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Abstract

We introduce layered Quantum Architecture Search
(layered-QAS), a strategy inspired by classical network
morphism that designs Parametrised Quantum Circuit
(PQC) architectures by progressively growing and adapt-
ing them. PQCs offer strong expressiveness with relatively
few parameters, yet they lack standard architectural lay-
ers (e.g., convolution, attention) that encode inductive bi-
ases for a given learning task. To assess the effectiveness
of our method, we focus on 3D point cloud classification
as a challenging yet highly structured problem. Whereas
prior work on this task has used PQCs only as feature
extractors for classical classifiers, our approach uses the
PQC as the main building block of the classification model.
Simulations show that our layered-QAS mitigates barren
plateau, outperforms quantum-adapted local and evolution-
ary QAS baselines, and achieves state-of-the-art results
among PQC-based methods on the ModelNet dataset '.

1. Introduction

Quantum Machine Learning (QML) [3, 5, 26], through
shallow-depth Parametrised Quantum Circuits (PQCs), is
anticipated to pave the way for utility-scale quantum com-
puting. PQCs operate in high-dimensional Hilbert spaces
with comparably few parameters, leveraging superposition
and entanglement to extract features beyond classical neu-
ral networks. However, designing effective PQC architec-
tures for task-oriented feature extraction remains challeng-
ing. While classical models benefit from well-established
architectural layers and inductive biases, PQCs lack such
standardised building blocks. In addition, the same quan-
tum properties that enable high expressiveness can also
cause barren plateaus [30], where flattened loss landscapes
hinder optimisation. Furthermore, PQCs are largely com-
posed of linear transformations, missing the non-linear ac-
tivations that underpin classical deep networks’ representa-
tional power. In light of this, maximising PQC architectural
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Figure 1. Overview of our framework for 3D point classifica-
tion using Parametrised Quantum Circuits (PQCs). The in-
put point cloud is voxelised and used to prepare the quantum sys-
tem. We then use the new layered Quantum Architecture Search
(layered-QAS) approach to engineer the PQC design that mean-
ingfully learns features from the encoded point cloud. Lastly,
qubits are measured to extract the learned features, which are used
by an optionally learnable classical linear layer for classification.

design is crucial to ensure discriminative feature extraction
while keeping the PQCs trainable and robust.

Quantum Architecture Search (QAS) offers a system-
atic way to address these design challenges by automati-
cally exploring the space of PQC structures [32, 34, 59].
By replacing manual trial-and-error with guided search,
QAS can discover expressive circuits for task-specific fea-
ture extraction, improve trainability, and mitigate barren
plateaus. Existing QAS policies, however, face several limi-
tations. Super-circuit and weight-sharing strategies [10, 47]
not only search in very large spaces that are computation-
ally demanding, but also often converge to suboptimal ar-
chitectures, as candidate models can adversarially update
the super-circuit parameters. Evolutionary and RL-based
methods may struggle with scalability or training instabil-
ity due to sensitivity to hyperparameters and reward de-
sign [39], while differentiable approaches [51] are prone
to getting trapped in local optima. Moreover, none of
these QAS methods account for PQC-specific considera-
tions such as strategic training [11, 46] and careful initiali-
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sation [15, 22, 48], which have been shown to mitigate bar-
ren plateaus, improve generalisation, and enhance feature
learning.

In response to these limitations, we introduce layered-
QAS. Building on ideas from the Lamarckian-based
LEMONADE [12], our policy adds new layers to a
pre-trained circuit and retains only those that provide the
largest performance improvement. To further increase effi-
ciency, we incorporate a pruning mechanism that removes
gates operating near the identity, reducing unnecessary
complexity without sacrificing expressivity. Together, these
components make layered-QAS a robust framework for dis-
covering high-performing PQCs.

We target 3D point cloud classification as a demand-
ing yet structured exemplary application to evaluate our
approach. The task involves assigning labels to objects
represented by unordered sets of points, with applications
in autonomous driving, robotics, and semantic segmenta-
tion [37, 41, 56]. Point clouds vary in density, resolu-
tion, and shape, while modern sensors produce increas-
ingly large datasets. These characteristics make point cloud
classification an ideal benchmark for QML, as it requires
models to reason about spatial relationships in irregular,
high-dimensional data. In this context, sSQCNN-3D [I1]
applies quanvolutional filters to point cloud patches but
delegates classification to a classical fully connected net-
work—Ileaving the quantum model underutilised. In con-
trast, we pursue a fully quantum classification pipeline,
minimising classical post-processing and improving fea-
ture extraction by the quantum circuit through architecture
search. Applied to 3D multi-class point cloud classification,
our pipeline enables near end-to-end quantum classification
with only minimal classical components. An overview of
our 3D classification framework is provided in Figure 1.

To summarise, our main contributions are as follows:

* A new layered-QAS policy for discovering improved and
task-adapted PQC designs, avoiding manual trial-and-
error approaches (Sec. 3; Sec. 3.2);

* A new framework for 3D point cloud classification based
on PQCs and amplitude encoding of 3D data, leveraging
layered-QAS for architectural design (Sec. 3.1).

We experiment on the ModelNet datasets [52] using a
quantum computer simulator and show that our models out-
perform the existing SQCNN-3D quantum baseline [1] and
are even competitive with a classical baseline of similar ex-
pressivity that we design. Our search strategies can find
parameter-efficient PQC architectures. Moreover, our lay-
ered search achieves better performance than the evolution-
ary search and a QAS-adapted local search [49], a baseline
that incrementally improves PQC architectures by making
small localised changes to the PQC and retains the changes
that enhance performance.

2. Related Work
2.1. PQC Training and QAS

Strategic PQC Training. Strategic training of PQCs is
believed to dampen trainability issues. Skolik et al. [46]
proposed a layer-wise training approach, which incremen-
tally grows the circuit depth, freezes previously learned
parameters, and optimises only the parameters of added
layers. This layered training strategy not only speeds up
the training but also experimentally proved to increase the
generalisation error. Similarly, the method proposed by
Duffy et al. [11] allows not only for the addition of new
parametrised gates, but also feature-map encodings of the
data to incrementally grow the circuits. Data re-uploading
is proven to increase the expressivity of PQCs [43]. Both
methods suggest that incrementally training PQCs is a
promising approach to enhance PQCs’ expressivity without
compromising their trainability. Note that a layered train-
ing approach was also used by Krahn et al. [24] for binary
networks with quantum annealed gradients.

Strategic PQC Initialisation. Random initialisation of
PQCs was shown to be one cause of barren plateaus [17,
35]. Grant et al. [15] proposed a selective initialisation
method that randomly selects only a subset of the initial
parameter values and chooses the remaining ones so that
the circuit is a sequence of shallow blocks that evaluate to
the identity, limiting the circuit depth in the first parameter
update. Wang et al. [48] proved that reducing the initial do-
main of each parameter inversely proportional to the square
root of the circuit depth causes the magnitude of the cost
gradient to decay at most polynomially with respect to the
qubit count and the circuit depth. Kashif et al. [22] empiri-
cally showed that initialising parameters within smaller dis-
tribution ranges, with lower magnitudes, tends to perform
better than using larger ranges with higher magnitudes.

Quantum Architecture Search (QAS). QAS methods
often use a super-circuit to define the search pool of can-
didate circuits, as seen in early works by Du et al. [10] and
Wang et al. [47], where training updates the super-circuit
before selecting and fine-tuning the best candidate. Ma et
al. [33] enhanced this with an evolutionary post-training
process, while other evolutionary approaches forgo super-
circuits, training architectures from scratch [6, 55]. Weight-
sharing improves memory efficiency but may cause subop-
timal convergence. Differentiable QAS methods, like those
by Wu et al. [51] and Zhang et al. [57], optimize the search
domain, while Reinforcement Learning (RL)-based meth-
ods [8, 27, 28, 39, 53] use neural agents to identify effective
architectures. However, differentiable methods risk favor-
ing local optima, and RL methods may face instability due
to hyper-parameters and reward function designs.



Our LEMONADE-[ 1 2]-inspired layered-QAS combines
informed initialisation with progressive layer-wise train-
ing. (i) Candidate layer architectures are briefly trained and
ranked to discard weak options; (ii) when new layers are
added, previously learned parameters remain trainable and
continue to improve. This warm-starting lets child models
inherit and refine the performance of their parents.

2.2. Classification using PQCs

PQC Classification and Architectures. Few methods
have explored 3D point cloud classification with PQCs, as
most prior QML works focused on binary classification on
small datasets like Moons, Iris or heavily downsampled
MNIST datasets; see Refs. [4, 13, 26] for an overview.

Binary and 2D classification have long served as stan-
dard PQC benchmarks. Farhi er al. [14] and Cong et
al. [7] were among the first to design quantum neural
networks for binary classification. Havlicek et al. [18]
proposed a quantum variational classifier using a feature-
map encoding to project data into high-dimensional spaces.
Henderson et al. [19] introduced quanvolutional filters for
PQC-based patch feature extraction. Salinas et al. [40]
developed a universal classifier using data re-uploading,
showing that a single-qubit PQC can serve as a univer-
sal classifier when target classes correspond to specific
Bloch-sphere states—though in multi-class settings, class-
state non-orthogonality induces correlations. More recent
works [21, 29, 44] extended these models to image datasets
such as MNIST [9], CIFAR [25], and GTSRB [20].

To the best of our knowledge, the work by Baek et al. [1]
is the only PQC approach to 3D point cloud classification.
Their method, sQCNN-3D, employs multiple PQCs that
are trained in parallel and behave as filters for feature ex-
traction. Those so-called quanvolution filters process small
patches of the voxelised cloud encoded using angle encod-
ing a data re-uploading. To mitigate barren plateaus, these
PQCs remain small in size and depth. Similar to classical
convolutional filters, each PQC uses the same parameters to
process all the inputted patches. Features are extracted by
locally measuring the qubits and concatenated into a feature
vector that is further processed by an MLP, which has sig-
nificantly more parameters than the PQCs. Due to this over-
whelming classical part of the model, it is unclear whether
the PQC:s still play a role in the model’s performance.

In contrast, we propose a quantum-driven alternative
that minimises classical components: voxelised inputs are
amplitude-encoded into PQCs, features are extracted di-
rectly via quantum measurements, and classification is per-
formed with at most one final classical linear layer.

3. 3D Point Classification with Layered-QAS

This section presents our layered-QAS policy for PQC de-
sign. To set the stage, we first outline the classification
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Figure 2. Amplitude encoding of a 3D point cloud into a quan-
tum state. We partition the point cloud into voxels (left) and com-
pute the normalised density of each voxel, i.e. the proportion of
points within the voxel (middle). This creates a matrix that we vec-
torise and use as input state vector for the PQC (right). The granu-
larity of the voxelisation, which defines the number of qubits used,
is user-defined. Colours are added for visualisation purposes.

pipeline in Section 3.1, followed by the presentation of our
layered-QAS policy in Section 3.2. A brief overview of
gate-based quantum computing is provided in Appendix A.

3.1. Workflow
3.1.1 3D Point Cloud Encoding

We use amplitude encoding as described in Figure 2 to en-
code the input point cloud in a quantum state vector.

Given is a point cloud P = {p" = (p%, p,, ) };-, and a
voxel granularity & € N. First, we normalise the point cloud
Pinto P = {p' = (p, p,, L)}, by fitting it into the 3D
unit cube that we later scale by 2¥ — 1. We then partition
this cube in each dimension into 2* sub-cubes called voxels.
Next, for each voxel that we index by integer coordinates
(z,y, z), we compute the proportion or density

N
5myz - N Z]I(pz; € V:mp; € Vyvpzz S ‘/z)a (l)
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of points within it, with V, = [z, z+1),V, = [y, y+1), and
V. = |z, 2 + 1) representing the voxel boundaries, and I(-)
returning 1 if the input condition is true, and 0 otherwise.
Finally, we use the computed densities to form a normalised

state vector
W) = V/Oay: l2yz) ©)

T,Y,z

in which we prepare the quantum system before the PQC
transformation, with |zyz) = |2) ® |y) ® |z) being a com-
posed system of three registers of k qubits each that encode
the =,y and z coordinates of the voxels in the binary ba-
sis. Thus, the overall encoding consists of 3k-many qubits.
Since the point cloud occupies only a subregion of the cube,
the state vector in Equation (2) is sparse within the 23%-
dimensional Hilbert space, enabling a relatively efficient
state-preparation [31, 42]. Example voxelised point clouds
for different £ are visualised in Appendix B.



3.1.2 PQC Transformation

The encoded quantum state vector undergoes several layers
of parametrised quantum gates forming the PQC, see Fig-
ure 1. These gates transform the initial state vector into a
final state that can be measured and post-processed. A PQC
of ¢ layers can be densely represented as an operator U(6),
with 0 being the set of parameters to be optimised. It trans-
forms the initial state vector into a parametrised state

[¥(0)) =U(0) [¢) = Le(0e) - - - Lu(61) [9) . (3)

Each layer L;(6;) consists of a combination of single-qubit
and/or multi-qubit gates. The single-qubit gates we use are
Pauli RX, RY, RZ rotations:

rxen = (S50, ). @
e = () ). we o
Rz<29)(e;9 699), ©6)

Multi-qubit entangling gates introduce correlations between
qubits. We use two-qubit controlled RX rotations

1 0 0 0
0 1 0 0

CRX(20) = [ o cos(f)  —isin(0) | - D
0 0 —isin(d) cos(d)

This set of gates is similar to the well-known universal set
{RX,RY,RZ,Phase, CNOT} [38, 50]. The optimal pa-
rameters 6 for the classification task should be found by
minimising the classification loss, while the circuit archi-
tecture will be designed by automated layered-QAS.

3.1.3 Measurement

We perform local qubit measurements by measuring each
qubit individually. As the PQC uses the three Pauli
RX,RY, RZ rotations to position the qubits on the Bloch
sphere, we measure in the Pauli X, Y, Z bases.

The Pauli observables M, with M € {X, Y, Z} applied
on the gth qubit with the identity to the remaining qubits,
measure the probability distribution for outcomes in the M
bases. The corresponding expectation values

(My(0)) = ((0)[M,[4(0)) ®

are returned for the three bases, with |¢/(0)) from Equa-
tion (3) being the state of the system after the PQC transfor-
mation. In total, the expectation values returned constitute
a set of 3 - 3k learned features, with k being the number of
qubits of each coordinate register.

Algorithm 1 Layered Quantum Architecture Search

Require: Layer architectures, number T  of layer types,
training and validation sets, ranking metric Best.

1: Ug:=1
2: fori=0,1,2,...do
3: ArchList := [] > Empty list
4: Layertypet :=¢ mod T
5: L; = {Random set of layers of type t}
6: for LZ‘+1 € L;do
7 Ucandidate = Li+1Ui
8: Train Uyngidate fOr a few epochs
9: Append Ucyngigate to ArchList
10: Update U, = Best(ArchList) > Ranking

11: Return U,

3.1.4 The Loss Function

Let ¢ be the number of class labels. As mentioned above,
the QPC outputs 3 - 3k learned features, which may not cor-
respond to the number c of classes. We use a classical lin-
ear layer to map these features into a length-c logit vector,
which is then compared by the cross-entropy loss function

Lee=—) yjlogp; ©)

j=1

to the one-hot encoded ground-truth label y = (y1, ..., y.),
with p = (p1,...,P.) being the predicted probability dis-
tribution obtained by applying softmax to the logits.

Ideally, the linear layer is trainable so it can learn weights
that map PQC outputs to the correct logits. To assess
whether the PQCs themselves learn meaningful features, we
also test a non-trainable linear layer implemented as a fixed
random Gaussian projection, i.e., a randomly initialized ma-
trix with entries drawn from a normal distribution.

3.2. Layered Quantum Architecture Search

We propose to find a suitable combination of the gates de-
scribed in Section 3.1.2 for a PQC architecture via a new
layered search methodology that is outlined in Algorithm 1
and illustrated in Figure 3. We denote by U;(0;) the unitary
operator of the PQC at generation .

We begin with a trivial identity circuit Uy(6y) = I,
which consists of data encoding followed by measurement.
At each generation (i + 1), the existing circuit U;(0;) is
expanded by adding a new layer L;1(0;11). To explore
the best possible architecture, different designs of the same
layer type are tested, each yielding a new PQC candidate:

Ucandidate(eiJrl) = Li+1(9i+1)Ui (91) (10)

The type of layer alternates across generations. For a fair
comparison, the parameters of the previous generation re-
main unchanged in all candidate PQCs. Furthermore, newly
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Figure 3. Workflow of our layered-QAS. At generation (i + 1),
the algorithm expands the PQC with a layer L;41(0;+1), chosen
from single-qubit, entangling, or pruning layers. Single-qubit and
entangling layers add new parametrised gates (green), while prun-
ing layers remove gates (red). Several candidate layers are evalu-
ated, and the most effective circuit extension is retained.

added layers are designed to almost preserve the accuracy
of U;(6;) at the start of the training. This is achieved, for
example, by initialising the parameters of added layers to
zero, ensuring that they initially act as the identity.

Each PQC candidate U, yngidae(@i+1) undergoes a few
training epochs. After training, candidates are ranked based
on their highest performance on the validation set during the
last training epoch. The most effective circuit

U(0i+1) = argmax BeSt(UcandidaIE(aiJrl))? (11)
Ue{Ucundidate }

along with its optimised parameters 0,1, is selected for the
next generation. Our ranking metric Best(-) is the classifi-
cation accuracy on the validation data. The process iterates,
progressively building a more and more expressive and ef-
fective PQC by systematically selecting the best-performing
circuits from each generation.

Layer Architectures. The layered architectures we con-
sider for the point cloud classification are illustrated in Fig-
ure 4. Three types of layers are considered, i.e., single-qubit
layers, entangling layers, and pruning layers:

* Single-qubit layers apply single-qubit Pauli
RX,RY,RZ rotation gates, enabling the circuit to
learn single-qubit transformations. Candidate layers at a
given generation are architectures 0, 1 and 2.

¢ Entangling layers introduce controlled rotations be-
tween qubit pairs, allowing the circuit to learn entangle-
ment patterns and enhance its expressivity [45]. We ex-
periment with CRX gates. Although some architecture
pairs in Figure 4 (e.g., 4&5, 6&7, 8&9) appear similar,
they differ in how control is applied. In architecture 4,
each qubit except the first is controlled by all its prede-
cessors, whereas in architecture 5 it is controlled only
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Figure 4. Layers tested in our layered-QAS. The number of pa-
rameters for each layer is shown at the top right. Special architec-
tures include the pruning layer, which deletes gates, and architec-
ture 3, which circularly applies CNOTSs on coordinate registers.

by its immediate predecessor. At each generation, three
entangling-layer candidates are sampled uniformly at ran-
dom from architectures 3 to 9.

* Pruning layers randomly remove a proportion of varia-
tional gates from the previous circuit U;(0;) if the ab-
solute value of their parameters falls below a predefined
dropout threshold. The intuition is that gates with small
rotation angles contribute minimally to the computation
while increasing circuit complexity. By eliminating them,
we reduce computational cost without significantly sacri-
ficing the accuracy. Candidate pruning layers at a given
generation are three pruning layers that randomly select
gates to prune among the ones with small angles.

Layer types are explored cyclically. We, however, note that
different layer types could also go into the candidate dimen-



sion. Our layered search enables a structured and principled
exploration of the PQC architectures, progressively refining
their performance while maintaining efficiency.

4. Experimental Results

In this section, we present the results of our layered-QAS
strategy in the context of 3D point cloud classification. Af-
ter presenting the implementation and evaluation details, we
begin in Section 4.1, by summarising the 3D classification
results of the layered-QAS to evaluate the performance of
our quantum model in comparison with quantum and clas-
sical baselines. Next, in Section 4.2, we benchmark our
layered search against alternative QAS policies. Finally,
in Section 4.3, we justify key design choices through ab-
lation studies on the voxel granularity and the gate pruning
threshold, and briefly discuss runtimes.

Implementation Details. The code is written in Python
using the PennyLane framework [2]. In PennyLane, the
quantum tape —sequence of gates in a quantum circuit— is
stored in a Python list that can be easily modified to alter the
circuit architecture. All experiments are simulated and per-
formed in the idealised noise-free setting, and gradients for
training are computed with automatic differentiation. We
use a NVIDIA GeForce RTX 4090 GPU.

Evaluation Methodology. We experiment on the Model-
Net10 and ModelNet40 datasets [52], with 10 and 40 la-
bels respectively, to classify the point clouds into. Model-
Net samples are object triangle meshes, from which we uni-
formly sample 5000 3D points at random to generate object
point clouds for classification. ModelNet10 originally has
3991 training and 908 test samples, while ModelNet40 has
9842 training and 2468 test samples. We take out 20% of
the original training samples to form the validation set on
each dataset and keep the test set intact for evaluation. The
granularity of the voxelisation is £k = 3 in each of the z,y
and z dimensions, leading to 9 qubits on which the PQCs
operate. We reduce the datasets by 90% during the archi-
tecture search phase, but use the full datasets for fine-tuning
after the search. We observed that the search on full, large
datasets causes the parameters in the evolutionary search
in Section 4.2 to deeply adapt to the candidate models, re-
sulting in highly conflicting updates to the super-circuit pa-
rameters (see the discussion in Appendix D). Conversely,
the search on smaller datasets enables the selection of can-
didate models that generalise better. Benchmark classifica-
tion results are reported based on the full datasets.

All models are optimised with the ADAM optimiser [23]
and a learning rate Ir = 0.1 in the search phase and
Ir = 0.03 in the fine-tuning phase. Each candidate model is
trained for 5 epochs. The classification performance metric

is the standard top-1 accuracy. The gate pruning threshold
is /10 in our layered-QAS.

4.1. Resuts on ModelNet10&40

We benchmark our approach in a shallow version obtained
after 10-layer search iterations, as well as a deeper version
after 20 search iterations on the full ModelNet10 and Mod-
elNet40 datasets against the following competitors:

* The only prior work on PQCs for 3D point cloud classi-
fication, the SQCNN-3D method [1], with 2 quanvolution
filters as tested in the original publication.

* A vanilla CNN with one 3D convolution, one ReLU layer
and one fully-connected layer to keep the parameter count
and expressivity of the models comparable. For instance,
the 3D convolutional layer is a linear transformation as
the PQCs, the ReLLU activation is non-linear as the mea-
surement of the quantum systems, and the last linear layer
is used for classification.

We train the benchmark models for 20 epochs with a higher

learning rate on the reduced dataset, and subsequently fine-

tune all models over 10 more epochs with a lower learning
rate on the full datasets.

As we can see from the results in Table 1, both vari-
ants of the proposed approach outperform the prior work
on 3D point cloud classification with PQCs as well as the
simple CNN baseline on both benchmark datasets in terms
of validation and test accuracy. Remarkably, our reduced
PQC model after 10 layered search iterations obtains high
accuracy at less than half the number of learnable quantum
parameters, trailing the deeper (20-iteration) model but sur-
prisingly few percents only. To get insight into shapes that
are challenging to classify, we show confusion matrices on
ModelNet10 in Appendix D.3.

4.2. Benchmark with QAS Methods

We ablate the proposed layered search against two alterna-
tives: 1) An adaptation of a classical local search algorithm
to the setting of PQCs, and 2) an evolutionary search ap-
proach similar to other QAS methods [10, 33], making use
of a super-circuit inspired by the classical one-shot archi-
tecture search approach in Guo et al. [16]. We evaluate the
evolutionary search in two different variants: One where the
parameters are directly taken from the super-circuit and one
where the current architecture is fine-tuned. Evolutionary
search models with fine-tuning are suffixed by “ft”. Details
as well as an algorithmic description for both approaches
can be found in Appendix C.

Our layered-QAS is performed over 20 generations,
which corresponds to 13 parametrised layers and 7 prun-
ing layers added. In each generation, we train and evaluate
3 candidate models. The super-circuit for the evolutionary
search also has 20 layers, but the number of parameters per
layer may be different than in the layered case. The super-



ModelNet10 ModelNet40

NPQ NPC Tr. VA. Ts. NPQ NPC Tr. VA. Ts.
Layeredip [Ours] 100 270 92% 92% 84% 105 1080 59% 56% 54%
Layeredsg [Ours] 279 270 92% 93% 85% 279 1080 61% 59% 55%
SQCNN-3D [1] 48 650 83% T9% 2% 48 2600 47% 45% 41%
Vanilla CNN 0 590  90% 88% 82% 0 1580 60% 55% 54%

Table 1. Resources and performance comparison for the models. Keys: “NP(Q/C)”’=Number of parameters in the quantum or classical
backbones; “TR./VA./Ts.”=Train/Validation/Test top-1 accuracy; The subscript in our layered approach refers to the number of layered-
QAS iterations. Our proposed approach consistently outperforms the baselines in all settings.
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Figure 5. Convergence of the search algorithms on the reduced ModelNet10 (top) and ModelNet40 (bottom) datasets for models
with learnable (left) and frozen (right) linear layers. Shown are the accuracies of the top three candidates for the layered and evolu-
tionary searches, and the single candidate for the local search. Layered search steadily improves accuracy by increasing PQC expressivity.
Evolutionary search converges faster with fine-tuning, while the version without fine-tuning can occasionally find better models but strug-
gles when the linear layer is frozen. Local search exhibits a step-like behavior, as the model is updated only when an improvement is found.

circuit is trained with 100 randomly sampled architectures.
The evolutionary search itself is performed over 20 genera-
tions for a population of size 10, from which only the top-5
architectures are considered to generate new ones.

Figure 5 presents the behaviours of the different search
procedures on ModelNetl0 and ModelNet4Q over the
course of the iterations, and in addition, Table 2 shows the
training, validation and test accuracies for the best models
found by each QAS for two different settings: Our standard
setting in which the last (classical) linear layer is learnable
as well as a setting with a frozen linear layer with random
weights that gives an impression of how powerful the PQC
alone (without classical components) is.

The results of the evolutionary search are from the evo-
lutionary search itself, i.e., after the super-circuit training.
In Appendix D.2, we discuss the performance of the found
models when trained from scratch after the search.

While all search strategies yield an increase in validation
accuracy, one can see a clearly favourable behaviour of the
layered search in both settings, with and without a learnable
classical linear layer. It is interesting to observe the high
jump of the layered-search accuracy of models with frozen
linear layers at generation 2. This jump corresponds to the
addition of the first entangled layer, which significantly in-
creases the circuit’s expressivity.

While the performance for all search strategies is higher
in the learnable than in the frozen linear layer setting, it is
remarkable that —at least in the case of ModelNetl10- our
proposed approach reaches almost 80% validation accuracy
for a random linear layer, indicating a highly expressive
PQC part. In comparison, we ran SQCNN-3D on Model-
Net10 with a frozen MLP to obtain 17.4% validation and
15.0% test accuracy only, indicating a significant advantage
in the expressiveness of our PQC architecture. In addition,



ModelNet10 ModelNet40

NPQ(L/F) NPC TR.(L/F) VA.(L/F) Ts.(L/F) NPQ(L/F) NPC TR.(L/F) VA.(L/F) Ts.(L/F)
Layered;( [Ours] 100/207 270 92/78%  92/78%  84/67% 105/164 1080  59/27%  56/26%  54/21%
Layeredyq [Ours] 279/282 270 92/78% 93/78% 85/69% 279/220 1080 61/22% 59/22% 55/16%
Local search 163/165 270 90/75% 89/75%  83/65% 166/166 1080  60/20%  58/18% 54/13%
Evolutionary [16, 33] 162/163 270 88/68% 85/65%  80/53% 162/168 1080  59/18% 57/17% 52/12%
Evolutionary ft. [16, 33] 163/176 270 89/69% 85/68%  81/56% 163/166 1080  59/17% 58/16% 53/11%

Table 2.

Ablation study on the choice of QAS: “NP(Q/C)”=Number of parameters in the quantum or classical backbones;

“TR./VA./TS.”=Train/Validation/Test top-1 accuracy; “L/F’=Search models with learnable and frozen linear layers; “ft.”’=Fine tuning.
NPC is 0 for models with frozen linear layers. The subscript in the layered model refers to the number of generations.
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Figure 6. Performance of the layered search for different pruning
thresholds ¢ and voxelisation granularity k on the reduced Model-
Net10. Pruning reduces the number of parameters without sacri-
ficing accuracy. Increasing k increases the prediction accuracy.

our SQCNN-3D-implementation yields lower accuracy than
originally reported [1], likely because the original work em-
ploys a fully connected network (with no architectural de-
tails provided) for classification, whereas we employ only
a single fully connected layer. This simplification is suffi-
cient to highlight the superior accuracy—parameter trade-off
of our layered-QAS approach.

4.3. Ablation Studies and Runtimes

For the model with a learnable linear layer, Figure 6 shows
the convergence behaviour for different pruning thresholds
t and voxel granularity k£ on the reduced ModelNet10. We
see that pruning gates with absolute parameter values below
t do not worsen the prediction accuracy while reducing the
PQCs’ depths. Pruning at t = /10 and ¢t = 7 /4 reduced
the number of gates from 126 to 86 and 189 to 148 respec-
tively. We note that other pruning methods based on Fisher
information exist that guarantee not to affect the PQC ex-
pressivity [17], but are more computationally expensive as
they require the Fisher information matrix to be computed.

Finer voxel grids improve the prediction, as they allow
capturing more details in the object shapes. However, the
performance for k& = 4 being only slightly better than for
k = 3 suggests that other factors are much more significant
than the voxel granularity beyond k = 3.

Runtimes. On the reduced ModelNetl0, the layered
search took 2 hours. Those times multiply by 3 for the
search on the reduced ModelNet40, and by 10 on full
datasets. Fine-tuning all search models took about 0.5 and
1 hours on the full ModelNet10 and ModelNet40 datasets,
respectively. In comparison, the training of the sSQCNN-3D
and vanilla CNN took 10 and 4 hours on the full Model-
Net10, which multiplies by 3 on the full ModelNet40.

5. Discussion and Conclusion

We evaluated PQCs discovered via our layered-QAS pol-
icy on 3D point cloud classification using the Model-
Net datasets, combining amplitude encoding, QAS-found
PQCs, and classical linear layers as principal components.
Our models outperformed the existing quantum sQCNN-
3D and, when matched in expressivity to a purely classi-
cal baseline, achieved competitive accuracy with far fewer
parameters. Even with frozen classical layers, the QAS-
discovered PQCs alone learned meaningful and discrimina-
tive features, underscoring the effectiveness of our architec-
ture search. These results demonstrate that layered-QAS
can identify task-specific quantum architectures that bal-
ance expressivity and trainability, making them viable for
challenging, structured domains like 3D classification.

A fundamental remaining problem is the under-
expressivity of the considered models, mainly consisting of
linear PQC operations, with quantum measurements being
the only non-linear functions. Future work should investi-
gate expressive PQC designs, such as those incorporating
non-linearities via intermediate measurements. Another in-
teresting direction would be a binary encoding of the input
in basis states, on which linear operations are provably ex-
pressive enough to approximate any output. This alternative
would require far more qubits, making it a goal for future
quantum hardware advancements.

Acknowledgements. This work was supported by
the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation), project number 534951134.
NKM and MM acknowledge support by the Lamarr
Institute for Machine Learning and Artificial Intelligence.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

Hankyul Baek, Won Joon Yun, Soohyun Park, and
Joongheon Kim. Stereoscopic scalable quantum convolu-
tional neural networks. Neural Networks, 165:860-867,
2023.2,3,6,7,8

Ville Bergholm, Josh Izaac, Maria Schuld, Christian
Gogolin, Shahnawaz Ahmed, Vishnu Ajith, M Sohaib
Alam, Guillermo Alonso-Linaje, B AkashNarayanan, Ali
Asadi, et al. Pennylane: Automatic differentiation of
hybrid quantum-classical computations.  arXiv preprint
arXiv:1811.04968, 2018. 6

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick
Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum ma-
chine learning. Nature, 549(7671):195-202, 2017. 1

Joseph Bowles, Shahnawaz Ahmed, and Maria Schuld. Bet-
ter than classical? the subtle art of benchmarking quantum
machine learning models. arXiv preprint arXiv:2403.07059,
2024. 3

Marco Cerezo, Guillaume Verdon, Hsin-Yuan Huang,
Lukasz Cincio, and Patrick J Coles. Challenges and oppor-
tunities in quantum machine learning. Nature computational
science, 2(9):567-576, 2022. 1

D Chivilikhin, A Samarin, V Ulyantsev, I lorsh, AR
Oganov, and O Kyriienko. = Mog-vge: Multiobjective
genetic variational quantum eigensolver. arXiv preprint
arXiv:2007.04424, 2020. 2

Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quan-
tum convolutional neural networks. Nature Physics, 15(12):
1273-1278, 2019. 3

Xin Dai, Tzu-Chieh Wei, Shinjae Yoo, and Samuel Yen-Chi
Chen. Quantum machine learning architecture search via
deep reinforcement learning. In Quantum Computing and
Engineering, pages 1525-1534. IEEE, 2024. 2

Li Deng. The mnist database of handwritten digit images for
machine learning research. IEEE Signal Processing Maga-
zine, 29(6):141-142, 2012. 3

Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, and
Dacheng Tao. Quantum circuit architecture search for varia-
tional quantum algorithms. npj Quantum Information, 8(1):
62,2022. 1,2,6

Callum Dufty, Smit Chaudhary, and Gergana V Velikova.
Quantum circuit training with growth-based architectures.
arXiv preprint arXiv:2411.16560, 2024. 1,2

Thomas Elsken, Jan Metzen, and Frank Hutter. Efficient
multi-objective neural architecture search via lamarckian
evolution. arXiv preprint arXiv:1804.09081, 2018. 2, 3

Fan Fan, Yilei Shi, Tobias Guggemos, and Xiao Xiang
Zhu. Hybrid quantum-classical convolutional neural network
model for image classification. Neural networks and learn-
ing systems, 2023. 3

Edward Farhi and Hartmut Neven. Classification with quan-
tum neural networks on near term processors. arXiv preprint
arXiv:1802.06002, 2018. 3

Edward Grant, Leonard Wossnig, Mateusz Ostaszewski, and
Marcello Benedetti. An initialization strategy for addressing
barren plateaus in parametrized quantum circuits. Quantum,
3:214,2019. 2

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling. In
European conference on Computer visio, pages 544-560.
Springer, 2020. 6, 8, 2

Tobias Haug, Kishor Bharti, and MS Kim. Capacity and
quantum geometry of parametrized quantum circuits. PRX
Quantum, 2(4):040309, 2021. 2, 8

Vojtéch Havlicek, Antonio Cércoles, Kristan Temme, Aram
Harrow, Abhinav Kandala, Jerry Chow, and Jay Gambetta.
Supervised learning with quantum-enhanced feature spaces.
Nature, 567(7747):209-212, 2019. 3

Maxwell Henderson, Samriddhi Shakya, Shashindra Prad-
han, and Tristan Cook. Quanvolutional neural networks:
powering image recognition with quantum circuits. Quan-
tum Machine Intelligence, 2(1):2, 2020. 3

Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc
Schlipsing, and Christian Igel. Detection of traffic signs
in real-world images: The German Traffic Sign Detection
Benchmark. In International Joint Conference on Neural
Networks, number 1288, 2013. 3

Yu Jing, Xiaogang Li, Yang Yang, Chonghang Wu, Wen-
bing Fu, Wei Hu, Yuanyuan Li, and Hua Xu. Rgb image
classification with quantum convolutional ansatz. Quantum
Information Processing, 21(3):101, 2022. 3

Muhammad Kashif and Muhammad Shafique. The
dilemma of random parameter initialization and barren
plateaus in variational quantum algorithms. arXiv preprint
arXiv:2412.06462, 2024. 2

Diederik P Kingma. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014. 6
Maximilian Krahn, Michele Sasdelli, Fengyi Yang,
Vladislav Golyanik, Juho Kannala, Tat-Jun Chin, and Tolga
Birdal. Projected stochastic gradient descent with quantum
annealed binary gradients. BMVC, 2024. 2

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images., 2009. 3

Natacha Kuete Meli, Shuteng Wang, Marcel Seel-
bach Benkner, Michele Sasdelli, Tat-Jun Chin, Tolga Birdal,
Michael Moeller, and Vladislav Golyanik. = Quantum-
enhanced computer vision: Going beyond classical algo-
rithms. arXiv e-prints, page arXiv, 2025. 1, 3

Akash Kundu, Aritra Sarkar, and Abhishek Sadhu. Kan-
qas: Kolmogorov-arnold network for quantum architecture
search. EPJ Quantum Technology, 11(1):76, 2024. 2

En-Jui Kuo, Yao-Lung L Fang, and Samuel Yen-Chi Chen.
Quantum architecture search via deep reinforcement learn-
ing. arXiv preprint arXiv:2104.07715, 2021. 2

Sylwia Kuros and Tomasz Kryjak. Traffic sign classification
using deep and quantum neural networks. In International
Conference on Computer Vision and Graphics, pages 43-55.
Springer, 2022. 3

Martin Larocca, Supanut Thanasilp, Samson Wang, Kunal
Sharma, Jacob Biamonte, Patrick J Coles, Lukasz Cincio,
Jarrod R McClean, Zoé Holmes, and M Cerezo. A review
of barren plateaus in variational quantum computing. arXiv
preprint arXiv:2405.00781, 2024. 1,2



(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

Lvzhou Li and Jingquan Luo. Nearly optimal circuit size
for sparse quantum state preparation. In International Col-
loquium on Automata, Languages and Programming, 2024.
3

Xudong Lu, Kaisen Pan, Ge Yan, Jiaming Shan, Wenjie Wu,
and Junchi Yan. Qas-bench: rethinking quantum architec-
ture search and a benchmark. In International conference on
machine learning, pages 22880-22898. PMLR, 2023. 1
QuanGong Ma, ChaoLong Hao, XuKui Yang, LongLong
Qian, Hao Zhang, NianWen Si, MinChen Xu, and Dan
Qu. Continuous evolution for efficient quantum architecture
search. EPJ Quantum Technology, 11(1):54,2024. 2,6, 8
Darya Martyniuk, Johannes Jung, and Adrian Paschke.
Quantum architecture search: a survey. In Quantum Com-
puting and Engineering, pages 1695-1706. IEEE, 2024. 1
Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy,
Ryan Babbush, and Hartmut Neven. Barren plateaus in quan-
tum neural network training landscapes. Nature communica-
tions, 9(1):4812, 2018. 2

Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and
Keisuke Fujii. Quantum circuit learning. Physical Review A,
98(3):032309, 2018. 2

AAM Muzahid, Hua Han, Yujin Zhang, Dawei Li, Yuhe
Zhang, Junaid Jamshid, and Ferdous Sohel. Deep learning
for 3d object recognition: A survey. Neurocomputing, page
128436, 2024. 2

Michael A Nielsen and Isaac L Chuang. Quantum computa-
tion and quantum information. Cambridge university press,
2010. 4

Mateusz Ostaszewski, Lea M Trenkwalder, Wojciech Masar-
czyk, Eleanor Scerri, and Vedran Dunjko. Reinforcement
learning for optimization of variational quantum circuit ar-
chitectures. Advances in Neural Information Processing Sys-
tems, 34:18182-18194, 2021. 1, 2

Adrian Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster,
and José I Latorre. Data re-uploading for a universal quan-
tum classifier. Quantum, 4:226, 2020. 3

Sushmita Sarker, Prithul Sarker, Gunner Stone, Ryan Gor-
man, Alireza Tavakkoli, George Bebis, and Javad Sattarvand.
A comprehensive overview of deep learning techniques for
3d point cloud classification and semantic segmentation. Ma-
chine Vision and Applications, 35(4):67, 2024. 2

Maria Schuld and Francesco Petruccione. Supervised learn-
ing with quantum computers. Quantum science and technol-
ogy, 2018. 3

Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. Ef-
fect of data encoding on the expressive power of variational
quantum-machine-learning models. Physical Review A, 103
(3):032430, 2021. 2

Arsenii Senokosov, Alexandr Sedykh, Asel Sagingalieva,
Basil Kyriacou, and Alexey Melnikov. Quantum machine
learning for image classification. Machine Learning: Sci-
ence and Technology, 5(1):015040, 2024. 3

Sukin Sim, Peter D Johnson, and Aldn Aspuru-Guzik. Ex-
pressibility and entangling capability of parameterized quan-
tum circuits for hybrid quantum-classical algorithms. Ad-
vanced Quantum Technologies, 2(12):1900070, 2019. 5

[46]

(47]

(48]

[49]

[50]

(51]

[52]

(53]

(54]

[55]

(561

(571

(58]

(591

Andrea Skolik, Jarrod R McClean, Masoud Mohseni, Patrick
Van Der Smagt, and Martin Leib. Layerwise learning for
quantum neural networks. Quantum Machine Intelligence,
3:1-11,2021. 1,2

Hanrui Wang, Yongshan Ding, Jiaqi Gu, Yujun Lin, David Z
Pan, Frederic T Chong, and Song Han. Quantumnas: Noise-
adaptive search for robust quantum circuits. In Sympo-
sium on High-Performance Computer Architecture (HPCA),
pages 692-708, 2022. 1,2

Yabo Wang, Bo Qi, Chris Ferrie, and Daoyi Dong. Train-
ability enhancement of parameterized quantum circuits via
reduced-domain parameter initialization. Physical Review
Applied, 22(5):054005, 2024. 2

Colin White, Sam Nolen, and Yash Savani. Exploring the
loss landscape in neural architecture search. In Uncertainty
in Artificial Intelligence, pages 654-664. PMLR, 2021. 2, 3
Colin P Williams and Colin P Williams. Quantum gates.
Explorations in quantum computing, pages 51-122, 2011. 4
Wenjie Wu, Ge Yan, Xudong Lu, Kaisen Pan, and Junchi
Yan. Quantumdarts: differentiable quantum architecture
search for variational quantum algorithms. In Interna-
tional Conference on Machine Learning, pages 37745-
37764. PMLR, 2023. 1, 2

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
computer vision and pattern recognition, pages 1912-1920,
2015. 2,6

Esther Ye and Samuel Yen-Chi Chen. Quantum architecture
search via continual reinforcement learning. arXiv preprint
arXiv:2112.05779,2021. 2

Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat,
and Mathieu Salzmann. Evaluating the search phase of
neural architecture search. In International Conference on
Learning Representations. OpenReview.net, 2020. 5

Anqgi Zhang and Shengmei Zhao. Evolutionary-based
searching method for quantum circuit architecture. Quan-
tum Information Processing, 22(7):283, 2023. 2

Huang Zhang, Changshuo Wang, Shengwei Tian, Baoli Lu,
Liping Zhang, Xin Ning, and Xiao Bai. Deep learning-based
3d point cloud classification: A systematic survey and out-
look. Displays, 79:102456, 2023. 2

Shi-Xin Zhang, Chang-Yu Hsieh, Shengyu Zhang, and Hong
Yao. Differentiable quantum architecture search. Quantum
Science and Technology, 7(4):045023, 2022. 2

Yuge Zhang, Zejun Lin, Junyang Jiang, Quanlu Zhang, Yu-
jing Wang, Hui Xue, Chen Zhang, and Yaming Yang. Deeper
insights into weight sharing in neural architecture search.
arXiv preprint arXiv:2001.01431, 2020. 5

Weiwei Zhu, Jiangtao Pi, and Qiuyuan Peng. A brief survey
of quantum architecture search. In International conference
on algorithms, computing and systems, pages 1-5, 2022. 1



	. Introduction
	. Related Work
	. PQC Training and QAS
	. Classification using PQCs

	. 3D Point Classification with Layered-QAS
	. Workflow
	3D Point Cloud Encoding
	PQC Transformation
	Measurement
	The Loss Function

	. Layered Quantum Architecture Search

	. Experimental Results
	. Resuts on ModelNet10&40
	. Benchmark with QAS Methods
	. Ablation Studies and Runtimes

	. Discussion and Conclusion

