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Abstract

While large language models (LLMs) have001
rapidly improved performance on a broad num-002
ber of tasks, they still lag behind in abstract003
reasoning tasks. Wang et al. (2023) proposed004
self-consistency, finding that sampling multi-005
ple rationales before taking a majority vote sta-006
bly improves performance in both mathemat-007
ical and commonsense reasoning. This work008
augments self-consistency idea with a variety009
of clustering and mapping approaches to bal-010
ance between diversity and accuracy, and ad-011
ditionally explore and evaluate sources of in-012
accuracies in reasoning performance more effi-013
ciently and concisely. We introduce two novel014
techniques: identifying consensus responses by015
clustering semantic embeddings of model out-016
puts, and systematically varying temperature017
schedules during the course of generation. By018
doing so, we aim to capture a more compre-019
hensive spectrum of reasoning paths employed020
by the model and increase confidence in co-021
herent answers providing guidance about mod-022
els wrong doings while improving accuracy on023
common benchmarks.024

1 Introduction025

In recent years, the development of large language026

models has witnessed remarkable strides, with sig-027

nificant advancements in their accuracy and expres-028

sive capabilities (Naveed et al., 2023). Despite029

these achievements, the computational demands as-030

sociated with deploying such models, particularly031

during inference, pose challenges that necessitate032

innovative solutions (Sarker, 2021). This paper033

delves into the exploration of methodologies aimed034

at enhancing the accuracy of large language models035

while concurrently mitigating the computational re-036

sources required during the inference phase.037

A fundamental aspect of our investigation builds038

upon the foundations laid by self-consistency train-039

ing, a technique that leverages sampling to gener-040

ate responses and subsequently combines them to041

refine model predictions and other augmentation 042

methods (Mialon et al., 2023). In this pursuit, we 043

introduce two techniques designed to augment the 044

efficacy of self-consistency training and other new 045

found reasoning techniques. First, we propose the 046

application of semantic vector representations to 047

cluster model outputs, facilitating the identification 048

of alike responses to estimate an accurate represen- 049

tation about output sequences. 050

Second, we advocate for the systematic variation 051

of temperature schedules throughout the training 052

process and during the aggregation of responses 053

(Holtzman et al., 2020). This dynamic modulation 054

of temperature sampling not only introduces adapt- 055

ability into the model’s responses but also improves 056

the decision process conducted by our verification 057

method by potentially covering a more broad range 058

of responses that therefore improve out marginal- 059

ization techniques. 060

Our validation, conducted through comprehensive 061

comparative analyses on benchmark datasets, sub- 062

stantiates the efficacy of the proposed techniques. 063

In particular, our results on variation of temper- 064

atures reveal an improvement in accuracy when 065

compared to baseline self-consistency training, all 066

while utilizing an equivalent number of sampled 067

sequences. 068

The innovations introduced in this research, namely, 069

model-agnostic clustering and dynamic tempera- 070

ture sampling, present promising avenues for the 071

advancement of large language models and their 072

pretraining. 073

As computational efficiency becomes an increas- 074

ingly vital consideration in the practical deploy- 075

ment of language models, the contributions pre- 076

sented herein provide valuable insights and strate- 077

gies for the development of future-generation mod- 078

els and techniques that lead pathways to lower in- 079

creasing performance while keeping a steady pa- 080

rameter count. 081
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Figure 1: Default self-consistency comprises three steps: (1) Prompt a model with chain-of-thought reasoning; (2)
Generate n sampled sequences, and (3) Marginalize results based on the most occurring numerical output.
Our proposed method samples results and marginalizes not only based on consistency in the output but also on
the coherency of the employed reasoning path. Our assumption is that Language Models often apply the correct
reasoning path but lack the ability to conduct mathematical operations correctly. Therefore, wrong numerical results
cannot imply that a reasoning path is wrong. We utilize this concept to let correct reasoning paths improve the
confidence in similar reasoning responses, assuming that the model’s overall mathematical capabilities are high
enough to incorporate correct arithmetic results in a majority of subsequent sequences.

2 Methodology082

We utilize the premise that exposing the model to083

a spectrum of temperatures facilitates the model084

of more abstract decision-making processes. By085

using temperature, as a controlling parameter,086

introduces an element of stochasticity into the087

generation process, where the model combines088

higher temperature outputs to encourage a more089

explorative approach, leading to diverse and090

potentially more abstract responses and conversely,091

lower temperatures to emphasize more determinis-092

tic and focused outputs.093

This Process can be harnessed to improve the094

introduced clustering mechanism and improve095

the out-turn based on the filtering mechanisms by096

providing more clear differentiation between the097

employed reasoning paths.098

099

The underlying process can be described in100

a simple set of step by step instructions.101

1. Generate n base responses: Given a query102

of few-shot examples, we aim to harness the103

model’s capabilities of abstract thinking on104

different temperatures to generate diverse out-105

puts.106

2. Determine a filtering mechanism or cluster- 107

ing method: We introduce a variety of mecha- 108

nisms to filter the responses based on the final 109

numerical result, reasoning path and similarity 110

to subsequent responses. 111

3. Marginalize the results based on the filter- 112

ing system We marginalize and/or aggregate 113

the results using one of the above-mentioned 114

methods, to conclude to one final answer. 115

Our experiments are conducted on different sets 116

of configurations. For top-k and top-p we use a 117

default of 50; more detailed information on the 118

configurations used can be found in Appendix A. 119

3 Experimental Setup 120

We conduct multiple experiments with varying 121

setups in form of different benchmarks tested on 122

each model to cover a broad range of possible 123

outputs. 124

125

3.1 T-SNE configuration 126

We employ the t-Distributed Stochastic Neighbor 127

Embedding (t-SNE) technique for the visualiza- 128

tion of high-dimensional vector spaces. (van der 129

Maaten and Hinton, 2008) 130

2



Figure 2:
We select a perplexity parameter of 2, grounded in the rationale that local distributions yield a more informative
representation than global distributions.
This is attributed to the increased density of points in close proximity, enhancing the detail captured in the mapping.
Based on a test on a subset of arithmetic reasoning examples, evaluated with Microsoft Phi1.5 on 10, 15 and 20
outputs based on baseline self-consistency with the in the Appendix provided n-Shot prompts.

3.2 Weighting131

We propose several methods for sampling from132

different temperatures. Current work includes a133

majority vote system, which will give us a bench-134

mark to compare against. Additionally, we employ135

a weighting system based on the inverse of the136

applied temperature:137

n∑
i=1

1

ti
(1)138

Furthermore, we conducted tests using weighted139

squared inverse weighting on a small subset. How-140

ever, these tests did not yield substantial results due141

to the robustness of sampling towards numerical142

solutions:143

n∑
i=1

(
1

ti

)2

(2)144

3.3 Datasets145

We use AQuA-rat and SVAMP to evaluate on more146

complex arithmetic tasks. (Ling et al., 2017; Patel147

et al., 2021) Additionally, we used GSM8K at dif-148

ferent parts for cross section and different ablations149

to evaluate on datasets of lower-end difficulty.150

3.4 Language Models151

Our models are split up into generators, which pro-152

vide the reasoning/result sequences of of which we153

build the solutions and featurizers, which convert154

the output sequences into a suitable vector repre- 155

sentation. 156

3.4.1 Generators 157

• Microsoft Phi 1.5: The Phi1.5 model 158

introduced by Gunasekar et al. (2023) has a 159

smaller architecture with 1.3 billion Parame- 160

ters, that was made to create a non-restricted 161

small model to explore vital challenges and 162

generate "basic/starting point" responses and 163

outputs for text and code. 164

165

• Microsoft Phi 2: The Microsoft Phi2 model 166

is an highly optimized 2.7 billion-parameter 167

language model. That outperforms models up 168

to 25 times larger showing promising results 169

on common benchmarks. 170

171

• GPT-3: For our evaluation we use code- 172

davinci-002 a descendant of the GPT-3 173

architecture which is a dense higher param- 174

eter large-scale language model with 175 175

billion parameters.(Brown et al., 2020) 176

177

• Llama 2: Llama 2 is a collection of 178

transformer models presented by Meta, which 179

are trained on large amounts of publicly 180

available texts. With a focus on Llama 7B 181

for our evaluation, Llama 2 performs well on 182
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common benchmarks for its size and can be183

fine-tuned for specific areas. (Touvron et al.,184

2023)185

186

• Mistral 7B: Mistral 7B is a strong front to187

back transformer Model developed for perfor-188

mance and efficiency, and renowned for its189

scalability and adaptability between different190

areas. It outperforms larger-parameter Models191

in processing large contextual information and192

can be fine-tuned1 for specific tasks. (Jiang193

et al., 2023)194

3.4.2 Featurizers195

• roBERTa: roBERTa is an "robustly"196

fine-tuned model derived from the original197

BERT architecture introduced by Devlin198

et al. (2019). It is featuring enhancements199

that enabled roBERTa to outperform its200

predecessor in several natural language201

processing benchmarks. (Liu et al., 2019)202

203

• sciBERT: sciBERT is a BERT-model fine-204

tuned on scientific language, comprising a205

multi-domain corpus of roughly 1.14M scien-206

tific publications. Making it particularly adept207

at understanding more complex terminology208

and structure in academic contexts. (Beltagy209

et al., 2019)210

211

• MathBERT MathBERT is a 100M token212

BERT-model that is fine-tuned on mathemati-213

cal language based on up to an college level214

Math curriculum, books and Math arXiv-215

paper-abstracts.(Shen et al., 2023)216

4 Results217

4.1 Finetuned featurizers218

We tested the "featurization" process on multiple219

featurizer-models on differing levels of applicabil-220

ity. Due to RoBERTa general robust training it lim-221

itits it ability to distinguish and evaluate unique fea-222

tures in mathematical reasoning paths. Conversely223

MathBERT prioritizes accuracy in mathematical224

operations and results making it a valid method for225

grouping similar results, but beeing less effective226

1We apply Mistral without fine tuning on reasoning or
pretraining on mathematical tasks to give a more accurate
representation of effects introduced by our methods

in increasing the validity of a cluster solely by its 227

reasoning path. SciBERT combines this focus with 228

a comprehensive understanding of the reasoning 229

process. This process makes sciBERT the most 230

effective model for our evaluation, due to its high 231

prominence on the produced sequence rather then 232

its outcome. 233

BERT-Model avg distance (↓)
RoBERTa 48.697
MathBERT 45.892 (-2.8)
SciBERT 45.281 (-3.4)

Table 1: Showcasing the comparison by averaging the
unnormalized distance of each point in the vector space
to its assigned Cluster centroid, reveales the importance
of finetuning of the featurizer to recieve accurate output
representations.

4.2 self-consistency with abstraction 234

To have a wide distribution of different reasoning 235

paths, we sample from a variety of 5 different tem- 236

peratures per produced output. In our example of k 237

= 10, that equals 2 samples per temperature. 238

Llama 2
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Abstract consistency Majority Vote
Abstract consistency weighted

Figure 3: The above visible figure shows that self-
consistency with varying levels of abstraction (here
called abstract consistency) when used with inverse tem-
perature weighting contains an increase in performance
of evaluations of 2.5 %.
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Model Method AQuA-rat SVAMP
sc baseline 24.8 46.5

Llama 2 7B inverse distance 24.6 (-0.2) 47.4 (+0.9)
l1 inverse distance 24.9 (+0.1) 46.7 (+0.2)
sc baseline 25.6 68.5

Mistral 7B inverse distance 29.0 (+3.4) 69.8 (+0.3)
l1 inverse distance 28.6 (+3.0) 69.8 (+1.3)

Table 2: This Table shows that with weighting models based on the inverse of the distance outputs we can improve
overall self consisency by an average margin of 1.6 % for AQuA-rat and 0.6 % for SVAMP

4.3 Inverse-distance weighting239

In a set of examples, it is common to observe that240

general answers exhibit similar operational pat-241

terns and behaviors. This observation underpins242

the application of inverse distance weighting, a243

technique where each vector in the set is assigned244

a weight based on its distance from a reference245

point or query. The essence of this approach lies246

in the principle that vectors closer to the query247

are more likely to be relevant and thus are given248

greater weight in the decision-making or reasoning249

process. The corresponding weights can be utilized250

in diagnosing reasoning error causes by since they251

are able to give more weight to better results to252

gain a more comprehensive overview of incorrect253

reasoning statements.254

To perform these calculations, we first calculate255

the distances from each data point to the overall256

centroid. Then, we calculate the weights for each257

data point and normalize the weights so that they258

sum to 1. The process is shown below.259

centroid =
1

N

N∑
i=1

data[i]260

261
distances[i] = ∥data[i]− centroid∥262

263

weights[i] =
1

distances[i]p
264

265

weights[i] =
weights[i]∑N
i=1 weights[i]

266

In these equations, centroid represents the cen-267

troid of all data points, distances represents the268

distances of each data point to the centroid, and269

weights represents the weights assigned to each270

data point based on the distances also N is the271

number of data points, and data[i] represents the272

i-th data point, for each i from 1 to N , where ∥·∥273

represents the Euclidean norm.274

4.4 Evaluation on multiple clusters 275

We applied the k-means clustering algorithm 276

to various values of the parameter k, with a 277

particular focus on k = 2, in order to highlight 278

the phenomenon of favoring the cluster with the 279

largest data set while discarding clusters with 280

fewer samples. 281

This approach was employed to ensure the 282

retention of the cluster exhibiting the highest 283

degree of coherent reasoning paths. This method 284

implies that the predictions associated with this 285

cluster are the ones for which the model exhibits 286

the greatest confidence. 287

288

289

4.5 Self-consistency with outlier detection 290

In our study, we conducted an extensive analysis 291

using various anomaly detection techniques, includ- 292

ing k-nearest neighbors (KNN) and isolation forest 293

(ISF). To ensure the robustness of our results, we 294

experimented with both dimensionality reduction 295

techniques and without them. The obtained results 296

exhibited slight deviations between the different 297

configurations. However, to provide a more sta- 298

ble and representative assessment, we adopted an 299

approach of averaging the results across all vari- 300

ations. Which lead to the conclusion that outlier 301

detection didn’t improve self consistency by a no- 302

ticeable margin. 303

Although results aren’t increased nor decreased one 304

might use outlier detection techniques to marginal- 305

ize out irrelevant results to get a cleaner analysis on 306

actual deviation of relevant reasoning paths to gain 307

a more comprehensive and meaningful distribution 308

of results. 309
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4.6 Results of systematically augmenting310

results311

To enhance the quality of our embeddings and en-312

sure they are not clustered solely based on output313

results, we implemented a process of result aug-314

mentation. This involved removing end results315

before generating embedding vectors, which were316

then used to form clusters. Our findings demon-317

strate that this approach not only mitigates the in-318

fluence of inconclusive answers but also enhances319

the overall reasoning quality.320

Model with None without None
Mistral 41.36 39.05
Llama-2 64.24 61.01

Table 3: Accuracy representation with and without in-
corporating results from None numerical solutions.

5 Additional studies321

5.1 Detecting anomalies with Support vector322

machines323

In classification and outlier detection tasks, support324

vector machines have frequently served as a preva-325

lent tool. Given the inherent high-dimensional326

nature of our embedding vectors, we tried to gain327

insights into it.328

Despite the capacity of SVM to effectively329

marginalize outcomes, it encounters a limitation330

when it excessively marginalizes a substantial331

number of results distributed in a non-predictable332

pattern. This distortion in the overall distribution333

of results has caused SVM to decrease overall334

performance by an average of 2.87%, making it335

an invalid solution for diagnosing and improving336

performance in reasoning.337

338

6 Related Work339

Reasoning has been identified as an ubiquitous340

issue, across many domains in Large Language341

Models (Creswell et al., 2022). After Rae et al.342

(2021) highlighted the challenges in reasoning343

across various domains in Large Language Models,344

subsequent research has increasingly focused on345

enhancing these models reasoning capabilities.346

One general method applied in many of those347

studies, is few-shot learning which shown positive348

results in guiding a model into a more contextually349

aware and accurate direction. By training with350

a small but highly fitting set of examples, these351

models demonstrate an enhanced ability to infer 352

and apply knowledge. (Brown et al., 2020) 353

Furthermore fine-tuning has shown positive 354

results on specialized data in a broad amount 355

of areas. Research by Radford and Narasimhan 356

(2018) shows that targeted fine-tuning can notably 357

enhance the model’s performance in certain areas. 358

One other significant advancement in the area 359

that has synergized with few shot has been the 360

development of the ’chain of thought’ prompting, 361

which guides LLM’s to mimic human-like 362

step-by-step reasoning processes (Wei et al., 2022). 363

This method has proven effective in improving the 364

accuracy and reliability of responses from LLMs 365

in complex rational thought processes. 366

Building on these developments, our research ex- 367

tends the concept of self-consistency, as introduced 368

by Wang et al. (2023) and harnesses the positive 369

results delivered by chain-of-thought prompting. 370

371

7 Limitations 372

This study, aimed at enhancing the diagnostic tools 373

of sampled reasoning paths using a novel approach 374

that combines results from different temperature 375

settings and leverages semantic vector clustering, 376

encounters several limitations worth noting. 377

7.1 Sampling Quality Dependence 378

Our study’s efficacy hinges on the quality of sam- 379

ples generated from different temperature settings. 380

As described, we harness the model’s capabilities 381

to think abstractly at various temperatures to cre- 382

ate a diverse range of outputs (Gunasekar et al., 383

2023). This approach, while innovative, also in- 384

troduces a potential limitation. The diversity and 385

representativeness of these samples are critical; if 386

the samples at various temperatures are not suffi- 387

ciently varied or if they are skewed towards certain 388

types of responses, it could limit the accuracy and 389

applicability of our findings. Moreover, the choice 390

of temperature settings and their impact on the 391

model’s output diversity is a delicate balance. Too 392

much diversity could lead to irrelevant or off-topic 393

responses, while too little could stifle the innova- 394

tive aspect of the approach. This dependence on 395

the nuanced selection of temperature settings and 396

the inherent variability in the model’s responses at 397

these settings underscores a significant limitation 398

of our methodology. 399
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7.2 Complexities in Semantic Clustering400

Our study proposes the application of semantic401

vector representations to cluster model outputs,402

which is designed to facilitate the identification403

of consensus responses (Wang et al., 2023). While404

this technique is innovative in increasing the effi-405

cacy of self-consistency training, it also introduces406

significant complexities as a potential limitation.407

Semantic vectors must capture the subtle varia-408

tions in meaning and context, which is particularly409

hard in abstract reasoning tasks without a sufficient410

amount of context making prompting techniques to411

enhance the models output structure an important412

factor. The process of clustering based on seman-413

tic vectors can be challenging due to the nuanced414

and abstract nature of reasoning processes. This415

limitation underscores the need for advanced featur-416

ization models in semantic analysis and clustering417

to ensure that the model outputs are grouped in418

a way that truly reflects their underlying meaning419

and relevance.420

8 Conclusion and discussion421

In this study, we demonstrate that employing vari-422

ous clustering algorithms offers a straightforward423

yet effective method for diagnosing the causes of424

errors in large language models. Through the ap-425

plication of clustering techniques, we are able to426

discern whether inaccuracies in a model’s outputs427

are attributable to the reasoning processes it em-428

ploys or to its arithmetic capabilities. Furthermore,429

our findings suggest that clustering not only serves430

as a diagnostic tool but also contributes to enhanc-431

ing the overall data quality and cross-validation432

processes within these models. The utilization of433

clusters as benchmarks for model calibration and434

error correction for improving the reliability and435

accuracy of large-scale language models. Our find-436

ings suggest that clustering serves as a valuable437

tool in the refinement and enhancement of large438

language models, contributing to improvements in439

their reliability and accuracy in other relevant rea-440

soning methods. Future developments may use this441

method to increase performance on commonsense442

reasoning,443

9 Reproducibility Statement444

Our experiments include a variety of models with445

different sizes: Microsoft Phi1.5B is publicly avail-446

able at https://huggingface.co/microsoft/447

phi-1_5/tree/main and can be used under the448

Microsoft Research License. 449

GPT-3 has an API that is open for public use 450

https://openai.com/blog/openai-api. 451

Mistral 7B is available for unrestricted use 452

under the Apache 2.0 license, while its model 453

architecture and setup are open source https: 454

//github.com/mistralai/mistral-src. 455

Llama 2 is a model with restricted access, made 456

available by Meta. You can gain access to it by 457

requesting permission through the provided Meta 458

license. You can find more information about it at 459

https://ai.meta.com/llama/. 460

The new released Phi 2 model isnt realsed publicly 461

yet, but is estimated to be released publicly in the 462

upcoming weeks under the Microsoft Research 463

License. 464

All of our BERT models are built upon the 465

BERT-base model developed by google-research, 466

which is accessible under the Apache 2.0 license. 467

This applies to all the BERT models we use, 468

including MathBERT and sciBert, except for 469

roBERTa, which can be used under the MIT 470

license. 471

472

Our Datasets as well as used configuration 473

for our language Models, are accessible throughout 474

this paper and in the Appendix to aid the repro- 475

ducibilty of our experiments. 476

A majority of our experiments were done using 477

huggingface to access datasets, models and general 478

data. The used algorithms were implemented with 479

scikit-learn (Pedregosa et al., 2011) and the sklearn 480

api (Buitinck et al., 2013). 481

9.1 GPU usage 482

approx. Hours GPU Model Memory
90 h NVIDIA T4 15GB
45 h NVIDIA V100 16GB
35 h NVIDIA A100 40GB

483

10 Ethical Considerations & Risks 484

Language Models can produce factual incorrect 485

information and might induce biases based on user 486

prompts. 487

Mistral 7B and Microsoft Phi1.5 do not include 488

content moderation. Also Microsoft Phi is purely 489

intended for research applications is not tested on 490

production level applications. 491

We encourage anyone to use produced results and 492

capabilities of Language Models in a responsible 493

manner. 494
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11 Appendices644

A Model configurations645

• top-k: 50646

• top-p: 50647

• sampling: true648

• max_new_tokens: 150649

• temperature: see Appendix C650

B Used k-shot prompts651

The used 8-Shot prompt for mathematical652

reasoning follows the example provided in pg. 43653

and use the on pg. 36 referenced set for AQuA on654

the AQuA-rat dataset with of the original Chain of655

thought paper.656

657

Additionally we follow the 6-Shot prompt 658

proposed on pg. 39 of the chain of thought paper 659

for commonsense reasoning. 660

Proposed set of 8-shot Math examples 661
Q: There are 15 trees in the grove. Grove 662

workers will plant trees in the grove today. After 663

they are done, there will be 21 trees. How many 664

trees did the grove workers plant today? 665

A: We start with 15 trees. Later we have 21 trees. 666

The difference must be the number of trees they 667

planted. So, they must have planted 21 - 15 = 6 668

trees. The answer is 6. 669

Q: If there are 3 cars in the parking lot and 2 more 670

cars arrive, how many cars are in the parking lot? 671

A: There are 3 cars in the parking lot already. 2 672

more arrive. Now there are 3 + 2 = 5 cars. The 673

answer is 5. 674

Q: Leah had 32 chocolates and her sister had 42. If 675

they ate 35, how many pieces do they have left in 676

total? 677

A: Leah had 32 chocolates and Leah’s sister had 678

42. That means there were originally 32 + 42 = 74 679

chocolates. 35 have been eaten. So in total they 680

still have 74 - 35 = 39 chocolates. The answer is 681

39. Q: Jason had 20 lollipops. He gave Denny 682

some lollipops. Now Jason has 12 lollipops. How 683

many lollipops did Jason give to Denny? 684

A: Jason had 20 lollipops. Since he only has 12 685

now, he must have given the rest to Denny. The 686

number of lollipops he has given to Denny must 687

have been 20 - 12 = 8 lollipops. The answer is 8. 688

Q: Shawn has five toys. For Christmas, he got two 689

toys each from his mom and dad. How many toys 690

does he have now? 691

A: He has 5 toys. He got 2 from mom, so after that 692

he has 5 + 2 = 7 toys. Then he got 2 more from 693

dad, so in total he has 7 + 2 = 9 toys. The answer 694

is 9. 695

Q: There were nine computers in the server room. 696

Five more computers were installed each day, from 697

monday to thursday. How many computers are 698

now in the server room? 699

A: There are 4 days from monday to thursday. 5 700

computers were added each day. That means in 701

total 4 * 5 = 20 computers were added. There were 702

9 computers in the beginning, so now there are 9 + 703

20 = 29 computers. The answer is 29. 704

Q: Michael had 58 golf balls. On tuesday, he 705

lost 23 golf balls. On wednesday, he lost 2 more. 706

How many golf balls did he have at the end of 707

wednesday? 708

A: Michael initially had 58 balls. He lost 23 on 709

9

http://arxiv.org/abs/2106.07340
http://arxiv.org/abs/2106.07340
http://arxiv.org/abs/2106.07340
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903


Tuesday, so after that he has 58 - 23 = 35 balls. On710

Wednesday he lost 2 more so now he has 35 - 2 =711

33 balls. The answer is 33.712

Q: Olivia has $23. She bought five bagels for $3713

each. How much money does she have left?714

A: She bought 5 bagels for $3 each. This means715

she spent 5 * $3 = $15 on the bagels. She had $23716

in beginning, so now she has $23 - $15 = $8. The717

answer is 8718

719
Proposed set of 6-shot Commonsense reason-720

ing examples721
Q: Do hamsters provide food for any animals?722

A: Hamsters are prey animals. Prey are food for723

predators. Thus, hamsters provide food for some724

animals. So the answer is yes.725

Q: Could Brooke Shields succeed at University of726

Pennsylvania?727

A: Brooke Shields went to Princeton University.728

Princeton University is about as academically rig-729

orous as the University of Pennsylvania. Thus,730

Brooke Shields could also succeed at the Univer-731

sity of Pennsylvania. So the answer is yes.732

Q: Yes or no: Hydrogen’s atomic number squared733

exceeds number of Spice Girls?734

A: Hydrogen has an atomic number of 1. 1 squared735

is 1. There are 5 Spice Girls. Thus, Hydrogen’s736

atomic number squared is less than 5. So the an-737

swer is no.738

Q: Yes or no: Is it common to see frost during some739

college commencements?740

A: College commencement ceremonies can happen741

in December, May, and June. December is in the742

winter, so there can be frost. Thus, there could be743

frost at some commencements. So the answer is744

yes.745

Q: Yes or no: Could a llama birth twice during War746

in Vietnam (1945-46)?747

A: The War in Vietnam was 6 months. The gesta-748

tion period for a llama is 11 months, which is more749

than 6months. Thus, a llama could not give birth750

twice during the War in Vietnam. So the answer is751

no.752

Q: Yes or no: Would a pear sink in water?753

A: The density of a pear is about 0.6g/cm³, which754

is less than water. Objects less dense than water755

float. Thus,a pear would float. So the answer is no.756
Proposed 4-shot on AQuA:757
Q: John found that the average of 15 numbers is758

40. If 10 is added to each number then the mean of759

the numbers is?760

Answer Choices: (a) 50 (b) 45 (c) 65 (d) 78 (e) 64761

A: If 10 is added to each number, then the mean762

of the numbers also increases by 10. So the new 763

mean would be 764

50. The answer is (a). 765

Q: If a / b = 3/4 and 8a + 5b = 22,then find the 766

value of a. 767

Answer Choices: (a) 1/2 (b) 3/2 (c) 5/2 (d) 4/2 (e) 768

7/2 769

A: If a / b = 3/4, then b = 4a / 3. So 8a + 5(4a / 3) 770

= 22. This simplifies to 8a + 20a / 3 = 22, which 771

means 44a / 3 = 22. So a is equal to 3/2. The 772

answer is (b). 773

Q: A person is traveling at 20 km/hr and reached 774

his destiny in 2.5 hr then find the distance? 775

Answer Choices: (a) 53 km (b) 55 km (c) 52 km 776

(d) 60 km (e) 50 km 777

A: The distance that the person traveled would 778

have been 20 km/hr * 2.5 hrs = 50 km. The answer 779

is (e). 780

Q: How many keystrokes are needed to type the 781

numbers from 1 to 500? 782

Answer Choices: (a) 1156 (b) 1392 (c) 1480 (d) 783

1562 (e) 1788 784

A: There are 9 one-digit numbers from 1 to 9. 785

There are 90 two-digit numbers from 10 to 99. 786

There are 401 three-digit numbers from 100 to 500. 787

9 + 90(2) + 401(3) = 1392. The answer is (b). 788

789

790

C Temperature sets 791

We tested our theory of abstraction on a variety of 792

temperature sets and found that set 1 exhibits the 793

best balance between diversity and correctness in 794

our examples. Therefore, it outperforms the other 795

proposed sets. When testing wiuth baseline self- 796

consistency 797

Set 1 (t) Set 2 (t) Set 3 (t)
0.9 0.7 0.5
0.8 0.6 0.4
0.7 0.5 0.3
0.6 0.4 0.2
0.5 0.3 0.1

Table 4: Each Temperature is tested on 1/5 of the sam-
ples per generation, to ensure an even distribution.

D Datasets 798

We use the configuration splits for testing as sug- 799

gested by default. We employ a test split of 1000 800
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samples on SVAMP and GSM8K. For AQuA-rat,801

our test includes 254 examples.802
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