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ABSTRACT

Learning representations with minimally dependent embedding dimensions can
have many potential benefits such as improved generalization and interpretability.
This work provides a differentiable and scalable algorithm for dependence min-
imization, moving beyond existing linear pairwise decorrelation methods. Our
algorithm involves an adversarial game where small networks identify dimension
relationships, while the main model exploits this information to reduce dependen-
cies. We empirically verify that the algorithm converges. We then explore depen-
dence reduction as a proxy for maximizing information content. We showcase the
algorithm’s effectiveness on the Clevr-4 dataset, both with and without supervi-
sion, and achieve promising results on the ImageNet dataset. Finally, we propose
an algorithm modification that gives more control over the level of dependency,
sparking a discussion on optimal redundancy levels for specific applications. Al-
though the algorithm performs well on synthetic data, further research is needed
to optimize it for tasks such as out-of-distribution detection.

1 INTRODUCTION

In representation learning (Rumelhart et al., 1986b; Hinton et al., 2006; Bengio et al., 2013), al-
gorithms learn to extract lower-dimensional representations from input data. The quality of rep-
resentations is typically evaluated by measuring performance in targeted applications. However,
the significance of a representation goes beyond enhancing downstream performance: considering
properties like fairness, interpretability, and generalization is crucial for any real-world application.
Take for instance the application of autonomous driving: it is safety-critical to deploy recognition
algorithms that can not only accurately detect samples from the training classes but also identify
when a sample comes from an unknown class. Failing to do so may lead the autonomous agent to
make poor decisions. We motivate why current recognition algorithms could be inadequate in this
scenario with a simple example (illustrated in Figure 1):

Example 1. Consider a dataset with images of colored shapes with samples from three training
classes: ”red squares”, ”green triangles”, and ”blue triangles”. A classifier could reach a minimum
loss value of zero and perfect accuracy by only extracting the color in the output representation.
Nevertheless, if one introduced during inference examples from a ”red triangles” class, the model
would predict with high confidence that those examples are ”red squares”, despite having a shape
shared by none of the objects from the ”red squares” class.

In Example 1, the model relies only on a subset of the features that are relevant to discriminate
the training classes, which is problematic when out-of-distribution (OOD, Ben-David et al. (2010);
Nguyen et al. (2015)) is required. In this work, we advocate that minimizing the dependence between
the embedding dimensions, and thereby minimizing redundancy, could push the model to encode
additional features (e.g. both shape and color features in this example) to increase generalization
and the robustness of predictions in the presence of OOD samples.

Learning representations with uncorrelated dimensions has a long history in machine learning. Re-
cent methods include applications in self-supervised representation learning (Huang et al., 2018;
Zbontar et al., 2021; Ermolov et al., 2021; Bardes et al., 2021) which minimize the pairwise linear
correlation between embedding dimensions and an adversarial approach that decorrelates dimen-
sions beyond linearity (Brakel & Bengio, 2017), but that is prone to instability during training.
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Figure 1: Illustration from Example 1: if a classifier only relied on the color feature, it would predict
with high confidence that the red triangle is a red square.

Still, there is to date no stable method for mutual and non-linear dependence reduction. Indeed,
finding a training objective for data independence that would be at the same time differentiable and
scale to high-dimensional data without making assumptions about the underlying data distributions
is notably difficult.

This paper presents a training algorithm to reduce the dependence between learned embedding di-
mensions using neural networks. The algorithm involves an adversarial game between two types of
players: (1) a series of small neural networks are trained to predict one embedding dimension of a
representation given the other dimensions, and (2) an encoder is trained to counter reconstruction by
updating the representations’ distribution.

Experimentally, we show that the game systematically converges to an equilibrium where the depen-
dence between the embedding dimensions is minimal. We then investigate minimizing dependence
as a proxy for information maximization and demonstrate the approach’s effectiveness both with
and without the help of supervision. Specifically, experiments suggest that the algorithm helps a
classification model learn concepts beyond label supervision, demonstrating great generalization
capabilities. We also show that the method can learn rich representations without supervision by
training a self-supervised method on both synthetic data and the large-scale ImageNet dataset.

The main contribution of this paper is to introduce a stable algorithm for nonlinear mutual depen-
dence minimization and to verify its convergence empirically. We further propose a modification
of the algorithm that enables networks to keep some level of redundancy when required and study
its impact on generalization. Finally, we discuss the implications of the algorithm on information
maximization and demonstrate its effectiveness on the Clevr-4 dataset. In particular, the algorithm
improves generalization in supervised learning and is also effective without supervision.

2 RELATED WORK

Dimensionality reduction has a long history in machine learning, with early works already focusing
on finding a representation with uncorrelated variables. Notably, the Principal Component Analysis
(PCA, Pearson (1901); Hotelling (1933)) transforms a large set of random variables into a smaller
set of uncorrelated variables, known as principal components. This transformation is achieved while
preserving the maximal variance in the original dataset, thereby reducing dimensionality without
significant loss of information. More recently, approaches in self-supervised representation learning
(SSL) also exploited decorrelation (Huang et al., 2018; Zbontar et al., 2021; Ermolov et al., 2021;
Bardes et al., 2021) to minimize the dependence between the output dimensions of a deep neural
network and as a means to avoid collapsed representations, a common issue in SSL (Jing et al., 2022;
Hua et al., 2021). In this work, we investigate decorrelation beyond pairwise linear dependencies.

Autoencoders. The PCA algorithm is closely related to autoencoders (AEs, Kramer (1991);
Rumelhart et al. (1986a)). An autoencoder consists of two neural networks: an encoder that com-
presses the input into a latent space and a decoder that reconstructs the input from this representation.
Both networks are trained jointly with a reconstruction error. Interestingly, the optimal solution of a
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linear AE corresponds to performing PCA. However, unlike PCA, an autoencoder can learn nonlin-
ear dimensionality reductions, but its latent space is not guaranteed to have uncorrelated dimensions.
The variational autoencoder (VAE, Kingma (2013)) is an important extension of the autoencoder.
It uses a probabilistic approach where the encoder maps the input to a distribution over latent vari-
ables and the decoder reconstructs data by sampling from this distribution. Its training involves a
criterion minimizing the divergence between the predicted and prior distributions. This extension
of AEs allows the generation of new samples similar to the training data. Shortly after its introduc-
tion, multiple works (Higgins et al., 2017; Burgess et al., 2018; Kim & Mnih, 2018; Chen et al.,
2018) proposed variations to the VAE objective to encourage disentanglement between the latent
variables. Intuitively, disentanglement implies learning representations where changes in one factor
of variation correspond to changes in a single feature, but disentangled concepts may be dependent.
However, while disentanglement is appealing, the problem is ill-defined (Locatello et al., 2019) and
is not the focus of this study.

Input-output mutual information maximization. Another important line of work on dimension-
ality reduction relies on the infomax principle (Linsker, 1988; Bell & Sejnowski, 1995), which
suggests maximizing the mutual information (MI) between the input data and the output of a neural
network to learn informative representations. Similar to our work’s objective, MI is an information-
theoretic measure of the information shared by two random variables. Mutual Information Neu-
ral Estimation (MINE, Belghazi et al. (2018)) provided a first estimate of the MI between high-
dimensional continuous random variables using neural networks. Built upon MINE, DeepInfo-
Max (Hjelm et al., 2019) learns representations by optimizing three criteria: (1) maximizing the MI
between the input and the output, (2) maximizing the MI between global and local representations,
and (3) matching the output distribution to a uniform prior with the help of adversarial learning.
Different from methods derived from the infomax principle, our algorithm minimizes redundancy
directly within the representation instead of maximizing a proxy for the input-output MI.

Adversarial learning. We now discuss the core training paradigm behind our algorithm and its
most notable extensions. Generative Adversarial Networks (GANs, Goodfellow et al. (2014)) are
the first approach to train neural networks jointly with an adversarial objective: a generator is trained
to create realistic synthetic data, while a discriminator is trained to predict whether a sample came
from the training dataset or the generator. Inspired by GANs, Makhzani et al. (2015) introduced
Adversarial Autoencoders. This method trains adversarial networks to match the aggregated poste-
rior distribution of an autoencoder’s latent space with an arbitrary prior distribution. Thus, sampling
from any point of the distribution results in meaningful data generation. InfoGANs (Chen et al.,
2016) is another related extension of GANs: they incorporated an information-theoretic criterion
into GANs to learn disentangled and interpretable representations. Specifically, the method maxi-
mizes a lower bound of the MI between the latent variables and the generated data. Our approach
differs from both as it neither matches the representation’s distribution to a prior distribution nor
maximizes a proxy for MI. Furthermore, our algorithm is not bound to generative networks.

Most similar to our work, Brakel & Bengio (2017) used adversarial networks to decrease dependence
by training an encoder to produce samples from a joint distribution that are indistinguishable from
samples of the product of its marginals. However, this training objective is unstable and requires
careful tuning, while ours systematically converges to the desired equilibrium.

3 METHOD

In this section, we first define statistical independence, correlation metrics and motivate the need for
a proxy for non-linear dependence reduction. Then, we present a training algorithm to minimize the
dependence between embedding dimensions of learned representations.

3.1 BACKGROUND AND MOTIVATION

We start by defining independence between two random variables: the continuous random variables
X1 andX2 with cumulative distribution functions FX1

(x1) and FX2
(x2) are independent if and only

if their joint cumulative distribution function FX1,X2
(x1, x2) is equal to the product of their cumu-

lative distribution functions: FX1,X2(x1, x2) = FX1(x1)FX2(.x2) for all x1 and x2. Similarly,
we define mutual independence for a finite set of random variables {X1, . . . , Xd}: given cumu-
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Figure 2: Illustration of the adversarial dependence reduction architecture. The dependence net-
works minimize the reconstruction error by learning how dimensions relate, while the encoder ex-
ploits this information to maximize the error by reducing dependencies.

lative distribution functions FX1
(x1), . . . , FXd

(xd) and the joint cumulative distribution function
FX1,...,Xd

(x1, . . . , xd), the random variables are mutually independent if and only if
FX1,...,Xd

(x1, . . . , xd) = FX1
(x1) · . . . · FXd

(xd) for all x1, . . . , xd (1)

We now emphasize an important fact (Driscoll, 1978): mutually independent random variables are
also pairwise independent. However, the opposite is not necessarily true — random variables can
all be pairwise independent but not mutually independent.

Correlation is a measure of the statistical dependence between two random variables. The term cor-
relation is commonly used in research to refer to Pearson’s correlation coefficient, which measures
the degree of linear dependence between a pair of random variables. It is defined as the covariance
of the two variables normalized by the product of their standard deviations:

ρ(X,Y ) =
Cov(X,Y )√
V(X)V(Y )

(2)

The Pearson correlation coefficient takes values between zero and one. It is limited to estimating the
level of linear dependence between random variables, which means that a zero correlation does not
imply independence. This is illustrated in Example 2.
Example 2. Let a random variable X be drawn from a uniform distribution in the interval [−1, 1]
and Y = X2. The random variables are dependent despite the zero covariance and correlation:

Cov(X,Y ) = E
[
(X − E[X])

(
X2 − E

[
X2

])]
= E

[
X3

]
− E

[
X2

]
E[X]

=

∫ 1

−1

1

2
x3 dx−

∫ 1

−1

1

2
x2 dx ·

∫ 1

−1

1

2
x dx = 0

(3)

This result highlights a potential limitation of algorithms relying on Pearson correlation to decrease
redundancy: the encoder can minimize the loss with simple non-linearities instead of encoding
different concepts. In this work, we take an alternative approach to previous work and present a
training algorithm to reduce the dependence between learned embedding dimensions using so-called
adversarial dependence networks.

Still, a metric is required to estimate our method’s decorrelation effect beyond linearity. Distance
correlation (Székely et al., 2007) is a non-negative coefficient that characterizes both linear and
nonlinear correlations between random vectors. Let X1 and X2 be two random vectors with finite
first moments, their respective characteristic functions be denoted ψX1 and ψX2 , and their joint
characteristic function be denoted ψX1,X2 . Distance covariance measures the distance between their
joint characteristic function and the product of the marginal characteristic functions:

V2(X1, X2) =

∫
Rp+q

|ψX1,X2
(t, s)− ψX1

(t)ψX2
(s)|2 w(t, s)dtds (4)
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where w(t, s) is a positive weight function and characteristic functions are ψX(t) = E
[
eitX

]
.

Analogous to Pearson correlation, the squared distance correlationR2 is defined by: R2(X1, X2) =

V2(X1, X2)/
√
V2(X1, X1)V2(X2, X2) if V2(X1, X1)V2(X2, X2) > 0 and 0 otherwise.

Its most significant property is that distance covariance is zero: V2(X1, X1) = 0 if and only if X1

and X2 are independent. Returning to Example 2, we find a non-zero distance correlation between
the random variables: R2(X,Y ) = 0.5.

3.2 TRAINING ALGORITHM

Consider the representations z(i) = fθ(x
(i)) from input samples x(i) of a dataset X = {x(i)}Ni=1

with i.i.d. samples. The training algorithm involves two types of networks: an encoder fθ : X →
D ⊆ Rd that learns representations of the training data and a small dependence network for every
embedding dimension gϕi : D−i ⊆ Rd−1 → R. The dependence neural networks are trained to
learn how dimensions are related. More specifically, every network is given all but one embedding
dimension as input and is trained to minimize the mean squared reconstruction error of the missing
embedding dimension:

min
ϕ
∥z − ẑ∥22 = min

ϕ

1

d

d∑
i=1

(zi − gϕi
(z1, z2, . . . , zi−1, zi+1, . . . , zd−1, zd))

2 (5)

We implement dependence networks with Multi-Layer Perceptrons (MLP) since they are univer-
sal approximators (Hornik et al., 1989; Cybenko, 1989; Leshno et al., 1993) and can, in theory,
approximate arbitrarily well the relation between the variables if given enough capacity.

Intuitively, we now aim to design an algorithm that would exploit the knowledge extracted by the
dependence networks to guide the encoder to reduce the dependence between the embedding dimen-
sions. Taking inspiration from Generative Adversarial Networks (Goodfellow et al., 2014), we train
both networks simultaneously and model the objective as a two-player zero-sum game where the
encoder and dependence networks are respectively trained to maximize and minimize the expected
reconstruction error:

min
ϕ

max
θ

Ez∈D(X ,θ)∥z − ẑ∥22 (6)

where D(X ,θ) represents the distribution of representations learned by the encoder, parameterized
by θ. The overall architecture is depicted in Figure 2.

Linear example. If the dependence networks are implemented with linear layers, each network will
learn affine relations between the representation’s dimensions to reconstruct the missing embedding
accurately. Therefore, training an encoder to counter the reconstruction can be interpreted as a proxy
objective for the decorrelation of the dimensions. In particular, we note that a linear dependence
network can not succeed when the output dimensions are affinely independent.

Overcoming trivial solutions. The encoder is trained to maximize the reconstruction error. It may
therefore indefinitely enlarge the norm of the representations to increase the error, even for a constant
relative error. We overcome this trivial solution by standardizing the distribution dimension-wise
before reconstruction.

zi ←
zi − E[zi]√

V[zi]
(7)

where E[zi] and V[zi] are respectively the mean and variance of dimension i. These quantities
are estimated from the current mini-batch and the operation is implemented with a frozen batch-
normalization layer following (Ioffe & Szegedy, 2015). Note that the standardization can be applied
to the dependence module only and therefore does not limit the modeling capacity of the encoder’s
output.

Convergence. Consider that the dependence networks are trained to reconstruct the standardized
representations using a mean squared error loss. When these networks predict the mean vector, the
expected value of the loss is, by definition, equal to the variance. For representations standardized to
have a zero mean and unit variance, this variance is consistently one. Assuming that the dependence
networks can approximate the mean, this forms an upper bound on the expected error since it can
be achieved regardless of the standardized distribution of representations. The mean vector is also
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the optimal prediction when embedding dimensions are statistically independent since the input of
the dependence networks is then irrelevant to the quantities to estimate. Furthermore, a dependence
between the representations learned by the encoder could lead to a lower cost loss as the dependence
networks may exploit the dependence to improve the reconstruction.

We therefore conjecture that the algorithm with standardized representations converges to a solution
where the dependence between the dimensions is minimal and where the dependence networks
predict the mean (zero) vector. This convergence is empirically verified in Section 5.1.

Efficient implementation. Running many small dependence networks sequentially would be very
inefficient for modern GPU architectures. We instead concatenate the inputs from the d networks
and implement the dependence networks as one large convolutional network with one-dimensional
grouped convolutions (Krizhevsky et al., 2012) with d groups. The grouped convolution effectively
isolates the sub-networks from each other while allowing to run all models at once.

4 APPLICATIONS

Encoding input data into representations with independent embedding dimensions does not neces-
sarily create a useful structure for downstream tasks. For instance, assume an optimal representa-
tion with independent features. Research in nonlinear independent component analysis (NLICA)
demonstrated that there are countless ways to transform the representation while maintaining statis-
tical independence (Darmois, 1951; Jutten & Karhunen, 2004). These transformations can involve
complex mixing functions that result in representations that may be challenging to interpret or ex-
hibit undesirable properties for certain applications. For examples of mixing transformations, we
refer to (Taleb & Jutten, 1999).

Therefore, an additional objective function is required to guide the network towards a practical so-
lution. This work focuses on the application of minimizing dependence as a proxy for information
content maximization. We investigate the combination of the adversarial loss with a source of super-
vision (Section 4.1) and as a self-supervised objective (Section 4.2). In the following, we define the
learning objective of the encoder to be a weighted combination of the adversarial loss of maximizing
the reconstruction error Ladv and a task-specific loss function Ltask.

4.1 INFORMATION MAXIMIZATION FOR CLASSIFICATION

Example 1 illustrated that a classifier could discard relevant features while achieving a global min-
imum. To counter this limitation, we encourage a model to minimize redundancy as a proxy for
maximizing the information in its output representations. Formally, let z ∈ Rd be the penultimate
representation of a classifier, zstd be its standardized version and l = Wz + b be the logits vector
with W ∈ Rnc×d and b ∈ Rnc where nc is the number of training classes. We formulate the loss
function as a weighted combination of the adversarial reconstruction loss applied to zstd and the
softmax cross-entropy loss:

min
θ,W,b

Ladv(ẑstd, zstd) + λLCE(σ(Wz + b), y) (8)

where σ is the softmax operation.

Alternative formulation. In practice, perfectly independent embedding dimensions may not be
optimal for classification since it may result in representations that are not linearly separable by the
classification head. Hence, we introduce an alternative formulation that only minimizes dependence
up to a certain threshold. We formulate the adversarial objective for the encoder as the maximization
of a pairwise margin (Cortes, 1995; Tsochantaridis et al., 2005) with parameter α:

Ladv(ẑ, z) = max (0, α− ∥z − ẑ∥1) (9)

With this formulation, the encoder does not push the reconstruction error beyond α while depen-
dence networks are still trained to minimize the reconstruction error with no margin: ∥z− ẑ∥1. The
impact of the adversarial objective on decorrelation and generalization is evaluated in Section 5.2
and the two loss formulations are compared in Section 5.3.
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Figure 3: Convergence analysis on TinyImageNet for linear and two-layer dependence networks.
Left: mean squared error over training, the loss converges to a value of one. Right: logarithmic plot
of the average absolute value of the Pearson correlation coefficient1estimated on the validation set,
the value decreases over time.

4.2 SELF-SUPERVISED LEARNING

Our algorithm also finds applications in self-supervised representation learning. In a similar spirit
to decorrelation SSL techniques (Huang et al., 2018; Zbontar et al., 2021; Ermolov et al., 2021;
Bardes et al., 2021), our adversarial objective pushes representations to be minimally redundant and
prevents collapse to a trivial solution (Jing et al., 2022). However, different from those approaches,
ours is not bound to pairwise linear decorrelation.

We add an invariance loss term that enforces consistency between the input and the output by push-
ing two augmentations of the same image to be close in the embedding space, i.e. a small change
in the input should not lead to a completely different output. Following the methodology from
SimCLR (Chen et al., 2020), we sample a minibatch of n images and duplicate every image. We
then apply different data augmentations to the two views of each image and enforce invariance by
minimizing the MSE between the representations z and z′ from corresponding augmented views:

min
θ
Ladv(ẑstd, zstd) + λ∥z′ − z∥22 (10)

In practice, we apply the invariance loss to the standardized representations following the imple-
mentation from BYOL (Zbontar et al., 2021).

5 EXPERIMENTS

We empirically analyzed the convergence of the adversarial game. Then, we investigated the effect
of the training algorithm on information maximization by conducting experiments on the synthetic
Clevr-4 dataset (Vaze et al., 2024) in both a supervised and self-supervised setup. In addition, we
demonstrated the method’s effectiveness on real-world data by applying the approach to SSL on the
large-scale ImageNet dataset (Deng et al., 2009).

5.1 CONVERGENCE

We analyzed the convergence of the adversarial game combined with a standardization of the repre-
sentations. Specifically, we trained a ResNet-18 (He et al., 2016) on the TinyImageNet dataset (Le
& Yang, 2015) for 100 epochs without data augmentations. Both linear and two-layer dependence
models were tested. We additionally trained a ResNet-18 encoder and a two-layer dependence model
on the ImageNet dataset for 50 epochs with data augmentations. Detailed hyper-parameters and data
augmentations are provided in Appendix C.1.

Metrics. We report the average of the absolute value of the Pearson correlation coefficient between
all pairs of embedding dimensions over time. Additionally, we estimate non-linear dependences with
the distance correlation between one dimension and the random vector composed of the remaining
d− 1 dimensions. We report the value averaged over the estimates from the d dimensions.

1The evolution of the Pearson correlation during training is reported instead of distance correlation since
distance correlation would be too expensive to estimate at every epoch.

7
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Table 1: Evaluation of the baseline and the adversarial networks on the Clevr-4 dataset. Classifica-
tion models (CLS) are trained on the shape taxonomy.

method kNN top-1 accuracy mean R2

shape texture color count

CLS baseline 100.0 25.0 16.4 36.1 0.409
CLS adversarial 100.0 83.7 100.0 39.6 0.067

SSL adversarial 93.8 88.5 100.0 30.6 0.081

Results. The mean squared reconstruction error and the average absolute value of the Pearson cor-
relation coefficient for the TinyImageNet experiments are reported in Figure 3. The linear and non-
linear dependence networks converge to low Pearson correlation coefficients of respectively 0.0107
and 0.0088, and the reconstruction error converges to a value of one for both networks. These results
support the convergence hypothesis. We further estimate the squared distance correlation: the linear
and non-linear variants reach average values of 0.00291 and 0.00057 respectively, which means the
approach with a non-linear dependence network reached a five times lower correlation value.
When scaling to the ImageNet dataset, the loss again converges to a value of one and the final
squared distance correlation is only 0.00021.

5.2 INFORMATION MAXIMIZATION

We investigated the adversarial game as a proxy for information maximization in two different se-
tups. First, we analyzed its effect on the representations when combined with a classification loss.
Second, we investigated the self-supervised setup from Section 4.2 under lightweight data augmen-
tations. We trained both approaches on a synthetic dataset for which we have the ground-truth
generation factors to ease the estimation of the ”informativeness” of the representations.

Clevr-4 dataset. The Clevr-4 dataset (Vaze et al., 2024) is an extension of the CLEVR
dataset (Johnson et al., 2017). The dataset comprises 100,000 synthetic images representing 3D
objects of various shapes, colors, textures, and counts. Each taxonomy has 10 different classes. The
label for one taxonomy is sampled uniformly and independently from the other ones, which means
that knowing the label for one taxonomy provides no information about the other taxonomies.

Evaluation protocols. We investigated generalization capabilities by training a classifier on one
taxonomy and evaluating its accuracy on the remaining taxonomies to assess if representations en-
code features beyond the ones relevant to the training classes. The model is compared with a baseline
classifier trained without the adversarial game. We evaluate the accuracy with a simple weighted-
nearest neighbor (kNN) classifier trained on top of frozen features following common practice in
SSL (Wu et al., 2018; Caron et al., 2021). The kNN algorithm classifies predictions based on the
majority class of their nearest neighbors in the embedding space, providing an easy way to assess
the clustering quality for every taxonomy. Similarly, the SSL adversarial model is evaluated with a
kNN classifier on the four taxonomies.

Implementation details. Both the supervised and SSL models are trained on the Clevr-4 dataset
for 200 epochs. We apply two data augmentations during training: random horizontal flipping with
p = 0.5 and random cropping by keeping at least 60% of the image area, followed by resizing to
224 × 224 pixels. We train ResNet-18 encoders and two-layer dependence networks. The networks
are trained alternately, with one step for each network per iteration. We set the task-specific loss
coefficient to λ = 0.2 in both settings. More details are provided in Appendix C.2. We trained
the adversarial networks of the classification and SSL models with respectively an l1 reconstruction
loss with a margin of 0.4 and an MSE reconstruction loss on the standardized representations. The
different loss formulations are compared in Section 5.3.

Main results on Clevr-4. The classification methods are trained on the shape taxonomy. The mod-
els’ accuracy on the validation set and the correlation metrics are reported in Table 1. The embed-
ding dimensions of the baseline are highly correlated, with an average squared distance correlation
of 0.409. Furthermore, the performance on the taxonomies for which the model received no supervi-
sion is low, which was expected since the model was not incentivized to retain information about the
remaining taxonomies. When combining the cross-entropy loss with our adversarial objective, the
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correlation drops to 0.067 and the accuracy on the texture and color taxonomies rises significantly.
These results suggest that the adversarial objective reduces redundancy, leading to representations
that generalize better. Without the labels from the shape taxonomy, the self-supervised model is still
able to learn rich representations and reaches a high accuracy on shape, texture and color.

Table 2: kNN evaluation of SSL techniques
trained with a ResNet-18 backbone on the Clevr-
4 dataset.

method kNN top-1 accuracy
shape texture color count

SimCLR 58.8 50.3 91.6 28.4
VICReg 93.1 89.2 99.5 27.5
Ours 93.8 88.5 100.0 30.6

Table 3: Linear evaluation of SSL techniques
trained with a ResNet-50 backbone on the Im-
ageNet dataset.

method acc.

MoCo (He et al., 2020) 60.6
SimCLR (Chen et al., 2020) 69.3
Barlow Twins (Zbontar et al., 2021) 73.2
VICReg (Bardes et al., 2021) 73.2
BYOL (Grill et al., 2020) 74.3
DINO (Caron et al., 2021) 75.3
RELICv2 (Tomasev et al., 2022) 77.1
Ours 60.6

Comparison to SSL frameworks on Clevr-4. We compared our method to two popular SSL
frameworks on Clevr-4: SimCLR and VICReg. We re-implemented and extensively tuned the two
models. We considered variants with and without projection heads. A detailed description of the
hyper-parameters tuning is provided in Appendix D and the best-performing models are reported in
Table 2. The contrastive method, SimCLR, performs much worse than the decorrelation methods.
Both linear decorrelation (VICReg) and non-linear decorrelation (ours) methods achieve similar
performance. These results suggest that decorrelation is an effective approach to information maxi-
mization and that VICReg does not seem to ”cheat with non-linearities” to reduce correlation.

Model validation on real data. We then investigated if our method still learns meaningful repre-
sentations when the training data distribution does not exhibit statistical independence between its
underlying concepts2. In particular, we trained our SSL technique with a ResNet-50 backbone and a
three-layer projection head on the large-scale ImageNet dataset (Deng et al., 2009). We trained two-
layer dependence networks on the standardized representations. Performance was then evaluated by
training a linear classification head on top of the backbone with frozen weights. The detailed ex-
perimental setup is described in Appendix C.3. The main SSL techniques are compared in Table 3.
While our approach performs reasonably well, it achieves lower accuracy than the state-of-the-art
methods. A possible explanation for the performance gap is that most gains are due to the inductive
biases from the loss function that pushes for invariance to the carefully hand-crafted data augmen-
tations used by most techniques. Thus, enforcing strong constraints like mutual independence may
force the model to compromise when jointly optimizing both objectives. Nevertheless, this exper-
iment demonstrated that the method leads to useful representations even on real-world data, with
an accuracy 606 times higher than random class predictions. For a qualitative evaluation of the
predictions, we refer to Appendix B.

5.3 REDUNCANCY AND DOWNSTREAM PERFORMANCE

What if, for certain applications, the optimal representation required some dependence? For instance
in Example 1, we aim to encourage a classifier to retain both the concepts of color and shape.
However, the concepts are not statistically independent. Indeed, assuming a balanced number of
samples in every class, we find P (”green” ∩ ”triangle”) = 1

3 and P (”green”)P (”triangle”) =
1
3
2
3 = 2

9 , so P (”green” ∩ ”triangle”) ̸= P (”green”)P (”triangle”). Fortunately, the loss function
introduced in Section 4.1 provides a remedy to this problem: instead of minimizing dependence to
the extreme, the encoder only counters reconstruction until the point where dependence networks
are not able to reconstruct samples with an error lower than a margin α. Intuitively, this formulation
aims to push the network to increase the informativeness of the representations while still allowing
for some degree of redundancy.

2Take for instance the concepts of road and car. While the concepts are distinct, they are likely to often
co-appear in the dataset and are therefore correlated in the dataset.

9
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Table 4: Analysis of adversarial loss alternatives on the Clevr-4 dataset. Classification models are
trained on the shape taxonomy.

loss kNN top-1 accuracy mean R2

std. margin shape texture color count

✓ ✗ 100.0 21.2 16.9 22.1 0.009
✗ 0.4 100.0 83.7 100.0 39.6 0.068
✗ ✗ 100.0 18.4 40.4 32.2 0.287
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Figure 4: Influence of the loss margin on the correlation and accuracy for classification models
trained on the Clevr-4 dataset. The models are trained on the shape taxonomy and the kNN accuracy
is averaged over the three remaining taxonomies.

To assess the impact of this alternative loss on downstream performance and correlation, we train
the classification model from Section 5.2 in three different settings: with standardization of the
representations, without standardization but with a margin, and with neither of these. From the
results reported in Table 4, it can be observed that the standardized version (first row) achieves by
far the lowest correlation level, but its accuracy on the texture, color and count taxonomies is not
better than the baseline from Table 1. In contrast, the margin loss (second row) performs well on
all taxonomies. Finally, the method with neither a margin nor standardization (third row) performs
poorly on the unknown taxonomies and has a much higher correlation level. This can be explained
by analyzing that this method indefinitely increased the representation norm instead of decorrelating
the variables, reaching an average representation norm of 584.4, while the version with a margin
stabilized to around 56.1. We finally report the average accuracy and correlation for different margin
values in Figure 4. The figure demonstrates that accuracy increases with the margin up to a margin
of 0.4, but that too large margins lead to poor performance on the unknown taxonomies.

6 CONCLUSION

In this work, we introduced a representation learning algorithm to minimize the dependence be-
tween the embedding dimensions of a representation. Our method involves an adversarial game
where small dependence networks identify dimension relationships, while the encoder exploits this
information to reduce dependencies. Our problem formulation leads to stable training and em-
pirically converges to minimally dependent representations. Furthermore, we observed that some
applications may benefit from representation with a small level of redundancy. Consequently, we
introduced an alternative formulation where the encoder only maximizes the reconstruction error of
dependence networks up to a set limit. We empirically verified the benefits of our algorithm on the
Clevr-4 dataset. Our method significantly improves generalization in supervised learning. It is also
effective without supervision, both on synthetic and natural images.

Our study suggests that the optimal level of redundancy varies depending on the application. How-
ever, additional research is necessary to gain a deeper understanding of this phenomenon. Another
promising area for future work is to explore how our approach’s generalization capabilities can be
leveraged for out-of-distribution detection or domain adaptation. Lastly, the best architecture for
the dependence networks remains to be studied, one may for instance consider Kolmogorov-arnold
networks (Liu et al., 2024) for improved interpretability and convergence speed.
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REPRODUCIBILITY STATEMENT

Detailed descriptions of the experimental setups and hyperparameters are available in Appendix C
and Appendix D. The adversarial training algorithm is provided in Appendix A. Upon publication of
this paper, we will release the full source code and pre-trained model weights in a public repository.
This will include a README file with instructions for setting up the environment and reproducing
the experiments.
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Figure 5: Nearest neighbors visualization for SSL models trained on the Clevr-4 dataset (left) and
ImageNet dataset (right). The nearest neighbors visually resemble the query images (highlighted in
red).

A ALGORITHM

Algorithm 1 Training algorithm for the adversarial dependence minimization

for number of training iterations do
for k steps do

Sample a minibatch of n examples {x(1), x(2), . . . , x(n)} from the dataset
Compute the representations from the encoder z(i) = fθ(x

(i)) for every sample i
Compute µj =

1
n

∑n
i=1 z

(i)
j and σj = 1

n−1

∑n
i=1(z

(i)
j − µj)

2 for every dimension j

Standardize the representations z(i)j ←
z
(i)
j −µj

σj

Reconstruct the embedding dimensions ẑ(i)j = gϕi
(z

(i)
1 . . . , z

(i)
j−1, z

(i)
j+1, . . . , z

(i)
d ) for every

dimension j and every sample i
Update the reconstruction networks by gradient descent∇ϕ

1
n

∑n
i=1∥z(i) − ẑ(i)∥22

end for
Sample a minibatch of n examples {x(1), x(2), . . . , x(n)} from the dataset
Compute the representations from the encoder z(i) = fθ(x

(i)) for every sample i
Compute µk = 1

n

∑n
i=1 z

(i)
j and σj = 1

n−1

∑n
i=1(z

(i)
j − µj)

2 for every dimension j

Standardize the representations z(i)j ←
z
(i)
j −µj

σj

Reconstruct the embedding dimensions ẑ(i)j = gϕi
(z

(i)
1 . . . , z

(i)
j−1, z

(i)
j+1, . . . , z

(i)
d ) for every

dimension j and every sample i
Update the encoder by gradient ascent∇θ

1
n

∑n
i=1∥z(i) − ẑ(i)∥22

end for

B NEAREST NEIGHBORS VISUALIZATION

We visualize the nearest neighbors for the self-supervised models described in Section 5.2. Figure 5
shows the predicted nearest neighbors for five randomly sampled validation images from the Clevr-4
and ImageNet datasets. The left-most image is the query image, and its nearest neighbors are the
training samples whose representations have the highest cosine similarity to the query’s representa-
tion. The figure demonstrates that the nearest neighbors visually resemble the query images on both
datasets.
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C DETAILED EXPERIMENTAL SETUPS

We provide here a detailed description of the training settings and hyper-parameters to facilitate the
reproducibility of our experimental results.

The encoder and dependence networks are trained alternately, following the algorithm presented in
Appendix A. Epochs are counted relative to the encoder, which means that the dependence networks
loop through the dataset k times per encoder epoch.

Dependence networks. Dependence networks are always trained with the same optimizer and
schedulers as their respective encoder. The default dependence network is a two-layer fully-
connected network with a hidden dimension of size 32 and intermediate GELU (Hendrycks & Gim-
pel, 2016) activation function. There is no activation function at the output of the network.

C.1 EEXPERIMENTAL SETUP: CONVERGENCE ANALYSIS

TinyImageNet experiments. We trained two different dependence networks: a linear and a two-
layer fully-connected network. Both are trained on standardized representations. The encoder is a
ResNet-18 backbone with no projection head. We used the SGD optimizer with a momentum of 0.9,
a learning rate of 0.8, a batch size of 256, and no weight decay. No learning rate schedule is used
in this setting. The dependence networks are trained with a ratio of k = 2 steps with learning rates
of respectively 0.04 and 3.2. The models are trained on the TinyImageNet dataset for 100 epochs
without data augmentations, but images are normalized with ImageNet mean and standard deviation
per-channel values.

ImageNet experiment. We trained two-layer dependence networks on standardized representa-
tions. The encoder is a ResNet-18 backbone with a three-layer fully-connected projection head
with a hidden dimension of 4096, an output dimension of 512, ReLU activation functions, and in-
termediate BatchNorm layers. We used the SGD optimizer with a momentum of 0.9, a learning
rate of 3.2, a batch size of 1024, and no weight decay. The learning rate follows a cosine decay
schedule (Loshchilov & Hutter, 2016) with 10 epochs of linear warmup. The dependence networks
are trained with a ratio of k = 4 steps with a learning rate of 16. The model is trained on the Ima-
geNet dataset for 50 epochs and follows the same data augmentations as the first views in Grill et al.
(2020).

C.2 EEXPERIMENTAL SETUP: CLEVR-4

Classification. The baseline and adversarial approaches are trained with the same set of hyper-
parameters, we therefore describe only the adversarial setting. We trained two-layer dependence
networks. The encoder is a ResNet-18 backbone with no projection head. We used the SGD opti-
mizer with a momentum of 0.9, a learning rate of 0.1, a batch size of 256, and a weight decay of
2 · 10−5. The learning rate follows a cosine decay schedule (Loshchilov & Hutter, 2016) with 10
epochs of linear warmup. The dependence networks are trained with a ratio of k = 1 steps with a
learning rate of 0.3. The adversarial objective is a l1 margin loss on unstandardized representations
with margin α = 0.4. The task weight is λ = 0.2. The models are trained for 200 epochs and data
augmentations are described in Section 5.2.

SSL. We trained two-layer dependence networks on standardized representations. The encoder is
a ResNet-18 backbone with no projection head. We used the SGD optimizer with a momentum of
0.9, a learning rate of 0.8, a batch size of 256, and a weight decay of 2 · 10−5. The learning rate
follows a cosine decay schedule (Loshchilov & Hutter, 2016) with 10 epochs of linear warmup.
The dependence networks are trained with a ratio of k = 1 steps with a learning rate of 0.3. The
adversarial objective is a l1 margin loss with margin α = 0.4. The task weight is λ = 0.2. The
models are trained for 200 epochs and data augmentations are described in Section 5.2.

C.3 EEXPERIMENTAL SETUP: IMAGENET SSL

We trained two-layer dependence networks on standardized representations. The encoder is a
ResNet-50 backbone with a three-layer fully-connected projection head with a hidden dimension
of 4096, an output dimension of 512, ReLU activation functions, and intermediate BatchNorm lay-
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ers. We used the LARS optimizer (You et al., 2017) with a momentum of 0.9, a base learning rate
of 1.5 with linear scaling rule (Goyal, 2017), a batch size of 1024, and a weight decay of 10−4. The
learning rate follows a cosine decay schedule (Loshchilov & Hutter, 2016) with 10 epochs of linear
warmup. The dependence networks are trained with a ratio of k = 4 steps with a base learning
rate of 6. The model is trained on the ImageNet dataset for 100 epochs and follows the same data
augmentations as in Grill et al. (2020).

Linear evaluation. We followed standard procedure and trained a linear classifier on top of the
frozen representations from the backbone. We used the SGD optimizer with a learning rate of 1.5,
a weight decay of 10−6, a batch size of 256, and trained for 100 epochs. The learning rate follows
a cosine decay schedule (Loshchilov & Hutter, 2016). We applied two data augmentations during
training: random horizontal flipping with p = 0.5 and random cropping by keeping at least 8% of
the image area, followed by resizing to 224 × 224 pixels. During the evaluation, the images were
resized so that the smaller side was 256 pixels wide and then center cropped to 224 × 224 pixels.

C.4 EEXPERIMENTAL SETUP: REDUNDANCY STUDY

The experimental setup is the same as for the classification model from Section 5.2 already described
in Appendix C.2. The only difference is that the model trained with standardized representations for
reconstruction is trained with a mean squared reconstruction loss. Its dependence networks are
trained with a ratio of k = 2 steps instead of k = 1 since this model did not converge with k = 1.

D CLEVR-4 BASELINES

This section details the hyper-parameter tuning of the SimCLR and VICReg baselines.

We implemented the models following the original papers from SimCLR Chen et al. (2020) and
VICReg Bardes et al. (2021). We trained ResNet-18 backbones and trained each model with and
without a projection head to find which setup works best for each technique when applied to the
Clevr-4 dataset. For a fair comparison, we followed the same experimental setup as for our SSL
method: we used the SGD optimizer with a momentum of 0.9, and a weight decay of 2 · 10−5. The
learning rate follows a cosine decay schedule (Loshchilov & Hutter, 2016) with 10 epochs of linear
warmup and is scaled with a linear scaling rule (Goyal, 2017).

We ran a grid search on the projection head choice, the learning rate, and the batch size. The models
were trained for 80 epochs and the best-performing model was then re-trained for 200 epochs. Its
results are reported in Table 2 from Section 5.2.

Results for the grid search on the hyper-parameters from SimCLR and VICReg are reported re-
spectively in Table 5 and in Table 6. We observe that the best-performing model for SimCLR has a
projection head, while the VICReg technique works better with no projection head. This observation
for VICReg is consistent with findings from our method applied to Clevr-4. This may be because
the taxonomies are statistically independent and the augmentations are minimal, reducing the need
for a projection head to prevent true invariance to data augmentations (Bordes et al., 2022).
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Table 5: Results for the grid-search on SimCLR’s hyper-parameters on the Clevr-4 dataset. LR
stands for base learning rate and BS stands for batch size. The best-performing model is highlighted.

hyper-parameters kNN top-1 accuracy
head output dim. LR BS shape texture color count

Identity (512) 0.025 256 42.6 40.7 83.1 24.3
Identity (512) 0.025 512 40.6 40.4 83.1 24.2
Identity (512) 0.05 256 40.7 39.1 83.9 24.1
Identity (512) 0.05 512 47.7 39.8 80.8 24.3
Identity (512) 0.1 256 47.9 40.0 80.4 24.2
Identity (512) 0.1 512 10.1 9.9 9.8 9.4
Identity (512) 0.2 256 39.7 34.8 76.8 24.0
Identity (512) 0.2 512 40.3 32.2 75.4 23.5
Identity (512) 0.4 256 40.9 31.6 72.0 23.6
Identity (512) 0.4 512 42.6 29.9 73.3 22.6
Identity (512) 0.6 256 36.2 28.0 70.2 23.6
Identity (512) 0.6 512 40.6 31.9 73.4 22.8
MLP 128 0.025 256 57.1 53.5 92.7 29.9
MLP 128 0.025 512 55.6 51.0 90.9 28.2
MLP 128 0.05 256 57.7 51.7 92.0 28.9
MLP 128 0.05 512 55.4 47.3 87.8 27.6
MLP 128 0.1 256 57.6 48.4 89.1 28.0
MLP 128 0.1 512 47.7 41.2 86.4 27.3
MLP 128 0.2 256 48.2 39.2 82.8 27.2
MLP 128 0.2 512 45.9 39.3 84.2 26.5
MLP 128 0.4 256 44.7 34.9 74.7 26.3
MLP 128 0.4 512 46.0 35.6 75.1 26.7
MLP 128 0.6 256 44.0 34.4 73.8 26.6
MLP 128 0.6 512 40.8 37.3 70.4 26.4
MLP 512 0.025 256 47.3 47.7 89.1 29.4
MLP 512 0.025 512 46.7 46.2 89.4 28.4
MLP 512 0.05 256 46.6 45.7 88.0 28.3
MLP 512 0.05 512 46.2 43.7 87.1 28.2
MLP 512 0.1 256 47.0 42.6 84.9 28.2
MLP 512 0.1 512 54.4 44.2 85.7 27.3
MLP 512 0.2 256 44.8 37.9 81.1 27.1
MLP 512 0.2 512 49.4 42.6 79.6 26.3
MLP 512 0.4 256 44.9 38.7 75.7 26.4
MLP 512 0.4 512 46.6 37.0 75.9 26.3
MLP 512 0.6 256 44.4 35.0 75.1 27.4
MLP 512 0.6 512 45.2 34.1 73.3 27.0
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Table 6: Results for the grid-search on VICReg’s hyper-parameters on the Clevr-4 dataset. LR stands
for base learning rate and BS stands for batch size. The best-performing model is highlighted.

hyper-parameters kNN top-1 accuracy
head output dim. LR BS shape texture color count

Identity (512) 0.005 256 82.1 86.7 100.0 28.2
Identity (512) 0.005 512 88.3 87.4 100.0 26.5
Identity (512) 0.01 256 86.9 85.3 100.0 34.1
Identity (512) 0.01 512 91.4 88.6 100.0 27.2
Identity (512) 0.025 256 84.1 79.4 99.5 29.8
Identity (512) 0.025 512 86.2 84.3 99.4 31.9
Identity (512) 0.05 256 73.9 71.0 98.9 26.3
Identity (512) 0.05 512 81.0 77.5 98.9 28.8
Identity (512) 0.1 256 72.5 66.9 98.8 24.2
Identity (512) 0.1 512 60.6 65.0 98.4 23.7
Identity (512) 0.2 256 63.1 57.0 98.2 22.9
Identity (512) 0.2 512 51.1 54.8 97.0 20.0
Identity (512) 0.4 256 44.4 48.3 97.0 22.9
Identity (512) 0.4 512 50.3 51.2 97.4 23.5
MLP 128 0.005 256 51.0 57.6 99.5 30.4
MLP 128 0.005 512 51.4 61.3 99.0 29.7
MLP 128 0.01 256 44.4 54.9 98.2 29.0
MLP 128 0.01 512 47.7 57.5 98.3 27.7
MLP 128 0.025 256 34.8 51.1 97.0 24.2
MLP 128 0.025 512 42.8 50.6 97.0 25.8
MLP 128 0.05 256 36.1 44.6 95.8 25.0
MLP 128 0.05 512 36.8 49.9 97.3 24.7
MLP 128 0.1 256 31.1 42.3 95.3 24.5
MLP 128 0.1 512 34.3 44.3 96.2 25.2
MLP 128 0.2 256 30.3 40.9 95.8 23.3
MLP 128 0.2 512 31.7 42.7 96.3 23.5
MLP 128 0.4 256 28.1 25.8 94.5 23.2
MLP 128 0.4 512 26.8 14.1 33.3 21.5
MLP 512 0.005 256 63.7 68.3 99.5 30.5
MLP 512 0.005 512 63.8 66.1 99.4 28.4
MLP 512 0.01 256 59.6 63.5 98.7 28.3
MLP 512 0.01 512 61.5 64.3 98.6 26.2
MLP 512 0.025 256 61.2 60.2 97.9 26.6
MLP 512 0.025 512 62.2 62.8 98.0 24.7
MLP 512 0.05 256 59.8 58.5 97.4 25.7
MLP 512 0.05 512 58.6 59.1 97.2 23.9
MLP 512 0.1 256 57.2 57.2 97.1 24.7
MLP 512 0.1 512 57.2 56.8 97.0 23.5
MLP 512 0.2 256 56.9 52.9 96.6 24.5
MLP 512 0.2 512 55.7 54.2 96.8 23.5
MLP 512 0.4 256 46.2 49.0 96.3 23.7
MLP 512 0.4 512 44.1 51.2 96.5 23.0
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