = 1

𝑙

∑𝑙
𝑖=1 𝑥𝑖 . Then for any 𝜖 > 0,

P {|𝑥 − E(𝑥) | ≥ 𝜖} ≤ 2 exp
(
− 2𝑙𝜖2

(𝑏 − 𝑎)2
)
.

Theorem 4.4. For any edge (𝑢, 𝑣) ∈ 𝐸 with 𝜔𝑢𝑣 ≥ 𝜎 , and param-

eters 𝜖, 𝜎, 𝛿 ∈ (0, 1), if 𝑙 is chosen obeying 𝑙 =
⌈ (2+𝜖)2

2𝜖𝜎2 ln 2
𝛿

⌉
, then the

following inequalities holds with probability at least 1 − 𝛿 :

P{|H𝑢𝑣 (L) − H𝑢𝑣 (L)| ≤ |L|𝜎𝜖 (𝑑𝑢 + 𝑑𝑣)2 + 𝜖 } < 𝛿, (5)

P{|K𝑢𝑣 (L) − K𝑢𝑣 (L)| ≤ |L| 𝜎𝜖2 + 𝜖 } < 𝛿. (6)

Then, the approximation 𝜃𝑢𝑣 (L) of FEC satisfies the following rela-
tion:

𝜃𝑢𝑣 − (𝑑𝑢 + 𝑑𝑣)𝜖 ≤ 𝜃𝑢𝑣 (L) ≤ 𝜃𝑢𝑣 + (𝑑𝑢 + 𝑑𝑣)𝜖. (7)

Using the estimator 𝜃𝑢𝑣 for each edge, we propose the algorithm
FECE (Forest Edge Centrality Estimation) to estimate the FEC of
edges directly.

Given a graph G and an error parameter 𝜖 , FECE first computes
the expected sample number 𝑙 =

⌈ (2+𝜖)2
2𝜖𝜎2 ln 2

𝛿

⌉
(Line 1). Then, in

each sampling iteration, FECE invokes the extension of Wilson’s
algorithm to obtain a spanning forest and computes the size of the

Algorithm 2: FECE(G, 𝜖)
Input :G: an undirected unweighted graph,

𝜖 : an error parameter.
Output :𝜃 : a vector of the approximate values of FEC for each edge

(𝑢, 𝑣) ∈ 𝐸.
1 Initialize: 𝑙 ←

⌈ (2+𝜖)2
2𝜖𝜎2 ln 2

𝛿

⌉
.

2 for 𝑘 = 1, 2, · · · , 𝑙 do
3 root, next←Wilson(G)
4 foreach 𝑢 ∈ 𝑉 do

5 𝑟 ← root𝑢 ,

6 component𝑟 ← component𝑟 + 1
7 foreach (𝑢, 𝑣) ∈ 𝐸 do

8 𝑟 ← root𝑢 , 𝑤 ← root𝑣
9 if 𝑟 = 𝑤 then

10 K𝑢𝑣 ← K𝑢𝑣 + 1
component𝑟

11 else if 𝑟 ≠ 𝑤 then

12 H𝑢𝑣 ← H𝑢𝑣 + 1
component𝑟

+ 1
component𝑤

13 𝜃𝑢𝑣 ← H𝑢𝑣/K𝑢𝑣 for (𝑢, 𝑣) ∈ 𝐸
14 if 𝑓 (𝑘, var(𝜃𝑢𝑣), 14 , 1

𝑛) ≤ 𝜖 for all (𝑢, 𝑣) ∈ 𝐸 then

15 break

16 return 𝜃

connected component that includes each node. (Lines 3-6). For each
edge (𝑢, 𝑣), FECE checks whether𝑢 and 𝑣 are in the same connected
component, updates K𝑢𝑣 andH𝑢𝑣 , and finally calculates the new
𝜃𝑢𝑣 (Lines 7-13). Bernstein inequality is used to terminate sampling
early when the empirical variance is below a specified threshold
(Lines 14-15). The complexity of Algorithm 2 is 𝑂

(
𝑛 (2+𝜖)2
2𝜖𝜎2 ln 2

𝛿

)
.

5 Experiments

In this section, we present experimental results for real-world net-
works to demonstrate the accuracy and efficiency of our approxi-
mation algorithms for FNC and FEC.

5.1 Experimental Settings

Datasets. We conduct our experiments on real-world networks
from Koblenz Network Collection [26], SNAP [28], and Network
Data Repository [35]. This includes a wide range of datasets, in-
cluding collaboration networks (GrQc), social networks (YouTube),
and citation networks (US Patents). We select datasets with varying
edge-to-node ratios, as the running time of certain algorithms is
influenced by this factor. Statistics for the networks are given in
Table 1, sorted in ascending order by the number of nodes.

Environment. All experiments were conducted on a Linux
server with 36-core 2.10GHz Intel(R) Xeon(R) Platinum 8352V CPU
and 256GB of RAM. We implemented all the algorithms in Julia.

Algorithms. We use the algorithm Exact (Section 2.4) to as-
sess the accuracy and efficiency of other algorithms on small-scale
networks. For the computation of FNC, we implement two algo-
rithms as our baseline: SCF (Section 3.1.2) uses the simple estimator,
while SFQPlus (Section 3.1.3) employs the neighbor information to
reduce variance. Our proposed algorithm IFGN (Section 4.3) com-
bines the variance reduction technique on undirected graphs and

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Scalable Algorithms for Forest-Based Centrality on Large Graphs WWW’25, April 28-May 02,2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Datasets used in experiments

Type Dataset 𝑛 𝑚 𝑚/𝑛

Small and
Medium
Network

Bio-CE-LC 1,387 1,648 1.18
Hamsterster 2,000 16,097 8.05
Facebook 4,039 88,234 21.85
GrQc 4,158 13,422 3.23

WebBase 16,062 25,593 1.59
Gnutella 22,687 54,705 2.41

Large
Network

Youtube 1,134,890 2,987,624 2.63
US Patents 3,774,768 16,518,948 4.38

Dblp 5,624,219 12,282,059 2.18
CentralUSA 14,081,816 33,866,826 2.41

the approach based on neighbor information in a simple yet non-
trivial way. Meanwhile, as our algorithm IFGN incorporates two
optimization techniques, we also implement an ablation method
called IFG, which solely utilizes the variance reduction technique
on undirected graphs (with its pseudocode provided in the ap-
pendix). For FEC, we implement FECE and compare it with SCF
and SFQPlus. The empirical Bernstein inequality in Lemma 3.4
is used to terminate sampling for all algorithms. The code imple-
mentation of all algorithms can be accessed directly through https:
//anonymous.4open.science/r/Forest-Based-Centrality-BD41.

Parameters. We set 𝛿 = 0.01 for all algorithms. For FNC, we
set the error parameter 𝜖 = 0.05, and the lower bound for 𝑙 of
IFGN is provided by Theorem 3.3. The analysis process for the
sampling numbers of the two comparison methods is similar to that
in Theorem 3.3. For FEC, the lower bound for 𝑙 of FECE is given in
Theorem 4.4. Due to the difficulty in providing an error analysis for
the comparison methods when calculating FEC, we use the same
sampling number for all algorithms.

5.2 Accuracy Evaluation

We first evaluate the accuracy of our proposed algorithms. Accord-
ing to Equations (1) and (2.3), we use Exact to compute the exact
value of FNC of all nodes and FEC of all edges for small real-world
networks. As the measure of accuracy, we use the mean relative
error 𝜌 = 1

𝑛

∑𝑛
𝑖=1 |C𝑖 − Ĉ𝑖 |/C𝑖 , where C is the exact value and Ĉ

is the approximate value. Six small datasets we selected include:
Residence, Hamsterster, Adolescent, GrQc, WebBase and Gnutella,
each containing fewer than 30, 000 nodes to ensure the feasibility
of Exact.

Our initial evaluation concentrates on the performance of our
algorithms in estimating the FNC. There are four considered algo-
rithms: SCF, SFQPlus, IFG, and IFGN, each with a specified error
parameter 𝜖 = 0.05. Results for these settings are reported in Fig-
ure 3.

Figure 3 indicates that all approximation algorithms for FNC are
effective. IFG, which utilizes the variance reduction technique on
undirected graphs, significantly reduces the estimation error com-
pared to SCF, and achieves accuracy levels comparable to SFQPlus.
We also observe that the combined algorithm IFGN demonstrates
enhanced performance in estimating the FNC with a mean relative
error of less than 0.005.

(a) (b) (c) (d) (e) (f)
0

2

4

6

8

10

M
ea
n
Re

la
tiv

e
Er
ro
r(
×1

0−
2)

SCF SFQPlus IFGN IFGN+

1

Figure 3: Mean relative error of four algorithms for FNC on
four real-world networks: Bio-CE-LC (a), Hamsterster (b),

Facebook (c), GrQc (d), WebBase (e) and Gnutella (f).

We then conduct experiments to evaluate the performance of al-
gorithm FECE for estimating FEC. Since no theoretical error bounds
are provided for the baseline algorithms, we use the number of sam-
ples 𝑙 as the parameter. For each algorithm, 𝑙 is set to 500, 1000, 1500,
2000, and 2500. In addition to the two baselines, we also modify the
IFGN algorithm from Section 3.3 to create IFGN-E for comparison,
which approximates the FEC by separately estimating the diagonal
and off-diagonal entries. The scatter plots of mean relative error
and running time for each approximation algorithm are reported
in Figure 4.

0 0.1 0.2 0.3

0.1

0.2
(a)

Running Time (s)

M
ea
n
Re

la
tiv

e
Er
ro
r

SCF 𝑙 = 500 SFQPlus 𝑙 = 500 IFGN-E 𝑙 = 500 FECE 𝑙 = 500
SCF 𝑙 = 1000 SFQPlus 𝑙 = 1000 IFGN-E 𝑙 = 1000 FECE 𝑙 = 1000
SCF 𝑙 = 1500 SFQPlus 𝑙 = 1500 IFGN-E 𝑙 = 1500 FECE 𝑙 = 1500
SCF 𝑙 = 2000 SFQPlus 𝑙 = 2000 IFGN-E 𝑙 = 2000 FECE 𝑙 = 2000
SCF 𝑙 = 2500 SFQPlus 𝑙 = 2500 IFGN-E 𝑙 = 2500 FECE 𝑙 = 2500

0 0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5 (b)

0 2 4 6 8

0.1

0.2

0.3

0.4

0.5 (c)

0 0.5 1 1.5 2

0.1

0.2

0.3

0.4 (d)

0 1 2 3 4 5

0.1

0.2

0.3

0.4 (e)

0 3 6 9

0.15

0.3

0.45 (f)

1

Figure 4: Scatter plots of mean relative error and running

time for each approximation algorithm for FEC on real-world

networks: Bio-CE-LC (a), Hamsterster (b), Facebook (c), GrQc

(d), WebBase (e) and Gnutella (f).

Figure 4 illustrates that as the sample size 𝑙 increases, the error
for each algorithm continuously decreases. SCF exhibits relatively
large errors due to its high variance, which leads to inaccurate
estimates for the off-diagonal entries. It is worth noting that the
running time of IFGN-E was not as long as theoretically expected,
owing to the use of the Bernstein inequality to terminate the sam-
pling process early in the algorithm. For methods that directly

7

https://anonymous.4open.science/r/Forest-Based-Centrality-BD41
https://anonymous.4open.science/r/Forest-Based-Centrality-BD41

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW’25, April 28-May 02,2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

estimate the entries of the forest matrix (SCF, SFQPlus and IFGN-
E), additional errors may arise from recomputing FEC using the
diagonal and non-diagonal entries. In contrast, FECE exhibits even
better performance. When 𝑙 reaches 2000, FECE achieves a relative
error of 𝜖 < 0.04 for all six graphs. Under the same running time,
FECE achieves the lowest relative error. Moreover, for the same
error level, FECE has the shortest runtime. Such results further
demonstrate the effectiveness of FECE in estimating FEC.

5.3 Efficiency Evaluation

The efficiency of the algorithms is also a crucial aspect of the eval-
uation, as many precise algorithms can be time-consuming when
handling large networks. Algorithm Exact requires over one hour
to compute networks with more than 30,000 nodes. The method
proposed in [24] based on the Johnson-Lindenstrauss lemma and
fast SDDM Solver can only handle graphs with fewer than approx-
imately one million nodes to ensure a relative error, which has
been shown in [41] to be less efficient than sampling-based ap-
proaches. Our experiments are conducted on four large real-world
networks, including Youtube (YT), US Patents (US), Dblp (DB) and
CentralUSA (CU), each with over one million nodes and twomillion
edges. The error parameter is set to be 𝜖 = 0.05. The running time
for estimating FNC and FEC is reported in Table 2.

Table 2: The running time (seconds) of approximating FNC
and FEC using SCF, SFQPlus, IFG, IFGN and FECE.

Network FNC FEC
SCF SFQPlus IFG IFGN SCF SFQPlus FECE

YT 159.7 161.5 142.2 104.3 205.4 191.3 178.2
US 989.9 1046 835.5 770.5 1695 1574 1385.6
DB 1066 994.9 901.5 951.4 1342 1258 1041
CU 1982 2179 1526 1359 2476 2381 2205

As shown in Table 2, all of the sample-based algorithms complete
their approximations within one hour, even for large networks.
The computation time for FEC is generally longer than that for FNC,
especially in graphs with a higher average degree. Compared to SCF,
our proposed algorithms IFGN and FECE complete the estimation of
FNC and FEC faster while providing the same error guarantee. This
improvement is due to Lemma 3.4, where the Bernstein inequality
allows early termination of sampling when the empirical variance
falls below a certain threshold. Even though the complexity of IFGN
is 𝑑 times that of SCF, its superior accuracy allows it to outperform
other baselines in terms of overall running time.

6 Related Works

Node centrality metrics. Numerous concepts of node central-
ity have been developed. Some definitions, such as degree cen-
trality [19], focus exclusively on local structural information. In
contrast, measures like betweenness [18] and closeness [19] cap-
ture node significance within the context of the global structure.
Nevertheless, these conventional methods depend entirely on short-
est paths, limiting their capacity to represent intricate structural
details [16, 24]. Furthermore, many centrality measures fail to effec-
tively assess disconnected graphs. The forest closeness centrality

(FCC) introduced by Jin et al. [24] utilizes the concept of forest dis-
tance [10, 12, 31] to define a novel centrality measure, expressed
as CFCC (𝑢) = 𝑛∑

𝑣∈𝑉 \{𝑢} 𝜌 (𝑢,𝑣) , where 𝜌 (𝑢, 𝑣) denotes the forest dis-
tance between 𝑢 and 𝑣 . Due to its strong discriminative ability and
applicability to disconnected graphs [6], FCC has garnered signif-
icant attention, and the algorithm for fast computation has been
extensively studied [24, 40, 43].

Edge centrality metrics. In addition to node centrality, edge
centrality metrics and related algorithms have garnered widespread
research interest and attention in recent years. Existing edge central-
ity metrics include edge betweenness (EB) and spanning centrality
(SC). EB was proposed by Freeman [18], defined as the probability
that the shortest path between any pair of nodes passes through the
edge. For an undirected graph G = (𝑉 , 𝐸) the EB of edge (𝑢, 𝑣) ∈ 𝐸
is defined as CEB (𝑢, 𝑣) =

∑
𝑠,𝑡 ∈𝑉

𝜎𝑠𝑡 (𝑢,𝑣)
𝜎𝑠𝑡

, where 𝜎𝑠𝑡 denotes the
number of shortest paths between nodes 𝑠 and 𝑡 , while 𝜎𝑠𝑡 (𝑢, 𝑣)
denotes the number of shortest path between the node pair 𝑠 and
𝑡 including edge (𝑢, 𝑣). Teixeira and Monteiro proposed spanning
edge betweenness [42], which is the probability that an edge is
included in a uniformly chosen spanning tree of the graph. The SC
of edge (𝑢, 𝑣) is defined as CSC (𝑢, 𝑣) = |𝜏 (𝑢,𝑣) ||𝜏 | , where 𝜏 is the set
of all spanning trees of G and 𝜏 (𝑢,𝑣) is the set of those spanning
trees containing edge (𝑢, 𝑣). In more in-depth research, efficient
approximation algorithms for SC on large-scale graphs have been
proposed [22, 30, 45], gaining sustained attention for their scalabil-
ity and practical relevance in handling complex network structures.
Different centrality metrics take various factors into account, and
each can differentiate and rank edges to some extent.

Existing methods of computing forest matrix. In recent
years, considerable research has focused on developing fast com-
putation methods for forest matrix. In the work in [24], the author
utilized the fast SDDM solver [14, 38] for the calculation of the
diagonal entries of the forest matrix. Research in [47] transformed
the problem of minimizing polarization and disagreement in the
Friedkin-Johnsen [20] model into the computation of quantities
related to the forest matrix, achieving fast computation by leverag-
ing the Johnson-Lindenstrauss [25] lemma and fast SDDM solver.
Inspired by the forest theorem [8, 12], sample-based methods were
widely researched to estimate the diagonal entries [40], trace [7]
and column sum [39] of the forest matrix. Variance reduction tech-
niques [34] are employed to optimize sampling algorithms, thereby
enhancing their efficiency.

7 Conclusion

In this paper, we studied the problem of effectively approximating
the forest node centrality (FNC) and forest edge centrality (FEC) on
large graphs. Armed with novel variance reduction techniques and
new physical interpretations, we proposed two scalable algorithms
IFGN and FECE from different perspectives and provided theoretical
error guarantees. Through comprehensive experiments on real-
world datasets, we demonstrated that our algorithms, IFGN and
FECE, significantly outperform existing methods in terms of both
speed and accuracy.

In future works, we will explore further extensions of these
centrality measures, as well as their applications in various network
analysis tasks.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Scalable Algorithms for Forest-Based Centrality on Large Graphs WWW’25, April 28-May 02,2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References

[1] Rafig Pashaevich Agaev and P Yu Chebotarev. 2001. Spanning forests of a digraph
and their applications. Automation and Remote Control 62 (2001), 443–466.

[2] Raquel Almeida, Ewa Kijak, Simon Malinowski, Zenilton KG Patrocínio Jr, Ar-
naldo A Araújo, and Silvio JF Guimarães. 2023. Graph-based image gradients
aggregated with random forests. Pattern Recognition Letters 166 (2023), 182–189.

[3] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. 2007. Tuning bandit
algorithms in stochastic environments. In International Conference on Algorithmic
Learning Theory. Springer, 150–165.

[4] Luca Avena and Alexandre Gaudillière. 2018. Two applications of random
spanning forests. Journal of Theoretical Probability 31, 4 (2018), 1975–2004.

[5] Qi Bao, Wanyue Xu, and Zhongzhi Zhang. 2022. Benchmark for discriminating
power of edge centrality metrics. Comput. J. 65, 12 (2022), 3141–3155.

[6] Qi Bao and Zhongzhi Zhang. 2021. Discriminating power of centrality measures
in complex networks. IEEE Transactions on Cybernetics 52, 11 (2021), 12583–
12593.

[7] Simon Barthelmé, Nicolas Tremblay, Alexandre Gaudilliere, Luca Avena, and
Pierre-Olivier Amblard. 2019. Estimating the inverse trace using random forests
on graphs. arXiv preprint arXiv:1905.02086 (2019).

[8] Seth Chaiken. 1982. A combinatorial proof of the all minors matrix tree theorem.
SIAM Journal on Algebraic Discrete Methods 3, 3 (1982), 319–329.

[9] Pavel Chebotarev and Rafig Agaev. 2002. Forest matrices around the Laplacian
matrix. Linear algebra and its applications 356, 1-3 (2002), 253–274.

[10] Pavel Chebotarev and EV Shamis. 1999. On proximity measures for graph
vertices. Automation and Remote Control 60 (02 1999), 297–297.

[11] Pavel Chebotarev and EV Shamis. 2000. The forest metrics of a graph and their
properties. Automation and Remote Control (2000).

[12] Pavel Chebotarev and Elena Shamis. 2006. The matrix-forest theorem and
measuring relations in small social groups. arXiv preprint math/0602070 (2006).

[13] Herman Chernoff. 1952. A measure of asymptotic efficiency for tests of a hy-
pothesis based on the sum of observations. The Annals of Mathematical Statistics
(1952), 493–507.

[14] Michael B Cohen, Rasmus Kyng, Gary L Miller, Jakub W Pachocki, Richard Peng,
Anup B Rao, and Shen Chen Xu. 2014. Solving SDD linear systems in nearly m
log1/2 n time. In Proceedings of the forty-sixth annual ACM symposium on Theory
of computing. 343–352.

[15] Carlos Correa, Tarik Crnovrsanin, and Kwan-Liu Ma. 2010. Visual reasoning
about social networks using centrality sensitivity. IEEE Transactions on Visual-
ization and Computer Graphics 18, 1 (2010), 106–120.

[16] Ernesto Estrada and Juan A Rodriguez-Velazquez. 2005. Subgraph centrality
in complex networks. Physical Review E—Statistical, Nonlinear, and Soft Matter
Physics 71, 5 (2005), 056103.

[17] Francois Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens. 2007.
Random-walk computation of similarities between nodes of a graph with appli-
cation to collaborative recommendation. IEEE Transactions on Knowledge and
Data Engineering 19, 3 (2007), 355–369.

[18] Linton C Freeman. 1977. A set of measures of centrality based on betweenness.
Sociometry (1977), 35–41.

[19] Linton C Freeman. 1978. Centrality in social networks conceptual clarification.
Social networks 1, 3 (1978), 215–239.

[20] Noah E Friedkin and Eugene C Johnsen. 1990. Social influence and opinions.
Journal of mathematical sociology 15, 3-4 (1990), 193–206.

[21] Michelle Girvan and Mark EJ Newman. 2002. Community structure in social
and biological networks. Proceedings of the national academy of sciences 99, 12
(2002), 7821–7826.

[22] Takanori Hayashi, Takuya Akiba, and Yuichi Yoshida. 2016. Efficient Algorithms
for Spanning Tree Centrality.. In IJCAI, Vol. 16. 3733–3739.

[23] Wassily Hoeffding. 1994. Probability inequalities for sums of bounded random
variables. The collected works of Wassily Hoeffding (1994), 409–426.

[24] Yujia Jin, Qi Bao, and Zhongzhi Zhang. 2019. Forest distance closeness centrality
in disconnected graphs. In 2019 IEEE International Conference on Data Mining
(ICDM). IEEE, 339–348.

[25] William B Johnson. 1984. Extensions of Lipshitz mapping into Hilbert space. In
Conference Modern Analysis and Probability, 1984. 189–206.

[26] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In Proceedings of
the 22nd International Conference on World Wide Web. 1343–1350.

[27] Gregory F Lawler. 1980. A self-avoiding random walk. (1980).
[28] Jure Leskovec and Rok Sosič. 2016. Snap: A general-purpose network analysis and

graph-mining library. ACM Transactions on Intelligent Systems and Technology
(TIST) 8, 1 (2016), 1–20.

[29] Chun-Cheng Lin, Weidong Huang, Wan-Yu Liu, and Sheng-Feng Wu. 2019. A
novel centrality-based method for visual analytics of small-world networks.
Journal of Visualization 22 (2019), 973–990.

[30] Charalampos Mavroforakis, Richard Garcia-Lebron, Ioannis Koutis, and Evimaria
Terzi. 2015. Spanning edge centrality: Large-scale computation and applications.
In Proceedings of the 24th international conference on world wide web. 732–742.

[31] Russell Merris. 1998. Doubly stochastic graph matrices, II. Linear and Multilinear
Algebra 45, 2-3 (1998), 275–285.

[32] Shogo Murai and Yuichi Yoshida. 2019. Sensitivity analysis of centralities on
unweighted networks. In The world wide web conference. 1332–1342.

[33] Yusuf Y Pilavci, Pierre-Olivier Amblard, Simon Barthelme, and Nicolas Tremblay.
2020. Smoothing graph signals via random spanning forests. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 5630–5634.

[34] Yusuf Yigit Pilavci, Pierre-Olivier Amblard, Simon Barthelme, and Nicolas Trem-
blay. 2022. Variance reduction for inverse trace estimation via random spanning
forests. arXiv preprint arXiv:2206.07421 (2022).

[35] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository
with Interactive Graph Analytics and Visualization. In Proceedings of the AAAI
Conference on Artificial Intelligence.

[36] Mathieu Senelle, Silvia Garcia-Diez, Amin Mantrach, Masashi Shimbo, Marco
Saerens, and François Fouss. 2013. The Sum-over-Forests Density Index: Iden-
tifying Dense Regions in a Graph. IEEE Transactions on Pattern Analysis and
Machine Intelligence 36, 6 (2013), 1268–1274.

[37] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. 2006. The semantic web
revisited. IEEE Intelligent Systems 21, 3 (2006), 96–101.

[38] Daniel A Spielman and Shang-Hua Teng. 2014. Nearly linear time algorithms
for preconditioning and solving symmetric, diagonally dominant linear systems.
SIAM J. Matrix Anal. Appl. 35, 3 (2014), 835–885.

[39] Haoxin Sun and Zhongzhi Zhang. 2023. Opinion optimization in directed social
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37.
4623–4632.

[40] Haoxin Sun and Zhongzhi Zhang. 2024. Efficient Computation for Diagonal of
Forest Matrix via Variance-Reduced Forest Sampling. In Proceedings of the ACM
on Web Conference 2024. 792–802.

[41] Haoxin Sun, Xiaotian Zhou, and Zhongzhi Zhang. 2024. Fast Computation for
the Forest Matrix of an Evolving Graph. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 2755–2764.

[42] Andreia Sofia Teixeira, Pedro T Monteiro, João A Carriço, Mário Ramirez, and
Alexandre P Francisco. 2013. Spanning edge betweenness. InWorkshop on Mining
and Learning with Graphs, Vol. 24. Citeseer, 27–31.

[43] Alexander van der Grinten, Eugenio Angriman, Maria Predari, and HenningMey-
erhenke. 2021. New approximation algorithms for forest closeness centrality–for
individual vertices and vertex groups. In Proceedings of the 2021 SIAM Interna-
tional Conference on Data Mining (SDM). SIAM, 136–144.

[44] David Bruce Wilson. 1996. Generating random spanning trees more quickly
than the cover time. In Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing. 296–303.

[45] Shiqi Zhang, Renchi Yang, Jing Tang, Xiaokui Xiao, and Bo Tang. 2023. Efficient
approximation algorithms for spanning centrality. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 3386–3395.

[46] Xiao-Dong Zhang. 2011. Vertex degrees and doubly stochastic graph matrices.
Journal of Graph Theory 66, 2 (2011), 104–114.

[47] Liwang Zhu, Qi Bao, and Zhongzhi Zhang. 2021. Minimizing polarization and
disagreement in social networks via link recommendation. Advances in Neural
Information Processing Systems 34 (2021), 2072–2084.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW’25, April 28-May 02,2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A Appendix

In this section, we present eliminated pseudocode and proofs for
theorems in the main text.

A.1 Pseudocode of Algorithm Exact

Algorithm 3: Exact(G)
Input :G: an undirected unweighted graph.
Output :FNC: the forest node centrality for each node

FEC: the forest edge centrality for each edge
1 Initialize: D← Degree matrix of G, A← Adjacency matrix of G
2 Compute 𝛀 = (I + D − A)−1
3 foreach 𝑢 ∈ 𝑉 do

4 FNC𝑢 ← 1/𝜔𝑖𝑖

5 foreach (𝑢, 𝑣) ∈ 𝐸 do

6 FEC(𝑢,𝑣) ← 𝜔𝑢𝑢+𝜔𝑣𝑣
𝜔𝑢𝑣

− 2

7 return FNC,FEC

A.2 Proof of Theorem 3.1

Proof. For a spanning forest 𝜙 ∈ F with 𝜙 = {𝜏1, 𝜏2, · · · , 𝜏𝑘 } and
two nodes 𝑢, 𝑣 ∈ 𝑉 , we consider two cases: (a) If 𝑢 and 𝑣 belong
to different trees, we have 𝑟𝜙 (𝑢) ≠ 𝑟𝜙 (𝑣) and ¥𝜔𝑢𝑣 = 0. (b) If 𝑢 and
𝑣 belong to the same tree, without loss of generality, we suppose
that both 𝑢 and 𝑣 are in 𝜏1. Then, the probability of 𝑟𝜙 (𝑢) = 𝑝 is
equal to that of 𝑟𝜙 (𝑢) = 𝑞 for different nodes 𝑝 and 𝑞 in 𝜏1. Thus,
¥𝜔𝑢𝑣 (𝜙) = 1

|𝑇𝜙 (𝑢) | .
The expectation of ¥𝜔𝑢𝑣 (𝜙) can be derived as

E(¥𝜔𝑢𝑣 (𝜙)) = E
{
P{𝑟𝜙0 (𝑢) = 𝑣 |𝜙0 ∼ 𝜙}

}
=

∑︁
𝜙0

P{𝑟𝜙0 (𝑢) = 𝑣 |𝜙0 ∼ 𝜙}P{𝜙0 ∼ 𝜙}

= P{𝑟𝜙0 (𝑢) = 𝑣} = 𝜔𝑢𝑣,

which implies that ¥𝜔𝑢𝑣 (𝜙) is an unbiased estimator of 𝜔𝑢𝑣 .
Moreover, according to the total variance formula and the prop-

erties of conditional probabilities, we obtain
Var(𝜔𝑢𝑣 (𝜙)) = Var(¥𝜔𝑢𝑣 (𝜙)) + E{Var(𝜔𝑢𝑣 (𝜙0) |𝜙0 ∼ 𝜙)}

≥ Var(¥𝜔𝑢𝑣 (𝜙)),
which completes the proof. 2

A.3 Proof of Theorem 3.2

Proof. For the case 𝑢 ≠ 𝑣 , using the relationship 𝛀(I + L) =
I , it follows that e⊤𝑢 𝛀(I + L)e𝑣 = 0, leading to (1 + 𝑑𝑣)𝜔𝑢𝑣 −∑

𝑤∈𝑁𝑣
𝜔𝑢𝑤 = 0. According to Theorem 3.1 we have

E(𝜔𝑢𝑣 (𝜙)) = 1
2 + 𝑑𝑣 (E(¥𝜔𝑢𝑣 (𝜙)) +

∑︁
𝑤∈𝑁𝑣

E(¥𝜔𝑢𝑤 (𝜙)))

=
1

2 + 𝑑𝑣 (𝜔𝑢𝑣 + (1 + 𝑑𝑣)𝜔𝑢𝑣) = 𝜔𝑢𝑣,

which implies that 𝜔𝑢𝑣 (𝜙) is an unbiased estimator of 𝜔𝑢𝑣 . Accord-
ing to the properties of conditional probabilities, we have

Var(𝜔𝑢𝑣 (𝜙)) = Var(𝜔𝑢𝑣 (𝜙)) + E{Var(𝜔𝑢𝑣 (𝜙0) |𝜙0 ∼ 𝜙)}
≥ Var(𝜔𝑢𝑣 (𝜙)) .

For the case𝑢 = 𝑣 , using e⊤𝑢 𝛀(I+L)e𝑢 = 1, we have (1+𝑑𝑢)𝜔𝑢𝑢−∑
𝑤∈𝑁𝑢

𝜔𝑢𝑤 = 1. Then, we obtain

E(𝜔𝑢𝑢 (𝜙)) = 1
1 + 𝑑𝑢 (1 +

∑︁
𝑤∈𝑁𝑢

E(¥𝜔𝑢𝑤 (𝜙)))

=
1

1 + 𝑑𝑢 (1 + (1 + 𝑑𝑢)𝜔𝑢𝑣 − 1) = 𝜔𝑢𝑣,

which shows that 𝜔𝑢𝑢 (𝜙) is an unbiased estimator of 𝜔𝑢𝑢 . Using
the similar approach for the case 𝑢 ≠ 𝑣 , we obtain Var(𝜔𝑢𝑢 (𝜙)) ≤
Var((𝜔𝑢𝑢 (𝜙))), which completes the proof. 2

A.4 Chernoff Bound

Theorem A.1 (Chernoff bound [13]). Let 𝑥1, 𝑥2, · · · , 𝑥𝑙 be 𝑙
independent random variables satisfying |𝑥𝑖 − E(𝑥𝑖) | ≤ 𝑀 for all
𝑖 = 1, 2, · · · , 𝑙 . Let 𝑥 = 1

𝑙

∑𝑙
𝑖=1 𝑥𝑖 . Then, for any 𝜖 > 0, we have

P {|𝑥 − E(𝑥) | ≥ 𝜖} ≤ 1 − 2 exp
(
− 𝑙𝜖2

2(Var(𝑥)𝑙 +𝑀𝜖/3)

)
.

A.5 Proof of Theorem 3.3

Proof. Since the variance of 𝜔𝑢𝑢 is less than that of 𝜔𝑢𝑢 for each
𝑢 ∈ 𝑉 , using the theorem in [41] and the Chernoff bound, if 𝑙 is
chosen obeying 𝑙 =

⌈(
2(1+𝜖)
3𝜖 + (1+𝜖)24𝜖2

)
log 2

𝛿

⌉
, the relative error

in [41] holds for 𝜔𝑢𝑢 at least 1 − 𝛿 , expressed as
1

1 + 𝜖 𝜔𝑢𝑢 ≤
1
𝑙

∑︁
𝜙∈L

𝜔𝑢𝑢 (𝜙) ≤ 2 + 𝜖
1 + 𝜖 𝜔𝑢𝑢 .

Then the error of 𝜂𝑢 can be bounded as follows:����𝜂𝑢 − 𝜂𝑢𝜂𝑢

���� ≤ ���� (1 + 𝜖)𝜂𝑢 − 𝜂𝑢𝜂𝑢

���� = 𝜖,

which completes the proof. 2

A.6 Proof of Theorem 4.1

Proof. For H̃𝑢𝑣 (L), we have I{𝑟𝜙 (𝑢)≠𝑟𝜙 (𝑣),𝑟𝜙 (𝑢)=𝑢} = I{𝑟𝜙 (𝑢)=𝑢}−
I{𝑟𝜙 (𝑣)=𝑢} and I{𝑟𝜙 (𝑢)≠𝑟𝜙 (𝑣),𝑟𝜙 (𝑣)=𝑣} = I{𝑟𝜙 (𝑣)=𝑣} − I{𝑟𝜙 (𝑢)=𝑣} .
Since each forest 𝜙 ∈ L is sampled uniformly,

E(H̃𝑢𝑣 (L)) = |L|((P(𝑟𝜙 (𝑢) = 𝑢) − P(𝑟𝜙 (𝑣) = 𝑢)
+ P(𝑟𝜙 (𝑣) = 𝑣) − P(𝑟𝜙 (𝑢) = 𝑣)))
= |L|(𝜔𝑢𝑢 + 𝜔𝑣𝑢 + 𝜔𝑣𝑣 − 𝜔𝑢𝑣) = H𝑢𝑣 (L).

For K̃𝑢𝑣 (L), we haveE(K̃𝑢𝑣 (L)) = |L|P(𝑟𝜙 (𝑣) = 𝑢) = | F𝑢𝑣 || F | |L| =
K𝑢𝑣 (L), which completes the proof. 2

A.7 Proof of Theorem 4.2

Proof. ForH𝑢𝑣 (L), we have I{𝑟𝜙 (𝑢)≠𝑟𝜙 (𝑣) } = 1−I{𝑟𝜙 (𝑢)=𝑟𝜙 (𝑣) } =
I{𝑟𝜙 (𝑢)=𝑟𝜙 (𝑢) } − I{𝑟𝜙 (𝑢)≠𝑟𝜙 (𝑣) } . Then,

E(H𝑢𝑣 (L)) = |L|(E(
I{𝑟𝜙 (𝑢)≠𝑟𝜙 (𝑣) }
|𝑇𝜙 (𝑢) |

) + E(
I{𝑟𝜙 (𝑢)≠𝑟𝜙 (𝑣) }
|𝑇𝜙 (𝑣) |

))

= |L|(𝜔𝑢𝑢 + 𝜔𝑣𝑢 + 𝜔𝑣𝑣 − 𝜔𝑢𝑣) = H𝑢𝑣 (L) .

ForK𝑢𝑣 (L), we haveE(K𝑢𝑣 (L)) = |L|E(
I{𝑟𝜙 (𝑢)=𝑟𝜙 (𝑣) }
|𝑇𝜙 (𝑢) |) = |L|𝜔𝑢𝑣 =

K𝑢𝑣 (L), which completes the proof. 2

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Scalable Algorithms for Forest-Based Centrality on Large Graphs WWW’25, April 28-May 02,2025, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A.8 Proof of Theorem 4.4

Proof. For any edge (𝑢, 𝑣) ∈ 𝐸 and a spanning forest 𝜙 , we have
I{𝑟𝜙 (𝑢)≠𝑟𝜙 (𝑣) } (1

|𝑇𝜙 (𝑢) | +
1

|𝑇𝜙 (𝑣) |) ≤ 2, and I{𝑟𝜙 (𝑢)=𝑟𝜙 (𝑣) } (1
|𝑇𝜙 (𝑢) |) ≤

1
2 . Using the Hoeffding’s inequality and choosing 𝑙 as previously
specified, we can prove that the inequalities (5) and (6) holds with
probability at least 1 − 𝛿 .

Then, the error of 𝜃𝑢𝑣 (L) can be bounded as follows:

|𝜃𝑢𝑣 (L) − 𝜃𝑢𝑣 (L)| =
�����H𝑢𝑣 (L)
K𝑢𝑣 (L)

− H𝑢𝑣 (L)
K𝑢𝑣 (L)

�����
=
|H𝑢𝑣 (L)(K𝑢𝑣 (L) − K𝑢𝑣 (L)) + K𝑢𝑣 (H𝑢𝑣 (L) − H𝑢𝑣 (L)) |

K𝑢𝑣 (L)K𝑢𝑣 (L)

≤ |H𝑢𝑣 (L)(K𝑢𝑣 (L) − K𝑢𝑣 (L)) | + |K𝑢𝑣 (H𝑢𝑣 (L) − H𝑢𝑣 (L)) |
K𝑢𝑣 (L)K𝑢𝑣 (L)

=

H𝑢𝑣 (L)
K𝑢𝑣 (L)

𝜎𝜖
2+𝜖 +

𝜎𝜖 (𝑑𝑢+𝑑𝑣)
2+𝜖

K𝑢𝑣 (L)
|L | − 𝜎𝜖

2+𝜖
≤ 2(𝑑𝑢 + 𝑑𝑣) 𝜎𝜖2+𝜖

𝛿 − 𝜎𝜖
2+𝜖

= (𝑑𝑢 + 𝑑𝑣)𝜖,

where the last inequality holds since H𝑢𝑣 (L)
K𝑢𝑣 (L) = 𝜃𝑢𝑣 ≤ 𝑑𝑢 + 𝑑𝑣 and

K𝑢𝑣 (L)
|L | = 𝜔𝑢𝑣 ≥ 𝜎 . This finishes the proof. 2

A.9 Pseudocode of Algorithm IFG

Algorithm 4: IFG(G, 𝜖)
Input :G: an undirected unweighted graph,

𝜖 : an error parameter
Output : ¥𝜂: a vector of the approximate value of FNC for each node

𝑢 ∈ 𝑉 .
1 Initialize: 𝑙 ←

⌈(
2(1+𝜖)
3𝜖 + (1+𝜖)24𝜖2

)
log 2

𝛿

⌉
, ¥𝜂𝑢 ← 0 for 𝑢 ∈ 𝑉 .

2 for 𝑘 = 1, 2, · · · , 𝑙 do
3 root, next←Wilson(G)
4 foreach 𝑢 ∈ 𝑉 do

5 𝑟 ← root𝑢
6 component𝑟 ← component𝑟 + 1
7 foreach 𝑢 ∈ 𝑉 do

8 𝑡𝑢 ← 𝑡𝑢 + 1
component𝑢

9 ¥𝜂𝑢 ← 𝑘
𝑡𝑢

10 if 𝑓 (𝑘, var(¥𝜂𝑢), 1, 1
𝑛) ≤ 𝜖 for all 𝑢 ∈ 𝑉 then

11 break

12 return ¥𝜂

11

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graph and Matrix Definitions
	2.2 Spanning Forest and Forest Matrix
	2.3 Forest Node Centrality
	2.4 Forest Edge Centrality

	3 Algorithms for Estimating Entries of Forest Matrix on Undirected Graphs
	3.1 Existing Sample-Based Methods
	3.2 Isomorphic Forest Group and New Estimators on Undirected Graph
	3.3 Combined Variance Reduced Estimator
	3.4 Approximation Algorithm for FNC

	4 Novel Interpretation and Approximation Algorithm for FEC
	4.1 Review for FEC Definition
	4.2 New Physical Interpretation and Estimator
	4.3 Algorithm Design and Analysis

	5 Experiments
	5.1 Experimental Settings
	5.2 Accuracy Evaluation
	5.3 Efficiency Evaluation

	6 Related Works
	7 Conclusion
	References
	A Appendix
	A.1 Pseudocode of Algorithm Exact
	A.2 Proof of Theorem 3.1
	A.3 Proof of Theorem 3.2
	A.4 Chernoff Bound
	A.5 Proof of Theorem 3.3
	A.6 Proof of Theorem 4.1
	A.7 Proof of Theorem 4.2
	A.8 Proof of Theorem 4.4
	A.9 Pseudocode of Algorithm IFG

