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Abstract

Handling missing node features is a critical challenge for deploying Graph Neu-
ral Networks (GNNs) in real-world applications such as healthcare and sensor
networks. This has led to a number of recent works exploring techniques for
learning GNNs from incomplete data. However, existing evaluations are often
based on benchmark datasets with high-dimensional but very sparse node features,
where predictive performance degrades only slowly as the proportion of missing
values increases. In this paper we move towards more challenging and realistic
scenarios by considering datasets in which the predictive signal is more sensitive
to feature incompleteness. We provide a theoretical background for clearly identi-
fying relevant assumptions on the missingness mechanism, and for analyzing their
implications for different solution approaches. Based on this analysis, we introduce
the GNNmim approach for node classification in graphs with incomplete feature data.
Experiments show that GNNmim consistently outperforms more complex models
across a range of datasets and levels of missingness.

1 Introduction

Missing features are a pervasive challenge in many real-world machine learning applications, such
as healthcare [4} [11]], IoT sensor networks [8} [12| [1]], and database migration [2| [13]]. This issue
naturally extends to Graph Neural Networks (GNNs), which are increasingly applied in domains
where incomplete data is common. Here, we focus specifically on the problem of missing node
features, a setting that has received growing attention in the GNN literature.

Several methods have been proposed to address this challenge, ranging from simple mean imputation
to sophisticated architectures that perform joint imputation and prediction during training. These are
typically evaluated by synthetically removing features from standard benchmarks such as CORA,
CITESEER, and PUBMED. Yet these datasets rely on extremely sparse bag-of-words features, raising
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a crucial question: Can we meaningfully assess robustness to missing features when most entries
are already zero? Our theoretical analysis shows that in highly sparse settings, the information loss
from additional missingness is negligible until corruption becomes extreme. Empirically, existing
methods maintain high accuracy until more than 90% of entries are missing, limiting the ability of
such benchmarks to differentiate between approaches.

To move beyond this limitation, we identify and propose a set of datasets, one synthetic and three real-
world, characterized by dense, raw features. These datasets provide a more realistic testbed, with low
sparsity, high informativeness, and both feature-structure complementarity and separability [5].We
also revisit the design of the missingness mechanism. In addition to the widely adopted uniform
randomly missingness and the structurally missingness settings from prior work, we introduce a
novel correlation-driven MCAR mechanism, where missingness probabilities are correlated with
node labels, offering a more challenging evaluation.

Finally, we introduce GNNmim, a simple method that augments the node feature matrix with a binary
mask indicating missing values, processed by a standard GNN without learned imputation. Despite its
simplicity, GNNmim consistently outperforms more complex models across datasets and missingness
settings.

Contributions. Our main contributions are:

1. A theoretical analysis showing that the effect of missingness strongly depends on feature
sparsity, with an information-theoretic bound on the incurred loss.

2. A set of dense, informative datasets (one synthetic, three real-world) offering a more suitable
testbed for GNNs under missingness.

3. An evaluation covering three MCAR mechanisms: uniform randomly missingness, struc-
turally missingness, and our proposed correlation-driven MCAR.

4. The GNNmim method, which outperforms more complex models while highlighting limita-
tions of current evaluation practices.

2 Learning from Incomplete Graph Data

We consider an attributed graph G = (V, E,X,Y), where V = {1,...,n} is the set of nodes,
E CV x V is the set of edges represented by the adjacency matrix A € {0,1}"*", X € R"* is
the node feature matrix with entry X;; denoting feature j of node 4, and Y € Y™ is the vector of
node labels.

When data is incomplete, then some entries of X are unobserved. Let M € {0,1}"*¢ be the
missingness indicator matrix that has M;; = 1 if x;; is missing and 0 otherwise. Let X be the
elements of X for which M;; = 1, and X™iss the elements for which M, ; = 0. The observed data
from which we learn then can be written as X°”, 'Y, M. We note that we here make the assumption
that Y is fully observed in the (training) data, and that there is no uncertainty about the graph structure
E. The distribution of the data then can be parameterized as

Pg’%)\(X()bS7Y,M) = Py (X)Py(Y|X)PA(M|X,Y), 1)
Xmisx
where X = X U X"iss| P, is the node feature distribution, P, is the conditional label distribution,
and P represents the missingness mechanism. Though not explicitly reflected in the notation, all
these distributions will usually depend on the underlying graph structure, which will typically induce
dependencies among the rows of X, and among the elements of Y.

A GNN for node classification with complete feature data is a model P, (Y|X) with -y the weights
of the GNN. For classification, we need to learn the conditional model

Po 4 A(Y|X M) = Po 4 A(Y| X, M)Pg (XX M). ()

X miss
The classical missing (completely) at random (M(C)AR) assumptions [[LS]] simplify this problem.
The original M(C)AR assumptions have been formulated in the context of estimating the parameter
of a generative distribution. It has been observed that more specialized variations of the original



definitions can be more pertinent in the context of classification [6, 9]. In the following we give
formulations of M(C)AR for classification that provide the foundations for our theoretical analysis.

Definition 1. The joint distribution Py ~ » is feature-MAR, if
P%A(M\X’""”, Xobs) _ P97,\/7)\(M|X0bs). (3)

It is label-MAR if

PAM|X,Y) = P, x(M|X). @)
The distribution is MCAR, if

PA\(M|X,Y) = Pgya(M). 5)

In (3)-(®) all probability functions are indexed with the parameters they actually depend on. Note,
for example, that the conditional of M given X requires marginalization over Y, and thereby also
depends on the parameter v. MCAR implies both feature- and label-MAR.

The simplest realization of an MCAR mechanism is uniform independent missingness in which
entries of X are missing with a fixed missingness probability ;. This can be generalized by defining
a missingness probability matrix p € [0, 1]"*¢ specifying potentially different missingness probabili-
ties for different entries of X. Another missingness mechanism often considered in the graph learning
literature is structural missingness where randomly selected rows of X are set to missing. This, too,
is still an MCAR mechanism, but now with internal dependencies among the components of IM.

MAR assumptions allow us to eliminate the coarsening model Py from (2). The following proposition
states this classical ignorability result in a version most suitable in our context.

Theorem 1. If Py  » is feature-MAR and label-MAR, then (2)) simplifies to

/ - Py(Y|X) P(X"|X). (6)
X/mss

The proof is straightforward by rewriting the two factors on the right of (2) using Bayes’s rule, and
plugging in (3) and @). Apart from eliminating the missingness mechanism, (6) also simplifies (2)) by
separating the marginal feature model Pp, and the conditional label distribution P.,. Formulation (6)
still poses two major challenges: it requires a feature distribution model Py when in reality we only
are interested in the conditional model P, and the integration over X”** is usually intractable.

The simplest approach to address these problems is to approximate the integral (6)) by evaluating
P,(Y|X) at a single imputed value X = impute(X™*). This does not require an explicit model for
Pp, but relies on the implicit assumption that the imputed value impute(X™**) has high probability
under Py. A simple example is mean-imputation, in which missing values of a given feature are
filled with the mean of that feature. Similarly, PCFI [[17] does not require an explicit model for Pp;
it introduces a confidence-guided imputation scheme where pseudo-confidence is derived from the
shortest-path distance to observed features, and combines channel-wise diffusion with inter-channel
propagation to recover a single estimate of X. GOODIE [19] approximates the integral in (6) using a
combination of label propagation and FP [14], which propagates features by minimizing a Dirichlet
energy function, whereas FairAC [10] does so by aggregating, via an attention mechanism, the
representations from neighbors of nodes with missing features.

Other methods explicitly model Py. The GCNmf approach of Taguchi et al. [[16]] introduces a model of
Py in the form of a mixture of Gaussians, and approximates (6) by Py (Y, |, Eo[L1 | X°**]), where
Eg[L; | X°*] is the expected activation at the first layer of the GNN defining P . Finally, GSPN[7]
explicitly models Py with graph-induced sum—product networks, so missing features are handled by
exact marginalization.

An alternative to all these approaches that work entirely with models Py, P for the (complete) data
distribution is to include the missingness mechanism explicitly in a model P+ (Y |X°**, M), that
directly captures the left side of . We here write 4 for the parameters of the model to emphasize
that it can be structurally similar to a model P, (Y| X), but different in that it has the missingness
matrix M as an explicit extra input.

This modeling strategy, often referred to as the Missing Indicator Method (MIM), has been studied in
the context of supervised learning with missing features [18]], but, to the best of our knowledge, it has
not been explored in the context of graph machine learning. In this work, we propose a GNN-based



instantiation of the MIM framework, which we call GNNmim. in GNNmim, we implement P.+ as a

GNN, we construct the matrix zero-pad(X°*) in which missing values are filled in by zeros, and
use the concatenation zero-pad(X°*)[i,:]|| M[i, :] as the feature vector for node i in an otherwise
standard GNN architectur GNNmim does not rely on any MAR assumptions, and thereby can be
expected to perform more robustly than other approaches under different missingness mechanisms.
As our experiments in Section [] show, this simple yet principled strategy yields robust performance
across a wide variety of missingness scenarios.

3 Are we evaluating GNNs for missing data on the correct dataset?

A rigorous evaluation of GNNs under feature missingness requires not only suitable models but also
appropriate datasets. Recent work has stressed the importance of dataset choice in benchmarking.
The position paper Bechler-Speicher et al. [3] argues that current practices in benchmark selection
need substantial revision, while Coupette et al. [S]] propose two diagnostics, performance separability
and mode complementarity, to assess dataset informativeness. In the context of missing node features,
dataset suitability is even more critical: models should be tested where missingness meaningfully
affects performance and reasoning under missingness is non-trivial. Nevertheless, current prac-
tice still relies on benchmarks such as CORA, CITESEER, PUBMED, AMAZONCOMPUTERS, and
AMAZONPHOTO.

In these datasets, node features are constructed as fol- .
lows: CORA, CITESEER and PUBMED use binary bag- Table 1: Feature sparsity across bench-
of-words features, while AMAZONCOMPUTERS and marks and custom datasets.

AMAZONPHOTO use TF-IDF vectors. These feature Dataset Sparsity |  Features
matrices are typically very sparse, which we quantify ~cgra 0.9873 Bow
using the notion of feature sparsity, formally defined as:  PusmED 0.8998 BoW
CITESEER 0.9915 BoW
AMAZONPHOTO 0.6526 TF-IDF
Definition 2 (Feature Sparsity). Given a node fea-  AMAZONCOMPUTERS  0.6516 TF-IDF
ture matrix X € R"¥9, the feature sparsity is de- “gynrapric 0.0000  Gaussian
fined as the proportion of zero entries: s(X) = AR 0.1615 Raw
Ly Z?Zl 1[X;; = 0], where 1[-] denotes the in- %E%ﬂc g:éggg Ezz

dicator function.

The sparsity values of the benchmark datasets are reported in Table|[T] (first five rows). All datasets
exhibit substantial sparsity, with more than 50% of features being zero across all the datasets, with
Citeseer reaching an extreme sparsity level of approximately 99%. This raises a crucial question:
does it make sense to evaluate models designed to handle missing features on datasets where the
feature representations are already extremely sparse? In such sparse settings, a high probability of
missingness is needed to induce a meaningful information loss. Otherwise, the observed model
performance under missingness may reflect artifacts of the dataset rather than the robustness of the
method. We formalize this observation in the following theorem.

Theorem 2. Let X € R"*? and Y € Y™ be random variables, M € {0,1}"*¢ be a missingness
mask and X denote the observed (incomplete) data. We encode the pair (X, M) with the

random variable X with
> Xy, Miy=1,
Xig = {?, M;; = 0.

Let the change in the information be defines as A := I(Y;X) — I(Y;X). Then,
1. If the missingness is label-MAR, then A < 0.

2. If X € {0,1}"*? and the missingness is uniform MCAR, independently of (X,Y) and
identically over (4, j), being the (random) sample sparsity s(X) be defined as in Definition

'We deliberately here say “zero-padding” rather than “zero-imputation”. The latter would imply that we
view the zeros as somehow reasonable stand-ins for the true unobserved values. We view the zeros as arbitrary
placeholders. Ideally, the trained model will learn to ignore these values when the corresponding missingness
indicator is 1.



[ then
—ndpho(E[s(X)]) < A <0,

where ha(u) = —ulogu — (1 — u)log(1l — u).

The proof can be found in Appendix [A] Theorem [2]demonstrates that when feature sparsity is high,
a very large amount of missingness is required to produce a meaningful loss of information. This
theoretical insight is also reflected empirically. As shown in Figure [T} which reports the case of
Cora, Citeseer and PubMed under uniform random (UR) missingness, GNN-based models maintain
consistently high F1 scores across almost all levels of missingness, with a noticeable drop only
beyond 90%.

These theoretical and empirical results, confirms that such benchmarks do not meaningfully differ-
entiate between approaches, casting doubt on their suitability for evaluating GNNs under feature
missingness. As a consequence, we argue for the use of datasets where missingness poses a real and
measurable challenge. To support this perspective, we introduce a set of alternative datasets, both
synthetic and real-world, that are better aligned with the characteristics required to meaningfully
evaluate GNNs under feature missingness. These datasets aim to open a new direction for research by
highlighting the limitations of existing benchmarks and enabling more principled empirical analysis.

—e— fairac fp —e— gcnmf — —e— gnnmi —e— goodie
Cora - UR Citeseer - UR PubMed - UR
. [ L — — ®
° 08 [ 7 L . b c—o—o—:—o 0‘3\:_;\: e
‘é 0.6 N
W 4 b \. o\ 3
— ° \ —¢
[, °
0.2 N
° L]
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
H H H

Figure 1: F1 scores on Cora, Citeseer and PubMed under uniform MCAR.

(1) Synthetic dataset with controlled missingness. We design a Barabasi—Albert graph with
Gaussian node features and labels generated by a fixed two-layer GCN trained on complete features.
This ensures that, without missingness, high classification accuracy is attainable. The dataset thus
serves as a clean testbed to isolate the effect of feature sparsity under a well-defined ground truth.

(2) Real-world datasets with meaningful features. We further consider real datasets where node
features correspond to observable properties: 1) AIR, an IoT sensor network with environmental
measurements and sensor status labels; 2) ELECTRIC, an electrical sensor graph with real-valued
features and operational condition labels; 3) TADPOLE, a medical dataset where nodes are patients,
features include clinical and imaging biomarkers, and labels correspond to diagnoses.

Table 2: Evaluation of P1 (performance separability) and P2 (mode complementarity) on our custom
datasets. Each cell reports the KS statistic and associated p-value for separability under six perturba-
tion settings. -y 1 indicates the feature-structure complementarity. Datasets satisfying each property
(as per Coupette et al. [3]]) are marked with v'.

Dataset Empty Feat.  Random Feat. Complete Feat. Empty Graph Random Graph Complete Graph | v1; | P1 | P2
SYNTHETIC  1.00 (8.80e-62) 1.00 (8.80e-62)  1.00 (1.93e-14)  1.00 (1.03e-17)  1.00 (8.80e-62) 1.00 (8.80e-62) 062 | v | v
AIR 1.00 (8.80e-62)  1.00 (8.80e-62)  1.00 (8.80e-62)  0.67 (1.53e-30)  1.00 (8.80e-62) 1.00 (8.80e-62) 068 | v | V
ELECTRIC 1.00 (8.80e-62)  1.00 (8.80e-62)  1.00 (8.80e-62)  0.98 (1.90e-57)  1.00 (8.80e-62) 1.00 (8.80e-62) 069 | v | V
TADPOLE 1.00 (8.80e-62)  0.90 (5.31e-44) 0.61 (4.22e-18)  0.77 (1.53e-30)  1.00 (8.80e-62) 1.00 (8.80e-62) 064 | v | V

Both the synthetic and real-world datasets show low feature sparsity (Table[I)), a necessary but not
sufficient condition for benchmarking under missingness. Following the RINGS framework [J5]], we
further evaluate two criteria: performance separability, measuring whether features and structure
individually carry task-relevant information, and mode complementarity, quantifying their alignment
in a task-agnostic space. Values of 7, ; above 0.5 indicate satisfactory quality, which holds for all our
datasets. Those values are shown in Table



4 Experiments

We conduct experiments on node classification tasks using the datasets introduced in Section [3]and
the MCAR-based missingness mechanisms defined in the next paragraph. The goal is to evaluate how
well existing methods and our proposed approach perform under different conditions of missing node
features. We compare a range of GNN-based models specifically designed to handle missing features,
including GNNmi, GCNmf, GOODIE, GSPN, PCFI, FP, and FairAC, introduces in Section|2|, alongside
our proposed method, GNNmim (Details in Appendix . Code available aﬂ

Missingness mechanisms Most prior works adopt a masking scheme under the MCAR assumption
(Definition 1). The common variant is Uniform Randomly MCAR (UR), where each feature entry is
masked independently with probability i € [0, 1]. Another variant, used for example by Taguchi et al.
[L6], Um et al. [17], is Structural MCAR (S), where entire feature vectors of randomly selected nodes
are masked. We additionally introduce a more challenging mechanism, Correlation-Dependent
MCAR (CD), which masks features at the column level with probability proportional to their mutual
information with the label. Each entry X; is masked independently with P(M;; = 1) = p - w;,
where w; o< I(X;;Y) and p € [0, 1] is scaled to match the target missingness rate.
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Figure 2: F1 score vs. feature missingness (1) on our datasets under Structural MCAR (S). To the
right, models are ranked by mean F1 across all i values (best on top). Complete plots in App. @

Results We evaluate performance across missingness rates
in {0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, Lable 3: Overall average rank
99%}. Figure 2] shows results for all datasets and the Struc- (lower is better), obtained by aggre-
tural MCAR mechanism (complete plots for all missingness ~ating the per-panel ranks in Fig. 2
mechanisms are reported in[B]). Compared to results on stan- ~ 4¢T0SS all datasets and missingness
dard benchmarks (Figure|[T), models exhibit a much stronger mechanisms (see Appendix @

drop in performance, even at moderate levels of missingness.
On classical datasets such as Cora or Citeseer, models often Model Avg. Rank
appear robust until very high rates (80-90%), but as argued in GOODIE 550

Section [3] this is largely due to feature sparsity. In contrast, '

the proposed datasets expose more realistic and challenging GS?N 7.25
behavior: performance degrades earlier and more substantially. FairAC 4.50
To assess robustness, for each plot in Figure 2] we report the GCNmf 4.00
average model rank across missingness levels. Table [3]summa- FP 4.25
rizes the overall ranks across datasets and mechanisms, with PCFI 3.75
GNNmim emerging as the most robust method, confirming the GNNmi 3.70
value of explicitly leveraging missingness through a simple, GNNmim 175

assumption-free mechanism.

Overall, these experiments highlight that our proposed datasets, combined with our MCAR mecha-
nisms, expose meaningful robustness differences between methods. In particular, GNNmim’s consistent
performance suggests that explicitly modeling missingness through simple indicators can be more
effective than complex imputation strategies or probabilistic models.

5 Conclusion and Future Work

In this work, we revisited the evaluation of Graph Neural Networks under feature missingness. We
showed that widely used benchmarks, dominated by highly sparse features, fail to expose the real

https://anonymous.4open.science/r/gnnmim-257C/
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challenges of incomplete data. To address this, we introduced denser and more informative datasets,
and proposed GNNmim, a simple method that augments node features with explicit missingness
indicators. Across datasets and masking mechanisms, GNNmim consistently matches or outperforms
more complex methods. This indicates that current approaches are not necessarily superior to simple
strategies when tested in realistic settings, opening the way for more principled solutions.

Future Work. Our study focused on MCAR mechanisms, but extending the evaluation to Missing
Not At Random (MNAR) scenarios, where missingness depends on feature values, would be highly
relevant in domains such as healthcare. Another important direction is to study distribution shifts
between training and test missingness, where type or intensity differ across phases, a setting closer
to real-world deployments.
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A Proofs
Theorem 1. If Py , x is feature-MAR and label-MAR, then (2) simplifies to
| popaxmsxes), ©
X miss
Proof.
P, (Y|X) @)
Py a(Y1X. M) = Py(M| X, Y)Y X @ p )

Py a(M|X)
PG (Xmiss|Xubs)

miss obs
———— = Pp(X"¥|X
Po A (M|X0Ps) (X X)

PB,fy,A(Xmm|X0bS7 M) — P’y,)\(M|XUbS, Xmiss)
O

Theorem 2. Let X € R™"*% and Y € Y™ be random variables, M € {0, 1}”Xd be a missingness
mask and X denote the observed (incomplete) data. We encode the pair (X, M) with the
random variable X with

s Xy, My =1,

Xij = {?, M;; =0.

Let the change in the information be defines as A := I(Y;X) — I(Y;X). Then,
1. If the missingness is label-MAR, then A < 0.

2. If X € {0,1}"*< and the missingness is uniform MCAR, independently of (X,Y) and
identically over (4, j), being the (random) sample sparsity s(X) be defined as in Definition
[l then
—nduhy(E[s(X)]) < A <0,

where ho(u) = —ulogu — (1 — u)log(1l — ).

Proof. By construction X = ¢(X, M) for some measurable g. Thus (Y) — (X, M) — X is a
Markov chain, and the data—processing inequality implies

I(Y;X) < I(Y; X, M). @)
Moreover, for any three random elements (A, B, C') we have the chain-rule identities
I(A;B,C) = I1(A; C) + I(4; B | €). ®)

(1) Label-MAR A < 0. Assume label-MAR: P(M | X,Y) = P(M | X), which is equivalent to
Y 1 M | X. Applying @) with (4, B,C) = (Y, X, M),

(
I(Y;X, M) = I(Y;X)+ I(Y; M | X).


https://openreview.net/forum?id=YPKBIILy-Kt
https://openreview.net/forum?id=YPKBIILy-Kt
https://openreview.net/forum?id=TlFDFKyEIQ

Under label-MAR, I(Y; M | X) = 0, hence
I(Y;X,M) = I(Y;X). )
Combining (7) and () yields
I(Y;X) < I(Y;X) < A= I(Y;X)-I(Y;X) < 0.

(2) Two-sided bound under uniform MCAR and a-{ sparsity. Assume uniform MCAR: M;
Bernoulli(1 — ) independently of (X, Y) and i.i.d. across (7, j), and that P(s(X) > a) > f3, where

s(X) =4 > X =0}

Upper side. MCAR implies label-MAR, so by part (1): A < 0.

Lower side. We start from the chain—rule identity applied to (4, B, C) = (Y, X, X):
IY;X,X) = 1(Y;X) 4+ I(Y; X | X) = 1(Y;X) + I(Y; X | X).

Rearranging gives

A = I(V;X) - I(Y;X) = I(Y;X | X) - I(Y; X | X). (10)
The second term on the right is nonnegative, hence
~A < I(Y;X | X). (11)
Using the bound I(U;V | W) < H(V | W), we get
~A < HX|X). (12)

Index the matrix entries by a total order < on pairs (¢, j) and apply the chain rule:

H(X |X) = ZH(XU | X, { X s (k1) < (i,4)}).
(4:4)
Since conditioning reduces entropy,

H(X | X) ZH Xij | Xij). (13)

Fix (7, 7) and denote m;; = Pr[X;; = 1]. Under uniform MCAR,
PI‘[Xij :?] = U, PI‘[XU = J?] = (1 — ,u) PI‘[X” = .13], HASS {0, 1}

Hence: (i) if X;; € {0, 1} then X,; is revealed, so H(X;; | X;; € {0,1}) = 0; (ii) if X;; =?, then
Pr(X;; = 1| X;; =?] = m; and H(X;; | X;5 =7) = ha(m;;). Averaging over X;; gives

H(Xi; | Xij) = pha(miy). (14)
Combining (T3) and (T4):

1
X|X Zuhg mij) = nd - —Zhg mij) < ndp-ho %ij ,
,J

since hq is concave. Note that

nld%‘mjz dZPr Xij=1= dZI[{X”—l} =1 —E[s(X)].

Using the symmetry ha(u) = hao(1 — u), we conclude
H(X | X) < ndp- hofE[s(X)]).
Combining with —A < H(X | X) gives
—ndphy(E[s(X)]) < A < 0.
This concludes the proof. O
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B Full Plots of Model Performance across Missingness

Figure [3] reports the full set of results (F1 score) across all proposed datasets (AIR, ELECTRIC,
SYNTHETIC, TADPOLE) and missingness mechanisms, Uniform Random MCAR (UR), Structural
MCAR (S) and Correlation Driven MCAR (CD). Each plot includes the ranking of models by their
mean F1 score across all levels of missingness (1+). As can be seen, in almost all cases performance
degrades much earlier and more severely than on Cora or Citeseer, confirming the higher difficulty
and realism of the proposed datasets and mechanisms.
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Figure 3: F1 score as a function of feature missingness (1) for our proposed datasets (AIR, ELECTRIC,
SYNTHETIC, TADPOLE), under different miss. mechanisms. To the right of each plot, models are
sorted by their mean F1 rank across all i values (best at the top)

C Experimental Details

All baseline and competitor methods are implemented using the official code released in their
respective repositories, following the recommended training protocols and hyperparameter settings.
For GNNmi and GNNmim, we adopt a standard GNN architecture where the convolutional layer type
(chosen among GCN, GAT, GRAPHSAGE, and GIN), the number of layers (1-3), the learning rate
(10%-1072), and the weight decay (10~°-10~2) are tuned via grid search on the validation set. All
models are trained on the same data splits with early stopping to ensure a fair comparison.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state the contributions (datasets, GNNmim,
evaluation settings) and these are supported by the theoretical and experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper explicitly discusses the limitations of current benchmarks, the scope
of the proposed datasets, and the evaluation settings, noting that larger benchmarks and
additional missingness types remain open challenges.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

12



Answer: [Yes]

Justification: All theoretical results are stated with their assumptions, and complete proofs
are provided in the appendix with references to the main text.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper details datasets, baselines, training protocols, and hyperparameter
settings, ensuring that the main experimental results can be reproduced.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

13



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Anonymized code and instructions, along with links to the datasets and prepro-
cessing details, are provided in the supplemental material to enable faithful reproduction of
the results.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies datasets, splits, baselines, optimizers, and hyperparameters,
with full details provided in the appendix and supplemental material.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Results are averaged over multiple runs with mean and standard deviation
reported, and error bars are shown in figures to indicate variability across random seeds.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies that experiments were run on GPU-equipped machines,
with details on hardware and runtime provided in the appendix to enable reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The work adheres to the NeurIPS Code of Ethics; it uses publicly available or
synthetic datasets and raises no ethical concerns regarding data collection or deployment.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses positive impacts, such as enabling more reliable GNNs in
domains like healthcare and sensor networks. No immediate negative societal impacts are
anticipated.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our results pose no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit the original authors of all models and datasets used in our
work, and we respect the licenses and terms of use associated with them

Guidelines:
» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets include our synthetic dataset, and three real world datasets. We
release well-documented code and data under a non-restrictive license

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments or research with human
subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments or research
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were not used as part of the core methods in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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