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ABSTRACT

Vision Transformers (ViTs) enable strong multi-view 3D detection but are limited
by high inference latency from dense token and query processing across multi-
ple views and large 3D regions. Prior sparsity methods, designed mainly for 2D
vision, prune or merge image tokens but do not extend to full-model sparsity or
address 3D object queries. We introduce SToRe3D, a relevance-aligned sparsity
framework that jointly selects 2D image tokens and 3D object queries while stor-
ing filtered features for selective reuse. Mutual 2D-3D relevance heads allocate
compute to driving-critical content and preserve other embeddings. Evaluated on
nuScenes and our new nuScenes-Relevance benchmark, SToRe3D delivers up to
3% faster inference with marginal accuracy loss, establishing real-time 3D detec-
tion with large scale ViTs while maintaining accuracy on planning-critical agents.

1 INTRODUCTION

Transformers dominate modern perception, yet dense attention over long image sequences and large
3D search spaces remains a barrier to real-time deployment. In autonomous driving, where latency
and safety are essential, the challenge is not only to reduce computation but to allocate it selectively,
raising the question: how can we focus compute only on content that matters for decision-making?

Vision Transformer (ViT) (Dosovitskiy et al.,[2020) backbones and Detection Transformer (DETR)
(Carion et al.l |2020) decoders achieve strong 3D perception but incur quadratic costs over tokens
and queries. Yet urban scenes are dominated by background (sky, road, buildings) and agents in-
consequential for motion planning. Uniform computation is thus wasteful, treating all tokens and
candidate objects as equally important and misaligning perception with the downstream planner.

Prior efficiency work focuses on one modality in isolation. ViT sparsity methods prune or merge
image tokens for 2D tasks (Rao et al.} 2021} Bolya & Hoffman} 2023} |Liu et al., 2024} Huang et al.,
2025), while DETR variants suppress subsequent encoder tokens or decoder queries for 2D detec-
tion (Roh et al.,|2021; Zheng et al.,|2023). For multi-view 3D detection, ToC3D (Zhang et al., [2024)
compresses tokens using historical queries, reducing backbone cost but leaving query redundancy
and planner relevance under-exploited. None of these approaches enforce end-to-end sparsity over
both 2D tokens and 3D queries, or align it with planner relevance.

We introduce SToRe3D, a planner-aligned sparsity framework that scores and routes both image to-
kens and 3D object queries using lightweight mutual 2D-3D relevance heads. High-relevance items
are processed by deeper layers, while lower-relevance embeddings are not discarded but stored in
feature buffers for selective reactivation. This store—reactivation design avoids the merge—unmerge
overhead of token compression approaches, applies on the first frame (no history required), and
yields end-to-end gains by reducing both O(N?) self-attention in the backbone and decoder.

Our contributions are: (i) Unified end-to-end sparsity that jointly prunes tokens and queries across
a single architecture. (ii) Planning-aligned relevance supervised by future interaction corridors
capturing short-horizon ego—agent proximity, aligning perception budgets with planning. (iii) Real-
time ViTs at scale via store—reactivate buffers that preserve recoverability for aggressive sparsity,
enabling further latency reduction. (iv) nuScenes-Relevance (nuScenes-R), a benchmark that mea-
sures accuracy specifically on planning-critical agents. SToRe3D reduces latency by up to 3x with
marginal accuracy loss, delivering real-time throughput (up to 18 FPS) for medium and large ViTs
and providing a practical path to planner-aware efficiency in multi-view 3D detection.
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Figure 1: SToRe3D routes computation via planning-aligned relevance. Tokens and queries above
stage-wise thresholds are processed deeper while the rest are stored for reactivation.

2 RELATED WORK

Multi-view 3D object detection. Early camera-only 3D detectors lifted multi-view features into
BEV space before aggregation (Philion & Fidler, 2020). Transformer-based methods such as
DETR3D (Wang et all, 2022) and PETR (Liu et al., [2022b)) introduced 3D queries to attend across
views, while BEVFormer 2022c), Sparse4D 2022), and StreamPETR
2023b) improved accuracy and efficiency with deformable attention and temporal aggrega-
tion. Yet real-time deployment with large ViTs remains challenging, as covering wide 3D regions
still requires processing a vast number of tokens and queries. We address this bottleneck through
planner-aligned sparsity applied jointly to both modalities.

ViT token sparsity. Reducing transformer attention cost has been explored through approximate

attention (Choromanski et al.| 2020;Wang et al., 2020; Dao et al.,[2022; Ainslie et al., 2023)), compo-
nent pruning (Voita et al.;[2019; Michel et al., Meng et al.,[2022), and vision-specific inductive
biases (Mehta & Rastegari, [2021; |Graham et al., 2021} [Liu et al., 202T). For ViTs, token pruning
approaches learn saliency to drop patches progressively (Rao et al., 2021} [Liang et al., 2022}
let all, 2022} [Fayyaz et al.l 2022} [Yao et al} 2022} [Li et al., 2022b} |Yu et al.| [2024; Xu et al., [2023),

learned tokenization approaches select informative latent tokens (Ryoo et al., 2021} [Tang et al.

, and merging/fusion approaches reduce redundancy by associating similar tokens (Bolya &
Hoffman| 2023 Xu et al., [2024; [Lee & Hong, 2024; [Lee et al., [2024). Extensions to dense tasks
such as detection exist (Liu et al., 2024; |[Huang et all, [2025). However, these methods operate on
image tokens only, assume 2D salience, and provide no mechanism to coordinate with 3D object
queries, precisely required for multi-view 3D detection.

DETR token sparsity. Efficiency in DETR-style detectors is typically achieved by sparsifying en-
coder tokens or decoder queries. Deformable DETR replaces global attention with sparse, reference-
point sampling [2020), while Sparse-DETR, Focus-DETR, and Salience-DETR further
limit token or region updates through learned salience (Roh et al. ; [Zheng et al |
2024). Orthogonal variants such as DN-/DAB-/DINO-/RT-DETR (Li et al., [2022a; [Liu et al.|
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2022a); [Zhang et al.| [2022; |[Zhao et al.| [2024; |Yao et al., 2021) accelerate convergence mainly via
query initialization and denoising rather than structural sparsity. For multi-view 3D detection, Focal-
PETR selects foreground tokens for the decoder with a 2D auxiliary head (Wang et al., 2023a)),
while ToC3D compresses backbone tokens using history-driven scores and merge—unmerge rout-
ing (Zhang et al., [2024). Yet these approaches remain largely token-only, focusing on the back-
bone or encoder while leaving decoder query redundancy under-exploited. ToC3D’s dependence on
temporal priors also limits first-frame efficiency and its per-block regrouping introduces extra over-
head. In contrast, SToRe3D applies joint 2D-3D sparsity, works from the first frame, and avoids
merge—unmerge complexity via lightweight store—reactivate buffers.

Planning- and safety-critical perception. Beyond efficiency, perception works explicitly fo-
cuses on agents that matter for decision-making. Examples include risk-object identification (Li
et al.} 2020; |2023a), spatial attention guided by planning (Wei et al., 2021), and end-to-end plan-
ning—perception frameworks such as UniAD (Hu et al.l |2023) and SparseDrive [Sun et al.|(2025).
While these methods couple perception to downstream planning goals, they rely on CNN backbones
and lack a general architectural mechanism for scalable token and query sparsity to enable ViTs.
SToRe3D closes this gap by supervising sparsity with a future interaction corridor and benchmark-
ing with nuScenes-R, achieving end-to-end latency gains while focusing on planning-critical agents.

3 METHOD

SToRe3D applies joint, hierarchical sparsity to both image tokens and 3D object queries in a tem-
poral multi-view 3D detector Wang et al.|(2023b). At each stage, lightweight relevance heads score
tokens and queries. High scores are processed deeper, while low scores are written to storage buffers
for selective reuse. This store—reactivate design reduces O(N?) self-attention while avoiding irre-
versible pruning.

3.1 PROBLEM FORMULATION

We consider multi-view 3D detection with V' synchronized cameras over a temporal window
{t—T,...,t}. Each view produces tokens X;, from a ViT backbone, concatenated as X;. The
backbone interleaves global and windowed attention and a feature pyramid network (FPN) provides
multi-scale features. Detection object queries Q; are anchored at 3D positions p = (z, y, z), initial-
ized as q(*) = MLP(PE(p)), and refined via a deformable DETR-style decoder.

Following streaming detectors (Wang et al.,|2023bj [Lin et al.,2023), top- K queries propagate across
frames, maintained in a temporal memory with temporal reference points that transformed to current
ego frame. The active query set combines propagated and initialized queries, Ny = Nprop + Ninit;
at the first frame additional initialized queries replaces the propagated queries. This yields unified
token X, and query Q sets, input to the sparse relevance module.

3.2 DEFINING OBJECT RELEVANCE

We align sparsity with planning using a future interaction corridor in BEV. Let Bego(7) and B;(7)
denote oriented boxes for ego and agent-z at ¢ + 7. Swept sets are defined by the convex hull of the
unions of future boxes:

Sego(H) = conv( U Bego(r)>, Si(H) = conv( U Bi(T)>. (D)
T€[0,H) T€[0,H]
An agent is relevant if the closest distance between its swept polygon and the ego swept polygon is
within a safety margin, dmin:

ui? = 1(dist(Si(H), Sego () < dinin)- @

This polygonal corridor captures translation and orientation over discrete future steps for H=5 sec-
onds where the labels {y:°'} supervise relevance. These same definitions apply to nuScenes-R
metrics (Sec. ).
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Figure 2: SToRe3D architecture with ViT backbone and transformer decoder. Relevance heads
apply stage-wise store—reactivate on tokens and queries.

3.3 UNIFIED 2D-3D RELEVANCE PREDICTION

We predict planning-aligned relevance for both modalities using mutual gating: queries are scored
in the context of tokens and vice versa. Query relevance is supervised by corridor labels, while token
relevance is aggregated from query attention. For object query q;, we compute a context vector from
cross-attended tokens and optionally an ego embedding e;:

c;” = CrossAttn(qy, X¢) @ ey, 17 = J(uTqS([qj I c?ry])>. 3)
where ¢ is a small MLP, @ indicates optional concatenation, and o is the sigmoid function. The ego
term lets 7% condition relevance on the ego—agent motion. Image token relevance r;"® aggregates
attention from top- K relevant queries:

R Z Ajis “4)

jekcary
yielding a query-aware token relevance that emphasizes regions supported by high-relevance 3D
queries. The scores 7/"” and r;"® serve as routing signals for stage-wise sparsification (Section|3.4).
We supervise 79" with binary labels y™' from the interaction corridors (Section [3.2)).

3.4 HIERARCHICAL TOKEN STORAGE

Joint sparsity is applied to both the backbone token stream and the query stream within the backbone
and encoder. After each stage ¢, we filter tokens/queries using the relevance scores from Section[3.3]
store the remainder in buffers, and optionally reintroduce a small subset at deeper stages. For stage-
wise filtering and storage let Ny and (), be the numbers of tokens and queries at stage ¢. We keep
fractions p, "%, pi" € (0, 1] via Gumbel-softmax Topk (Jang et al., 2016) and the filtered items are
written to buffers.

K™ = TopK (™, [p{™N¢ ), K§™ = TopK(r{™, [ Qs ). 5)
The fractions p,™%, p&™ € (0,1] follow a non-increasing hierarchical schedule with depth and are
regularized toward targets in Section Let Klemg and @ry be complements of the kept indices.
We write filtered features to buffers immediately after filtering and before the next stage:

S8 X, [IC, ], SV QK. (6)
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To mitigate early information loss, we allow reactivation: at stage £+ 1 we recompute scores T on
buffered items using the updated context and reinsert up to s, * tokens and ;"> queries. Gradients
flow through any reintroduced items. We use a two-level storage schedule: (i) depth-wise budgets
(py "8, pi™) are non-increasing with ¢; (ii) training-time pruning is introduced gradually (linear
warm-up from dense to target budgets) to avoid optimization shocks. For additional robustness
under aggressive sparsity, we also enable a last-layer reactivation pass to recover stored items. This

preserves global context without restoring all pruned items and adds negligible cost.

3.5 OPTIMIZATION APPROACH

The overall framework is trained using a multi-task objective to optimize both detection and rel-
evance learning simultaneously. For detection, a combination of focal loss |Lin| (2017) for classi-
fication and L1 loss for bounding box regression is used with Hungarian bipartite matching. For
relevancy, a binary cross entropy classification loss is used between predicted scores (r97) and
corridor-derived labels y*°!. In addition, an auxiliary loss is used to supervise ROI feature extraction
which also contains a classification and regression loss on targets in the 2D image space Wang et al.
(2023a). The joint loss function is formulated as:

L= Edel + )\relﬁqry + )\auxﬁaux (7N

rel

where A, and A,y are balancing weights. L4 includes focal and L1 losses with Hungarian match-
ing. Query relevance uses Gaussian focal loss [Law & Deng| (2018)) with corridor labels. Token
relevance uses is indirectly supervised from cross-attention with the queries. Gumbel-TopK pro-
vides differentiable routing, with pruning linearly increased over training iterations from dense (no
sparsity) to target sparsity budgets.

4 BENCHMARKING RELEVANCE (NUSCENES—R)

Why relevance? Conventional detectors expend equal compute on all agents, inflating latency and
misaligning perception with planning. Many urban objects (e.g., parked vehicles, distant pedestri-
ans) are inconsequential for planning. We therefore evaluate perception under a relevance-driven
lens: prioritize agents that matter for near-term driving. To quantify sparsity headroom, we vary the
number of detected agents provided to a learned planner. Performance saturates with only 10-20
agents (Figure [3a), indicating substantial room for compute reduction without harming planning.
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(a) Planner performance vs. retained agents. (b) CDF of ego—agent distances on nuScenes.

Figure 3: Focusing on a small subset of agents suffices for planning, motivating nuScenes—R.

Planning-relevant object labels. Ground-truth relevance follows the future interaction corridors
of ego and other agents (Sec. . Swept sets Sego(H ), Si(H) are buffered by dp;in, and agents
within this margin are labeled yi® = 1. To fix a single operating point across scenes, dpiy, is
chosen by percentile of the ego—agent distance distribution (Fig. [3b)); in results we use the 10th
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percentile, yielding d,,i,=1.269 meters over H=>5 seconds and ~3 relevant agents per frame (max
~30). Labels are generated offline by discretizing trajectories, convexifying swept polygons, and
applying the buffered-intersection test.

Relevance metrics. Standard detection metrics mean average precision(mAP) and nuScenes de-
tection score (NDS) treat all agents equally, regardless of planning importance. We instead define
relevance via a future interaction corridor: 5-second swept polygons for ego and each agent. An
agent is labeled relevant if the closest distance d¢ between its corridor and ego’s corridor is below
a buffer dgys. Empirically, drjr=1.2 m (the 10th percentile of ego—agent distances) selects ~10%
of agents—about three per frame on average, with a maximum of 31. This definition underlies our
benchmark, nuScenes-R.

We report two variants: relevant motion (RM) filtered metrics (mAP-RM, NDS-RM), which apply
the RM filter as described above, and relevant area filtered metrics (mAP-RA, NDS-RA), which
use a fixed detection area around the vehicle for evaluation. Because RM relies on privileged future
information, evaluation is done in two-passes: (i) detections are matched to RM-filtered ground
truth for true positives and false positives; (ii) false negatives are counted against the full set. This
preserves nuScenes protocol while avoiding unfair penalties on deprioritized agents. Together, RM
and RA ensure that SToRe3D’s relevance-adaptive sparsity is evaluated fairly, measuring whether
accuracy is preserved on planning-critical agents while enabling substantial efficiency gains.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Dataset. We evaluate on the nuScenes 3D detection benchmark (Caesar et al., [2020), which con-
tains 1,000 ~ 20s scenes at 20 Hz with six surround cameras per sample. Camera intrinsics and
extrinsics are provided. Annotations are available every 0.5 s, yielding 28k/6k/6k annotated sam-
ples for train/val/test across ten classes (vehicles, pedestrians, cyclists, etc.). We report standard
nuScenes metrics mAP and NDS. Because these metrics weight all agents equally, we additionally
evaluate with relevance-filtered metrics on planning-critical agents using our nuScenes-R protocol
(Section {4} Figure [3), including Relevant-Area (RA) and Relevant-Motion (RM) variants aligned
with the future interaction corridor.

Implementation Details. We evaluate on nuScenes using six synchronized cameras with standard
intrinsics/extrinsics. Backbones include ResNet-50/101 (He et al., [2016), V2-99 (Lee et al., [2019),
and ViT-B/L (Dosovitskiy et al.,[2020), initialized from Nulmages (Caesar et al.,[2020)), DD3D (Park
et al.| 2021), and EVA-02 (Fang et al.,2024) respectively. Input resolution is 320 x 800 unless oth-
erwise noted; we also report 256 x 704, 512 x 1408, and 800 x 1600 for accuracy—speed trade-offs.
The detector follows a DETR-style design with multi-scale features, D=256 embedding dimen-
sion, and L=6 decoder layers. As a dense baseline we use 644 detection queries and 256 temporal
queries (900 total), with four frames of memory (1024 queries). Denoising (Wang et al., 2023a3b))
is applied during training. Models are trained for 24 epochs on 8xA100 GPUs (batch size 16).
Inference latency is measured at batch size 1 on a single RTX3090. Optimization uses AdamW
with cosine decay, gradient clipping, and mixed precision. Relevance heads are two-layer MLPs
with GELU; TopK gating employs a differentiable Gumbel-softmax. We report three operating
points, SToRe3D-1/2, SToRe3D-1/4, and SToRe3D-1/10, corresponding to hierarchical schedules
that retain roughly half, quarter, and tenth of tokens/queries. Further hyperparameters appear in the
appendix.

5.2 MAIN RESULTS

Accuracy-efficiency trade-offs. Figure [ plots the speed—accuracy frontier of SToRe3D across
sparsity regimes, alongside StreamPETR (Wang et al., 2023b). Jointly pruning 2D tokens and 3D
queries yields monotonic FPS gains with negligible accuracy loss at low sparsity and only small
losses at higher sparsity. Notably, SToRe3D-1/10 establishes real-time ViT-based multi-view 3D
detection, running at ~18 FPS with ViT-B while remaining SOTA among methods at similar la-
tency. To the best of our knowledge the first time transformer models of this scale reach real-time
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on nuScenes. As the hierarchical keep-ratio decreases, inference time drops monotonically while
mAP/NDS degrade smoothly, with a clear knee at mid-sparsity.
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Figure 4: Latency-accuracy curves for SToRe3D under varying sparsity.

Comparison to baselines. Table[T|compares SToRe3D with strong vision baselines at comparable
latency levels on nuScenes and nuScenes-R. SToRe3Dachieves competitive accuracy while deliver-
ing materially higher FPS than dense or token-only sparse baselines. Relative to StreamPETR and
ToC3D, joint token—query sparsity improves the accuracy—latency balance, confirming that joint
pruning is more effective than token-only compression.

On nuScenes-R, where metrics are restricted to agents within the future interaction corridor based
on Relevant Motion (RM) and Relevance Area (RA) filtered metrics. SToRe3D retains strong mAP-
RM/NDS-RM on planning-critical agents while delivering higher FPS than dense baselines (Stream-
PETR), indicating that compute is effectively redirected to the most decision-relevant content.
SToRe3D-1/10, with its design explicitly tailored for downstream driving applications, achieves
0.521 mAP, 0.607 NDS, 0.278 mAP-RM, 0.478 NDS-RM, and 5.2 FPS. Compared to the base-
line model StreamPETR, which records 0.523 mAP-RA, 0.610 NDS-RA, 0.264 mAP-RM, 0.463
NDS-RM, and 2.7 FPS, SToRe3D demonstrate superior performance in prioritizing and accurately
detecting relevant objects within the future interaction corridor. This underscores the effectiveness
of SToRe3D’s relevance-driven sparsity in delivering high performance where it matters most for
safety-critical autonomous systems.

5.3 ABLATION STUDY

Sparsity approach. Table [2| compares alternative sparsification strategies for scoring of image
tokens at matched keep ratios against our joint token-query sparsity. At p=0.5 (top block) and
p=0.3 (bottom block), SToRe3D consistently attains equal or higher accuracy at similar or lower
latency than token-only approaches. The additional speedup arises primarily from query sparsity in
the decoder, which token-only methods cannot realize, while tying token pruning to object queries
preserves accuracy under stronger sparsity.

Pruning design. Table [3] provides am ablation study of various design decisions within the
SToRe3D framework, evaluating their impact on performance. We find that joint pruning of image
tokens and object queries (I&O) outperforms pruning either stream alone in terms of latency reduc-
tion. Retaining filtered items in store buffers with optional reactivation is superior to hard pruning,
indicating that retrieval paths mitigate early pruning errors. Finally, a linear schedule (warm up from
dense to target p) improves stability over flat query reduced fine-tuning.
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Methods | BackbonexW-S | mAP? -RAT -RM? | NDST -RAT -RM{ | FPS{
PETRv2 R50%704 0349 - - 0456 - - 20.8
BEVDepth R50x704 0351 - - 0475 - - 17.3
StreamPETR R50x704 0449 0569 0227 | 0.546 0617 0529 | 352
SToRe3D-1/10 | ViT-Bx800-1/10 | 0479 0.612 0241 | 0571 0639 043 | 177
BEVStereo R50x704 0372 - - 0.5 - - 13.4
SOLOFusion R50x704 0427 - - 0534 - - 12.5
StreamPETR V2-99x800 0482 0.605 0248 | 0.571 0.646 0428 | 135
SToRe3D-1/3 | ViT-Bx800-1/3 | 0489 0.623 0246 | 0578 065 0435 | 10.6
ToC3D-Faster | ViT-Bx800-1/3 | 0.453 0.618 0243 | 0559 0656 043 | 7.3
StreamPETR R101x 1408 0486 - - 0578 - - 7.0
SToRe3D-1/2 | VIT-Bx800-1/2 | 0493 0.627 0247 | 0581 0.665 0441 | 82
StreamPETR ViT-B x800 0497 0627 0247 | 0.584 0667 0443 | 6.1
ToC3D-Fast VIT-Bx800-1/2 | 046 0615 0232 | 0562 0.664 0431 | 6.6
SToRe3D-1/10 | ViT-Lx800-1/10 | 0.521 0.641 0278 | 0.607 0.679 0478 | 5.2
BEVFormer | R101-DCNx1600 | 0416 - - 0517 - - 33
Sparse4D R101-DCNx 1600 | 0436 - - 0541 - - 47
ToC3D-Faster | ViT-Lx800-1/3 | 0517 0.63 0257 | 0.609 0672 0453 | 3.1
SToRe3D-1/3 | VIiT-Lx800-1/3 | 0.523 0.654 0275 | 0.609 0.678 0469 | 3.5
ToC3D-Fast VIT-Lx800-1/2 | 0523 0.639 0264 | 0610 0681 0463 | 25
StreamPETR ViT-Lx 800 0521 0641 0288 | 0.608 0.688 0485 | 22
SToRe3D-1/2 | VAiT-Lx800-1/2 | 0.533 0.666 0286 | 0.618 0697 0475 | 2.7

Table 1: Detection performance on nuScenes and nuScenes-R validation set against SOTA methods
with comparable latency. Backbone XW and -S are the image width and sparsity level respec-
tively. StreamPETR (Wang et al., 2023b), ToC3D (Zhang et al., [2024), PETRv2 (Liu et al.,|[2023),
BEVDepth (Li et al., [2023c)), BEVStereo (Li et al., [2023b), SOLOFusion (Park et al., 2022), BEV-
Former (Li et al.| 2022c), and Sparse4D (Lin et al.|[2023) are as reported.

Sparsity Approach | TKR | NDS 1 \ mAP 1 \ FPS 1
StreamPETR 1 | o612 | 0521 | 215

+ Random 0.5 0.567 (-7.4%) | 0.465 (-10.7%) | 2.45 (1.14x)
+ DynamicViT 0.5 | 0.597(-2.5%) | 0.505(-3.1%) | 2.47 (1.15%)
4 ToC3D3D-Fast | 0.5 | 0.61(-03%) | 0.523(0.4%) | 2.43(1.13x)
+ SToRe3D-1/2 0.5 0.618 (1.0%) 0.533 (2.3%) | 2.70 (1.26x)
+ Random 03 | 0.485(-20.8%) | 0.36 (-30.9%) | 2.9 (1.35x)
+ DynamicViT 0.3 0.593 (-3.1%) 0.493 (-5.4%) | 2.92 (1.36x%)
4 ToC3D3D-Faster | 0.3 | 0.603 (-1.5%) | 0.512 (-1.7%) | 2.89 (1.34x)
+ SToRe3D-1/3 03 | 0.609(-0.5%) | 0.523(0.4%) | 3.51 (1.63%)
+ SToRe3D-1/10 | 0.1 | 0.607 (-0.8%) | 0.521 (0%) | 5.21(2.42x)

Table 2: Ablation of sparsity approaches|Wang et al.|(2023b)); |[Rao et al.| (2021); Zhang et al.|(2024)
at matched keep ratios.

5.4 QUALITATIVE RESULTS

Figure [5|qualitatively highlights SToRe3D’s improved detection over baselines in autonomous driv-
ing scenarios. SToRe3D suppresses background false positives by pruning low-relevance tokens and
maintains detections for agents inside the interaction corridor, reducing critical false negatives. This
yields focused detections on planning-critical agents within the future interaction corridor leading
to more accurate and reliable perception where it matters for driving.
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Setting | Train Loss  Pruner Pruned Schedule | mAP?t
None \ - - - - | 0.540
vl Top Q Store 1& O  Finetune | 0.515
v3 Top Q Store (0] Linear 0.534
v4 Top Q Store I Linear 0.527
v5 Top Q Remove I1&O Linear 0.495
v6 AllQ Store 1&0 Linear 0.513

SToRe3D-1/10 |  Top Q Store 1& 0 Linear | 0.521

Table 3: Ablation of design decisions on nuScenes validation set using ViT-L backbone.

Figure 5: Vizualization of false negative cases for the baseline StreamPETR-R50 (left) and our
SToRe3D-1/10-ViTB with similar latency (right).

6 CONCLUSION

We introduced SToRe3D, a planner-aligned sparsity framework for multi-view 3D detection with
ViTs. SToRe3D applies joint, hierarchical pruning to both image tokens and 3D queries, replacing
hard drops with filter and store buffers to allow selective reactivation. Relevance is supervised
by a future interaction corridor and we proposed nuScenes-R to measure accuracy on planning-
critical agents. On nuScenes, SToRe3D reduces latency by up to 3x with marginal accuracy loss;
at aggressive sparsity (SToRe3D-1/10) it reaches real-time throughput,~18 FPS with ViT-L and
near real-time ~5FPS with ViT-B at 320x800, while achieving state of the art performance for
methods with similar latency. Since nuScenes-R relies on corridor hyperparameters (H, dyiy, ) future
work includes end-to-end relevance learning with planning, LiDAR sensor fusion, and closed-loop
evaluation.
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Supplementary Material

A IMPLEMENTATION DETAILS

We follow standard multi-view 3D detection settings on nuScenes using 6 cameras, synchronized
frames, and camera intrinsics/extrinsics. Backbones are ViT-based; we evaluate both medium and
large variants. There is no encoder after the backbone and the decoder follows a DETR-style design
with multi-scale features. We measure end-to-end latency at batch 1 with standard pytorch profilers
on a single RTX3090 GPU. The ViT-L and ViT-B backbones follow EVA-02 (Fang et al., [2024)
which was used for pretrained. The ViT-L backbone has 1024 embedding channels, 24 layers (6
global and 6 windowed attention), 16 attention heads, 0.3 drop path rate. The ViT-B backbone has
768 embedding channels, 12 layers (8 global and 16 windowed attention), 12 attention heads, 0.1
drop path rate. Both backbones use a patch size of 16 and window size of 16. The detection head
uses 6 decoder layers with a 256 query embedding channels. The detailed token pruning ratios are
provided in Table

Type \ TKR \ MKR \ LKRO LKR1 LKR2 LKR3 LKR4 LKR5 LKR6 LKR7
ViT-L Models
ToC3D-fast 0.5 0.68 1.00 1.00 0.70 0.70 0.50 0.50 0.50 0.50

SToRe3D-A1/2 0.5 0.72 1.00 0.85 0.72 0.63 0.56 0.51 0.50 1.00
SToRe3D-R1/2 0.5 0.62 1.00 0.78 0.63 0.53 0.50 0.50 0.50 0.50

ToC3D-faster 0.3 0.55 1.00 1.00 0.50 0.50 0.40 0.40 0.30 0.30
SToRe3D-A1/3 0.3 0.61 1.00 0.79 0.61 0.48 0.38 0.32 0.30 1.00
SToRe3D-R1/3 0.3 0.46 1.00 0.69 0.48 0.34 0.30 0.30 0.30 0.30

SToRe3D-A1/10 | 0.1 0.50 1.00 0.73 0.50 0.33 0.20 0.13 0.10 1.00
SToRe3D-R1/10 | 0.1 0.31 1.00 0.61 0.33 0.16 0.10 0.10 0.10 0.10

ViT-B Models

ToC3D-fast 0.5 0.70 1.00 1.00 0.70 0.50 0.50 0.50
SToRe3D-A1/2 0.5 0.74 1.00 0.78 0.63 0.53 0.50 1.00
SToRe3D-R1/2 0.5 0.63 1.00 0.72 0.56 0.50 0.50 0.50

ToC3D-faster 0.3 0.58 1.00 1.00 0.50 0.40 0.30 0.30
SToRe3D-A1/3 0.3 0.64 1.00 0.69 0.48 0.34 0.30 1.00
SToRe3D-R1/3 0.3 0.48 1.00 0.61 0.38 0.30 0.30 0.30

SToRe3D-A1/10 | 0.1 0.53 1.00 0.61 0.33 0.16 0.10 1.00
SToRe3D-R1/10 | 0.1 0.33 1.00 0.50 0.20 0.10 0.10 0.10

Table 4: Token pruning schedule for model variants and related approach ToC3D (Zhang et al.,
2024) including total keep ratio (TKR), mean keep ratio (MKR), and layer keep ratios (LKR) for
each global attention layer in the ViT-L backbone.
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