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ABSTRACT

Most data is automatically collected and only ever “seen” by algorithms. Yet, data
compressors preserve perceptual fidelity rather than just the information needed
by algorithms performing downstream tasks. In this paper, we characterize the
minimum bit-rate required to ensure high performance on all predictive tasks that
are invariant under a set of transformations, such as data augmentations. Based
on our theory, we design unsupervised objectives for training neural compressors.
Using these objectives, we train a generic compressor that achieves substantial rate
savings (more than 1000× on Imagenet) compared to JPEG on 8 datasets, without
decreasing downstream classification performance.

1 INTRODUCTION

Source Standard rec. Our rec.
Figure 1: Our unsupervised coder
achieves better compression by keeping
only the information that is necessary for
desired tasks. (left) source augmented
MNIST digit; (center) a neural compres-
sor optimized for perceptual similarity
achieves a 130 bit-rate; (right) our invari-
ant compressor achieves a 48 bit-rate.

Figure 2: Compression rates of a Banana
source can be decreased when down-
stream tasks are rotation invariant. (left)
a neural transform coder achieves a 5.4
bit-rate; (right) our learned invariant
transform coder achieves a 2.5 bit-rate.
Pink lines are quantization boundaries,
dots are code vectors.

Zetabytes (1021) of data are collected every year (Reinsel
et al., 2017), which is too much for humans to process. As
a result, most of this data will only be processed by algo-
rithms performing a task. So, there is a growing need for
compression methods that retain only the information nec-
essary to ensure high performance on downstream tasks.

Existing compression methods assume either that all infor-
mation is important or that the goal is perceptual fidelity.
However, much of that information is not useful for down-
stream tasks. For example, image classification is often
invariant under small rescalings or rotations, but a standard
compressor will faithfully reconstruct this information. If
we care only about predictive performance, we should
be able to improve compression by discarding such in-
formation, as seen in Fig. 1. Our goal is to quantify the
bit-rate gains that come from removing this unnecessary
information and to learn compressors that discards it.

The minimum bit-rate required for high performance on
a supervised task corresponds to compressing the labels.
Achieving this rate requires access to the labels, and caring
only about a single task. Instead, we want a compressed
representation that ensures good performance on any fu-
ture tasks of interest. Importantly, this set will rarely be
known at compression time or might be too large to even
enumerate. We overcome these challenges by focusing on
tasks that are invariant under user-defined transformations.

In this paper, we characterize the minimum bit-rate needed
to ensure predictability of all invariant tasks. The key is
that we construct a worst-case task, which bounds your
performance on any invariant tasks. As a result, the bit-
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rate required to perform well on all invariant tasks is exactly the rate required to compress the labels
of the worst-case task. Intuitively, this task is to recognize which examples are transformed version
of one another, and the rate savings come from discarding that information, as seen in Fig. 2.

In addition to establishing optimal rates, we provide unsupervised neural compression methods that
approximate these rates. In particular, we design two training objectives. One is a modified variational
autoencoder (VAE) (Kingma & Welling, 2014) that reconstructs prototypical examples, as shown in
Fig. 1. The second is a simple modification of InfoNCE (Oord et al., 2019), used in self-supervised
learning (SSL), which allows us to convert pre-trained SSL models into powerful compressors.

2 MINIMUM BIT-RATES FOR HIGH PREDICTIVE PERFORMANCE

The goal of lossy compression is to find the number of bits (the bit-rate) required to store a r.v X so
that it can be reconstructed to within a certain tolerance. Specifically, given a distribution p(Z|X)
mapping X to a r.v. Z (the representation) and a distortion measure D[X,Z], Shannon’s (1959)
rate-distortion (RD) theory, characterizes the minimal achievable rate for a distortion threshold δ by

Rate(δ) = min
p(Z|X) s.t. D[X,Z]≤δ

I[X;Z] . (1)

Our aim is different: to find the minimal bit-rate required to store X so that we can still achieve
high performance on a set of downstream tasks. To do this, we define a distortion that ensures that
predicting from the compressed Z is approximately as good as from X . All proofs are in Appx. C.

Let us represent a downstream tasks by a set of r.v.s T ={Y1, Y2, . . .}, which are jointly distributed
withX and represent all variables that we may be interested in predicting. For example, Y1 ∈ T might
indicate whether X is an image of a dog, while Y2 ∈ T might indicate whether X is hand-drawn.
Let R[Y |X] = infq Ep(X,Y )[− log q(Y |X)] be the best log-loss risk when predicting Y from X .

We would like to find a compressed representation Z such that the increase in risk due to predicting
Y ∈ T from Z (as opposed to X) is bounded, i.e., R[Y |Z] − R[Y |X] ≤ δ, for all tasks. This
suggests using the following as a distortion measure for our rate-distortion theory,

DT [X,Z] := sup
Y ∈T

R[Y |Z]− R[Y |X] , (2)

Unfortunately, working with Eq. (2) assumes access to all downstream tasks of interest T during
compression and the ability to optimize over them, which is unrealistic in practice. However, sets of
tasks that we care about are oriented to human goals, which suggests that there may be exploitable
structure in realistic task sets. For example, image classification often relates to the concepts present
in the image, rather than fine-grain details about brightness and object positions. These tasks are
thus invariant to mild augmentation such as brightness changes and translations. In such case, the
maximization in Eq. (2) is achieved by certain “hardest” invariant tasks. Intuitively, these hard tasks
consist of retaining only the information which you should not be invariant to. This can essentially
be done by predicting a prototypical version of the input X , denoted as M(X).

Formally, we assume that the conditional distribution of each Y ∈ T is invariant to an equivalence
relation ∼ on X’s sample space .1 That is, x ∼ x′ =⇒ p(Y |x) = p(Y |x′). Under weak regularity
conditions, we prove that there exists a maximal invariant2 task M(X) ∈ T that simplifies Eq. (2) to

D∼[X,Z] = R[M(X) |Z] . (3)
Our “Rate-Invariance” theorem uses this simplification to characterize the minimal bit-rate required to
ensure high predictive performance on invariant tasks T . Let H[·] denote the (discrete or differential)
entropy. Intuitively, Eq. (3) suggests that the minimal bit-rate is related to compressing M(X), which
requires H[M(X)] bits. We formalize this by incorporating our distortion in RD theory.

Theorem 1 (Rate Invariance). For δ ≥ 0, let Rate(δ) denote the minimum achievable bit-rate for
transmitting Z such that for any invariant Y ∈ T we have R[Y |Z]− R[Y |X] ≤ δ. Then Rate(δ)
is 0 if δ ≥ H[M(X)] and otherwise it is finite and given by

Rate(δ) = H[M(X)]− δ = H[X]−H[X |M(X)]− δ. (4)
1As a reminder, ∼ is an equivalence relation iff for all x, x′, x′′ ∈ X : (reflexivity) x ∼ x, (symmetry)

x ∼ x′ ⇐⇒ x′ ∼ x, and (transitivity) x ∼ x′ and x′ ∼ x′′ =⇒ x ∼ x′′. Note that invariances w.r.t. ∼
essentially subsume all notion of invariance (e.g., groups, semigroups, functions).

2M is any function such that x ∼ x′ ⇐⇒ M(x) =M(x′). See Appx. B for examples.
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Theorem 1 relates compression and statistical learning theory by showing that allowing a δ decrease
in log-loss performance can save exactly δ bits during compression. To illustrate Thm. 1, consider a
scenario where we require no loss in predictive performance, i.e., Rate(0) = H[X]−H[X |M(X)],
and contrast this rate to the standard lossless compression rate, H[X]. That is, we can remove any
information in X that is not in M(X) while ensuring lossless prediction of all invariant tasks.

Consider compressing a sequence of n coin flips. If one is only interested in predicting labels that are
permutation invariant, then instead of compressing the entire sequence, one could simply compress
the number of heads. The number of heads is a maximal invariant for permutation invariance.
In this case, the sequence can be compressed to a bit-rate that grows as O(log n), as opposed
to O(n) for the lossless compression case. In we show how our result recovers other previous
results (i) lossless compression; (ii) unlabeled graph compression (Rashevsky, 1955); (iii) multiset
compression (Varshney & Goyal, 2007); (iv) the information bottleneck (Tishby et al., 2000).

3 LEARNING INVARIANT COMPRESSION USING DATA AUGMENTATIONS

In this section, we design practical loss functions for training neural compressors that approximate
optimal rates. We do so by optimizing an unconstrained (equivalent3) formulation of Eq. (1), i.e.,

Rate(δ) = min
p(Z|X)

I[X;Z] + β(δ)R[M(X) |Z] . (5)

Both terms in the minimization of Eq. (5) are challenging to compute. Here we address how to
approximate them. See Appx. D for derivations and the resulting training algorithms.

For I[X;Z], we rely on Ballé et al.’s (2017) Variational Compressors (VC), which uses a specific
entropy model qθ(Z) and the bound I[Z;X] ≤ minθ Ep(X)pϕ(Z|X)[− log qθ(Z)]. The challenge
with our term R[M(X) |Z] is that maximal invariants are typically inaccessible. To overcome this we
make two assumptions, both of which are implicit in SSL. First, we assume that we can sample data
augmentations A to which our tasks should be invariant, e.g., image shearing. This enables sampling
of equivalent points x, i.e., x ∼ X . Second, we assume that no two observations X,X ′ ∈ D in our
dataset are equivalent X 6∼ X ′, i.e., they are not augmented versions of one another. This assumption
lets us use each sample in D as the maximal invariant of its own equivalence class, i.e., M(x) = X
for all x ∼ X . The following two variational upper bounds on our invariance distortion encourage
networks to solve the task (explicitly or implicitly) of mapping A(X) back to X .

Variational Invariant Compressor (VIC). Our first loss is closely related to the VC and the VAE.
The model has an encoder pϕ(Z|X), an entropy model qθ(Z), and a decoder qφ(X|Z). Given a data
point X , we apply an augmentation A(X), pass it through the encoder to get a representation Z. The
decoder then attempts to reconstruct the unaugmented X from A(X). This leads to the objective,

LVIC(φ, θ, ϕ) := −
∑
X∈D

Ep(A)pϕ(Z|A(X))[log qθ(Z) + β · log qφ(X |Z)] . (6)

Bottleneck InfoNCE (BINCE). Our second loss is based on InfoNCE (Oord et al., 2019). For every
X , we sample a sequence of random points X = (X+, X1, . . . , Xn), where X+ = A(X) is an
augmentation of X (“positive”) and each Xi are non equivalent examples Xi 6∼ X (“negatives”).
Let Z = (Z+, Z1, . . . , Zn), be the corresponding representations given by pϕ(Z |X). Let fψ be a
discriminator that is optimized to score the equivalence of two representation. The final loss is:

LBINCE(φ, θ, ψ) := −
∑
X∈D

Ep(A)pϕ(Z,Z|X,A)

[
log qθ(Z) + β log

exp fψ(Z+, Z)∑
Z′∈Z exp fψ(Z ′, Z)

]
. (7)

Eq. (7) is the standard SSL loss with an additional entropy bottleneck.4 Instead of directly predicting
X as in VIC, BINCE retains information about X by classifying (as seen by the softmax) which
Z is associated with an equivalent example x ∼ X . This has the advantage of not requiring a high
dimensional decoder but can require many negative examples n. Both VIC and BINCE give rise to
efficient compressors by passing X through pϕ(Z|X) and entropy coding using qθ(Z). In theory
they can recover the δ = 0 optimal bit-rate, i.e., H[M(X)], in the limit of infinite samples (|D|,n)
and unconstrained variational families.

3Any β ≥ 0 corresponds to a δ ≥ 0, so we can find different solutions on the RD curve by sweeping over β.
4The bottleneck arises from our desire to increase compression, but this SSL objective can be interested in its

own right as such bottleneck provably improve generalization of downstream predictors (Dubois et al., 2020).
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4 EXPERIMENTS AND DISCUSSION

Figure 3: By considering invari-
ances, our unsupervised compres-
sors (in blue) improves MNIST
compression (as in Fig. 2.) com-
pared to standard compressors (in
orange) for different distortion
thresholds. The x-axis is the test
error of a ResNet18 that classifies
MNIST using reconstructions.

Let us evaluate our learned compressors. See Appx. F for
experimental details and Appx. G for additional results.

Banana. We compress samples of the Banana distribution
(Ballé et al., 2020) assuming downstream tasks are rotation
invariant w.r.t. the origin. Our method (Fig. 1, right) learns disk-
shaped quantization bins to retain only information about the
norm of x, M(x) = ‖x‖2, and disregard angular information.
As a result, the bitrate is 2.5 as opposed to 5.4 for a compressor
with standard distortion (Fig. 1, left).

MNIST. Next, we evaluate the effect of standard geometrical
augmentations on MNIST compression performance. We con-
trast our VIC with a standard VC. We assume that we know the
downstream tasks to be invariant to the set of augmentations,
which we enforce by augmenting the test set. To reach at least
99% downstream accuracy our compressor requires only 48
bits compared to 130 for the VC (reconstructions from both
models can be seen in Fig. 2). Similar gains can be seen for
any level of downstream accuracy as seen in Fig. 3.

Table 1: Converting a pretrained SSL model into a zero-shot compressor achieving substantial bit-rate
gains while allowing accuracy similar to supervised models predicting from raw images.

Imagenet STL10 PCam Cars196 CIFAR10 Food101

Bit-rate gains vs JPEG 1030× 200× 63× 600× 18× 252×
Our MLP probe (Acc.) 75.3% 98.6% 82.4% 80.7% 95.2% 88.1%
Supervised (Acc.) 76.1% 99.0% 82.6% 49.1% 96.7% 81.8%

Zero-shot compressor using SSL. As previously pointed out, BINCE consists in a standard SSL loss
with an additional entropy bottleneck. Given the availability and impressive results from pretrained
SSL models, a natural question is whether we can take advantage of pre-trained SSL methods to give
rise to powerful (invariant) compressors. To investigate this question, we add and train an entropy
bottleneck on top of a SSL model. Specifically, we first download a SOTA SSL model, CLIP (Radford
et al., 2021), and freeze it. Then we add an entropy bottleneck and train it on the CLIP’s output on
a small dataset, MSCOCO (Lin et al., 2015). 5 Finally, we evaluate our resulting compressor on
various datasets (different tasks and shapes) which were never seen during training.

Table 1 shows that this simple method gives rise to a powerful and generic compressor, which achieves
more than 1000× bit-rate gains compared to JPEG. The bit-rate gains (1st row) are significant across
all datasets, 6 even on PCAM (Veeling et al., 2018) which consists of biological tissues. Importantly,
these gains do not come at the cost of removing information needed for desired tasks. The second
row shows the accuracy of a simple multi-layer perceptron trained on the output of our compressed
representation. The last row shows Radford et al.’s (2021) baselines from a near SOTA fully
supervised model trained on the uncompressed images.

Discussion. Given the exponentially increasing amount of collected data and the prevalence of task-
specific algorithms that analyze that data, it is urgent to rethink our current task-agnostic compression
paradigm. To the best our knowledge we derive the first theoretical framework for task-centric
compression (see Appx. E for related work). Furthermore, our theory and experimental results
shows that the recent advancements and open-sourcing of pretrained self-supervised networks can be
exploited to decreases current compression rate by orders of magnitude.

5This takes less than one hour on a single GPU.
6The large variance in bit-rate gains come from the variance in shapes of the raw images. For example,

CIFAR10 has 32× 32 bits so there is less information to gain compared to JPEG.
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A NOTATION AND ASSUMPTIONS

A.1 NOTATION

Letters that are upper-case X , calligraphic X , and lower-case x, represent, respectively, a ran-
dom variable (r.v.), its associated sample space, and a realization of it. We denote the probabil-
ity density function as p(X), which we suppose always exist. {xi} i.i.d.∼ p(X) denotes indepen-
dent and identical samples from p(X). X d∼ N (0, 1) denotes that X has a certain distribution
(here Gaussian). The composition of a function f with a r.v. X is denoted f(X). Expectations
are written as: Ep(X)[X] :=

∫
xp(x) dx, while their Monte Carlo approximations have a hat

Êp(X)[X] = 1
|{xi}|

∑
i xi for{xi} i.i.d.∼ p(X). The KL divergence is denoted as DKL[p(X)‖q(X)] :=∫

log p(X)p(X)
q(X) dx. The mutual information I[X;Z] := DKL[p(X,Z)‖p(X)p(Z)]. The (differen-

tial or discrete) entropy of a r.v. is H[X] := Ep(X)[− log p(X)], while the conditional (differential)
entropy is H[X |Z] := Ep(X,Z)[− log p(X|Z)]. Independence between two r.v.s is denoted with
· ⊥ ·. The cardinality of a set is denoted by | · |. · ◦ · denotes a composition of two functions. x ∼ x′
denotes that x and x′ are equivalent w.r.t. an equivalence relation on X (the exact relation being
implicit). The equivalence class of x under ∼ consist of all elements that are equivalent to x, i.e.
[x] := {x′ ∈ X |x′ ∼ x}. We will often use variational optimization over probability distribution,
when the variational family is not made explicit it means that the optimiztion is over all possible den-
sities, e.g. minq(Y |X) means that that the optimization is done over the collection of all conditional
probability densities on Y given x ∈ X .

Letters X ,Z,Y respectively refer to the input, representation and target of a predictive task.

A.2 ASSUMPTIONS

Our results require some assumptions and we make additional mild assumptions for clarity, we discuss
those in this section. Extending our framework to different losses (dropping Assumption 1) should be
investigated in future work. All other assumptions should hold in most practical scenarios.

Assumption 1 (Log Loss). We restrict ourselves to the Bayes risk w.r.t. log loss. Using the log loss
makes the link between information theory and Bayes risk more natural as seen in Lemma 3. This
is the standard loss to train neural classifiers. Although our theory also holds for regression tasks
(continuous Y ) it is more common to work with the squared error in that case. This assumption is
necessary in the current version of Thm. 1, but we hope to generalize the result to other losses in
future work.

Assumption 2 (Existence of Densities). We restrict ourselves to cases where the probability
mass/density function exist, i.e., to probability distributions that are absolutely continuous w.r.t.
to the underlying measure. This is not a necessary assumption but it simplifies the notation, and
ensures that the differential entropy of r.v.s is well defined.

Assumption 3 (Bounded Bayes Risk). We restrict ourselves to tasks Y s.t. the Bayes risk is always
bounded, i.e. ∀Z we have |R[Y |Z] | <∞. This ensures that taking differences of Bayes risks as in
Def. 3 is well defined. We could also directly assume that the latter difference is well defined, but
that would require dealing with limits which would unnecessarily complicate the proofs. For the case
of discrete Y this is for example the case when Var[Y ] <∞. 7 For continuous Y the same is true
(as H[Y |Z] ≤ H[Y ] ≤ 1

2 log(2πe(Var[Y ])) < ∞ ) as long as the the (differential) entropy is not
−∞ which essentially happens if there are no “singularities”.

Assumption 4 (Measurability of Functions). We assume that all functions are measurable. We partic-
ularly require (i) the measurability of M(·) which implies that M(X) is a r.v.. (ii) the measurability

7For the case where Y = Z we have H[Y |Z] ≤ H[Y ] ≤ 1
2
log(2πe(Var[Y ])+ 1

12
) <∞ where the second

inequality comes from (Massey, 1988) and the last inequality comes from our assumption of finite Var[Y ]. This
can be generalized to any countable Y by realizing that Y can always be rewritten as a bijection of Y ′ where
Y ′ = Z which has finite entropy due to the previous proof, and so Y also does.
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of the projection π : X → X/ ∼ which implies that there always exists a maximal invariant as π is
one of them. This assumption essentially holds for all practical purposes.

Assumption 5 (Existence of regular conditional probabilities). We restrict probability spaces (e.g.
Radon spaces) that satisfy the regular conditional probability property, so that all considered random
variables admit a regular conditional probability. This is necessary to ensure the existence of
probability kernel in Lemma 2. This assumption essentially holds for all practical purposes.

Assumption 6 (Countably Many Equivalence Classes). We restrict our discussion to equivalences ∼
on X s.t. the quotient set X/ ∼ :={[x] |x ∈ X} is countable. This ensures that M(X) is a discrete
r.v. thereby ensuring that our invariance distortion D∼[X,Z] is independent of the choice of maximal
invariant M as the conditional entropy is invariant to bijections. As currently written our results (not
only the proofs) do not hold without that assumption, but they can probably be extended.

Note that this assumption holds when X is countable which always happens in practice due to floating
point arithmetics, i.e. every real number has to be rounded to the closest 64 bits number. Another
perspective is to say that X is actually uncountable, but that all tasks we care about are always
invariant to rounding to the nearest 64 bits number due to floating point arithmetics. As a result, the
maximal invariant is the usual maximal invariant rounded to the closest floating point. For example, if
X is a 2D Gaussian we cannot work directly with translations on the y-axis (which gives uncountably
many [x], one for each real number on the x-axis), but can work with y-axis invariance combined
with invariance to rounding on the x-axis (e.g. closest 64 bits number).

Assumption 7 (Finite H[M(X)]). We restrict our discussion to X and equivalences on (X ,∼) s.t.
if there exists a maximal invariant M then at least one has finite discrete entropy H[M(X)] < ∞.
This is a necessary condition for M(X) to be in the tasks T of interest as we restricted our tasks of
interests to the ones with bounded Bayes risk (Assumption 3). We require this in the proof of Prop. 1
to ensure that D∼[X,Z] = R[M(X) |Z] is achievable. As discussed in Assumption 3, it is sufficient
(but not necessary) to assume that M(X) has finite variance which is implied from X having finite
variance. as is often the case.

B FORMAL DEFINITIONS

In the main paper we were relatively informal in our definitions, here we restate our main definitions
more formally.

First let us define the notion of valid distortion, which is necessary for applying the original rate
distortion theorem (Shannon, 1959; Cover & Thomas, 2006). 8

Definition 1 (Valid Distortion). Let X and Z be two r.v.s that respectively t.v.i. X and Z . Then an
(expected) distortion D is said valid w.r.t. X,Z if there exists a point wise distortion d : X ×Z → R+

s.t. for any x, z s.t. p(x, z) > 0 we have 9 d(x, z) ≤ dmax <∞ and

D := Ep(X,Z)[d(X,Z)] (8)

Let us define the notion of representationZ which arises by encodingX using p(Z |X) independently
of any task Y .

Definition 2 (Representation). Let X,Z be two r.v.s and T be a set of r.v.s. Z is a representation of
X for T iff ∀Y ∈ T we have the pairwise conditional independence Y ⊥ Z |X .

Let us now define the tasks of interest.

8The rate distortion theorem has been extended to more general cases (Pinkston, 1967; Gallager, 1968;
Berger, 1968) but we preferred using the original theorem for clarity.

9Note that Cover & Thomas’s (2006) use the stronger assumption of maxx∈X ,z∈Z d(x, z) ≤ dmax <∞
but they only require that for any x, z s.t. p(x, z) > 0 we have d(x, z) ≤ dmax < ∞ to bound the worst
case distortion between two sequences (achievability proof of the rate distortion theorem on page 321 and the
achievability proof on page 327).
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Definition 3 (Invariant Tasks of Interest). Let X and Y be two r.v.s that respectively t.v.i. X and Y .
Let∼ denote an equivalence relation on X satisfying Assumption 6 and s.t. X satisfies Assumption 7.
We say that Y is an invariant task of interest w.r.t. (X ,∼), iff:

• for any r.v. Z the Bayes risk is bounded R[Y |Z] <∞ (Assumption 3).
• the function x 7→ p(Y |x) is invariant w.r.t. ∼, i.e. ∀x, x′ ∈ X we have

x ∼ x′ =⇒ p(Y |x) = p(Y |x′) (9)

Furthermore, we denote as T all such invariant tasks of interest (X and∼ are implicit in the notation).

Let us now recall our desired distortion DT .

Definition 4 (Invariance Distortion). Let X and Z be two r.v.s. Let T be the invariant tasks of
interest as in Def. 3. The invariance distortion DT is defined as:

D∼[X,Z] := sup
Y ∈T

R[Y |Z]− R[Y |X] (10)

Finally, let us define the notion of maximal invariant.

Definition 5 (Maximal Invariant). Let ∼ denote an equivalence relation on X . We say that a
measurable (Assumption 4) function M : X →M is a maximal invariant w.r.t. (X ,∼) iff

∀x, x′ ∈ X x ∼ x′ ⇐⇒ M(x) =M(x′) (11)

Note that our notion of maximal invariants generalizes the notion of maximal invariants in probabilistic
group theory (Eaton, 1989). Refer to Lehmann & Romano (2005) for many more examples in the
group case. Important examples of maximal invariants can be summarized informally as follows:

Translations If X = R2 and the examples are invariant to translations of the second coordinate:
x 7→ x+ [0, t]T ; then a maximal invariant is the first coordinate M : x 7→ x1.

Scaling If X = Rn and the examples are invariant to scalar scaling : x 7→ c · x; then a maximal
invariant is given by rescaling by the last coordinate M : x 7→ x/xn.

Rotations If X = Rn and the examples are invariant to rotations : x 7→ Rot(θ) · x; then a maximal
invariant is given by the Euclidean norm M : x 7→ ||x||2.

Permutations If X = Rn and the examples are invariant to permutations of the coordinates :
x 7→ (xπ(1), . . . , xπ(n)); then a maximal invariant is the empirical measure (the type class,
or histogram).

Graph Isomorphisms If X is the set of all graphs, and the examples are invariant to graph isomor-
phisms; then a maximal invariant is the graph canonization.

C PROOFS: OPTIMAL BIT-RATE

In this section we prove all our claims in Sec. 2.

C.1 REFORMULATING AND VALIDATING DEF. 4

In this section we prove the equivalence between Def. 4 and the nicer H[M(X) |Z] which is the core
of our work.

The main steps in the proof are the following:

1. We show that if Y is an invariant tasks then Y −M(X)−X forms a Markov chain.
2. Using the strict properness of the log loss, we relate the Bayes risk to the differential entropy:

R[Y |Z] = H[Y |Z] (12)
3. Using (1) and (2), the chain rule and the data processing inequality we show that the

supremum is achieved by M(X) :

sup
Y ∈T

R[Y |Z]− R[Y |X] = H[M(X) |Z]−H[M(X) |X] (13)
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4. As M is a (deterministic) function and M(X) is discrete we have H[M(X) |X] = 0

sup
Y ∈T

R[Y |Z]− R[Y |X] = H[M(X) |Z] (14)

The first step, consists in showing that for invariant tasks we have Y⊥⊥X |M(X). Specifically, we
prove that that any conditionally invariant r.v. can be decomposed as a function of a maximal invariant
and independent noise. This can be seen as a probabilistic extension of the theorem on projections
(Theorem 19 and its corollary in Lane & Birkhoff (1999)) . This can also be seen as a generalization
of an important probabilistic group theoretical results (Theorem 4.4 in Eaton (1989), Theorem 7 in
Bloem-Reddy & Teh (2020)), to any equivalences (rather than only groups) and without making the
assumption of (marginal) invariance of p(X) to ∼.

The following intermediate result is needed.

Lemma 1. A measurable function f : X → F is invariant with respect to (X ,∼) if and only if there
exists a measurable function g :M→ F such that f(x) = (g ◦M)(x) for all x ∈ X .

Proof. Clearly, if f(x) = (g ◦M)(x) = g(M(x)) then f is (X ,∼)-invariant because M is.

Conversely, assume that f is (X ,∼)-invariant. Let F0 ∈ F denote an arbitrary fixed element. Then
we can construct g as

g(m) =

{
f(x) if m is in the range of M ;
F0 otherwise

.

Lemma 2. Let X and Y be 2 r.v., and M : X → M be a maximal invariant w.r.t. (X ,∼) as in
Def. 5. Then Y is (conditionally) invariant w.r.t. (X ,∼) as in Eq. (9) if and only if Y⊥⊥X |M(X).

Proof. Assume that Y is (conditionally) invariant w.r.t. (X ,∼) as in Eq. (9). By standard results, there
exists a probability kernel K(A, x) such that for all measurable sets A, x 7→ K(A, x) is a measurable
function mapping X → R+. Conditional invariance means that x ∼ x′ ⇒ K(A, x) = K(A, x′) for
all x, x′. That is, as a function of x, K(A, • ) is invariant w.r.t. (X ,∼). By Lemma 1, x 7→ K(A, x)
can be expressed as a measurable function of M , i.e., K(A, x) = K ′(A,M(x)), for another
probability kernel K ′. This implies that P (Y |X) = P (Y |M(X)) almost surely. Because M(X) is
a function of X , that further implies that P (Y |X,M(X)) = P (Y |M(X)), i.e., Y⊥⊥X |M(X).

We now relate the Bayes risk and conditional entropy. This is a simple lemma that directly comes
from the fact that the conditional distribution p(Y |Z) is the Bayes predictor.

Lemma 3. Let Y,X be r.v.s with bounded R[Y |X] then the log loss Bayes irsk is equal to the
conditional (differential) entropy:

R[Y |X] = H[Y |X] (15)

Proof.

R[Y |X] = inf
q(Y |X)

Ep(X,X)[− log q(Y |X)] Definition (16)

= Ep(X,Z)[− log p(Y |X)] Strict Proper. (17)

= H[Y |X] Definition (18)

Where Eq. (17) uses the strict properness of the logarithmic scoring function rule (Gneiting & Raftery,
2007).

In the rest of this section we will often be working with the entropy H[M(X)] and conditional
entropies such as H[M(X) |Z]. Importantly, we would like our results to be independent of the choice
of maximal invariant M . We now prove that this will indeed be the case as all these (conditional)
entropy terms are independent of the choice of M . We only prove it for the marginal entropy
H[M(X)] but the same proof holds for conditional entropies.

13



Published as a workshop paper at ICLR 2021 neural compression workshop

Lemma 4. Let X be a r.v. that t.v.i X . Let ∼ denote an equivalence relation on X satisfying
Assumption 6. Let M and M ′ two different maximal invariants w.r.t. (X ,∼) as in Def. 5, then
H[M(X)] = H[M ′(X)].

Proof. First notice that if M and M ′ are both maximal invariant then 10 there exists a bijective
function f :M→M s.t. M ′ = f ◦M . Indeed, from the projection theorem (Theorem 19 in Lane
& Birkhoff (1999)) we know that M is a maximal invariant if and only if there is a bijective function
g : X/ ∼→M s.t. the maximal invariant is the composition of g and the projection onto equivalence
classes, i.e. ∀x ∈ X we have M(x) = g([x]). Let g′ be the corresponding bijection for M ′. Then we
have M ′ = f ◦M with f := g′ ◦ g−1 which is indeed bijective f−1 := g ◦ g′−1.

Due to Assumption 6, M(X) is a discrete r.v. and so H[M(X)] is the discrete entropy, which is
invariant to bijective functions indeed H[M(X)] = I[M(X);M(X)] = I[f(M(X)), f(M(X))] =
H[f(M(X))] where we used the invariance of mutual information to bijections (Kraskov et al., 2004).
We thus conclude that H[M(X)] = H[f(M(X))] = H[M ′(X)] as desired.

We now prove that all M(X) are always in the set of downstream tasks T .

Lemma 5. Let X be a r.v. Let T be the invariant tasks of interest as in Def. 3. Then any maximal
invariant (Def. 5) M is such that M(X) ∈ T and there exists at least one maximal invariant.

Proof. First, we have to prove that a maximal invariant always exists. We do so by construction. By
definition equivalent elements have the same equivalence class and so x ∼ x′ ⇐⇒ [x] = [x′]. We
thus have that the projection map π : x 7→ [x] satisfies Eq. (11). Due to Assumption 4 the projection
map is measurable and so it is a maximal invariant.

As there exists (at least) one maximal invariant we have that there exists M(X) s.t. ∀Z we have
R[M(X) |Z] = H[M(X) |Z] ≤ H[M(X)] < ∞, where the first equality comes from Lemma 3,
and second inequality from the fact that conditioning decreases entropy, and the final inequality
comes from Assumption 7. Due to Lemma 4 we further have that all maximal invariants Mi have
a bounded R[Mi(X) |Z] which is necessary for all Mi(X) to be in T . As all maximal invariants
satisfy by definition the invariance in Eq. (9), we conclude that they are all in T as desired.

We are now ready to prove the desired proposition.

Proposition 1 (Nicer DT ). Let X be a r.v. Let T be the invariant tasks of interest as in Def. 3, M
be any maximal invariant as in Def. 5, and Z be a representation of X as in Def. 2. Let DT be as in
Def. 4. Then DT is a valid distortion(Def. 1) and

D∼[X,Z] = H[M(X) |Z] = R[M(X) |Z] (19)

Proof. First let us prove that D∼[X,Z] = H[M(X) |Z]
D∼[X,Z] := sup

Y ∈T
R[Y |Z]− R[Y |X] Def. 4 (20)

= sup
Y ∈T

H[Y |Z]−H[Y |X] Lemma 3 (21)

= sup
Y ∈T

H[Y |Z]−H[Y |X,M(X)] Y ⊥M(X)|X (22)

= sup
Y ∈T

H[Y |Z]−H[Y |M(X)] Lemma 2: Y ⊥ X|M(X) (23)

= sup
Y ∈T

H[Y |Z]−H[Y |M(X), Z] Def. 2: Y ⊥ Z|M(X) (24)

= sup
Y ∈T

I[Y ;M(X)|Z] Def. (25)

= sup
Y ∈T

I[M(X);Y |Z] Symmetry (26)

= sup
Y ∈T

H[M(X) |Z]−H[M(X) |Y, Z] Def. (27)

10It can easily be shown that this is an if and only if.
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= H[M(X) |Z]− inf
Y ∈T

H[M(X) |Y,Z] (28)

= H[M(X) |Z]−H[M(X) |M(X)]

+ (H[M(X) |M(X)]− inf
Y ∈T

H[M(X) |Y,Z]) (29)

= H[M(X) |Z]−H[M(X) |M(X)] DPI (30)
= H[M(X) |Z]− 0 Discrete entropy (31)
= R[M(X) |Z] Lemma 3 (32)

To go from Eq. (24) to Eq. (27) we use the the symmetry and definition of conditional mutual
information, which essentially corresponds to using the chain rule. Eq. (30) uses the fact that
H[M(X) |M(X)] ≤ infY ∈T H[M(X) |Y,Z] because of the data processing inequality and the
trivial fact that M(X)−M(X)− (Z, Y ) forms a Markov Chain. As M(X) ∈ T (Lemma 5) we also
have the other inequality infY ∈T H[M(X) |Y,Z] ≤ H[M(X) |M(X), Z] ≤ H[M(X) |M(X)],
and so we conclude that the equality H[M(X) |M(X)] = infY ∈T H[M(X) |Y,Z] holds. Finally,
Eq. (31) uses the fact that M(X) is a discrete r.v. due to Assumption 6 and so the discrete conditional
entropy H[M(X) |M(X)] = 0.

It is now easy to see that DT is valid as D∼[X,Z] = H[M(X) |Z] = Ep(X,Z)[d(X,Z)] with
d(x, z) := − log p(M(x) | z) which due to the discreteness of M(X) (Assumption 6) is a function
whose codomain is R+ as desired. As conditioning decreases entropy we also have H[M(X) |Z] ≤
H[M(X)] < ∞ where the last inequality comes from Assumption 7. As M(X) is discrete we
conclude that ∀x, z s.t. p(x, z) > 0 there exists dmax s.t. d(x, z) ≤ dmax < ∞ and so DT is
valid.

C.2 PROOFS FOR THEOREM 1

Our main theoretical contribution is to characterize the minimal achievable rate to bound the Bayes
risk of any invariant task. The result follows from Shannon’s (1959) rate distortion theorem, the
definition of DT in terms of worst Bayes risk, the fact that DT is valid, and our characterization of
DT in terms of entropy (Prop. 1).

First let us restate the well known rate distortion theorem. Here we use the statement as given in
Cover & Thomas (2006). Note that achievability is usually defined for deterministic encoders (e.g.
on 306 of Cover & Thomas (2006) ) but the proof holds for stochastic encoders (as noted on p.316 of
Cover & Thomas (2006)) which we use in our work.

Lemma 6. (Theorem 10.2.1 in Cover & Thomas (2006)) Let D[X;Z] be a valid distortion as in
Def. 1. The minimum achievable bit-rate for transmitting an i.i.d. source X with expected distortion
less than δ ≥ 0 is given by the rate-distortion function:

R(δ) = min
p(Z|X) s.t. D[X;Z]≤δ

I[X;Z] (33)

We can now state our rate invariance theorem.

Theorem 1 (Rate Invariance). Let X be a r.v. and δ ≥ 0. Let T be the invariant tasks of interest as
in Def. 3, M be any maximal invariant as in Def. 5, and Z be a representation of X as in Def. 2. Let
Rate(δ) denote the minimum achievable bit-rate for transmitting an i.i.d. source of Z s.t. for any
Y ∈ T we have R[Y |Z] ≤ δ +R[Y |X]. Then Rate(δ) is finite and given by

Rate(δ) = max(0, H[M(X)]− δ) (34)
= max(0, H[X]−H[X |M(X)]− δ) (35)

Proof. In the following we first prove that Rate(δ) ≤ H[M(X)] − δ. We then prove
that the rate max(0, H[M(X)]− δ) is achievable from which we conclude that Rate(δ) =
max(0, H[M(X)]− δ). Finally, we conclude by proving H[M(X)] = H[X] − H[X |M(X)]
to get our result.

We want to transmit Z s.t. ∀Y ∈ T we have R[Y |Z] ≤ δ +R[Y |X], in other words we would like
supY ∈T R[Y |Z]− R[Y |X] =: D∼[X,Z] < δ. We thus need to compute the minimal achievable

15



Published as a workshop paper at ICLR 2021 neural compression workshop

bit-rate for transmitting an i.i.d. source of Z s.t. D∼[X,Z] ≤ δ. As DT is valid (Prop. 1) we can
directly apply the rate distortion theorem (Lemma 6):

Rate(δ) = min
p(Z|X) s.t. D∼[X,Z]≤δ

I[X;Z] Lemma 6 and Prop. 1 (36)

= min
p(Z|X) s.t. D∼[X,Z]≤δ

I[X,M(X);Z] Bijection (37)

= min
p(Z|X) s.t. D∼[X,Z]≤δ

I[M(X);Z] + I[X;Z |M(X)] Chain Rule (38)

≥ min
p(Z|X) s.t. D∼[X,Z]≤δ

I[M(X);Z] Positivity (39)

= min
p(Z|X) s.t. D∼[X,Z]≤δ

H[M(X)]−H[M(X) |Z] (40)

= min
p(Z|X) s.t. D∼[X,Z]≤δ

H[M(X)]−D∼[X,Z] Prop. 1 (41)

≥ min
p(Z|X) s.t. D∼[X,Z]≤δ

H[M(X)]− δ (42)

= H[M(X)]− δ No Z (43)

Where Eq. (37) uses the invariance of mutual information to bijections which here is X 7→ X,M(X).
As the rate is always non-negative we have Rate(δ) ≥ max(0,H[M(X)]− δ).
We now prove that max(0,H[M(X)]− δ) is attainable and so Rate(δ) = max(0,H[M(X)]− δ).
Specifically we need to find a representation Z of X s.t.

Rate(δ) =

{
0 If δ ≥ H[M(X)]

H[M(X)]− δ Else
(44)

The first case is trivial: set Z to be independent of M(X) and X , e.g. a constant. Then, D∼[X,Z] =
H[M(X) |Z] = H[M(X)] ≤ δ and Rate(δ) = I[Z;X] = 0.

For the second case we need Rate(δ) ≥ H[M(X)] − δ to be an equality when δ > H[M(X)].
This happens iff there exists a Z s.t. inequalities Eq. (39) and Eq. (42) are equalities, i.e. iff
I[X;Z |M(X)] = 0 and D∼[X,Z] = δ. To get that we start from Z = M(X) (which satisfies
I[X;Z |M(X)] = 0) and “modify” it s.t. D∼[X,Z] = δ. We can do so by “erasing” a fraction
of bits by mapping all m → ε with a constant probability α, similarly to binary erasure channels.
Specifically, letZ :=M∪{ε} and Z be a r.v. that t.v.i. Z and whose conditional density parametrized
by α ∈ [0, 1[ is:

∀z ∈ Z,∀m ∈M, p(z |m) =


1− α if z = m

α if z = ε

0 else
(45)

A simple computation then gives D∼[X,Z] = H[M(X) |Z] = (1 − α)H[M(X) |Z =M(X)] +
αH[M(X) |Z = ε] = αH[M(X)]. To have D∼[X,Z] = δ we thus need to set α = δ

H[M(X)] . Note
that we do not divide by zero as if H[M(X)] = 0 would be in the first case of Eq. (44).

We thus proved that max(0, H[M(X)]− δ) is obtainable and that Rate(δ) ≥
max(0, H[M(X)]− δ). From which we conclude that the best achievable bit-rate is Rate(δ) =
max(0, H[M(X)]− δ). Eq. (35), follows from H[M(X)] = I[M(X);X] = H[X]−H[X |M(X)].
The finiteness of Rate(δ) comes from the fact that Rate(δ) ≤ H[M(X)] < ∞ due to Assump-
tion 7.

By setting δ = 0 we directly get the best achievable rate for the lossless prediction but lossy
compression setting.

Corollary 1 (Invariant Source Coding). Let X be a r.v. and δ ≥ 0. Let T be the invariant tasks of
interest as in Def. 3, M be any maximal invariant as in Def. 5, and Z be a representation of X as in
Def. 2. Let Rate(δ) denote the minimum achievable bit-rate for transmitting an i.i.d. source of Z s.t.
for any Y ∈ T we have R[Y |Z] = R[Y |X]. Then Rate(δ) is finite and given by

Rate(δ) = H[M(X)] (46)
= H[X]−H[X |M(X)] (47)
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C.3 RECOVERING SUBCASES

Corollary 1 recovers many previous results in the literature:

Unlabeled Graphs Let us consider the task of compressing unlabeled graphs, here we consider
tasks that are invariant to graph isomorphisms. A possible maximal invariant is the graph
canonization and H[M(X)] becomes the well known structural entropy (Rashevsky, 1955;
Yongwook Choi & Szpankowski, 2009). 11 If all isomorphic graphs are permissible and
equiprobable, Yongwook Choi & Szpankowski (2009) show that the structural entropy is
H[S] = H[X]−Ex∼p(X)

[
log n!
|AutG(x)|

]
. This is Eq. (47), with the second term corresponds

to H[X |M(X)] with a uniform distribution on isomorphic graphs.
Multisets Let us derive the best achievable bit-rate for compressing multisets. LetX be any sequence

and T be invariant to permutations of that sequence. One possible maximal invariant in that
case is the empirical measure (also called type), i.e., the counts K1, . . . ,Kn of each of the n
elements that are present in the sequence X . Lossless compression of multisets thus requires
H[M(X)] = H[K1, . . . ,Kn], as discussed in (Varshney & Goyal, 2007). Using Eq. (47)
we can also characterize the bits gains that you obtain by considering the invariance, namely,
H[X|M(X)]. This recovers theorem 1 of (Varshney & Goyal, 2007), where H[X|M(X)]
is called the “order entropy”. Note that similarly to our example in the text about i.i.d.
coin flips, the amount of bits needed to losslessly compress the multiset grows as θ(log n)
(Varshney & Goyal, 2007).

Information Bottleneck (IB) Suppose you are interested in predicting a single task Y = t(X),
where t is a (deterministic) “target function”. The task is invariant to the labeling so the
maximal invariant is t(·) and the distortion becomes H[T (X) |Z] = H[Y |Z]. Then Eq. (1)
becomes the information bottleneck (IB) (Tishby et al., 2000). Using Corollary 1 we see that
for lossless predictions the optimal rate is Rate(0) = H[Y ] = H[X]−H[X |Y ] = I[X;Y ]
as shown in (Wu et al., 2019; Fischer, 2020). From a compression stand point this is
nevertheless not very useful as Rate(0) = H[Y ], so IB for deterministic labels tells you to
entropy code Y .

Lossless Let X be discrete. Every task will always be invariant to equality “=“. In this case the
maximal invariant is the identity function, and we recover Shannon’s source coding theorem
Rate(0) = H[M(X)] = H[X].

D VARIATIONAL OBJECTIVES

In this section we will derive the variational bounds for estimating the rate and the distortion. Recall
that the optimal bit-rate is simply the Rate Distortion function wusing our invariance distortion (
Eq. (36) ), so pareto optimal encoder (for delta) can be obtained by using the following arg minimum:

Rate(δ) = min
p(Z|X) s.t. D∼[X,Z]≤δ

I[X;Z] (48)

As optimization in machine learning is typically unconstrained, we can use the Lagragian relaxation
instead

Rate(β) = min
p(Z|X)

I[X;Z] + β(δ) · R[M(X) |Z] (49)

Both terms I[X;Z] and R[M(X) |Z] are hard to estimate from samples, so the rest of the section is
devoted to deriving variational upper bounds on them.

D.1 VARIATIONAL RATE I[X;Z]

Let us discuss how to approximate the rate term I[X;Z]. The mutual information is well known to be
hard to estimate from samples (Paninski, 2003; McAllester & Stratos, 2020), but fortunaltely many

11Also called topological information content.
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variational bounds have previously proposed (see (Poole et al., 2019)). In the follwoing we denote a
family of variational distributions over Z (priors or entropy models) as Q :={q(Z)}.
Mutual Information Bottleneck. The first bound that we consider is the standard upper bound on
I[X;Z], e.g. in VAE or VIB. Specifically:

I[Z;X] := H[Z]−H[Z |X] (50)
= Ep(Z)[− log p(Z)]−H[Z |X] (51)

= min
q∈Q

Ep(X)p(Z|X)

[
− log

p(Z)q(Z)

q(Z)

]
−H[Z |X] (52)

= min
q∈Q

Ep(X)p(Z|X)[− log q(Z)]− Ep(X)p(Z|X)

[
log

p(Z)

q(Z)

]
−H[Z |X] (53)

= min
q∈Q

Ep(X)p(Z|X)[− log q(Z)]−DKL[p(Z)‖q(Z)]−H[Z |X] (54)

≤ min
q∈Q

Ep(X)p(Z|X)[− log q(Z)]−H[Z |X] (55)

We call this the variational mutual information bottleneck bound. The approximation gap is then
minq∈QDKL[p(Z)‖q(Z)]. This bound has the advantage that if p(Z) ∈ Q then bound is tight, which
is of course the case when the variational family Q is unconstrained.

The major issue with the mutual information bottleneck, is that no efficient compressors can in
general achieve the rate given by it (Agustsson & Theis, 2020). 12

Entropy Bottleneck. To have efficient compressors we would like a bound such that the given rate
can be achieved by an entropy coder. Indeed, entropy coders have been developped for years and are
now very efficient (Rissanen, 1976; Duda, 2009). To dervie such bounds it suffices to realize that the
mutual information of two r.v. is upperbounded by the entropy of each of those r.v.s., specifically,
I[Z;X] = H[Z]−H[Z |X] ≤ HZ and the bound is tight for Z that are deterministic transformations
of X . So Eq. (55) becomes

I[Z;X] = H[Z] ≤ min
q∈Q

Ep(Z,X)[− log q(Z)] (56)

This is the standard bound used in neural compressors (Ballé et al., 2017; Theis et al., 2017). We
call this the variational entropy bottleneck. Note that achieving the rate can be done efficiently if Z
is discrete by entropy entropy coding using the trained q(Z). This advantage comes with two main
downsides of Eq. (56):

• It is generally not true that any (for any δ) optimal rate can be achieved by a discrete
and deterministic Z. For teh specific case of δ = 0 it is the case, as we can simply set
Z =M(X).

• Eq. (56) is unfortunately not suitable for gradient based optimization w.r.t. to the encoder
(due to the discreteness of Z) so we typically have to add noise during training (Ballé et al.,
2017) which can cause a mismatch between training and testing (Agustsson & Theis, 2020).

Despite these issues we will mostly use the entropy bottleneck bound in experiments as we want our
method to give rise to practical compressors.

D.2 VARIATIONAL DISTORTION R[M(X) |Z]

Let us now consider variational upper-bounds on the distortion R[M(X) |Z].
Direct Distortion. The obvious variational bound on the conditional entropy is the standard cross
entropy loss as used for the distortion of VAE, VIB, and standard VC. Let Q′ denote a family of
regular conditional distributions (decoders), then:

R[M(X) |Z] = H[M(X) |Z] Lemma 3 (57)
= Ep(Z,X)[− log p(M(X) |Z)] (58)

12See Flamich et al. (2020) or Schulman (2020) for anO(exp(I[Z;X])) algorithm. Bits-back coding (Wallace,
1990) can efficiently reach the desired bit-rate only because it is in the lossless setting.

18



Published as a workshop paper at ICLR 2021 neural compression workshop

= min
q′∈Q′

Ep(Z,X)

[
− log

p(M(X) |Z)q′(M(X) |Z)p(Z)
q′(M(X) |Z)p(Z)

]
(59)

= min
q′∈Q′

Ep(Z,X)[− log q′(M(X) |Z)]

−DKL [p(M(X), Z)‖q′(M(X) |Z)p(Z)] (60)

≤ min
q′∈Q′

Ep(Z,X)[− log q′(M(X) |Z)] (61)

We call this the variational direct distortion, as we directly try to predict / re-
construct M(X) using a decoder q′(M(X) |Z). The approximation gap here is
minq′∈Q′ DKL [p(M(X), Z)‖q′(M(X) |Z)p(Z)]. This direct distortion is simple and well under-
stood but requiresM which is usually not known and will thus have to be approximated. Furthermore,
ifM is in high dimension (such as when reconstructing unaugmented images) the trained decoder
q′(M(X) |Z) can often underfit.

Contrastive Distortion. We now consider a bound that does not directly requireM , by considering a
contrastive estimator. Suppose that for everyX we can sample a sequence X := (X+, X−1 , . . . , X

−
n )

s.t. X+ ∼ x (it is “postive”) and each X−i are not (X−i 6∼ x, they are “negatives”). Then, we can use
the InfoNCE (Oord et al., 2019) bound on information, that is standard in self-supervised learning.
Let Z, be the sequence of representations that are sampled by passing x through p(Z |X). Let
F :={f : Z × Z → R} be a family of discriminators that scores how equivalent two representations
are, then:
R[M(X) |Z] = H[M(X) |Z] (62)

= H[M(X)]− I[M(X);Z] (63)
≤ H[M(X)]−min

f∈F
Ep(X)p(Z,Z|X)[INCE] InfoNCE

(64)

= H[M(X)]−min
f∈F

Ep(X)p(Z,Z|X)

[
log n+ log

exp f(Z+, Z)∑
Z′∈Z exp f(Z ′, Z)

]
Def.

(65)

= min
f∈F

Ep(X)p(Z,Z|X)

[
− log

exp f(Z+, Z)∑
Z′∈Z exp f(Z ′, Z)

]
+ (const) (66)

Eq. (64) uses the fact that InfoNCE is a valid lower bound on mutual information (Poole et al., 2019).
The last equation removes constant w.r.t. Z and shows that we are only left with a log softmax term
which essentially tries to classify which of all the sampled representations is positive. Note that the
contrastive distortion has the advantage of not having to reconstruct high dimensional data (e.g. for
images), but it suffers from bias in the case where the number of negatives n is small (Poole et al.,
2019).

D.3 PRACTICAL LOSSES

In practice we will use parametrized neural network for the different variational families
(qϕ(X|Z), qθ(Z), qφ(X |Z)) as well as for the encoder (pϕ(X|Z)). As discussed in the main
text we usually assume access to samples from M(X) and to a random generator of augmentation A.

The four previous bounds can be mixed and matched to provide four different practical losses to learn
invariant compressors. As the mutual information bounds do not give rise to practical compressors,
we focus below on the entropy bottleneck bound for the rate, which gives rise to the VIC and BINCE
loss discussed in the main text.

• The VIC loss is recovered using the variational entropy bottleneck and the variational
direct distortion bounds. The final criterion for training a neural network is summarized in
Algorithm 1. As previously discussed the encoder is stochastic during training to enable
backpropagation but deterministic at test time, for details see (Ballé et al., 2017).

• The BINCE loss is recovered using the variational entropy bottleneck and the variational
contrative distortion bound. The final criterion for training a neural network is summarized
in Algorithm 2. Similarly to VIC the encoder is stochastic during training but deterministic
at test time.
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Algorithm 1 Variational Invariant Compressor (VIC) Forward Pass Single Sample

Require: Encoder pϕ(Z|X), Entropy Model qθ(Z), Decoder qφ(X|Z)
Require: Dataset D, Random augmentation generator A, β

1: x← select(D) . Sample
2: x̃← A(x) . Augment
3: z ← sample(pϕ(Z|x̃)) . Encode
4: rate_loss← − log qθ(z) . Entropy Bottleneck
5: distortion_loss← − log qφ(x|z) . Direct Distortion
6: Return rate_loss + β · distortion_loss

Algorithm 2 Bottleneck InfoNCE (BINCE) Forward Pass Single Sample

Require: Encoder pϕ(Z|X), Entropy Model qθ(Z), discriminator fψ ,
Require: Dataset D, Random augmentation generator A, β, number of negatives n

1: x← select(D) . Sample
2: x̃← A(x) . Augment
3: z ← sample(pϕ(Z|x̃)) . Encode
4: rate_loss← − log qθ(z) . Entropy Bottleneck
5: x+ ← A(x) . Sample Positive
6: {x−i }ni=1 ← select(D) n times . Sample Negatives
7: x← [x+, x−1 , . . . , x

−
n ] . Concatenate

8: z← sample(pϕ(Z|x)) . Encode each x

9: softmax← exp f(z+,z)∑
z′∈z exp f(z′,z)

10: distortion_loss← − log(softmax) . Contrastive Distortion
11: return rate_loss + β · distortion_loss

Although the variational mutual information bound does not give rise to efficient coders, they can still
be of interest for other tasks such as for representation learning. For example, VIC with a variational
mutual information bound becomes a standard VAE where the input is augmented, but the target
reconstructions M(X) are not. This is also equivalent to a VIB where the task is to predict the
maximal invariant M(X), which to the best of our knowledge is the first self-supervised formulation
of the information bottleneck. To train VIC or BINCE using the variational mutual information
bound instead of the entropy bound it suffices to use stochastic encoders (typically neural networks
predicting a mean and covariance of a mutlivariate Gaussian) and replacing Ep(X)p(Z|X)[− log q(Z)]
by Ep(X)[DKL[p(Z|X)] q(Z)] in the “entropy bottleneck” step of both algorithms.

E EXTENDED PREVIOUS WORK

Lossy image compression The connection between the rate-distortion objective and variational
inference is well known (MacKay, 1992; ?). Ballé et al. (2017) and Theis et al. (2017) first imple-
mented large scale neural image compression based on Variational Autoencoders (VAEs). Later
approaches improved upon the original model by adding a hierarchical layers and autoregressive
components (Ballé et al., 2018; Minnen et al., 2018; Lee et al., 2019; Johnston et al., 2018). Further
recent studies improve the compressor by improving the inference procedure of these models (Yang
et al., 2020). Another aspect, is computational complexity (Johnston et al., 2019).

Task-Centric Compression At the core of our work is the idea that compression should be task-
centric, i.e., optimized for a set of tasks of interest. To the best of our knowledge, the only theoretical
framework that considers this question is Tishby et al.’s (2000) Information Bottleneck (IB), which
was derived using rate distortion theory for the specific distortion H[Y |Z]. IB was nevertheless never
(to our knowledge) used for compression/The lack of use of IB in compression probably comes from
its requirement of (1) a single task; (2) knowing the labels at compression time. The first problem
could easily be overcome by using a “multi-task” distortion H[T |Z]. The second point is the main
drawback of IB for compression. Indeed, it would be easier to directly compress the labels if we
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had access to them. Our paper can be seen as a self-supervised extension of IB that is useful for
compression as it does not require the labels at compression time.

From a practical perspective, there have recent task-centric compression methods. Mentzer et al.
(2020) shows that they can significantly decrease the bit-rates by using a generative adversarial
network (Goodfellow et al., 2014). This can be seen as a task-specific compression where the task
is to ensure that a discriminator cannot discriminate between a highly compressed reconstruction
and the original image. More related is Singh et al.’s (2020) work on end-to-end compression of
pre-trained features for transfer learning. From a very practical perspective, their method is similar
to our idea of compressing pretrained self-supervised features. Their work does not provide any
theory justification, and constrained to cases where downstream tasks to similar the task on which the
featurizer was pre-trained. Nevertheless the intuitive idea is similar and shows that there is interest in
taking advantage of recent advancements and open sourcing of pretrained models to perform task
specific compression.

F REPRODUCIBILITY

In this section we provide further details of the hyperparameters chosen for the various experiments
in the main text. Unless stated otherwise, all the models are trained for 200 epochs, using Adam
(?) as the optimizer, a learning rate of 1e − 3, a batch-size of 128. We checkpoint and use the
model which achieves the smallest validation loss for evaluation. Results are averaged over 5
random seeds, and standard errors are reported. For all convolutional layers we use Kaiming normal
initialization(He et al., 2015), for all linear layers we use Kaiming uniform initialization(He et al.,
2015), while all biases are always initialized at 0. Activation functions are ReLUs while other
unspecified parameters are PyTorch (Paszke et al., 2019) defaults. Throughout this section, instead
of optimizing I[Z;X] + βD∼[X,Z] we optimize λ I[Z;X] + D∼[X,Z] , which is a more standard
formulation for VIB, VAE, VC.

F.1 BANANA EXPERIMENTS

For the Banana dataset most of the arguments were selected so as to replicate Fig.1.B. from (Ballé
et al., 2020). 13

The data distribution is obtained by starting from a bivariate Gaussian X ∼ N (X;0,diag([3, 0.5])).
It is then transformed to a banana distribution using the following transformation: x2 = x2+0.1x21−9.
We then rotate it and shift it: X = (Rot(−40) · X) + [−3,−4]T . For every epoch we resample
1024000 new points, i.e., examples are never seen twice during training).

For all Banana experiments we use a 2 dimensional representation Z ∈ R2, and a batch size of
8192. The encoders (and decoders if there is one) is always a 2-hidden layer MLP with 1024 hidden
neurons, batch norm (Ioffe & Szegedy, 2015), and softplus activation. The learning rate scheduling
consists in decreasing the learning rate by a factor 10 at epochs 50,75,87, and 120. We train both a
standard variational compressor (VC) and our variational invariant compressor (VIC), in both cases
we use the factorized prior entropy model from (Ballé et al., 2018). To obtain RD curves we sweep
over λ = 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000.

For Fig. 2 we use λ = 0.1 for both plots. For the classical compression we use a variational upper
bound on H[X |Z], namely minq′∈Q′ Ep(Z,X)[− log q′(X |Z)]. Essentially we are trying to recon-
struct the input X using an MLP Q′. For our compression we use the variational distortion, namely
minq′∈Q′ Ep(Z,X)[− log q′(M(X) |Z)]. Where M(X) is a representative of each equivalence class,
which we select to be M : x 7→ ‖x‖2 · [−0.7071,−0.7071]T , i.e., the point with the same radius but
at 225 degrees. Essentially we are trying to reconstruct a representative of the equivalence clas of X
using the same MLP Q′.

13Their code can be found at https://github.com/tensorflow/compression/blob/
master/models/toy_sources/toy_sources.ipynb
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F.2 MNIST EXPERIMENTS

For our MNIST (LeCun et al., 1998) experiments we compare again our VIC (as described in
Algorithm 1) against a standard VC criterion (same as in Algorithm 1 but the direct distortion is
evaluated at x̃ instead of x).

Each image first passes through a ResNet18 (He et al., 2016) encoder, which maps it to a 128
dimensional representation Z ∈ R128. We then pass Z through an entropy bottleneck with a
scaled hyperprior entropy model from (Ballé et al., 2018) which gives us the reconstruction Ẑ. The
reconstructed Ẑ is finally passed through a 5-layer transposed CNN decoder, which reconstructs the
augmented input (in the standard case) or the non-augmented input (in the invariant case).

Once the compressor is trained we freeze it, apply it to the dataset and train a new ResNet18 to classify
the digits using the reconstructions. This thus simulated how well you could perform downstream
tasks, by considering one possible task, namely, classifying the digits. This classifier is trained using
SGD for 100 epochs, an initial learning rate 0.1, and a scheduler that decreases the learning rate every
20 epochs. To obtain RD curves we sweep over λ = 0.001, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 100.

We consider three settings of data augmentations.

Highly augmented test and train First we consider a highly augmented MNIST datasets, which
is augmented both at train and test time. Specifically, we apply random rotations sampled
from [−45, 45] degrees, random translations between [0, 14 ] percentage of pixels, random
shearing between [0, 25] degrees, and random scaling by a factor in [0.6, 1.4].

Mildly augmented test and train We consider more mild data augmentations applied both at train
and test time. Specifically, we apply random rotations sampled from [−30, 30] degrees,
random translations between [0, 1

10 ] percentage of pixels, random shearing between [0, 10]
degrees, and random scaling by a factor in [0.8, 1.2].

Mildly augmented train Finally we consider the same mildly augmented data described above but
only applied at training time

F.3 IMAGENET EXPERIMENTS

For ImageNet (Deng et al., 2009) experiments, we downloaded a pretrained SimCLR model with a
ResNet50 architecture, with a 2048 representations Z = R2048. We used this SimCLR to encode a
256× 256 ImagNet, and zipped the resulting features to get the average bit-rate.

For our preliminary result on BINCE, we start with the pretrained SimCLR, and add an entropy
bottleneck with Ballé et al.’s (2018) factorized prior model. We then finetune both losses in an end-to-
end fashion for 3 epochs with Adam optimizer and a learning rate of 1e-6. During finetuning we also
train a single layer (1024 hidden neurons) MLP to classify ImageNet labels from the reconstrcuted
representations.

G ADDITIONAL RESULTS

G.1 BANANA

G.1.1 DIFFERENT INVARIANCES

Fig. 2 compares a classical compressor to our invariant distortion in the case of rotation invariant
tasks. The standard compressor achieves a rate 5.42 ± 0.00 bits for an invariance distortion of
D∼[X,Z] = 7.04e-2 ± 0.19e-2. While our compressor achieves a rate 2.54 ± 0.00 bits for an
invariance distortion of D∼[X,Z] = 5.25e-2± 0.08e-2.Here we show the same experiment for other
invariances.

Fig. 4 considers the case where downstream tasks are invariant to translations on the x axis. The
maximal invariant used during training is chosen to be M : x 7→ [0, x2]

T . We only ran a single run
for visualization. We see that our model can essentially perform as well on all downstream tasks
(similar invariant distortion) for only 60% of the bit-rate. Unsurprisingly we see that the codebook is
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(a) Standard Compression. (b) x-Translation Compression.

Figure 4: Similar to Fig.1. for the case of downstream tasks that are invariant to translation on the
x-axis. (left) standard compression with a rate of 5.4 bits and an invariant distortion of 5.59e-2 ;
(right) our compression with a rate of 3.19 bits and an invariant distortion of 5.35e-2.

in shape of horizontal stripes as these can cover the entire distribution with a few codes (small bit
rate) while incurring a small invariance distortion (which only depends on the y value).

(a) Standard Compression. (b) y-Translation Compression.

Figure 5: Similar to Fig.1. for the case of downstream tasks that are invariant to translation on the
x-axis. (left) standard compression with a rate of 5.55 bits and an invariant distortion of 5.25e-2 ;
(right) our compression with a rate of 3.53 bits and an invariant distortion of 5.48e-2.

Similar results can be seen in Fig. 5 in the case of downstream tasks that are invariant to translations
on the y axis.

G.1.2 RATE-DISTORTION CURVES

By sweeping over the hyperparameter β we can can move along the rate distortion curve, thus
balancing the respective rate and distortion term. Specifically, by increasing β in Eq. (5) we give
more importance to the distortion term, and thus will have to increase the size of the codebook. This
is exactly what can be seen in Fig. 6.

To get a better sense of the gains in rates that can be achieved we show in Fig. 7 the (average)
rate-distortion curve for our invariant neural compressor and the non-invariant compressor. We see
that our invariant compressor significantly outperforms the non invariant compressor. Indeed, the
area-under-the RD curve for the invariant model is 35.8±4.2 bits while it is 48.1±0.3 bits for the the
non invariant case, this means that, if you are interested in rotation invariant tasks, you can increase
your compression rates by an average of 12.3 bits without hindering your downstream performance.

Note that our Thm. 1 shows that the rate and the distortion have a linear relationship rate(δ) =
(const)− δ, yet the rate distortion curve in Fig. 7 shows an approximately logarithmic relationship
(notice the log-scale in the x axis). This happens because we are estimating the invariant distortion us-
ing the mean squared error (MSE) or conditional variance, and the conditional entropy is proportional
to the logarithm of the conditional variance H[M(X) |Z] ∝ log(Var[M(X) |Z]) + (const).
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(a) Classical with β = 1 (b) Classical with β = 10 (c) Classical with β = 100

(d) Ours with β = 1 (e) Ours with β = 10 (f) Ours with β = 100

Figure 6: Similar to Fig.1. but for different values of β.

Figure 7: Rate-Distortion curve for a neural compressor and our invariant neural compressor, for
compressing a banana distributed source for rotation invariant downstream tasks. We see that
the invariant compressor significantly outperforms the non-invariant compressor, especially in low
distortion regimes. RD curves are generated by sweeping over β, the plotted curve is the average
over 5 runs, standard errors for each β are shown in gray (on the x and y axis).

G.2 MNIST

Highly Augmented Test and Train. As discussed in the main paper, we are interested in knowing
the gains in bit-rate that can be achieved by our practical loss VIC (compared to standard VC) in the
case where you have access to some augmentations w.r.t. which your tasks of interest are invariant to.
To simulate this we apply large augmentations at training and test time. The results are summarized
in Fig. 8b.

Mildly Augmented Test and Train. We then consider the same experiment but with less data
augmentation. The results are summarized in Fig. 9b. Unsurprisingly, the gains in bit rate decrease
compared to the highly augmented case.
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(a) Rate-Error curve
(b) Compression allowing 99% accuracy

Figure 8: Compression of a highly augmented MNIST dataset by our invariant compressor (Inv.
VAE) and a standard compressor (VAE). Left) The rate-error curve for MNIST classification, the area
under the curve is 6.2± 4.0 for the invariant case and 12.0± 10.0 for the non invariant case. Right)
Reconstructions for the a non-invariant (second row) and invariant compressor (last row) that retains
enough information for a downstream ResNet18 to classify the highly augmented MNIST with 99%
test accuracy. Our model only requires a a bit-rate of 48.1± 0.5 bits compared to 129.6± 0.5 bits in
the non invariant case. All quantitative results are averaged over 5 runs.

(a) Rate-Error curve
(b) Compression allowing 99% accuracy

Figure 9: Compression of an augmented MNIST dataset by our invariant compressor (Inv. VAE)
and a standard compressor (VAE). Left) The rate-error curve for MNIST classification, the area
under the curve is 9.5± 0.1 for the invariant case and 17.1± 0.1 for the non invariant case. Right)
Reconstructions for the a non-invariant (second row) and invariant compressor (last row) that retains
enough information for a downstream ResNet18 to classify the augmented MNIST with 99% test
accuracy. Our model only requires a a bit-rate of 57.4± 0.2 bits compared to 103.9± 0.5 bits in the
non invariant case. All quantitative results are averaged over 5 runs.

Mildly Augmented Test and Train. Finally, we consider the case where the augmentations are not
known, and so we apply augmentations at training time w.r.t. which you might not be invariant to.
We thus do not apply the same augmentations at test time, and can only hope that MNIST has similar
inherent invariances. The results are summarized in Fig. 10b. In this case the gains in bit-rate is
much smaller but still significant. Importantly we see that the rate for VC is highly dependent on
whether the images are augmented at test time or not, while the it is not for VIC. This makes sense as
VIC essentially learned to compress the maximal invariant M(X) which is the same regardless as to
whether the input is augmented or not.
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(a) Rate-Error curve
(b) Compression allowing 99% accuracy

Figure 10: Compression of a (non augmented) MNIST dataset by our invariant compressor (Inv.
VAE) and a standard compressor (VAE). The invariant compressor was trained with the augmented
MNIST but tested on the non augmented MNIST. Left) The rate-error curve for MNIST classification,
the area under the curve is 8.0± 0.7 for the invariant case and 10.3± 0.5 for the non invariant case.
Right) Reconstructions for the a non-invariant (second row) and invariant compressor (last row) that
retains enough information for a downstream ResNet18 to classify MNIST with 99% test accuracy.
Our model only requires a a bit-rate of 57.2±0.2 bits compared to 78.4±0.4 bits in the non invariant
case. All quantitative results are averaged over 5 runs.
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