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ABSTRACT

Generative video models, a leading approach to world modeling, face fundamental
limitations. They often violate physical and logical rules, lack interactivity, and
operate as opaque black boxes ill-suited for building structured, queryable worlds.
To overcome these challenges, we propose a new paradigm focused on distilling a
single image into a tractable, abstract representation optimized for simulation. We
introduce VLASim, a framework where a Vision-Language Model (VLM) acts as
an intelligent agent to orchestrate this process. The VLM autonomously constructs
a grounded (2D or 3D) scene representation by selecting from a suite of vision
tools, and accordingly chooses a compatible physics simulator (e.g., rigid body,
fluid) to act upon it. VLASim can then infer latent dynamics from the static scene
to predict plausible future states. Our experiments show that this combination of
intelligent abstraction and adaptive simulation results in a versatile world model
capable of producing high quality simulations across a wider range of dynamic
scenarios.

1 INTRODUCTION

Understanding and forecasting how the visual world evolves is a core challenge for building intelli-
gent systems. Humans can observe a static scene and infer not only its current structure but also how
it might change over time and in response to different actions. This capability underlies essential
skills such as planning, decision-making, and causal reasoning. Replicating this physical intuition
in AI hinges on creating robust “world models” to predict potential futures. In recent years, the
dominant paradigm for building such models has been large-scale video generation. By training on
immense visual corpora, these models have achieved remarkable success in synthesizing complex,
dynamic scenes with impressive visual realism, suggesting they are learning a powerful, albeit im-
plicit, model of our world only from 2D observations and text descriptions Wan et al. (2025); Google
Deepmind (2025b). However, as most video models are only conditioned on image and text inputs,
they lack a native mechanism for physical interaction, which limits their utility for tasks that require
physical intuition. While some models incorporate action conditioning (Song et al., 2025; Google
Deepmind, 2025a), the action space is typically limited to simple transformations, such as changes
in camera viewpoint, rather than complex physical interventions.

Despite their visual prowess, pixel-space models result in critical and systematic failures that limit
their use for robust interaction (Motamed et al., 2025; Kang et al., 2024). First, they frequently
generate physically implausible scenarios. Video models learn statistical correlations from pixels
and do not enforce any physical plausibility constraints, which results in their outputs often violating
fundamental principles of object permanence, collision, and causality. For example, the number and
size of objects can change erratically, or objects can accelerate without a corresponding force. This
failure to deduce underlying principles is not limited to 3D physics; these models are equally unable
to infer the structured representations and simple, deterministic rules required to simulate abstract
2D environments like Conway’s Game of Life Conway et al. (1970). Second, these models operate
as opaque ‘black boxes’. The generated scene is not a structured, queryable world but a sequence
of pixels. Consequently, it is impossible to inspect the environment’s underlying state or apply
novel physical actions beyond those observed during training. Ultimately, the world inside these
models is a passive movie to be watched, not a dynamic environment to be acted upon. To build
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useful world models, we need approaches that yield structured, interactive, and physically grounded
representations.

Separate from generative video models, another significant line of research has focused on recon-
structing 3D or 4D scene representations from images. Foundational models like DUST3R (Wang
et al., 2024) have demonstrated impressive capabilities in producing dense and accurate geometric
reconstructions, while methods based on Neural Radiance Fields (NeRFs) Mildenhall et al. (2021)
excel at generating photorealistic novel views. However, the primary objective of both lines of
work is to capture a scene’s geometry and appearance, not its underlying physical nature. This
focus on 3D geometry also renders them, by design, inapplicable to abstract 2D environments gov-
erned by logical rules, such as cellular automata like Conway’s Game of Life and grid-based games
like Snake. The resulting representations, e.g., point clouds or radiance fields, are not amenable
to tractable simulation. Most methods do not decompose scenes into simplified primitives or, cru-
cially, infer the physical properties (e.g., mass, friction, elasticity) necessary for a physics engine.
Consequently, while these methods can show what a scene looks like from a new angle, they cannot
predict what will happen next in response to physical forces, leaving a critical gap for simulation-
ready world models. While some follow-up work has attempted to retrofit these representations for
3D physics (Zhang et al., 2024b; Petitjean et al., 2023), such efforts are typically restricted to narrow
classes of simulation and fall short of a truly versatile and generalizable system.

Abstract Scene
Representation
+ Simulator

Simulation
for future
prediction

Simulation
with user
intervention

Inferred Action

"A row of colorful wooden blocks lined up on a wooden
table with a wooden stick attached to a black rotating
platform. The platform rotates clockwise and the wooden
stick hits the first block as it rotates. Static shot with no
camera movement."

Figure 1: Overview of VLASim.

In this paper, we introduce VLASim,
a novel framework for world mod-
eling that moves away from direct
pixel prediction and instead builds an
explicit, structured world represen-
tation. Instead of predicting pixels,
our primary goal is to distill a visu-
ally complex image into a tractable
abstract representation, illustrated in
figure 1. This representation in-
tentionally discards physically irrel-
evant information (like fine-grained
textures or static backgrounds) to cre-
ate a structured world model optimized for simulation. Our framework achieves this through a
Vision-Language Model (VLM) that acts as a central agent, orchestrating three core innovations.
First, the VLM acts as an intelligent tool-using agent to construct a grounded representation. It is
equipped with a versatile suite of vision modules, including segmentation, 3D reconstruction, and
primitive fitting, and autonomously decides which tools to deploy. This allows the representation to
be grounded in the scene’s native dimensionality; for instance, applying the full 3D pipeline for spa-
tial environments while recognizing that such tools are irrelevant for planar ones, such as Conway’s
Game of Life. Second, the choice of representation and simulator is co-dependent and adaptive.
The VLM jointly determines the type of abstraction and the most appropriate physics simulator to
act upon it: a scene with blocks is abstracted into a rigid body model and paired with a rigid body
solver, while one with water is represented as a particle system paired with a fluid dynamics engine.
Finally, this structured world model enables VLASim to infer latent dynamics, predicting a scene’s
likely evolution from the static image alone based on physical cues and the text description of the
scene. Through comprehensive experiments, we show this combination of intelligent abstraction,
adaptive simulation, and inferred dynamics results in a world model that significantly outperforms
prior methods in producing high-quality, physically and logically plausible simulations across a
wide range of scenarios.

2 PREVIOUS WORK

Video Models Recent advances in generative methods have established large-scale video models
as a dominant paradigm for modeling world dynamics. State-of-the-art models have demonstrated
a remarkable ability to synthesize high-fidelity and temporally coherent videos from text and image
inputs (OpenAI, 2024; Google Deepmind, 2025b; Runway, 2025; Wan et al., 2025). These mod-
els use diffusion or flow-matching approaches in a compressed latent space for video generation.
While most models only condition on image and text inputs, some recent methods have enabled
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Figure 2: Illustration of our method. VLASim takes a single image and text description as input.
We design a generation prompt that the VLM uses to generate a scene abstraction, along with a
simulator of the scene and any actions that can be inferred from the input. The simulator code
is then executed to generate the future predictions. We can also generate other diverse videos by
interactively changing the actions. Finally, a code and refinement step is capable of automatically
correcting any errors in the predictions and generate fixes to the intial prediction.

conditioned on other parameters, such as camera parameters, for more controllable video genera-
tion (Huang et al., 2025; Song et al., 2025; Google Deepmind, 2025a). However, it is very difficult
to interact with these models outside of the control parameters used during training. It is generally
impossible to query the state of an object, apply a novel physical force, or explore alternative out-
comes under different conditions. These models do not explicitly reason in a structured space, and
instead directly perform computations in frame space. This leads their outputs to frequently violate
fundamental principles of the real world (Motamed et al., 2025; Li et al., 2025; Kang et al., 2024).
Common failure cases include the violation of object permanence, where objects may inexplicably
appear or vanish, and inconsistent causality, where actions do not have plausible consequences. The
lack of explicit, structured reasoning and interactivity in pixel-space video models limits their utility
as robust world models, motivating our shift towards an explicit, simulation-based approach.

Scene Reconstruction and Simulation 3D reconstruction from images has achieved considerable
success in recent years. Models like DUST3R (Wang et al., 2024) and its follow-ups (Zhang et al.,
2024a; Wang et al., 2025; Feng* et al., 2025) produce dense geometric reconstructions from im-
ages, while methods based on Neural Radiance Fields (NeRFs) (Yu et al., 2021; Tewari et al., 2023)
and 3D Gaussians (3DGS) (Szymanowicz et al., 2024; Charatan et al., 2024) and their 4D exten-
sions (Wu et al., 2024; Tretschk et al., 2021; Yang et al., 2023; Yunus et al., 2024) excel at generating
photorealistic novel views. While most approaches do not inherently decompose the scene into dis-
crete, object-centric components, some methods have made progress with the help of features from
vision-language models Kerr et al. (2023); Jatavallabhula et al. (2023). Additionally, most neural
radiance methods are optimized for appearance rather than physics, making them poorly suited for
interactive simulation. Some work has attempted to model physics, for instance, by combining 3D
representations with physics engines (Zhang et al., 2024b; Petitjean et al., 2023; Feng et al., 2024;
Li et al., 2023; Wu et al., 2015; Le et al., 2025; Chen et al., 2025; Kairanda et al., 2025; Xie et al.,
2024), but they all only model limited physical phenomena. Concurrent work, PhysGen3D Chen
et al. (2025), reconstructs object-centric 3D scenes and performs simulation with a fixed material
point method. In addition, it only takes an image as input and cannot reason about input text. In
this work, we use tools from scene reconstruction and simulation methods but do not used a fixed
pipeline as the VLM is free to select scene representations and simulators best suitable for any input.

Program Synthesis with VLMs Our work is informed by recent advances in using Vision-
Language Models (VLMs) as agents that synthesize programs to solve complex visual tasks. A
foundational paradigm is visual program synthesis for querying. Methods like ViperGPT (Surı́s
et al., 2023) and VisProg (Gupta & Kembhavi, 2023) can parse a complex visual query into a se-
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quence of steps, generating code that calls various vision APIs (e.g., object detectors, depth esti-
mators) to arrive at a final answer. LayoutGPT Feng et al. (2023), which uses an LLM to generate
a complete scene layout, including the sizes, positions, and relationships of different objects Other
research has shown that a VLM can evolve interpretable visual classifiers (Chiquier et al., 2024) and
design interpretable programs to describe underlying scientific laws Mall et al. (2025). A second
major application is in high-level planning and robotics. This research aims to create agents that
can reason about the world to perform actions. VisualPredicator (Liang et al., 2024), for example,
learns neuro-symbolic predicates that classify the state of the world for a symbolic planner. Others,
like VoxPoser Huang et al. (2023), use LLMs to synthesize 3D affordances that guide a low-level
motion planner. The common thread in this research is that the VLM’s role is to generate a plan or
a set of actions for an agent to execute within an existing environment.

3 VLASIM: WORLD MODELLING VIA VLM-DIRECTED ABSTRACTION AND
SIMULATION FROM A SINGLE IMAGE

The input to VLASim is a pair consisting of a single image and a text prompt that describes the scene.
The goal of VLASim is to convert this static input into a dynamic, interactive world model. This
process is orchestrated by a central Vision-Language Model (VLM), which generates a complete
“world program” in Python ready for execution. This program consists of three key components:
(1) A Grounded Abstract Representation: The VLM selects from a suite of vision tools to construct
a 2D or 3D model of the scene, optimized for simulation, (2) Inferred Latent Dynamics: It predicts
the most likely implicit action from the visual and textual cues, which serves as the initial condition
for the simulation, (3) A Selected Simulator: It determines the most compatible simulation engine
(e.g., rigid body, fluid, rule-based) to simulate the scene’s dynamics. Once generated, this world
program is executed to predict a plausible future. Because the program describes an explicit and
structured world, it can also be modified with novel user-defined actions to imagine diverse futures.

3.1 PROMPTING FOR WORLD PROGRAM GENERATION

The core of VLASim lies in guiding a powerful Vision-Language Model (VLM) to generate a com-
plete, executable world program. Instead of fine-tuning, we steer the model’s behavior at inference
time using a comprehensive, multi-part prompt. The prompt begins with a high-level task specifica-
tion in natural language. This instruction outlines the overall objective: to analyze a user-provided
image and text description and produce a self-contained Python script that simulates the scene’s
future. This main directive then embeds two more structured components to formalize the task:
environment specification that provides the structural code template, and tool specification, which
provides the API definitions for the suite of perception tools the VLM can use.

Task Specification The task specification is a high-level, natural language instruction. It directs
the VLM to analyze the user-provided inputs and produce a self-contained Python script that simu-
lates the scene’s future, making use of the other prompts to structure its output and call the necessary
tools. A condensed version is shown in Figure 3.

Environment Specification The environment specification provides the formal scaffolding for the
VLM’s code generation task. Its central element is a Python Simulator base class that the VLM must
use to derive the model from. This base class defines the core methods the VLM must implement,
enforcing the entire simulation logic from scene setup to frame-by-frame execution. Additionally,
the environment provides the VLM with a list of existing python libraries that it can rely on, pointing
it to common simulation implementations. This ensures the VLM’s output is structurally compatible
with our execution environment, as illustrated in Figure 5.

Tool Specification Finally, the tool specification provides the VLM with the API of a diverse
toolkit used for scene understanding and simulation setup. These helper functions are not required
to be used by the VLM, but often help in the final solution. The API is organized into several cate-
gories: (1) Core Perception tools for open-vocabulary segmentation and 3D point cloud estimation;
(2) Geometric Processing functions for fitting planes, cleaning data, and abstracting objects into
primitive shapes; and (3) Simulation Interface methods that directly add objects (e.g., rigid meshes,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

# ROLE: Computer Scientist

# TASK: Generate an executable Python class `VideoSimulation`
# that simulates the future of the scene from the input image
# and caption: "[CAPTION]".

# KEY PRINCIPLES:
# 1. Minimal Abstraction: Determine if the scene is fundamentally
# 2D or 3D and use the simplest required representation
# 2. Activating Agents: Model the *effect* of an external agent
# (e.g., a hand pushing a block), not the agent itself.
# 3. Robustness: Prioritize robustness to sensor noise.

Figure 3: A condensed version of the task specification provided to the VLM, outlining its role and
key principles.

Input Abstraction First Prediction Prediction with Refinement

Figure 4: The VLM also acts as a critic. If the result is not perceived to be correct, a new result
is generated. The spatiotemporal visualisations in the last two columns visualise the motion in the
video as a static frame. In this example, the second block from the left has incorrect motion in the
first prediction, that is then resolved with a better dynamics prediction in the last column.

class Simulator(Iterator):
def __init__(self, frame_size=(1024, 576), api: API=None, fps=30):

"""Initializes the simulator."""
def fit(self, image: np.ndarray, text: str):

"""Fit the simulator's parameters to the provided image."""
def update_simulation(self, dt: float):

"""Update the simulation by one timestep dt."""
def render_frame(self):

"""Render the next frame of the simulation."""
# Available libraries: numpy, scipy, pybullet, pygame, punk..

Figure 5: The environment specification implements the base class, which defines the required
structure for the VLM’s generated Python code, and also provides a list of relevant Python libraries.

soft bodies, or particles) into physics engines. This rich set of tools allows the VLM to translate its
conceptual understanding of a scene into the precise, low-level code required to instantiate and run
a simulation, as exemplified in Figure 6.

class API:
def segment(self, image: np.ndarray, objects: List[str]):

"""Segments the image."""
def fit_3d_shape(self, point_cloud: np.ndarray, shape_class: str):

"""Fits a 3D primitive ('cuboid', 'sphere', etc.) to a
point cloud and returns its parameters."""

def generate_surface_mesh(self, vertices, indices, mass=0.0):
"""Creates a mesh from a vertex mesh."""

Figure 6: The API provided in the tool specification defines a rich set of functions for perception
and geometric processing.
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Figure 7: VLASim generates an abstraction of the scene and a simulator that can together be used
to predict future scene states. From top to bottom: (Rigid Body) ball moving on an incline, (Ther-
modynamics) balloon bursting on interaction with flame, (Fluid) juice falling on a rubber duck, (2D
Simulation) a cradle, (Logic) Conway’s Game of Life.

3.2 PERCEPTION TOOLBOX

To power the API exposed in the tool specification, we implement a robust suite of perception
and geometry modules that the VLM can call to perform a wide range of tasks. These functions
are implemented to aid the inference of VLM. The VLM does not not re-implement or update the
implementation of these updates, and it is free to ignore these implementations if it does not find
any use for them.

3.2.1 2D PERCEPTION AND GOMETRY

Open-Vocabulary segmentation The segment API function is built upon a state-of-the-art
open-vocabulary segmentation pipeline. We first use Gemini Perception (Comanici et al., 2025)
to estimate the bounding boxes for the query, and then Segment Anything (Kirillov et al., 2023) to
compute dense segmentation maps from those boxes. The VLM infers the important and relevant
objects in the scene to query this function. This function is used in almost all scenes to develop the
right abstract scene representation.

Geometry Helpers The fit 2D shape function fits simple 2D gemetric primitives, such as
disks and polygons, to selcted regions. This helps in developing the right abstractions that can be
used for tractable simulation.

3.2.2 3D PERCEPTION AND GEOMETRY

Single Image 3D Estimation We use VGGT (Wang et al., 2025) to estimate dense 3D point maps
from a single image as the pts3d function. This model is also used to implement the intrinsics
call that computes the camera paramters.

Geometry Helpers These tools rely on established computer graphics algorithms. The
predict ground plane function uses a RANSAC-based approach to robustly fit a plane to
a point cloud, allowing the system to establish a world coordinate frame. The fit 3d shape
function performs robust, RANSAC-based, fitting of simple geometric primitives to point clouds.
This is an important component, as it not only abstracts the shape for tractable simulation, but also
computes a complete shape from incomplete point clouds. The generate surface mesh and
add soft body create meshes and soft bodies from point clouds.
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Figure 8: Comparisons of our approach with video generation models Wan 2.2 and Veo 3. Compared
to both of these models, our approach is able to follow physical principles such as object permanence
and the effect of gravity (Top); while on the Game of Life dataset our approach is able to correctly
infer future patterns based on the true rules of the game (Bottom).

3.3 CRITIC AND CODE REFINEMENT

While a single generation pass can produce high-quality results, high complexity in scenes can lead
to errors in the initial code or inaccurate scene fits. To enhance the robustness of our system, we
introduce an automated feedback loop: a two-stage Critic and Refinement process, as illustrated in
Figure 2. This allows the system to identify and correct its own mistakes.

Critic Stage. In the first stage, a VLM is prompted to act as a critic. Along with the text caption,
the critic is provided with the initial frame of the generated simulation and, crucially, a spatiotem-
poral colormap that visualizes all dynamic activity over the simulation’s duration (blue for early
motion, red for late), see Figure 4 for a visualization. The critic’s task is to assess the correctness of
the simulation’s initial conditions and physical setup, not its visual quality. It then outputs a struc-
tured JSON object containing a boolean flag evaluating the accuracy of the simulation, and a list of
suggested improvements.

Refinement Stage. If the critic deems the simulation inaccurate, the second stage begins. A VLM
is prompted to act as a ‘code refiner’. It receives the original, flawed Python code generated in
the first pass, along with the specific suggested improvements from the critic’s JSON feedback. Its
task is to debug and rewrite the code to address the identified issues, producing a final, corrected
VideoSimulation class. This self-correction capability improves the quality and physical plau-
sibility of the final output.

Automated Debugging. Separate from the semantic feedback loop, we also implement a process
for handling runtime errors that produce no simulation outputs. If the generated Python code fails
to execute due to an error (e.g., from incorrect API usage or unexpected perception tool outputs),
we automatically capture the full error traceback. A VLM is then prompted to act as a debugger.
It is provided with the original flawed code, the full environment and API specifications, and the
captured traceback. Its sole task is to correct the code based on the error message, allowing the
system to recover from common programming mistakes and increasing the overall success rate of
the generation process.

4 EXPERIMENTS

We conduct a comprehensive set of experiments to validate our approach. Our evaluation is struc-
tured around four primary goals. First, we assess the physical plausibility of our generated sim-
ulations and benchmark them against state-of-the-art video models. Second, to demonstrate the
versatility of our approach, we showcase results across a wide variety of physical phenomena, such
as rigid-body dynamics and fluid interactions. Third, we validate that our method’s programmatic
output creates an interpretable scene abstraction that users can directly interact with and modify.
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Figure 9: The modified Physics-IQ score of our approach compared with a selection of video gener-
ation models. We exclude evaluations on visual-based phenomena, and as such we do not consider
the Optical category of Physics-IQ, as well as the MSE metric for the evaluation.

Finally, we conduct ablation studies in Sec 6.2 to analyze the contribution of each core component
of our system.

Implementation Details. Our implementation uses Gemini Comanici et al. (2025) as the core
Vision-Language Model agent. All GPU computations are performed on NVIDIA H200 GPUs. The
inference time for generating a complete world program from a single input image and prompt is
approximately 10 minutes. All code will be made publicly available.

Baselines. We benchmark VLASim against several state-of-the-art video generation models. Our
primary baseline is Wan2.2 (Wan et al., 2025), as it represents the leading open-source model. We
also compare with Lumiere (Bar-Tal et al., 2024) and VideoPoet (Kondratyuk et al., 2023). Finally,
we include a select number of examples from Veo3 (Google Deepmind, 2025b)1.

Benchmark and Metrics. For quantitative evaluation, we use the PhysicsIQ benchmark (Mo-
tamed et al., 2025). This dataset is composed of real-world videos capturing a diverse set of physi-
cal phenomena, categorized into the following areas: solid mechanics, fluid dynamics, magnetism,
thermodynamics, and optics. As our method focuses on physical dynamics rather than visual ap-
pearance, we exclude the optics category from our evaluation.

We adopt three of the four metrics proposed by PhysicsIQ to evaluate motion and action. We exclude
the Mean Squared Error (MSE) metric, as our goal is to model physically plausible motion via ab-
stract simulation rather than achieve photorealistic pixel-level consistency. The metrics we use are:
Spatial IoU (evaluating where the action happened), Weighted Spatial IoU (evaluating where and
how much action happened), and Spatiotemporal IoU (evaluating when and where the action hap-
pened). Following the original benchmark protocol, we combine these three components to produce
a final score out of 100, where a higher score indicates a more physically accurate prediction.

To specifically evaluate the logical reasoning capabilities of our method on a deterministic, rule-
based system, we introduce a benchmark based on Conway’s Game of Life (Conway et al., 1970).
We created a test set of 10 distinct initial scenes. For each scene, the task is to generate a simulation
program from a single input frame that correctly predicts the evolution of the board over subsequent
steps. The accompanying text caption explicitly identifies the scene as Conway’s Game of Life,
tasking the model to apply the game’s known rules. We evaluate the accuracy of the predicted
frames using the F1 score, which is computed by comparing the state of each cell (live or dead) in
the predicted grid against the ground truth, treating live cells as the positive class.

Qualitative Results. Figure 7 presents a selection of our qualitative results across various chal-
lenging scenarios. As shown in the top three rows, VLASim successfully generates physically plau-
sible simulations for scenes involving complex solid body dynamics, as well as thermodynamics,
as well as fluid interactions. The fourth row demonstrates the model’s ability to select an appro-
priate level of abstraction. For this predominantly planar scene, our method correctly infers that a
simpler 2D abstraction and simulation is sufficient, generating a program that is both computation-
ally efficient and accurate for future prediction. The generated abstractions models the important
components of the scene while intentionally discarding distracting, high-frequency visual details

1Due to the significant costs associated with Veo3, a full-scale evaluation was prohibitive for this paper.
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and appearance. The goal is not to achieve photorealism, but to focus exclusively on producing a
plausible and accurate simulation.

Figure 8 provides a direct qualitative comparison of VLASim against the state-of-the-art video mod-
els, Wan2.2 Wan et al. (2025) and Veo3 Google Deepmind (2025b). While the baseline models
generate visually detailed outputs, they often exhibit common physical inconsistencies. For exam-
ple, in the top row, both baselines change the number of visible blocks in the scene, and also do not
correctly model the effect of the gap between the blocks. In contrast, VLASim generates simula-
tions where the objects behave as distinct entities governed by consistent physical laws. The blocks
collide plausibly. This highlights a fundamental advantage of our approach: the baselines attempt to
learn physics implicitly within a high-dimensional pixel space, making them prone to such artifacts.
Our method, by generating a program for an explicit, rule-based physics engine, inherently enforces
object permanence and consistent dynamics.

Figure 10: Results on Conway’s Game
of Life. One timestep corresponds to
a single frame step, and an F1 score is
calculated between the cells considered
‘alive’ in the predicted video and in the
ground truth.

Quantitative Results. Figure 9 plots the quantitative
results on the PhysicsIQ benchmark. The scores show
that VLASim performs on par with Wan2.2, the lead-
ing open-source video model. However, these quanti-
tative metrics fail to capture the full picture of physical
plausibility. As is evident in our qualitative comparisons
(Figure 8) and supplementary video, the outputs from
Wan2.2 frequently exhibit non-physical artifacts—such
as objects unnaturally merging that demonstrate a lack of
a true underlying physics model. This discrepancy sug-
gests that the IoU-based metrics of PhysicsIQ, while use-
ful for tracking general motion, are not sensitive enough
to penalize these critical, common-sense violations. Our
method, which is governed by an explicit physics en-
gine, avoids such artifacts by design, a crucial advan-
tage not fully reflected in the final score. We note that
physical prediction is often non-deterministic. To account
for this, for both our method and Wan2.2, we generate
three distinct outputs and report the best score. Scores for
other models are taken directly from the original Physic-
sIQ paper, as their models were not available for our re-
evaluation.

Finally, to evaluate performance on a purely logical and
rule-based task, we present the results of our Conway’s Game of Life benchmark in Figure 10. Here,
VLASim significantly outperforms Wan2.2, achieving a perfect F1 score. This result highlights a
fundamental difference between the two approaches. As a pixel-prediction model, Wan2.2 attempts
to generate the visual patterns of the game’s evolution but consistently fails to adhere to the strict,
deterministic rules, leading to cumulative errors. This demonstrates the inherent advantages of an
explicit, program-synthesis approach for tasks that require precise, rule-based reasoning.

5 CONCLUSION

In this work, we introduced VLASim, a new paradigm for building dynamic world models from
static images. We have shown that by tasking a Vision-Language Model (VLM) with world pro-
gram synthesis, it is possible to generate explicit, executable simulations that are physically plausi-
ble, interactive, and versatile. Our experiments demonstrate that this approach avoids the common
physical artifacts of pixel-prediction models and excels at tasks requiring precise, rule-based reason-
ing. This programmatic approach represents a significant step towards creating more grounded and
interactive world models. We believe our work points to a broader shift in how we build autonomous
agents. Instead of relying on monolithic, end-to-end models that learn an opaque representation of
the world, VLASim functions as a compositional agent that reasons about the world and writes code
to model it.
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Figure 11: Ablations. We show quantitative results on left, and qualitative on the right. Both critic
and the API improve the quality of our results.

6 APPENDIX

6.1 QUANTITATIVE RESULTS

In table 1 we provide the numbers that were used in the plots in Figure 9.

Table 1: Results on Physics-IQ dataset. Subset excludes Optical category as wel as MSE component
of metric. Our method marked with *.

Physics-IQ Solid Mechanics Fluid Dynamics Thermodynamics Magnetism Total
VLASim* 51.1 38.8 42.2 27.6 47.0
Wan 2.2 47.3 49.7 46.5 20.0 46.2
Lumiere I2V 22.0 25.4 33.8 19.5 23.5
Lumiere MultiF 27.3 23.5 41.5 19.7 26.9
Runway 27.5 27.2 20.7 17.9 27.1
VideoPoet MultiF 35.1 24.6 29.1 44.0 32.8

6.2 ABLATIONS

We conduct ablation studies to analyze the contribution of each core component of our system. The
results, summarized in Figure 11, demonstrate the importance of each module. We use the same
metric as in the main paper, and evaluate on one split of PhysicsIQ dataset. First, we evaluate a
variant of our model without access to the perception toolbox API (‘No API’). This version performs
poorly, both quantitatively and qualitatively, failing to generate coherent or accurate simulations
which match the input images. This result confirms that the VLM’s ability to ground its reasoning
in the explicit scene information provided by the perception tools is critical to its success.

Next, we analyze the impact of the critic-and-refinement loop (‘No Critic’). Quantitatively, this
variant performs similarly to our full method on the PhysicsIQ benchmark. However, we observe a
noticeable improvement in the visual quality and physical plausibility of the final simulations when
the critic is enabled. This suggests that while the initial program generated by the VLM is often
functionally correct, the refinement loop is crucial for correcting subtle errors and improving the
overall quality of the simulation.

6.3 LIMITATIONS

A key limitation we observe is the system’s sensitivity to errors in the upstream perception toolbox.
As a compositional system, the quality of the final simulation is often contingent on the accuracy
of tools like segmentation and depth estimation. A failure in one of these modules—for example,
misidentifying an object’s shape or its 3D position—can lead the VLM to generate a semantically
incorrect world program, even if that program is syntactically valid. The VLM currently has no
mechanism to question or correct a faulty tool output.
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