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Abstract
Deep learning methods, including deep multi-
ple instance learning methods, have been criti-
cized for their limited ability to incorporate do-
main knowledge. A reason that knowledge incor-
poration is challenging in deep learning is that
the models usually lack a mapping between their
model components and the entities of the domain,
making it a non-trivial task to incorporate proba-
bilistic prior information. In this work, we show
that such a mapping between domain entities and
model components can be defined for a multiple
instance learning setting and propose a framework
DeeMILIP that encompasses multiple strategies
to exploit this mapping for prior knowledge in-
corporation. We motivate and formalize these
strategies from a probabilistic perspective. Ex-
periments on an immune-based diagnostics case
show that our proposed strategies allow to learn
generalizable models even in settings with weak
signals, limited dataset size, and limited compute.

1. Introduction
Multiple instance learning (MIL) (Dietterich et al., 1997;
Maron & Lozano-Pérez, 1997; Carbonneau et al., 2018)
provides a very useful framework for approaching important
problems in a variety of domains such as medical image
analysis (Yao et al., 2020), video analysis (Quellec et al.,
2017), image segmentation (Kraus et al., 2016) and immune
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repertoire classification (Widrich et al., 2020). The well-
defined problem structure of MIL also makes it well-suited
to define modularized deep learning (DL) models (Ilse et al.,
2018). However, deep learning methods, including deep
multiple instance learning methods, have been criticized
for their limited ability to incorporate domain knowledge
(Marcus, 2018), which could improve model generalization
and data efficiency.

Several aspects of modern DL can be seen as incorporating
general assumptions about the world like temporal depen-
dency (Hochreiter & Schmidhuber, 1997) or translational
invariance (LeCun et al., 1989; Kayhan & Gemert, 2020)
informing particular model architectures, transformational
invariance inspiring data augmentation techniques (Shorten
& Khoshgoftaar, 2019), and assumptions on shared repre-
sentational spaces inspiring multi-task learning formulations
(Caruana, 1997). Moreover, geometric deep learning is used
to incorporate geometric properties into the models by lever-
aging properties inherent in graph-structured data in order to
learn to capture and utilize the spatial relationships and con-
nectivity within the data (Bronstein et al., 2017; Cao et al.,
2020), while physics-informed models embed physical prin-
ciples into DL models (Karniadakis et al., 2021; Cuomo
et al., 2022). The knowledge entailed by these approaches
is, however, usually highly generic, and its incorporation
is conceptual. There is markedly less work on incorporat-
ing specific, quantitative knowledge from a domain into
DL. For the MIL setting, the few relevant examples include
the use of image annotation at low level to improve the
classification performance at the image level, either by pre-
annotating images (Yan et al., 2017; Li et al., 2018; Seung
Yeon Shin et al., 2019) or annotating as part of an active
learning approach (Melendez et al., 2016).

A primary reason why it is generally non-trivial to incor-
porate quantitative domain knowledge into a DL model is
that the learned representational transformations of a neural
network lead to parameter values and DL layer outputs that
typically lack any a priori association with tangible enti-
ties or high-level abstractions from the application domain.
Although these values collectively contribute to construct-
ing the desired mapping function for the DL model, and
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although the neurons of inner layers are often assumed to
be learning meaningful semantic representations, there is,
in general, still no clear way to connect values of individ-
ual parameters or neuron outputs to entities in the problem
domain.

We here show that the structured nature of MIL permits mod-
ularized DL models to have a direct mapping between model
components and domain entities. We exploit this mapping
to propose several strategies for incorporating probabilis-
tic domain knowledge into a DL MIL model. We explore
how domain knowledge incorporation affects model per-
formance, including a comparison of explicit knowledge
injection in the form of a prior probability to that of a multi-
task learning formulation.

We apply our proposed strategies to a case of predicting dis-
ease state based on a large set of protein sequences of adap-
tive immune cells (immune receptors) of a person, where
only a small proportion of the sequences are relevant for
the disease state (Emerson et al., 2017). Emerging technol-
ogy in the field allows to obtain imperfect indications on
disease-relevance of individual cells (Ma et al., 2021; Setliff
et al., 2019), which can serve as a source for probabilistic
domain knowledge. We investigate a variety of ways to
incorporate such knowledge, considering the ability to learn
a generalizable model from weak signals or a few training
examples using less compute.

Our contributions are:

• We demonstrate that the structure of MIL problems per-
mits the integration of probabilistic domain knowledge
directly into DL models.

• We propose and investigate strategies of knowledge
incorporation through either prior injection or multi-
level, multi-task learning formulations.

• On a set of large-scale experiments on semi-synthetic
data, we show that for the challenging MIL problem of
immune-based diagnostics, knowledge incorporation
allows us to learn generalizable models at a twenty-
fold lower witness rate or a thirty-fold smaller dataset
size.

Structuring of this work. In Section 2.1, we provide a
formal definition of MIL. Section 2.2 reviews the existing
literature on deep learning-based MIL approaches. We con-
clude Section 2 with a discussion on methodologies that inte-
grate supplementary knowledge through multi-task learning,
detailed in Section 2.3. In Section 3, we explore prior re-
search focused on incorporating instance-level information
into MIL-based frameworks.

2. Background and notation
2.1. Multiple Instance Learning (MIL)

In MIL, input bags X b = {xb
1, ..., x

b
nb
}, b ∈ {1, ...,B} con-

sist of K dimensional instances xb
i ∈ RK , i ∈ {1, ..., nb}.

We also observe labels Yb for each bag, with unknown latent
labels ybi , i ∈ {1, ..., nb} for each instance within each bag.
According to the standard MIL assumption, a bag is consid-
ered positive if it has at least one instance with a positive
label, referred to as a witness. The fraction of positive in-
stances in a bag is called the witness rate (WR). In our case,
we assume that the bag level label is binary, i.e., Yb ∈ {0, 1}
corresponding to healthy vs diseased individuals, respec-
tively, and that ybi ∈ {0, 1} is also binary corresponding
to disease-irrelevant vs disease-specific sequences. This
setup is a case of weakly annotated data where the classifier
is typically trained only using the available coarse-grained
labels, i.e., labels at the bag level.

In the embedded-space paradigm, a bag representation is
built from the embeddings of its constituting instances
(Amores, 2013), and then a standard ML classifier is used to
classify the bag. This generalizes the collective assumption
to the weighted collective assumption, where different in-
stances contribute independently but not necessarily equally
to the bag label (Foulds & Frank, 2010).

2.2. Attention-based DL for MIL

A deep learning-based MIL method, proposed by Ilse
et al. (2018), employs an aggregation strategy involving
a weighted average of the instance representations. The
unnormalized weight of each instance is determined by an
attention mechanism where a learned Key transformation
for each instance is compared against a single learned Query
vector. According to the MIL formulation, these instance
weights can be seen as reflecting the probability that the (la-
tent) instance label is positive (see Appendix A), allowing a
direct connection to properties of instances in the domain.
A priori information on the latent label of instances can thus
be incorporated, e.g., through defining priors on the out-
put values of this particular intermediate layer in the neural
network (one neuron output value per instance in a bag).
The internal Query vector for the attention mechanism can
be seen as a template instance in a latent space, serving as
a reference against which all inferred representations are
compared. In the absence of any instance label information,
the only way that this template vector is learned is through
the gradient flowing back from the bag-level loss. It is thus
a non-trivial task to learn a good attention network that cor-
rectly assigns high scores to positive instances, especially
when the witness rate is low and the dataset is small. Incor-
poration of prior information on the outputs of the attention
module could guide the model to learn a better Query vector
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in the backward pass (gradient flow), as well as directly
produce an improved bag embedding in the forward pass
(through increased weights for positive instances and an
improved instance encoder).

DeepRC (Widrich et al., 2020) is also an attention-based
deep MIL method, where a modern Hopfield network
(MHN) is used to reconstruct patterns from a bag using
attention and pooling. Widrich et al. (2020) have shown
that MHNs can be used successfully for MIL problems with
hundreds of thousands of instances and low witness rates.
DeepRC was demonstrated in the case of immune repertoire
classification, where the task is to predict a person’s disease
status from the repertoire of adaptive receptor sequences.
We adopt DeepRC as a base model for implementing our
knowledge incorporation strategies.

2.3. Multi-task learning

Multi-task learning is an approach that trains a model on
multiple (typically related) tasks simultaneously to improve
the overall performance of all the considered tasks or the
specific performance of some target task (Crawshaw, 2020;
Caruana, 1997). Particularly relevant to our work is the case
where the different tasks are being performed at different
layers in a model, which differs from the standard setup
where all tasks are performed at the final layer, i.e., at the
maximum network depth. For example, Søgaard & Gold-
berg (2016) train a multi-layered RNN on five different tasks
where a loss term corresponding to each task was added after
each layer. Hashimoto et al. (2017) and Sanh et al. (2018)
follow a similar task hierarchy for related NLP problems.
However, in both contexts, the model does not attribute se-
mantic significance to the level at which the low-level tasks
are performed.

3. Related Work
Several MIL papers have proposed different ways to incor-
porate instance-level information available for a subset of
the whole dataset or inferred by the model. However, to the
best of our knowledge, and despite some of these papers be-
ing tangentially close to our case, no previous work has the
same setup as our problem. The closest to our setup is the
work of Li et al. (2018), who formulate an object detection
task as a MIL problem and use the bounding boxes available
for a subset of the images as instance-level labels. They
then train the model using a combination of CE loss and
a MIL-inspired classification loss for the images with this
additional information. However, in their setup, there is no
direct mapping between specific DL model components and
domain semantics, and they only explore one CE loss-based
approach without exploring other ways to incorporate the
information. Furthermore, the instance-level information is
in their case annotated directly on the main dataset, while

in our case the instance-level information is treated indepen-
dently from the main dataset and can be incorporated from
any separate auxiliary data source.

Other works include Yan et al. (2017), which use an EM
algorithm to train an object detection model with access to a
small number of images annotated at the instance level, i.e.,
with bounding boxes. Neither of these two methods opti-
mizes the bounding boxes directly, while Seung Yeon Shin
et al. (2019) does that directly using instance-level object
detection losses (Ren et al., 2016) in addition to the image-
level classification loss. Melendez et al. (2016) use an active
learning-enhanced MIL approach where a human expert
provides instance-level labels for the instances deemed the
most valuable based on a defined criterion, whereas Choi
et al. (2024) and Liu et al. (2023) enforce instance-level
information inferred by the model itself. However, the latter
differs from our case since the instance-level information is
not from an external source and thus does not fall into the
prior domain knowledge category.

4. Deep Multiple Instance Learning with
Instance Priors (DeeMILIP)

While instance-level labels are assumed to be unavailable
in MIL scenarios, there are cases where (limited) informa-
tion on instance labels might be obtainable. For example,
in the considered case of immune-based diagnostics, some
(limited and uncertain) information may be available from
separate laboratory experiments regarding which instances
are disease-relevant (more details in Section 5.1). The avail-
ability of such additional information raises the question of
whether and how such auxiliary data can be effectively uti-
lized to improve an MIL model. This consideration is partic-
ularly pertinent when dealing with a limited-size dataset and
a low witness rate, which is the situation in, e.g., immune-
based diagnostics (Greiff et al., 2020).

We here describe our proposed methodology in two steps:
1) how we define our available prior information and 2) how
we formally incorporate the prior into a multiple-instance
learning formulation.

4.1. Defining a prior for the instance class

In attention-based MIL, particularly DeepRC, the attention
layer should output high attention values for instances in-
dicative of the positive class (witnesses). These are the
instances that discriminate between positive and negative
bags and should thus get a high weight in the aggregate
bag representation. The attention value cannot be directly
interpreted as the probability of being a witness. Still, in a
well-trained network, it should be monotonic to the proba-
bility of being positive (see Appendix A).

Here, we assume that we have an additional external source
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Figure 1. The DL components of the Vanilla DeepRC (a), as well as the three proposed strategies to incorporate instance-level probabilistic
domain knowledge: Direct Prior Injection, DPI (b), Attention Modulation, AM (c), and Attention Training, AT (d).

of information regarding the class of instances. In general,
we formulate this as a function π that maps an instance fea-
ture vector to a prior distribution over the probability of this
instance belonging to the positive class. When the external
source only indicates whether the instances have a high or
low probability of being of the positive class (without infor-
mation on uncertainty), this can be simplified to a specific
value ρbi of a Bernoulli distribution for ybi .

In our concrete case, we consider the simplified setting
where the instances feature vectors are mapped to either of
two values, referred to as ϕl and ϕh, respectively, where
0 < ϕl < ϕh < 1.

The instance-level knowledge is assumed to be noisy, as-
signing high prior values to some non-witnesses (denoted
as HW) and low prior values to some witnesses (denoted
as LW). The latter is more challenging since with HWs,
the model just needs to remove the few incorrect HWs in
the small pool of high-prior instances. On the other hand,
with LWs, the model has to learn to identify these LWs in
a much larger pool of low-prior instances (assuming a low
overall witness rate, which is typical).

4.2. Incorporating instance priors into a MIL model

Conceptually speaking, the attention network learns to place
higher weights on the witnesses (disease-relevant sequences)
so that they contribute the most to the bag embedding. In
Vanilla DeepRC, this occurs only through the gradient flow-
ing back from the bag-level loss. In the presence of instance-
level priors, several approaches could be used to achieve
or facilitate this goal. The most straightforward way is

to remove the attention network and directly use the prior
(high or low level) as the attention score for a given in-
stance. A more refined version of this approach is to re-
tain the attention network and boost the attention score of
positive sequences by a prior-associated factor. An alterna-
tive approach is to instead impose a cross-entropy loss on
the attention network to minimize the discrepancy between
the predicted and the prior probability distributions over
the classes, conceptually resembling multi-level multi-task
learning.

We here formally define these three ways of incorporating
probabilistic domain knowledge (abbreviated as PDK from
here onwards) into a MIL model, where the first two follow
explicit prior injection approaches to model the output of
intermediate layers, while the third follows a multi-task
learning formulation.

4.2.1. GENERAL MODELING

We model our observed bag labels with Bernoulli random
variables Y b

Y b|X b ∼ Bern(θ(X b)). (1)

For θ(X b), assume first trainable embeddings hb
i (x

b
i ) =

fυ(x
b
i ) : RK → RM ,M < K modeled through an instance

encoder, for example a convolutional network (LeCun et al.,
1989). Then define the whole bag M -dimensional represen-
tation

zb(X b) =

nb∑
i=1

ybi × ωb
i (x

b
i )× hb

i (x
b
i ).
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where ω is a strategy-dependent function that assigns an
importance score to each instance in a given bag.

Here, ybi are random variables of the unobserved instance-
level labels. We assume ybi to follow a Bernoulli distribution,
i.e.

ybi |ρbi ∼ Bern(ρbi )

with two distinct success probabilities:

ρbi = ϕh, i ∈ Hb ⊆ {1, ..., nb}

and
ρbj = ϕl, j ∈ Lb = {1, ..., nb} \Hb,

corresponding to high and low expectations about Pr(ybi =
1) respectively.

Then θ(X b) is modeled as an MLP mγ(·) : RM → [0, 1]
taking the expected representation r(X b) = Ey[z

b(X b)] as
input:

θ(X b) = mγ(r(X b)). (2)

Motivated by the interpretability enabled by attention-based
pooling (Widrich et al., 2020; Ilse et al., 2018) and by the
fact that a model that effectively identifies the positive in-
stances is more likely to achieve better bag label perfor-
mance (Liu et al., 2012), we propose the following three
modeling choices depicted in Figure 1: Direct Prior Injec-
tion (DPI), Attention Modulation (AM), and Attention Train-
ing (AT). As the main baselines, we consider the vanilla
DeepRC model, referred to as Vanilla from here onwards,
and a version that assigns equal weights to all instances, i.e.,
uses average pooling, referred to as AP. The latter resem-
bles a DPI model having a PDK that assigns the same prior
value to all instances. The exact equations are outlined in
Appendix B for brevity.

FOR DPI

Let
ωb
i (x

b
i ) = n−1

b , i ∈ {1, ..., nb}

effectively reducing the model to using only our PDK about
ybi to model the attention, resulting in

r(X b) = ϕh
nb∑
i=1

n−1
b × hb

i (x
b
i )× 1{i ∈ Hb}

+ ϕl
nb∑
i=1

n−1
b × hb

i (x
b
i )× 1{i ∈ Lb}.

FOR AM

Let

ωb
i (x

b
i ) =

gκ(x
b
i )∑nb

j=1 gκ(x
b
i )
, i ∈ {1, ..., nb} (3)

effectively using the instances to model the attention weights
through some neural network g with parameters κ, and then
interacting with our random ybi in the representation of the
bag b, resulting in the following expected representation:

r(X b) = ϕh
nb∑
i=1

ωb
i (x

b
i )× hb

i (x
b
i )× 1{i ∈ Hb}

+ ϕl
nb∑
i=1

ωb
i (x

b
i )× hb

i (x
b
i )× 1{i ∈ Lb},

where ϕh and ϕl are implemented as hyperparameters of the
model, up to a constant. For DPI, AM, Vanilla, and AP, the
model is trained end-to-end by minimizing the following
bag-level loss over all parameters of the network:

ℓbag = −
B∑

b=1

[
Yb · log p

(
Yb | X b

)
+ (1− Yb) · log

(
1− p(Yb | X b)

)]
,

where p
(
Yb | X b

)
= θ(X b).

4.2.2. AT

We also consider a hybrid AT modeling approach where
ωb
i (x

b
i ) is the same as in AM and Vanilla (3), and we further

directly assume deterministic representations

r(X b) =

nb∑
i=1

ωb
i (x

b
i )× hb

i (x
b
i ).

Here, the additional knowledge of instance-level informa-
tion is incorporated by putting dummy labels for all ybi , and
the model is trained end-to-end by minimizing the following
loss:

ℓtotal = ℓbag + ℓins

with

ℓins = −
B∑

b=1

nb∑
i=1

[
η · ybi · log p

(
ybi | xb

i

)
+ (1− ybi ) · log

(
1− p(ybi | xb

i )
)]
,

where p
(
ybi | xb

i

)
= σ(gκ(x

b
i )), σ is the sigmoid function,

and η is the weight of the instances with a high prior value,
set as a hyperparameter, in order to adjust for the PDK
imbalance.

5. Experiments
Here, we explore how the different proposed approaches to
integrating prior domain knowledge influence training and
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model behavior compared to a vanilla model. We consider
a variety of problem settings and explore overall model
performance as well as the behavior of the attention module
in particular. Specifically, in Section 5.2, we investigate
how Vanilla and AM perform at different witness rates, the
influence of the dataset size on their performance, and their
learning efficiency as a function of the number of weights
updates. In Section 5.3, we compare the different strategies
to explore how the attention module and PDKinteract to
influence the model’s performance. In Section 5.4, we study
the behaviour of the different strategies at varying noise
levels. Finally, in Section 5.5, we look at the behaviour of
the models at the instance level.

We employed a 5-fold nested cross-validation (NCV) ap-
proach to assess each method’s performance, where the
hyperparameter values that give the lowest validation loss
are used to evaluate the model on the test set for each outer
loop. Additional details can be found in Appendix Table 6.

5.1. Dataset

We exemplify our DL MIL methodology on a case where
the objective is to predict the immune status of a person
(e.g., healthy vs. diseased) based on a large set of protein
sequences called adaptive immune receptors (i.e., instances),
comprising a person’s immune repertoire (i.e., bag). We per-
form our experiments on a dataset that mimics the frontier
of immune-based diagnostics, where recently emerged ex-
perimental technology allows us to simultaneously record a
patient’s immune repertoire and get (imperfect) indications
on which particular immune cells are reacting to disease-
relevant cells (Ma et al., 2021; Setliff et al., 2019).

As this emerging technology is not yet cost-effective for
large patient cohorts, we use a hybrid dataset construction
approach inspired by (Widrich et al., 2020) and MNIST-
MIL (Ilse et al., 2018) to ensure control over the underlying
truth, including the ability to emulate different controlled
rates of signal strength (witness rate) (see Appendix D).

Specifically, we use sequences from approximately 1400
experimental repertoires of patients exposed to SARS-CoV-
2 (Nolan et al., 2020) to construct 600 baseline repertoires
containing 25,000 sequences on average through random
sampling (all assumed to be of negative instance class).
We then use the simARR package (Kanduri et al., 2022)
to realistically inject a controlled proportion of immune
receptor sequences experimentally annotated as binding
to the EB Virus (positive instance class) (Bagaev et al.,
2020) into half of the repertoires (positive repertoire class).
We created six versions of the dataset, corresponding to
the controlled proportion of EB Viruses (witness rate) in
positive repertoires ranging from 0.02% to 2%.

To simulate in a controlled way the imperfect information on

antigen binding (disease-relevant) immune cells (the noisy
PDK), we assigned a high prior value to 20% of the EB
Virus sequences (witnesses) (leaving the remaining 80% of
witnesses with a low prior value), as well as assigning a
high prior value to an equal number of randomly selected
sequences (non-witnesses) to serve as HWs. For one exper-
iment (Section 5.5, Figure 2), we further create 20 versions
of the dataset at 0.2% witness rate, where we systematically
vary what fraction of witnesses are assigned a high prior
value (referred to as High-prior Witnesses Rate (HWR) and
what fraction of the high-prior-valued instances are non-
witnesses (referred to as High-prior Non-Witnesses Rate
(HWR)). Similar experiments are conducted in Appendix
I on a MIL version of the MNIST dataset following (Ilse
et al., 2018).

5.2. Priors help learn weaker signals from less available
data, with less compute

Table 1. Bag-level ROCAUC score on the test set, mean ± standard
error, at different witness rates over 5-fold NCV. In the immunol-
ogy setting, the witness rate reflects the proportion of a person’s
immune cells connected to the particular disease state being stud-
ied (here, EBV).

Witness rate Vanilla AM

0.02 % 0.52 ± 0.03 0.66 ± 0.04
0.05 % 0.53 ± 0.02 0.84 ± 0.05
0.1 % 0.50 ± 0.04 0.88 ± 0.05
0.2 % 0.54 ± 0.01 0.99 ± 0.00
1 % 0.78 ± 0.11 1.00 ± 0.00
2 % 0.81 ± 0.12 1.00 ± 0.00

Table 2. Bag-level ROCAUC score on the test set, mean ± standard
error, at different training dataset size over 5-fold NCV at WR =
2%.

Dataset Size Vanilla AM

12 0.56 ± 0.03 0.98 ± 0.02
48 0.52 ± 0.03 1.00 ± 0.00
96 0.63 ± 0.08 1.00 ± 0.00
180 0.72 ± 0.11 1.00 ± 0.00
360 0.81 ± 0.12 1.00 ± 0.00

Incorporating prior information into a DL MIL model may
enable it to acquire a useful bag embedding even in scenarios
of sparse signals characterized by a low witness rate in a
MIL formulation. As seen from Table 1, Vanilla requires
a witness rate of 1% (250 positive instances expected per
bag) to successfully distinguish positive from negative bags
on this dataset. In contrast, incorporating prior information
for the instances allows successful classification already at a
witness rate of 0.05%, representing a twenty-fold reduction
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Table 3. Bag-level ROCAUC score on the validation set, mean ±
standard error, at different steps over 5-fold NCV at WR = 2%.

Step Vanilla AM

0 0.55 ± 0.04 0.44 ± 0.18
1000 0.59 ± 0.06 1.00 ± 0.00
5000 0.69 ± 0.08 1.00 ± 0.00
10000 0.73 ± 0.11 1.00 ± 0.00
50000 0.81 ± 0.12 1.00 ± 0.00
100000 0.81 ± 0.12 1.00 ± 0.00

compared to 1%.

The performance of DL models is also known to rely on
the availability of large datasets, posing a challenge when
confronted with limited dataset sizes. This is particularly
pronounced in MIL, where the signal tends to be sparse,
and the bag size is substantial, thereby complicating the
identification of relevant instances. However, incorporating
prior information allows us to learn a successful classifier
based on only 12 bags in the training data set at a witness
rate of 2% (a thirty-fold improvement over Vanilla, which
requires 360 bags to perform well).

DL is also known to require heavy compute, which can hin-
der development by labs with restricted computing resources
and lead to considerable energy consumption, negatively
impacting the environment. The results in Table 3 show
that using prior information can help the DL model learn
faster, requiring fewer weight updates while also achieving
a higher ROCAUC score. Similar results for AT and DPI
are shown in Appendix E.

5.3. Probabilistic domain knowledge complements
learned attention

Table 4. Bag-level ROCAUC score on the test set, mean ± standard
error, for no PDK, for Prior Injection and for Multi-Task Learning
(MTL), with or without an attention module, over 5-fold NCV, at
WR = 2%.

w/o Attention w/ Attention

No PDK AP: 0.75 ± 0.07 Vanilla: 0.81 ± 0.12
Prior injection DPI: 0.93 ± 0.07 AM: 1.00 ± 0.00

MTL / AT: 1.00 ± 0.00

As introduced in Section 4, PDK can be incorporated ex-
plicitly through prior injection, through the definition of an
auxiliary loss, or not used at all. Furthermore, the DL model
can include or not include an attention learning module.
This gives rise to five different formulations, as shown in
Table 4.

Incorporating PDK or attention-learning in isolation (DPI

and Vanilla, respectively) improved performance over the
AP baseline. When combined, the performance was better
than either alone, both when injecting a prior (AM) and
when using a multi-task learning formulation (AT).

Additional baselines are considered in Appendix G.

5.4. The DL MIL model benefits also from noisy domain
knowledge

The domain knowledge that is available at the instance level
may be very noisy in the sense that only a small proportion
of witnesses may be assigned a high prior (and/or many
high-prior instances being non-witnesses).

To this end, we systematically explore the performance of
DPI, AM, and AT when HWRs and HWRs vary from 5%
to 100% and from 0% to 80%, respectively. Figure 2 shows
that even the naive approach of incorporating PDK, i.e., DPI,
already improves the performance compared to Vanilla at
sufficiently high HWRs. More interestingly, AM and AT can
benefit even from the least informative PDK, at HWR = 5%
and HWR = 80%, and lead to well-performing models.

5.5. Probabilistic domain knowledge even boosts
attention learning

Table 5. Average difference of instance-level PRAUC(×100) score
against a random classifier on the test set, mean ± standard error,
at WR = 2%, HWR = 20%s and HWR = 50% for different
strategies over 5-fold NCV. The class in each column is considered
the positive class against LWs, i.e., non-witnesses with low prior
values, as the negative class. Higher is better in the first and third
columns, and lower is better in the second.

HW HW LW

Vanilla 1.429 ± 0.522 0.006 ± 0.005 1.422 ± 0.440
AM 7.715 ± 1.072 0.011 ± 0.006 1.619 ± 0.390
AT 21.516 ± 2.603 0.502 ± 0.180 1.834 ± 0.455

Since we assume that the available PDK can be noisy (low
HWRs and high HWRs), a model’s ability to recover wit-
nesses with a low prior and ignore non-witnesses with high
priors can be highly desirable for learning robust models.

Table 5 shows the ability of the AM and AT approaches to
boost the high-prior witnesses through the attention module,
recover witnesses with low prior values and ignore non-
witnesses with high prior values. As expected, the instance-
level PRAUC for high-prior witnesses against low-prior
non-witnesses is substantially increased when introducing a
cross-entropy loss against the PDK for the attention module
output (AT). Interestingly, despite not being trained at the
instance level, the attention modulation strategy (AM) also
leads to a considerable increase in PRAUC for the raw atten-
tion values. It is also noteworthy that both approaches (AM
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Figure 2. Test ROCAUC scores of different strategies at WR = 0.2% over different HWRs and HWRs. In the immunology setting,
the HWR reflects what fraction of the disease-relevant cells are already annotated as disease-relevant in auxiliary databases, while the
HWR) rate reflects the fraction of false positive annotations in these databases. Text color is chosen for clarity purposes.

and AT) are able to recover low-prior witnesses better than
Vanilla (more evident at WR = 0.2%, as shown in Table 10
in the Appendix), and that especially AM is able to almost
completely ignore high-prior non-witnesses (while still as-
signing high attention to the high-prior witnesses). Density
plots of attention scores for each of the four instance types,
i.e., HW, HW, LW, LW, can be found in the Appendix for
WR = 2% (Figure 3) and WR = 0.2% (Figure 4).

Discussion
The incorporation of quantitative domain knowledge is a
promising direction for improving the generalization of DL
in settings with limited data. While the Bayesian frame-
work is well suited for knowledge integration, its appli-
cation in DL, particularly through BNNs (Jospin et al.,
2022), has mainly centered on quantifying uncertainty, typi-
cally through the incorporation of generic priors like zero-
centered Gaussian or Laplace distributions on model pa-
rameters (Murphy, 2012; Fortuin, 2022). We have in this
work focused on the integration of auxiliary quantitative
information for a domain, which we refer to as probabilistic
domain knowledge (PDK), into a DL model. The prior we
are interested in does not operate at the parameter level, as
with BNNs. Instead, it pertains to the values of intermedi-
ate features extracted by the model, which, in turn, are a
function of the model’s parameters.

While the learned transformations of DL make it impossi-
ble, in general, to connect entities in the domain (for which
external PDK is available) to particular model components,
we here rely on the particular structure of MIL, and a pre-
viously proposed modularized DL MIL model in particular
(Widrich et al., 2020), to make such a connection. This
allows us to inject prior knowledge into the outputs from
specific components of the model. In our applied case, the
attention output is connected to the probability that indi-
vidual immune cells react to disease-relevant molecules,
enabling us to incorporate PDK defined for individual im-
mune cells to the attention module’s output. We further

compare this prior injection approach to the approach of
defining multiple related subtasks in a multi-task learning
formulation as a way to incorporate PDK.

As expected, incorporating PDK allows us to learn a good
MIL model even in settings with weaker signals (lower
witness rate), less data, and less compute. This performance
is not solely due to the up-weighting of high-prior witnesses
in the bag embedding - introspection of attention values
showed that the module itself learns to assign high attention
to high-prior (and even low-prior) witnesses. Such learning
occurs at witness rates for which a model without prior does
not learn any useful attention function, which for AM could
be due to the prior amplifying the flow of gradients through
relevant instances (HW).

While we focus on a particular setting of adaptive immunol-
ogy, we believe this type of prior information may be useful
for MIL in multiple settings and domains. For instance, in
biomedical imaging, a microscopy image requiring final
classification for the entire image typically contains many
cells, some of which experts label as being disease-relevant.
In quality control, products like washing machines must
be categorized into different quality levels, with individual
sub-components potentially labeled by experts, but the final
label is determined by the quality control process or the
consumer. Similarly, in drug discovery, drug combinations
or mixtures are assessed for their properties, with some
molecules labeled and others unlabelled. This makes our
approach applicable to a wide range of applications where
(partial) instance-level information is available.

Limitation and future directions Our ability to incorpo-
rate a prior relied on particular characteristics of the MIL
problem (latent instance classes) and DL architecture (a sep-
arate attention module). An interesting question is which
other problem formulations might provide such opportuni-
ties to connect DL model components with domain entities
and whether such cases might shed light on additional as-
pects of the behavior of deep learning models when prior
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information is incorporated. For the DL MIL context, it
would also be interesting to better understand the effects
(in terms of gradient flow and representational spaces) on
different components of the model (instance embedding,
attention, bag classifier) when PDK is incorporated. Finally,
the PDK we considered only indicated two prior levels (high
and low) for the instance class. Considering a richer PDK
could allow a more detailed exploration of the effects of
prior uncertainty as well as prior level, including investiga-
tion of how such information could be incorporated as e.g. a
beta-distributed hyper-prior for class probability rather than
directly injecting a single class probability as done here.

Impact Statement
As the proposed strategies allow us to learn generalizable
models from less data, this directly translates to minimiz-
ing both financial and human resources allocated to data
collection. Additionally, since incorporating PDK, enables
models to achieve high performance with fewer training
steps than the vanilla model, this has the potential of re-
ducing the amount of time and compute required to train
such models. Interestingly, the proposed methods require
no additional computation which contributes even more to
less compute requirements. A detailed description of the
compute requirements can be found in Appendix J.

Conclusion
Here, we showed that the structured nature of MIL permits
a direct mapping between entities in a domain and com-
ponents of a modularised DL MIL model. We proposed
multiple strategies to exploit this mapping for prior knowl-
edge incorporation. Interestingly, the injection of a prior on
the output of the attention module not only complemented
the learned attention but even improved the learning in the
attention module itself. Compared to a vanilla model, both
the injection of a prior and the definition of an additional
instance-level task allowed the model to learn successful
classifiers at a considerably lower witness rate, based on
less available data and with less compute.
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Appendix

A. Justification for the Probabilistic Interpretation of Attention Values in MIL
According to the standard MIL assumption, instances are of two distinct latent classes (of an unobserved positive or negative
label), where the distribution of feature values is conditional only on this latent instance class. Labels are only observed at
the bag level, where positive bags are a mixture of positive and negative instances (of unobserved labels), while negative
bags exclusively contain negative instances.

To avoid that the bag aggregation will drown the signals of (systematic feature value differences for) positive instances
in sampling noise of feature values contributed by negative instances in bags, the aggregation can instead be a weighted
average of instances. The weights can be learned as a function from instance feature values to weight. In deep learning
terminology, this can be described as a learned attention for the set of instance feature values.

Since only positive instances contribute a discriminative signal for the bag embedding, the exclusive aim for such a function
is to assign high weights to positive instances. A higher estimated probability for an instance to be positive should thus
correspond to a higher weight. If we define d(x) as the (true) probability of an instance being positive given its feature
values, i.e., d(x) = P (y = 1|x), then our aim is to learn some function g, such that σ(gκ(x)) is monotonic to d(x), where
σ is the sigmoid function.

B. Vanilla DeepRC and Average Pooling
As with AT, we directly assume deterministic representations in Vanilla and AP. The pooling equations of the baseline
methods, then, become as follows:

Vanilla

r(X b) =

nb∑
i=1

ωb
i (x

b
i )× hb

i (x
b
i )

i.e., the same as AT, except that the objective does not include a term for the instance-level loss.

Average Pooling (AP)

r(X b) =

nb∑
i=1

n−1
b × hb

i (x
b
i )

C. Training details
In each of the main experiments, 5-fold nested cross-validation was used where, in each outer loop, one training-validation
split was made for model selection, and then the best model was evaluated with the best HP set. Each model was trained for
30,000 updates, unless otherwise specified, using the Adam optimizer (Kingma & Ba, 2017) with a learning rate of 1e−4.

Table 6. Tested hyperparameter values for each of the different strategies.

Strategy Hyperparameter Value

Vanilla λℓ2 {1e−4, 1e−3, 0}
DPI ϕh {20, 100, 500}
AM ϕh {20, 100, 500}
AT η {100, 500, 1000}
AP None /

For DPI and AM, ϕl is set to 1. This is equivalent to modelling ϕl and ϕh as:
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ϕl =
1

value+ 1
and ϕh =

value

value+ 1

to match their probabilistic interpretation, proposed in Section 4.2.1.

D. Additional Dataset Information
As the technology to simultaneously record a patient’s immune repertoire and get (imperfect) indications on which immune
receptors are reacting to disease-relevant cells (Ma et al., 2021; Setliff et al., 2019) is not yet cost-effective for large
patient cohorts, available experimental data is currently of two separate types (Greiff et al., 2020): A) repertoires: large
sets of (largely) non-annotated immune receptor sequences from individuals having a particular immune state (disease)
(Emerson et al., 2017), B) immune receptor sequences: sets of immune receptor sequences labeled with their particular
(disease-relevant) target molecule (antigen) (e.g., (Bagaev et al., 2020)).

Since the set of antigen-binding immune receptors (type B) is still vastly undersampled due to technological limitations
(Akbar et al., 2022; Valkiers et al., 2020), directly screening for these in patient repertoires (type A) currently gives
incomplete annotations of disease-relevant immune receptors. For this reason, we used a hybrid dataset construction
approach to have control of the underlying ground truth in our experiments. This dataset construction approach also allowed
us to vary the signal strength (witness rate) in a controlled way in the experiments.

E. Additional Results

Table 7. Bag-level ROCAUC score on the test set, mean ± standard error, at different witness rates over 5-fold NCV.

Witness rate AT DPI

0.02 % 0.74 ± 0.05 0.55 ± 0.02
0.05 % 0.79 ± 0.04 0.54 ± 0.03
0.1 % 0.95 ± 0.01 0.54 ± 0.04
0.2 % 0.97 ± 0.01 0.67 ± 0.06
1 % 0.99 ± 0.01 0.89 ± 0.05
2 % 1.00 ± 0.00 0.93 ± 0.07

Table 8. Bag-level ROCAUC score on the test set, mean ± standard error, at different training data set sizes over 5 runs at WR=2%.

Dataset Size AT DPI

12 0.98 ± 0.01 0.87 ± 0.04
48 0.95 ± 0.03 0.91 ± 0.06
96 0.99 ± 0.01 0.88 ± 0.07
180 0.99 ± 0.01 0.94 ± 0.06
360 1.00 ± 0.07 0.93 ± 0.00

Table 9. Bag-level ROCAUC score on the validation set, mean ± standard error, at different steps over 5-fold NCV at WR = 2%.

Step AT DPI

0 0.55 ± 0.04 0.50 ± 0.00
1000 0.52 ± 0.10 0.84 ± 0.04
5000 0.99 ± 0.01 0.84 ± 0.07
10000 1.00 ± 0.00 0.85 ± 0.06
50000 1.00 ± 0.00 0.85 ± 0.09
100000 1.00 ± 0.00 0.85 ± 0.07
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Table 10. Average difference of instance-level PRAUC(×100) score against a random classifier on the test set, mean ± standard error, at
WR = 0.2% for different strategies over 5-fold NCV.

HW HW LW

Vanilla 0.000 ± 0.002 0.008 ± 0.006 -0.002 ± 0.008
AM 8.984 ± 1.932 0.011 ± 0.005 0.305 ± 0.220
AT 36.35 ± 1.623 0.074 ± 0.029 0.733 ± 0.447

F. Density Plots

Figure 3. Density plots of the attention scores on the test set for the best and the worst performing models, in terms of cross-entropy loss
on the test set, the Vanilla, AM, and AT strategies at WR = 2%. The log scale is used for the y-axis for clarity, i.e., log(percentage).

G. Additional Baselines
To compare the results of ROCAUC scores in a broader context, we added four baselines. Namely, a logistic regression
model with L1 regularization (L1 LogReg), a logistic regression model with L2 regularization (L2 LogReg), a support vector
classifier with L2 regularization (L2 SVC), and a variation of DeepRC that uses Conjunctive pooling (Conj) Early et al.
(2023).

Table 11. Bag-level ROCAUC score on the test set, mean ± standard error, at different witness rates over 5-fold NCV.

Witness rate L1 LogReg L2 LogReg L2 SVC Conj

0.01 % 0.57 ± 0.00 0.55 ± 0.02 0.54 ± 0.01 0.51 ± 0.01
0.02 % 0.50 ± 0.02 0.53 ± 0.03 0.51 ± 0.02 0.54 ± 0.02
0.1 % 0.49 ± 0.02 0.51 ± 0.02 0.46 ± 0.02 0.49 ± 0.03
0.2 % 0.63 ± 0.02 0.60 ± 0.03 0.59 ± 0.02 0.47 ± 0.01
1 % 0.91 ± 0.01 0.91 ± 0.01 0.82 ± 0.01 0.63 ± 0.06
2 % 0.99 ± 0.00 0.99 ± 0.00 0.95 ± 0.00 0.85 ± 0.09
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Figure 4. Density plots of the attention scores on the test set for the best and the worst performing models, in terms of cross-entropy loss
on the test set, the Vanilla, AM, and AT strategies at WR = 0.2%. The log scale is used for the y-axis for clarity, i.e., log(percentage).

To compare how the proposed strategies compare to a model that predicts solely on the prior knowledge, we train a logistic
regression model that predicts the disease state based on the counts of instances with a high prior, regardless of whether they
are witnesses. We do that across a combination of HWRs and HWRs in addition to having no prior at all. In the case of no
prior, AT and AM default back to Vanilla since AT then has no instance-level loss, and AM would scale all attention weights
in the same way, which is equivalent to no scaling since the softmax operation cancels the common factor. DPI, on the other
hand, defaults back to AP since all the instances would be given the same pre-softmax attention weight.

Table 12. Bag-level ROCAUC score on the test set, mean ± standard error, at combinations of HWR and HWR (represented as
HWR/HWR) over 5-fold NCV at WR = 0.2%.

Model Vanilla AT AM DPI LogReg
No Prior 0.54 ± 0.01 0.54 ± 0.01 0.54 ± 0.01 0.50 ± 0.01 0.50 ± 0.00

5/80 0.54 ± 0.01 0.82 ± 0.02 0.82 ± 0.02 0.59 ± 0.04 0.69 ± 0.01
20/80 0.54 ± 0.01 0.97 ± 0.01 0.99 ± 0.00 0.66 ± 0.06 0.88 ± 0.02
50/50 0.54 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 0.83 ± 0.07 1.00 ± 0.00
100/0 0.54 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 0.90 ± 0.08 1.00 ± 0.00

H. Further Hyperparameter Optimization for Vanilla DeepRC
For compute resources reasons, we have restricted the number of hyperparameter values to three and the number of updates
in all the experiments to 30,000. Nonetheless, to ensure that these are not the restricting factors that prevent the vanilla model
from performing well, we conduct a more extensive hyperparameter search for the vanilla model with 100,000 updates. The
tested HP values are adopted from Table A15 in the original DeepRC paper (Widrich et al., 2020), reproduced here for ease
of reference in Table 13. We exclude the number of attention heads from the set of optimized hyperparameters.

For computational reasons, instead of using a grid search, we use the middle value of each tuple as the default value and then
try the other values of each hyperparameter while keeping the others at the default value, giving eight different hyperparameter
combinations, in addition to the default values of all hyperparameters, resulting in a total of nine combinations per fold.
Following (Widrich et al., 2020), we run three folds of a 5-fold NCV setup. The validation ROCAUC of these three folds are
shown in Figures 5, 6, 7 with smoothing using an exponential moving average for clarity purposes with smoothing constant
α = 0.35. The test ROCAUC score has a mean of 0.4696 and a standard error of 0.0158.
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Table 13. Hyperparameters of the model with the values to test as proposed in (Widrich et al., 2020).

learning rate 10−4

number of attention heads {1; 16; 64}
β of attention softmax {0.1; 1.0; 10.0}
l2 weight penalty {1.0; 0.1; 0.01}
number of kernels {8; 32; 128}
number of CNN layers {1}
number of layers in key-NN {2}
number of units in key-NN {32}
kernel size {5; 7; 9}
subsampled sequences 10,000
batch size 4

Figure 5. Validation ROCAUC score for the first fold as a function of the number of updates.

I. MNIST-MIL
For these experiments, bags were constructed following Ilse et al. (2018), where each bag consists of several MNIST images,
and images holding the number 9 are assigned as the positive instance class. To make the problem more challenging, we use
a bag size of mean 500 and variance 5 compared to the smaller bags used in Ilse et al. (2018). Additionally, to allow for
more precise investigation, we manually specify the witness rate instead of using the default value of 0.1 (since the classes
in MNIST are in equal proportions) and use low values to make the data set challenging. All the experiments are run using
HWR = 20% and HWR = 50%.

For these experiments, we use the attention pooling-based ADMIL model (Ilse et al., 2018) as the base model. Additionally,
in order to showcase the versatility of our proposed approaches and their applicability to any embedding-space or instance-
space MIL method, we run the same experiments on two variations of the ADMIL model, one with conjunctive pooling
(Early et al., 2023) and one with additive pooling (Javed et al.). Note that in the Additive pooling method, we already apply
the prior information at the attention network level. On the other hand, since the Conjunctive pooling method inherently
admits a classifier, we inject the prior information into the classifier instead.
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Figure 6. Validation ROCAUC score for the second fold as a function of the number of updates.

Figure 7. Validation ROCAUC score for the third fold as a function of the number of updates.

I.1. Attention pooling

Table 14. Bag-level ROCAUC score on the test set, mean ± standard error, at different witness rates over 5 NCV runs for the Attention
pooling-based model on the MNIST-MIL dataset.

Witness rate Vanilla AM AT DPI

0.5 % 0.57 ± 0.05 0.55 ± 0.08 0.92 ± 0.02 0.00 ± 0.00
1.0 % 0.64 ± 0.06 0.62 ± 0.09 0.95 ± 0.02 0.00 ± 0.00
1.5 % 0.67 ± 0.04 0.62 ± 0.11 0.97 ± 0.01 0.00 ± 0.00
2.0 % 0.69 ± 0.04 0.88 ± 0.09 0.99 ± 0.01 0.00 ± 0.00
3.0 % 0.87 ± 0.07 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00
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Table 15. Bag-level ROCAUC score on the test set, mean ± standard error, at different training set sizes over 5 NCV runs, at a witness
rate of 3% for the Attention pooling-based model on the MNIST-MIL dataset.

Dataset size Vanilla AM AT DPI

18 0.65 ± 0.09 0.68 ± 0.09 0.98 ± 0.02 0.64 ± 0.06
27 0.79 ± 0.08 0.73 ± 0.17 0.99 ± 0.00 0.78 ± 0.05
54 0.68 ± 0.16 0.89 ± 0.11 1.00 ± 0.00 0.85 ± 0.05
81 0.76 ± 0.09 1.00 ± 0.00 1.00 ± 0.00 0.92 ± 0.06
108 0.87 ± 0.07 1.00 ± 0.00 1.00 ± 0.00 0.92 ± 0.06

I.2. Additive pooling

Table 16. Bag-level ROCAUC score on the test set, mean ± standard error, at different witness rates over 5 NCV runs for the Additive
pooling-based model on the MNIST-MIL dataset.

Witness rate Vanilla AM AT

0.5 % 0.52 ± 0.07 0.73 ± 0.05 0.58 ± 0.06
1.0 % 0.61 ± 0.06 0.76 ± 0.04 0.69 ± 0.10
1.5 % 0.52 ± 0.07 0.78 ± 0.05 0.81 ± 0.02
2.0 % 0.65 ± 0.06 0.80 ± 0.05 0.93 ± 0.00
3.0 % 0.74 ± 0.08 0.87 ± 0.02 0.99 ± 0.01

Table 17. Bag-level ROCAUC score on the test set, mean ± standard error, at different training set sizes over 5 NCV runs, at a witness
rate of 3% for the Additive pooling-based model on the MNIST-MIL dataset.

Dataset size Vanilla AM AT

18 0.70 ± 0.09 0.65 ± 0.14 0.97 ± 0.01
27 0.71 ± 0.08 0.77 ± 0.11 0.98 ± 0.02
54 0.71 ± 0.08 0.68 ± 0.20 1.00 ± 0.00
81 0.74 ± 0.10 0.75 ± 0.16 1.00 ± 0.00
108 0.74 ± 0.08 0.87 ± 0.02 0.99 ± 0.01

I.3. Conjunctive pooling

Table 18. Bag-level ROCAUC score on the test set, mean ± standard error, at different witness rates over 5 NCV runs for the Conjunctive
pooling-based model on the MNIST-MIL dataset.

Witness rate Vanilla AM AT DPI

0.5 % 0.50 ± 0.07 0.71 ± 0.04 0.76 ± 0.08 0.70 ± 0.04
1.0 % 0.50 ± 0.08 0.74 ± 0.03 0.90 ± 0.03 0.73 ± 0.04
1.5 % 0.65 ± 0.04 0.75 ± 0.02 0.93 ± 0.02 0.74 ± 0.03
2.0 % 0.54 ± 0.08 0.79 ± 0.04 0.97 ± 0.01 0.77 ± 0.04
3.0 % 0.57 ± 0.11 0.80 ± 0.02 0.99 ± 0.01 0.83 ± 0.03
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Table 19. Bag-level ROCAUC score on the test set, mean ± standard error, at different training set sizes over 5 NCV runs, at a witness
rate of 3% for the Conjunctive pooling-based model on the MNIST-MIL dataset.

Dataset size Vanilla AM AT DPI

18 0.58 ± 0.09 0.55 ± 0.13 0.95 ± 0.03 0.68 ± 0.05
27 0.71 ± 0.15 0.65 ± 0.12 1.00 ± 0.00 0.77 ± 0.05
54 0.88 ± 0.10 0.63 ± 0.17 1.00 ± 0.00 0.87 ± 0.05
81 0.69 ± 0.14 0.85 ± 0.08 1.00 ± 0.00 0.90 ± 0.05
108 0.57 ± 0.11 0.80 ± 0.02 0.99 ± 0.01 0.83 ± 0.00

J. Compute Requirements
All the proposed strategies in DeeMILIP do not add trainable parameters to the model. The only additional computation in
AT is an optimization step for the instance-level loss since the attention network is used as the pseudo-classifier for probing
the instance classes. However, no additional matrix operations are involved in the model itself. The same can be said about
AM in terms of having no additional parameters, though there is an extra vector-vector dot product step when combining the
model’s attention vector with the labels vector from the PDK. On the other hand, in DPI, the entire attention network is
actually removed, so there are actually fewer parameters in this case.
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