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ABSTRACT

Neural work certification has established itself as a crucial tool for ensuring the
robustness of neural networks. Certification methods typically rely on convex
relaxations of the feasible output set to provide sound bounds. However, com-
plete certification requires exact bounds, which strongly limits the expressivity of
ReLU networks: even for the simple “max” function in R2, there does not exist a
ReLU network that expresses this function and can be exactly bounded by single-
neuron relaxation methods. This raises the question whether there exists a convex
relaxation that can provide exact bounds for general continuous piecewise linear
functions in Rn. In this work, we answer this question affirmatively by showing
that (layer-wise) multi-neuron relaxation provides complete certification for gen-
eral ReLU networks. Based on this novel result, we show that the expressivity of
ReLU networks is no longer limited under multi-neuron relaxation. To the best
of our knowledge, this is the first positive result on the completeness of convex
relaxations, shedding light on the practice of certified robustness.

1 INTRODUCTION

Neural networks have been shown vulnerable to adversarial attacks (Szegedy et al., 2014), where a
small perturbation to the input can lead to a misclassification. The area of adversarial robustness,
which measures the robustness of a model with respect to adversarial perturbations, has received
much research attention in recent years, reflecting a major concern in the application of neural
networks, especially in safety-critical domains such as autonomous driving and medical diagnosis.
However, computing the exact adversarial robustness of a neural network is generally NP-hard (Katz
et al., 2017), while adversarial attacks which try to construct an adversarial perturbation can only
provide an upper bound on the robustness of the model. To tackle this issue, neural network cer-
tification (Singh et al., 2018; Wang et al., 2018; Bunel et al., 2020) has been proposed to provide
robustness guarantees. Complete certification methods (Katz et al., 2017; Tjeng et al., 2019) that
can provide exact bounds for all ReLU networks are computationally expensive due to the inherent
hardness of the problem, and thus incomplete methods (Wong & Kolter, 2018; Singh et al., 2018;
Weng et al., 2018; Gehr et al., 2018; Xu et al., 2020) have been widely investigated, typically fo-
cusing on convex relaxations, which can provide efficient and scalable certification at the cost of
losing precision. Beyond certification, all existing algorithms for training certifiable models (Shi
et al., 2021; Müller et al., 2023; Mao et al., 2023; 2024a; Palma et al., 2023; Balauca et al., 2024)
are also based on convex relaxations. Due to their central role in certified robustness, it is critical to
understand the trade-off between the efficiency and precision of convex relaxations.

Expressivity of ReLU networks under convex relaxations In this work we focus on studying
the expressivity of ReLU networks when convex relaxations are used. It has been previously shown
that ReLU networks are expressive: they can precisely express every continuous piecewise linear
function (Hertrich et al., 2021) and thus can approximate every continuous function within an arbi-
trary error rate. A key question here is: do existing convex relaxation methods limit this expressive
power? The latest research results suggest a nuanced answer. Interval Bound Propagation (IBP)
applies the least precise single-neuron interval relaxation to each neuron, but for every continuous
function in Rn and an arbitrarily small error rate δ, there exists a ReLU network that approximates
the function with error δ and the relaxation error of IBP for this network is less than δ (Baader
et al., 2020). However, Mirman et al. (2022) show that IBP cannot provide exact bounds for gen-
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eral continuous piecewise linear functions. Baader et al. (2024) further show that the most precise
single-neuron convex relaxation (strictly more precise than IBP), namely the Triangle relaxation
(Wong & Kolter, 2018), cannot provide exact bounds for any ReLU network that expresses the
“max” function on a compact domain in R2. This is the case even though the function can be easily
expressed without error by a ReLU network with only two ReLU neurons. These results raise the
question of whether there exists a convex relaxation P that does not limit the expressive power of
ReLU networks. Concretely:

Given an arbitrary continuous piecewise linear function in Rn with a compact domain, can we find a
ReLU network that expresses this function such that applying P to the network returns the function’s
range exactly?

This work: multi-neuron relaxations do not restrict the expressive power of ReLU networks
In this work we address the above question and show that in fact a multi-neuron relaxation which
computes the convex hull of input and output variables layer-wise is complete for general (feedfor-
ward and skip-connected) ReLU networks with cost related to the number of unstable neurons per
layer. When limited to computing the convex hull of only output variables layer-wise, the relaxation
is still complete for feedforward networks with cost relying on the number of neurons per layer
(network width). Based on these novel results, we show that a multi-neuron relaxation can precisely
express every continuous piecewise linear function in Rn, in sharp contrast to any single-neuron re-
laxation. To the best of our knowledge, this is the first positive result on the completeness of convex
relaxations and their expressiveness for continuous piecewise linear functions in high dimensions,
leading to a deeper understanding of convex relaxations and their application to certified robustness.

2 RELATED WORK

We now briefly review related work most closely related to ours.

Neural Network Certification. Existing methods for neural network certification can be catego-
rized into complete methods and incomplete methods. Complete methods provide exact bounds for
the output of a network, usually relying on solving a mixed-integer program (Tjeng et al., 2019) or
a satisfiability modulo theory problem (Katz et al., 2017). These methods are naturally computa-
tionally expensive and do not scale well. Incomplete methods, on the other hand, provide sound but
inexact bounds, based on convex relaxations of the feasible output set of a network. Xu et al. (2020)
characterizes widely-recognized convex relaxations (Mirman et al., 2018; Wong et al., 2018; Zhang
et al., 2018; 2022; Ferrari et al., 2022) as linear constraints, equivalent to linear programming in the
corresponding linear systems. We distinguish three concrete convex relaxation methods typically
considered by theoretical work: Interval Bound Propagation (IBP) (Mirman et al., 2018; Gowal
et al., 2018), which ignores the interdependency between neurons and use interval {[a, b] | a, b ∈ R}
as the convex relaxation; Triangle relaxation (Wong & Kolter, 2018), which approximates the ReLU
function by a triangle in the input-output space; and multi-neuron relaxations (Singh et al., 2018)
which considers a group of ReLU neurons jointly in the linear system.

Convex Relaxation Theories. Baader et al. (2020) first show the universal approximation theo-
rem for certified models, stating that for every continuous piecewise linear function f : Rn → R
and any error rate ϵ > 0, there exists a ReLU network that expresses f and its IBP analysis can
provide bounds with error at most ϵ. This result is generalized to other activations by Wang et al.
(2022). However, Mirman et al. (2022) show that there exists a continuous piecewise linear function
for which IBP analysis of any finite ReLU network expressing this function cannot provide exact
bounds. This means that even for continuous piecewise linear functions, IBP requires a network
with infinitely many parameters to provide exact bounds. Further, Mao et al. (2024b) show that IBP
introduces a strong regularization on the parameter signs to provide good bounds, severely limiting
the network capability. Beyond IBP, Baader et al. (2024) show that even Triangle, the most precise
single-neuron relaxation, cannot precisely express the “max” function in R2 with a finite ReLU net-
work, although it can precisely express more functions than IBP in R. In sharp contrast, this work
shows that a multi-neuron relaxation can precisely express every continuous piecewise linear func-
tion in Rn with a finite ReLU network, providing a positive result on the expressiveness of convex
relaxations for continuous piecewise linear functions in high dimensions.
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3 BACKGROUND

We now start with a brief review of the required background. We first introduce convex relaxations
for network certification and then present single-neuron and multi-neuron relaxation methods.

x

y

−1 1

y ≤ 1
2 (x+ 1)

y ≥ 0

y ≥ x

Figure 1: Triangle relaxation of a
ReLU with input x ∈ [−1, 1].

Convex Relaxations for Certification. Given a function f :
Rdin → Rdout and a compact domain X ⊂ Rdin , we denote the
graph of the function {(x, f(x)) ∈ Rdin + dout : x ∈ X} by
f [X]. The certification task boils down to computing the up-
per and lower bounds of the range f(X), in order to verify that
these bounds meet certain requirements, e.g., adversarial robust-
ness. To this end, convex relaxations approximate f [X] by a
convex set S ⊂ Rdin + dout satisfying S ⊇ f [X]. We then take
the upper and lower bounds of S (projected into Rdout )—which
are usually much easier to compute compared to those of f(X)
due to the convexity of S—as an over-approximation of the bounds on f(X). We assume the do-
main X to be a convex polytope, because this is the common practice in certification, e.g., L∞
neighborhoods of a reference point. Such convex polytopes can be represented by a set of linear
constraints C(x, f(x)) ≤ 0. For example, consider the ReLU function y = max(0, x) on the
domain X = [−1, 1]. One possible convex relaxation is the Triangle relaxation (Wong & Kolter,
2018), represented by the set of linear constraints (y ≥ x) ∧ (y ≥ 0) ∧

[
y ≤ 1

2 (x+ 1)
]
. Figure 1

illustrates this, where the black thick line represents f [X] and the colored area stands for S.

ReLU Network Analysis with Layer-wise Convex Relaxations. Computing f [X] of a ReLU
network is generally NP-hard. To ease the computation, convex relaxations are applied in a layer-
wise manner. Specifically, consider a ReLU network f = WL ◦ρ◦ · · · ◦ρ◦W1 and an input convex
polytope X . Denote the variable of the input layer by x(0), the first layer by x(1) = W1(x

(0)),
the second layer by x(2) = ρ(x(1)), and so on. Assume the input polytope is defined by the linear
constraint set C0(x(0)) ≤ 0. We apply convex relaxations to the first layer x(1) = W1(x

(0))
to obtain a set of linear constraints C1(x(0),x(1)) ≤ 0. Proceeding by layers, we obtain linear
constraint sets Cℓ+1(x

(ℓ),x(ℓ+1)) ≤ 0, for ℓ = 0, . . . , 2L − 2. Note that no explicit constraint
across layers is considered, e.g., C(x(0),x(2L−1)) ≤ 0 would not appear explicitly in the above
procedure. Finally, we take the union of all constraint sets, C = C0(x(0)) ∪ C1(x(0),x(1)) ∪ · · · ∪
C2L−1(x

(2L−2),x(2L−1)) and solve C ≤ 0 by by linear programming to obtain the upper and lower
bounds of the output variable x(2L−1). As we perform the relaxation on Wℓ(·) or ρ(·) for every
layer, the set C represents a convex relaxation of the overall composed function f = WL ◦ ρ ◦ · · · ◦
ρ ◦ W1 on domain X . Note that we can choose to further neglect part of the linear constraints to
reduce the computational complexity, yielding a more loose relaxation.

Single-Neuron and Multi-Neuron Relaxations. Within the framework of layer-wise convex relax-
ations, the constraint set of an affine layer y = Ax+ b is always C(x,y) = {Ax+ b− y,−Ax−
b+ y} ≤ 0, which translates to the equality y = Ax+ b. No loss of precision, therefore, is intro-
duced in affine layers. The core difference between different relaxation methods is how they handle
the ReLU function. Single-neuron relaxation methods relax each ReLU neuron separately and dis-
regard the interdependence between neurons, while multi-neuron relaxations consider a group of
ReLU neurons jointly. Concretely, for the ReLU layer y = ρ(x) with x ∈ Rd, the constraint
sets computed by single-neuron relaxations are of the form C(xi,yi) with i ∈ [d]. In contrast,
multi-neuron relaxations produce constraint sets of the form C(xI1 ,yI2) with I1, I2 ⊆ [d].

Singh et al. (2019) propose the first multi-neuron relaxation called k-ReLU. For each ReLU layer,
it considers at most k unstable neurons jointly, i.e., C(x,y) is of the form C(xI ,yI), with I ⊆
[d], |I| ≤ k. However, k-ReLU is not complete for general ReLU networks (see §7), thus we
consider a stronger multi-neuron relaxation which only restrict the number of output variables in
the constraints, allowing C(x,y) to be of the form C(x,yI) with I ⊆ [d], |I| ≤ k. We denote this
special multi-neuron relaxation as Mk, and assume it always computes the convex hull of (x, ρ(sI))
while only one index set I is allowed per layer for simplicity. We also consider the weaker output-
only multi-neuron relaxation Mo

k which only computes the convex hull of the output set. Concretely,
C(x, ρ(x)) is in the form of {C(ρ(xI)) | I ⊆ [d], |I| ≤ k}, and only one index set I is allowed per
layer as well. For Mo

k, we will not solve the full system but only take the constraints computed for
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ρ
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−1

Cs(a, c) =

 a− c
−c

c− 1
2 (a+ 1)

 ≤ 0 Cm(a, b, c, d) =


Cs(a, c)
Cs(b, d)
c− d
d− c
a− b
b− a

 ≤ 0

Figure 2: Visualization of the single-neuron and multi-neuron relaxations for a network encoding f(x) = 0.

the last layer, and denote the convex polytope defined by the constraints computed for the last layer
as Mo

k(f,X0). Intuitively, Mo
k relaxes the functional range, while Mk relaxes the functional graph

(domain and range) jointly. We note that Mo
k is allowed to consider unstable and stable neurons

together, while k-ReLU only considers unstable neurons together with the corresponding inputs,
thus they are not comparable in precision even when k-ReLU also computes the convex hull of the
considered variables. Neurons that are not considered by a multi-neuron relaxation are processed
by a single-neuron relaxation, in our case, the Triangle relaxation. We remark that there are other
applied multi-neuron relaxations (Müller et al., 2022; Ferrari et al., 2022) that only compute an
over-relaxation of Mk.

Numerical Illustration. We include a toy example to illustrate the concepts introduced above,
namely the ReLU network ρ(x) − ρ(x) encoding the zero function f(x) = 0 with input x ∈
[−1, 1]. This network is visualized in Figure 2. The linear constraints are as follows: (i) for the input
convex polytope, we have (x− 1 ≤ 0) ∧ (−1− x ≤ 0); (ii) for affine layers, we have (a = x) ∧
(b = x) ∧ (f = c− d); (iii) for the ReLU layer, a single neuron relaxation (Triangle) will have
[Cs(a, c) ≤ 0] ∧ [Cs(b, d) ≤ 0], and a multi-neuron relaxation (M2) will have Cm(a, b, c, d) ≤ 0. In
this case, a multi-neuron relaxation successfully solves that the upper bound and lower bound of f
are zero, while a single-neuron relaxation solves that the upper bound is 1 and the lower bound is
-1 which are not exact. In addition, the output-only multi-neuron relaxation Mo

2 first computes the
output convex polytope relaxation of the first layer (a = b) ∧ (1− a ≤ 0) ∧ (a− 1 ≤ 0), and then
computes the output convex polytope relaxation of the second layer given the previous polytope,
which is (c = d) ∧ (c ≥ 0) ∧ (c ≤ 1). Proceeding layer-wisely, we obtain the final convex polytope
f = 0, thus the bounds from Mo

2 are also exact. Note that Mk is solved with linear programming
on the induced constraints for all layers, while Mo

k is solved only for the last layer, i.e., it finds the
maximum and minimum in the final convex polytope.

4 FULL EXPRESSIVITY OF RELU NETWORK UNDER MULTI-NEURON
RELAXATIONS

We now present our main result. We combine an existing result on the representation capability of
ReLU networks with our novel results, which we prove in detail in §5 and §6, to answer the question
posed in §1.

We establish in §5 that Mo
k returns exact bounds for ReLU networks of width no more than k. In

§6, we prove that if a ReLU network has at most k unstable neurons in each layer—this number
could be far smaller than the network width—then Mk provides exact output bounds. As a final step
towards Theorem 1 below, Lemma 1 (Hanin, 2019, Theorem 2) states that any continuous piecewise
linear function f : [0, 1]din → R can be expressed by a ReLU network of width din +3 which has at
most 3 unstable neurons per layer.

Theorem 1. Let din ∈ N and let X ⊆ [0, 1]din be a convex polytope in Rdin . For every continuous
piecewise linear function f : [0, 1]din → R, denote the lower and upper bound of the range f(X)
by l := minx∈X f(x) and u := maxx∈X f(x). Then there exists a ReLU network Φ satisfying
Φ(x) = f(x), ∀x ∈ X , and applying M3 and Mo

din +3 to (Φ, X) both return l and u.

Proof. By Lemma 1 below, there exists a ReLU network Φ of width din +3 with at most 3 unstable
neurons per layer satisfying Φ(x) = f(x), for x ∈ X . Theorem 2 in §5 shows that applying Mo

din +3

to (Φ, X) returns the exact upper and lower bounds of Φ on X; Theorem 6 in §6 shows that applying
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M3 to (Φ, X) returns the exact upper and lower bounds of Φ on X . Since Φ = f on X , the bounds
of Φ coincides with those of f . This establishes the claim.

Lemma 1. (Hanin, 2019, Theorem 2) Let din ∈ N and let f : [0, 1]din → R be a continuous
piecewise linear function. There exists a ReLU network Φ of width din +3 and finite depth, satisfying

Φ(x) = f(x), for x ∈ [0, 1].

Furthermore, Φ has at most 3 unstable neurons in each layer.

Proof. We refer to (Hanin, 2019, Theorem 2) for the constructive proof. We only note that in each
hidden layer of the constructed network, din neurons are copies of the input variables. Thus the
network has at most 3 unstable neurons per layer.

5 MULTI-NEURON EXPRESSIVITY WITH BOUNDED WIDTH

We now develop the first central result behind our main theorem on the expressivity, which shows
that the output-only multi-neuron relaxation Mo

k introduced in §3 solves the exact output bound for
ReLU networks of width at most k. This result is formally presented in Theorem 2.

Theorem 2 (Precise Mo
k with Bounded Width). Let L, k, din, dout ∈ N. Consider a ReLU network

f : Rdin → Rdout of depth L and width ≤ k. Let X ⊂ Rdin be a convex polytope. Applying Mo
k to f

on domain X returns the exact output set which is also a convex polytope, i.e.,

Mo
k(f,X) = f(X). (1)

Proof. We prove by induction on the network depth L that Mo
k(f,X) = f(X). By Lemma 3 below,

f(X) is a convex polytope for every ReLU network f .

We start with the base case L = 1, when f is an affine function f(x) = Ax + b. By definition,
Mo

k(f,X) = {Ax + b | x ∈ X} = f(X). To prove the induction step, we assume that (1) holds
for all ReLU networks of depth ≤ L−1 and width ≤ k. The subnetwork f ′ = WL−1 ◦ρ◦ · · · ◦W1

consisting of the first L−1 affine and ReLU layers of f , clearly, has depth L−1 and width ≤ k. By
induction hypothesis, Mo

k(f
′, X) = f ′(X). The resting subnetwork f ′′ = WL ◦ρ which consists of

the last affine and ReLU layer of f , or equivalently f ′′ = WL ◦ ρ ◦ Identity, has depth 2 and width
≤ k. By induction hypothesis, again, we have Mo

k(f
′′, f ′(X)) = f ′′(f(X)). Therefore,

Mo
k(f,X) = Mo

k(f
′′ ◦ f ′, X) = Mo

k(f
′′, f ′(X)) = f ′′(f ′(X)) = f(X).

This concludes the proof of the induction step and hence establishes the claim.

Theorem 2 is mainly based on two observations. First, the convex hull of a convex polytope is the
polytope itself; in other words, Mo

k does not introduce any relaxation error for a single layer when
the feasible output set under consideration is a convex polytope, as illustrated in Figure 3. Second,
ReLU networks transform convex polytopes into convex polytopes, as illustrated in Figure 4. This
convex polytope preserving property is proved in Lemma 3.

Lemma 3. Let din, dout ∈ N, f : Rdin → Rdout be a ReLU network ended with either affine or ReLU
layer, and X be a convex polytope in Rdin . Then f(X) is a convex polytope in Rdout .

Proof. We first show that every affine and ReLU layer transforms a convex polytope into a convex
polytope. Then, we prove the statement by induction on the network depth.

Assume the input convex polytope X is represented by linear constraint set C(x) ≤ 0. Consider an
affine transformation y = Ax+ b. The functional graph {(x,y) : y = Ax+ b,x ∈ X} is defined
by the constraints {C(x),y −Ax − b,−y +Ax + b} ≤ 0. Eliminating the variable x using the
Fourier–Motzkin algorithm (Fourier, 1827), the resulting constraints are affine inequalities of y, thus
define a convex polytope for y. We proceed to show the same property holds for the ReLU function
y = ρ(x). Assume again that the input convex polytope X is represented by linear constraint set
C(x) ≤ 0. The range of this function is then represented by the constraints {C(y),−y} ≤ 0, which
defines a convex polytope.

5
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Figure 3: Mo returns the convex hull of output set (black thick boundaries). When the output set is a convex
polytope (left, shaded blue), Mo returns the exact output set. When the output set is not a convex polytope
(right, shaded red), Mo introduces imprecision.

x1

x2

⇒
y = A1x+ b1

y1

y2

⇒
z = ρ(y)

z1

z2

⇒
v = A2z + b2

v1

v2

Figure 4: A convex polytope in R2 retains as a convex polytope under arbitrary compositions of affine and
ReLU transformations.

Now we prove the claim by induction on the network depth L. The base case L = 1 directly follows
from the convex polytope preserving property of affine transformations we established above. For
the induction step, we assume that ReLU networks of depth L−1 transforms a convex polytope into
a convex polytope. The subnetwork f ′ = WL−1 ◦ρ◦· · ·◦W1 has depth L−1 and, by the induction
hypothesis, transforms X into the convex polytope f ′(X). The resting subnetwork f ′′ = WL ◦ ρ
has depth 2 and thus by the induction hypothesis transforms f ′(X) into a convex polytope. This
completes the induction step and concludes the proof of the lemma.

6 MULTI-NEURON EXPRESSIVITY WITH BOUNDED UNSTABLE NEURONS

We have shown in §5 that the output-only multi-neuron relaxation Mo
k returns the exact output set

for ReLU networks of width at most k. This result essentially relies on the fact that in a feedforward
ReLU network, Mo

k does not lose precision for layers with at most k neurons, although it discards
the dependency between input variable and output variable in each layer after processing. However,
this result does not directly apply to ReLU networks with skip connections, where neurons between
non-adjacent layers might be connected by a skip-connection. While it is also possible to convert a
ReLU network with skip connections into a feedforward network by introducing additional neurons
in those layers, the width of the resulting feedforward network becomes unnecessarily large, thus k
also needs to be as large which leads to significant computational overhead.

In this section, we tackle this problem by developing a general result with Mk that applies to all
ReLU networks, including those with skip connections. Specifically, we show that Mk is precise
for ReLU networks with at most k unstable neurons in each hidden layer. Since the number of
unstable neurons in each layer will not increase when converting a network with skip connections to
a feedforward network, this result generalizes to ReLU networks with skip connections as well.

We begin by formally defining stable and unstable neurons in Definition 4 and 5. Intuitively, intrin-
sically unstable neurons are those that switch their activation pattern in the input set, while bounded
unstable neurons are those that are not guaranteed to be stable by a convex relaxation, i.e., they have
a positive upper bound and a negative lower bound under the given relaxation.

Definition 4 (Intrinsically Stable and Unstable Neuron). For a ReLU network Φ and an input set X ,
a ReLU neuron is called intrinsically unstable on X if there exists x1, x2 ∈ X such that x1 activates
this neuron and x2 does not activate it. Otherwise, it is called intrinsically stable on X .

Definition 5 (Bounded Stable and Unstable Neuron). Consider a ReLU network f = W ◦ ρ ◦ f ′,
where f ′ is a ReLU network with output dimension d. Let X be the input set and P be a convex
relaxation. For each neuron in the layer ρ, we call it bounded unstable on X w.r.t. P if the resulting

6
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x

y

Bounded

Intrinsic

(a) Bounded stable neurons must
be intrinsically stable.

x

y

(b) Intrinsically unstable neu-
rons must be bounded unstable.

x

y

(c) Bounded unstable neurons
could be intrinsically stable, vice
versa.

Figure 5: Relationship between intrinsic stability and bounded stability of ReLU neurons.

upper bound on f ′(X) obtained by P is positive and the lower bound is negative. Otherwise, it is
called bounded stable w.r.t. P.

We remark that an intrinsically unstable neuron is always bounded unstable w.r.t. any convex re-
laxation, but the converse is not necessarily true. On the other hand, bounded stable neurons must
be intrinsically stable, while intrinsically stable neurons could be bounded unstable due to loss of
precision caused by the relaxation. We illustrate this in Figure 5.

If a ReLU neuron is bounded stable w.r.t. a relaxation P, then it reduces to an affine transformation
as they have a fixed activation pattern—either equal to the identity function or the zero function.
Therefore, bounded stable neurons are processed by convex relaxation methods in the same way as
an affine function, by replacing the corresponding ReLU with an identity or a zero function.

We are now ready to present the central result of this section, which states that Mk is precise for
ReLU networks with at most k unstable neurons in each hidden layer.

Theorem 6 (Precise Mk with Limited Unstable Neurons). Let domain X ⊂ Rdin be a convex
polytope. For a ReLU network fL ◦ fL−1 · · · ◦ f1 where fi is an affine layer followed by a ReLU
layer except fL which is a single affine layer, assume fi has at most k intrinsically unstable neurons
for every i, linear programming with constraints induced by Mk on only unstable neurons to Φ
results in exact upper and lower bounds for the final output of the network.

Proof. We prove by induction on L that the constraints induced by Mk have the same feasible set
as the constraints induced by M∞. Since M∞ is more precise than Mo

∞ and Mo
∞ returns the exact

output set (Theorem 2), this implies Theorem 6. Base case: when L = 1, the ReLU network
is simply an affine layer, thus constraints induced by both relaxations are u = Ax + b where
Ax + b is the affine layer. Inductive step: assume that Mk has equivalent constraints as M∞ for
f ′ := fL−1 · · · ◦ f1. By the induction hypothesis, constraints on f ′ define the exact output set of
f ′. Thus, since fL has at most k intrinsically unstable neurons, it has at most k bounded unstable
neurons. Therefore, by Lemma 8 (proved later), Mk for f still has equivalent constraints as M∞.

Theorem 6 relies on the observation (Lemma 8) that the constraints induced by Mk on the unstable
neurons are equivalent to the constraints induced by M∞, in the sense that they have the same
feasible set. We now prove this fact in a weak form first, which states that for a single affine layer
followed by a ReLU layer, the constraints induced by Mk on the unstable neurons are equivalent to
the constraints induced by the convex hull of the composed function. This is formalized in Lemma 7.

Lemma 7 (The Strong Form of Mk). For an affine layer u = Ax + b followed by a ReLU layer
v = ρ(u) with k bounded unstable neurons, the constraint set induced by Mk on the k unstable
neurons is equivalent to the constraint set induced by g[X] for g(x) = ρ(Ax+ b) given any convex
polytope input set X .

Proof. We denote the constraint set induced by Mk to be LS1 and the constraint set induced by
g[X] to be LS2. Since LS2 is the convex hull, every solution satisfying LS2 also satisfies LS1. In the
following, we show that every feasible solution satisfying LS1 also satisfies LS2, thus establishing
the equivalence between feasible sets of LS1 and LS2.

7
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Let linear constraints induced by the input convex polytope be P (x) ≤ 0. Without loss of gener-
ality, we assume the first k neurons are unstable and the rest n − k neurons are stable where n is
the output dimension. Therefore, LS1 is [P (x) ≤ 0] ∧ [u = Ax+ b] ∧ [vk+1:n = Wρuk+1:n] ∧
[C1(u,v1:k) ≤ 0], and LS2 is [P (x) ≤ 0]∧ [u = Ax+ b]∧ [C2(x,v) ≤ 0], where Wρ is the equiv-
alent affine weight (taking 1 or 0 as elements) of ReLU layer for stable neurons, and C1 and C2 are
the constraints induced by the convex hull of ρ and g, respectively. For stable neurons vk+1:n, they
are affine functions of x, i.e., vk+1:n = Wρ(Ax + b)k+1:n, which is the tightest possible con-
straints in LS2 for them, thus every feasible solution vk+1:n for LS1 also satisfies LS2 because LS1

imposes this constraint. Now we consider unstable neurons v1:k = ρ(u1:k) where u = Ax + b.
C1 imposes all possible constraints in {l1(u,v1:k) ≤ 0} and C2 imposes all possible constraints in
{l2(x,v1:k) ≤ 0}, where li are some affine expression of the given variables. Therefore, we can
rewrite l1 in LS1 as l1(Ax + b,v1:k). Since v1:k = ρ(Ax + b)1:k, all effective l2(x,v1:k) must
also be in the form of l2(Ax+ b,v1:k). Here effective constraints are those that change the feasible
set if removed. Since both LS1 and LS2 impose all possible constraints in {l(Ax + b,v1:k) ≤ 0},
every feasible solution satisfying LS1 also satisfies LS2.

We have shown in Lemma 7 that for a single affine layer followed by a ReLU layer, the constraints
induced by Mk on the unstable neurons are equivalent to the constraints induced by the convex hull
of the composed function. We now extend this result to the general case of a ReLU network with at
most k unstable neurons in each hidden layer in Lemma 8, which completes the proof of Theorem 6.

Lemma 8. For a ReLU network fL ◦ fL−1 · · · ◦ f1 where fi is an affine layer followed by a ReLU
layer, given the linear constraints computed for {fi | i ≤ L − 1} and at most k bounded unstable
neurons for fL, constraints induced by Mk on bounded unstable neurons for fL has the same feasible
set as constraints induced by M∞ for fL.

Proof. We use contradiction to prove the lemma. Let fL map XL to YL. Suppose Mk is less precise
than M∞, then there must exist a linear constraint in M∞ for fL in the space XL ×YL that reduces
the feasible set of constraints induced by Mk. Denote the set of unstable neurons of fL as U and the
set of stable neurons of fL as S. Then we can group the variables in this constraint into XL, U and
S. Since neurons in S are affine expressions of XL, we can replace them with variables in XL. The
original constraint is then a linear constraint only involving variables in XL and U. However, by
Lemma 7, Mk already computes the convex hull for (XL,U), thus such a constraint cannot reduce
the feasible set of constraints induced by Mk. Therefore, Mk for all the unstable neurons in the fL
has the same feasible set as applying M∞ for the L-th layer.

7 CASE STUDY: THE MAX FUNCTION

Baader et al. (2024) prove that there does not exist a ReLU network that can express the “max”
function in the compact domain [0, 1]2 ⊂ R2 such that the network outputs can be bounded exactly
by single-neuron relaxations. In this section, we take the “max” function in Rd, d ≥ 2, on domain
[0, 1]d, as an example to show that a multi-neuron relaxation easily resolve such impossibility results,
as a confirmation of our main result.

First, consider d = 2. In this case, we can represent the “max” function with the ReLU network
f = x2 + ρ(x1 − x2), illustrated in Figure 6. This network has width equals two (node c and d) and
maximum unstable neurons per layer equals one (node c). We will thus show that Mo

2 and M1 can
return the exact bounds of the functional range, i.e., [0, 1].

The input constraints are (x1 ≥ 0) ∧ (x1 ≤ 1) ∧ (x2 ≥ 0) ∧ (x2 ≤ 1). Besides, the constraints for
affine layers are (a = x1 − x2) ∧ (b = x2) ∧ (f = c+ d). With these constraints, we can compute
the bounds of the output of the first affine layer with linear programming, yielding a ∈ [−1, 1] and
b ∈ [0, 1]. Therefore, a is bounded unstable and b is bounded stable.

We now show that M1 computes the exact bounds of f . For the bounded stable node b, the constraint
is d = b. For the bounded unstable node c, the constraint is (c ≥ 0) ∧ (c ≥ a) ∧ (c ≤ 1− b).
Therefore, we have f = c+ d = c+ x2 ≥ 0+ x2 ≥ 0 and f = c+ d = c+ x2 ≤ 1− x2 + x2 = 1.
Thus, M1 returns the exact bounds of the output of the ReLU network, which is [0, 1]. We remark
that 1-ReLU (which is equivalent to the Triangle relaxation) cannot return the exact upper bound, as
its constraint for node c is (c ≥ 0)∧ (c ≥ a)∧ (c ≤ 0.5a+ 0.5) since it only allow the constraint of
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Figure 6: The network encoding f(x1, x2) = max(x1, x2).

c to depend on a, while M1 allows it to depend on b as well. Thus, the upper bound of f returned by
1-ReLU is 1.5, which is not exact. This is not surprising because otherwise it will break the results
established by Baader et al. (2024).

We further show that Mo
2 also returns the exact bounds for this ReLU network. The input polygon

is (x1 ∈ [0, 1]) ∧ (x2 ∈ [0, 1]). Calculating for the first affine layer, the convex polygon returned by
Mo

2 is (a ≥ −b) ∧ (a ≤ 1− b) ∧ (b ∈ [0, 1]). After the ReLU layer, the convex polygon becomes
(c ≥ −d) ∧ (c ≤ 1− d) ∧ (d ∈ [0, 1]) ∧ (c ≥ 0). Substituting this into f = c + d and eliminate c
and d, we get the output convex polygon, (f ≥ 0) ∧ (f ≤ 1), thus establishes the exact bounds of
f . We note that in this process, the convex polygon of each layer’s output is always exact.

We have shown that a multi-neuron relaxation can exactly bound the network expressing the “max”
function in R2 with the given budget required by Theorem 2 and Theorem 6, respectively. Now we
extend the result to Rd. Indeed, we can rewrite “max” in a nested form as max(x1, x2, . . . , xd) =
max(max(x1, x2), . . . , xd). By the previous argument, a multi-neuron relaxation can bound u =
max(x1, x2) exactly. Notice that u has no interdependency with x3, . . . , xd, thus we can repeat the
procedure for max(u, x3, . . . , xd). By induction, a multi-neuron relaxation (Mo

2 and M1) can bound
the output of the ReLU network expressing the “max” function in Rd exactly. We remark that for
a “max” function in Rd, two unstable neurons each layer and network width equals d is enough,
while Theorem 1 upper bounds this number by 3 and d+ 3, respectively.

8 DISCUSSION

Complete Certification with Multi-neuron Relaxations. This work establishes that two partic-
ular multi-neuron relaxations are complete verifiers for ReLU networks. Despite their theoretical
power, there is currently no algorithmic implementation of these relaxations. In particular, their al-
gorithmic complexity is unknown. Developing efficient algorithms for these relaxations is important
for future work, and we suggest a few possible directions below.

The first question is how to compute the convex hull. While this might be exactly computed (e.g., for
affine layers), an approximate convex hull might be sufficient for practical purposes (Müller et al.,
2022). Therefore, one may rely on “constraint mining”, i.e., finding valid constraints sequentially.
Since the convex hull is the intersection of all valid constraints, one can iteratively add constraints
to the linear system until the convex hull is fully covered. While effective constraint mining is non-
trivial, we remark that due to the completeness of multi-neuron relaxations, the expensive branch-
and-bound as deployed by Müller et al. (2022) is no longer required to find the exact bounds. In
addition, similar constraint mining approaches are deployed by Zhang et al. (2022), but they consider
all constraints possibly involving different layers, which is a much larger constraint space than that
for a single layer.

The second question is how to solve the linear system efficiently, especially in the process of con-
straint mining where multiple strongly overlapping linear programming problems need to be solved.
This question might be relatively easy, because we can expect the optimal solution of the previous
linear programming to be a good initial guess for the next linear programming. In particular, the
simplex algorithm might be a good choice for this task because the new optimum must lie on the
vertices introduced by new constraints.

The last question is how to check whether we have reached the exact bounds. We suggest two
possible approaches. The first approach essentially relies on the effectiveness of constraint mining:
if the constraint mining algorithm can no longer find a new constraint that improves the bound, then
the current bound is exact. The second approach is to reconstruct the input of the network and check

9
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whether its output matches the current bound. This approach is more straightforward because when
solving for Mk, we directly have the values for the input of the network.

Importance of Certified Training. Our work shows that ReLU networks with width at most d+3
and only three unstable neurons per layer are enough to express any continuous piecewise linear
function in Rd, and multi-neuron relaxations can provide exact bounds for these networks. This
implies that if we can train customized models, the complexity of certification can be drastically
reduced. Therefore, along with more powerful certification tools, the field should develop more
powerful training algorithms that can train networks that are easily certifiable.

9 CONCLUSION

We proved the first positive result on the completeness of convex relaxations and the expressivity of
ReLU networks under convex relaxations. While single-neuron relaxations that relax each neuron
separately are incomplete, we proved that (layer-wise) multi-neuron methods, where multiple neu-
rons in the same layer are processed jointly, are complete. Specifically, for networks of width no
more than k, one computes the convex hull of the range of each layer, proceeding in a layer-wise
manner. Then, the resulting set of linear constraints induces exact upper and lower bounds on the
output set of the network. In addition, when the network width is unbounded, but the number of
unstable neurons is at most k in each layer, we can retain the exact bounds by jointly considering the
input-output set of those k neurons. Our results demonstrate that the expressivity of ReLU networks
is no longer limited under multi-neuron relaxations, in contrast to single-neuron relaxations which
have previously been shown to severely limit the expressivity of networks they can certify exactly.
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