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ABSTRACT

The ability to robustly identify causal relationships is essential for autonomous
decision-making and adaptation to novel scenarios. However, accurately inferring
causal structure requires integrating both world knowledge and abstract logical
reasoning. In this work, we investigate the interaction between these two capabili-
ties through the representative task of causal reasoning over narratives. Through
controlled synthetic, semi-synthetic and real-world experiments, we find that state-
of-the-art large language models (LLMs) often rely on superficial heuristics—for
example, inferring causality from event order or recalling memorized world knowl-
edge without attending to context. Furthermore, we show that simple reformula-
tions of the task can elicit more robust reasoning behavior. Our evaluation spans a
range of causal structures, from linear chains to complex graphs involving colliders
and forks. These findings uncover systematic patterns in how LLMs perform causal
reasoning and lay the groundwork for developing methods that better align LLM
behavior with principled causal inference.

1 INTRODUCTION

Many successful applications of LLMs to causality leverage the ability of LLMs to absorb and
summarize large amounts of world knowledge from large-scale unsupervised data. However, more
ambitious roles for LLMs could require stepping beyond knowledge from pretraining and moving
towards reasoning about causal structure in context, not merely recalling associations. In this work,
we explore whether such contextual causal reasoning capabilities arises naturally from large-scale
pretraining.

Robust causal reasoning is particularly challenging as it relies on a combination of knowledge and
reasoning capabilities. On the one hand, causal reasoning relies on deductive or mathematical skills
to correctly apply axioms (e.g., Pearl’s do-calculus), making inferences from a graphical structure
describing cause-effect relationships. However, unlike mathematical reasoning benchmarks (Cobbe
et al., 2021) – which draw from a relatively constrained set of problem solving strategies and results –
arriving at correct causal inferences often requires leveraging domain-specific knowledge about the
events or variables involved to instantiate such a graph. These two abilities must be balanced; models
must go beyond blindly retrieving memorized associations and knowledge to identify the correct
relationships under atypical or counter-intuitive settings.

Prior works have primarily studied reasoning and world-knowledge of LLMs separately. For example,
benchmarks on mathematical reasoning or coding typically study these capabilities in isolation – with
minimal external world knowledge needed to solve problems. On the other hand, benchmarks for
knowledge intensive tasks can generally be solved by simple retrieval of memorized knowledge. Thus,
the interplay of knowledge retrieval and reasoning (and potential conflicts between them) remains
understudied.

In this work, we study the interplay between reasoning and using the right amount of world knowledge
through causal reasoning over textual narratives. In order to characterize LLMs’ capabilities across
the full range of interactions between these two characteristics, we need the ability to separately
vary the difficulty of an instance along both dimensions. Accordingly, we construct a new set of
tasks based on textual narratives generated from synthetic, semi-synthetic, and real-world causal
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relationships. Each instance starts from a true causal graph structure on a set of nodes V1...VN , from
which we generate a narrative consistent with the true graph. Then, we present the LLM with only
the narrative and ask it: (1) determine whether Vi causes Vj (directly or indirectly) for some pair i, j;
and (2) given node identities (V1, . . . , VN ), reconstruct a causal graph faithful to the narrative.

We then systematically control task difficulty along two axes. Along the world knowledge conflict
axis, we manipulate how much the narrative diverges from memorized or “common-sense” causal
knowledge (e.g., applications to atypical settings not commonly seen in pre-training). This tests the
LLMs ability to reason using the actual context of the story as opposed to its memorized knowledge.
Along the graph reasoning complexity axis, we vary the number of nodes in the underlying causal
graph and the structure of the graph itself (e.g. simple chains versus graphs with complex structures
including both forks and colliders). This tests the LLMs ability to extend its reasoning beyond simple
scenarios to more complex situations.

Together, these design choices allow us to characterize LLMs’ performance across the full spectrum
of both dimensions of task difficulty. We find that gaps in performance across this spectrum are
well-described by two distinctive failure modes related to interference between reasoning and world
knowledge in causal inference. Firstly, we show that LLMs are influenced heavily by a prior that
causes are likely to appear before effects in a narrative. We observe that when the narrative is
constructed in the reverse topological order of the causal chain (i.e., the edge Vi → Vi+1 is narrated
before Vi−1 → Vi), the performance of the LLM suffers as it often assigns the cause to an earlier
event and the effect to a later event in the narrative. Secondly, we show that LLMs use their parametric
causal knowledge (i.e., if an event typically causes another event) as a shortcut to answer causal
questions. Thus, when the cause-and-effect pairs implied by the narrative conflict with the parametric
knowledge, the LLM often ignores the specifics of the narrative and defaults to its parametric
knowledge. Neither prompting with Chain of Thought (CoT) (Wei et al., 2022) nor In-Context
Learning alleviates these failures.

However, LLMs are much less impacted by variation in the reasoning difficulty of the task when
the prompting scheme explicitly isolates reasoning and world knowledge. First, we find that asking
the LLM to extract the entire causal graph implied by the narrative results in a high degree of
success at correctly ordering individual events, largely avoiding both failure modes described above.
However, these benefits dissipate if the model is prompted to use the extracted graph alongside
the narrative. Second, LLMs exhibit only slight performance degradation when reasoning over
narratives that display more complex graph structures than chains, for example forks or colliders.
Third, while LLMs often struggle with longer narratives containing more events, this failure is also
substantially mitigated by asking the LLM to just extract a graph. All together, our results paint a
more nuanced picture of LLMs’ causal capabilities than simple success or failure and suggest that
future development should focus on isolating and then composing LLMs’ strengths at reasoning and
world knowledge in order to avoid conflicts between them.

2 RELATED WORKS

Causal Reasoning in Large Language Models Jin et al. (2023) develop a benchmark for testing
causal reasoning in LLMs given causal graphs, finding that language models can struggle with the
task. However, the queries examined in Jin et al. (2023) require probability calculations, potentially
conflating causal reasoning and arithmetic failures. Tan et al. (2022) shows the capability of a neural
network trained on news data to label causal structures in individual sentences. Joshi et al. (2024b)
chronicles failure modes in textual, but non-narrative form data (e.g. text formulaically written as
Event 1 Causes Event 2 Causes Event 3 Causes Event 4). Our paper expands upon such a line of
work by testing the LLM’s abilities in both real and synthetic texts that much more closely resemble
those seen in everyday life. Another contrasting work, Jin et al. (2024), uses only statistical language
indicating event correlations as input.

(Gordon et al., 2012; Joshi et al., 2024a; Ho et al., 2023; Zhang et al., 2023; Wang et al., 2023;
Ashwani et al., 2024) study causal reasoning ability as it relates to inferring causal relations based on
"common sense". In such common-sense based settings, it is straightforward for models to simply
rely on memorized knowledge from pretraining and achieve good performance, without leveraging
any more general causal reasoning capabilities. Our work seeks to disentangle this general causal
reasoning ability by specifically testing cases where causal relationships may contradict common-
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sense knowledge. This serves as a more robust measurement of the causal reasoning capabilities in
unfamiliar and atypical scenarios. Empirically, we show that models struggle significantly in adapting
to unfamiliar causal relations.

Another important distinction of our work is the focus on longer-form narratives. Existing works
such as (Gordon et al., 2012; Zečević et al., 2023; Ho et al., 2023; Frohberg & Binder, 2022; Li et al.,
2023; Gao et al., 2023) primarily examine short-form questions about a single causal relationship.
On the other hand, our work examines longer and more complex sequences of events. Moreover,
in contrast to domain-specific question banks such as Intuitive Physics studied in (Zečević et al.,
2023), our narratives examine a more diverse range of topics (as illustrated by the sample narratives
presented). As a result, our dataset provides a more realistic and diverse examination of LLM causal
reasoning capabilities than prior works. As such, our work is unique in that we are the first paper to
analyze non-common sense based causal reasoning in narratives that use everyday language.

Causal Story Generation Kıcıman et al. (2024) shows that LLMs have strong abilities to generate
causal texts. Ammanabrolu et al. (2020) introduces soft causal relations—causal constraints that
match what readers expect—and uses commonsense inferences to bridge high-level plot points,
resulting in more coherent narratives that align with everyday causal expectations. Tian et al. (2021)
contributes by employing counterfactual knowledge to generate hyperboles, making story generation
more realistic. Li et al. (2022) shows that asking a model to explain a cause or effect by generating
new text conflates language generation with prediction; instead, their approach asks the model to
simply indicate the sentence number representing the cause or effect, leading to stories that better
respect causal relations. For our synthetic text generation, we focus on creating narratives that are
extremely explicit and simple. In contrast to Ammanabrolu et al. (2020) and Li et al. (2022)’s
approach of bridging events using commonsense, our narrative scheme already embeds explicit causal
language between events that are causally related so that no inference or common-sense reasoning is
required from the reader to reason about causality. Furthermore, our experiments often intentionally
contradict common-sense parametric knowledge to check the model’s ability to solely rely on the
self-contained narrative. Similarly, regarding Tian et al. (2021), we opted to avoid abstract language
structures that might confuse even human readers.

3 EXPERIMENTS WITH SYNTHETIC DATA

3.1 SETTING

Synthetic Narrative Generation In our synthetic experiments, we use three leading LLMs: Ope-
nAI’s GPT-4o (OpenAI et al., 2024), Anthropic’s Claude 3.5 Sonnet (Anthropic, 2024), and the
open source LLama 3.1 8b (Grattafiori et al., 2024). While we focus on GPT-4o in the main text,
results from other models are in the Appendix. The purpose of our synthetic setup is to carefully
control the conditions under which the LLMs are tested. In terms of the general setup of our fully
synthetic experiments, we first use the LLM to generate events (which are real world phenomena like
rain or plants growing). Then these events are linked together into a chain graph G that acts as the
causal ground truth (eg rain → plants growing). The LLM is given G and asked to create a narrative
that stays faithful to the causal relationships in G. These narratives are checked by researchers to
ensure consistency with their base causal graphs. More specifically, when constructing the dataset,
we asked researchers (3 non-author graduate students who were blind to the true underlying graph) to
reconstruct the causal chains given just the narratives, and over 98 percent of the time (out of 150
random samples), the humans were able to find the unique correct causal ordering (Appendix F).
Roughly 2500 narrative samples were generated. To ensure a variety of events go into the narratives,
we generate 100 to 1000 distinct events at a time and randomly pick the small number needed for
narrative construction (all narratives in supplementary files and select narratives in Appendix).

Providing only the narrative as input (and not G), we then ask the LLM to find G′, the predicted
underlying causal structure expressed by the narrative. In other words, the LLM is asked to output
a causal graph that it thinks embodies the relationships in the narrative. Next, a series of causal
questions is created by randomly sampling 10 tuples of events from G and asking the LLM whether
an event in the tuple causes the other based on the narrative and/or G′. All results are taken and
aggregated over 5 random seeds, with the CI being taken after aggregation.
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Figure 1: GPT-4o Test of the LLM’s ability to reason on narratives written in the Forward and
Reverse topological orientations. Chain size is the number of nodes in ground truth G. The "Graph"
prompting method uses only the extracted graph G′ to reason, "Narr-Graph" uses both the narrative
and extracted graph, and "Standard, CoT, In-Context" all use only the narrative. Accuracy measures
LLM answer agreement with G (we test every possible ordered pair of variables and check whether
the extracted graph correctly implies the existence and direction of the corresponding causal edge
when compared to the ground truth G), and consistency measures agreement with G′. The points in
the graph are represented with a slight horizontal stagger around the relevant chain sizes (4,8,12 etc)
for ease of visual understanding. We show a 95% CI.

Prompting Strategies We evaluate five prompting styles for causal reasoning where the names in
italics represent those used in the legends of figures: Standard QA Prompting (Standard), where
the model is simply asked to identify the causal relation between two narrative events; Chain-of-
Thought (CoT), which instructs the model to articulate step-by-step reasoning before answering;
In-Context Learning (In-Context), which precedes the query with illustrative question–answer
examples; Explicit Causal Graph Extraction (Graph), which asks the model to generate an entire
causal graph G′ over all events and assesses whether the ordering of the target pair is correct;
Narrative-Augmented Graph Extraction (Narr-Graph), which first elicits G′ and then supplies
both G′ and the original narrative for joint reasoning about the causal pair. Exact prompts are in
Appendix A.

3.2 IMPACT OF EVENT ORDERING

Our experiments show that LLMs rely on the ordering in which the events are verbalized in a narrative
when determining causal relationships. To investigate this, we started with randomly generated events
that were used to make a ground truth graph G. During the creation of the narrative, we specified
that the LLM either places the events in (1) the order that matches the topological causal ordering of
the graph (e.g., if event A (indirectly or directly) causes B, then event A is mentioned before B in
the narrative), or (2) a way that runs opposite to the causal ordering (event B would be mentioned
before event A in the narrative even though A (directly or indirectly) causes B). We refer to these
as the Forward and Reverse topological ordering, respectively. As an example, the following is a
GPT-4o generated Reverse topological narrative for the causal chain: Art exhibition→ Wine tasting
→ Charity fundraiser:

The charity fundraiser was made possible because of the successful wine tasting
event that attracted numerous generous patrons. The wine tasting was organized
as a result of the art exhibition drawing in a sophisticated audience interested in
cultural experiences.

Each edge in the narrative is verbalized in the opposite order to its place in the causal chain. All
narratives can be found in the linked code.

LLMs Rely on Event Ordering Across Prompting Strategies As shown in Figure 1 (left), in
the Forward direction, standard QA, CoT, and In-Context prompts all perform very well. This is
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Figure 2: (Left) GPT-4o test of the LLM’s ability to reason on narratives that agree with parametric
knowledge (Causal) and disagree with parametric knowledge (Anti-Causal). (Right) GPT-4o test of
the LLM’s ability to reason on narratives generated from Complex graphs as opposed to Simple chain
graphs. Label descriptions for both images match those of Figure 1 and 95 % CI is shown.

in contrast to the Reverse orientation when we look at the performance of the standard QA, COT,
and In-Context prompts. From this plot, we can see that naive COT and In-Context prompting do
not seem to significantly boost accuracy under our conditions. Perhaps more interestingly, we find
that the way the LLM answers questions using the narratives is not always consistent with the causal
graph G′ that the LLM builds when asked to predict the underlying graph structure (see consistency
plot in right side of Figure 1, where consistency measures agreement between the answers of the
LLM and G′ whereby we see what percent of answer implied by G′ are also implied by the LLM). In
the Reverse orientation, answers given by the extracted causal graph G’ and the previously discussed
prompting strategies seem to differ greatly. Additionally, the trend of those prompting strategies on
the consistency plot for the Forward orientation narratives (comparing performance to G′) mirrors
their trend on the accuracy plot which compares performance to ground truth G (left side).

Explicit Causal Graph Extraction Avoids Shortcuts This led us to test the accuracy of only using
the extracted graph G′ to answer causal questions (Figure 1, "Graph" Method) . In this case, once G′

is extracted by the LLM, it is not given to the LLM again to answer questions (but rather used directly
with a graph traversal). We found that this strategy did significantly better in the Reverse direction
than the other prompting strategies (∼ 50 % better). Surprisingly, using G′ in the Reverse direction
narratives to answer causal questions did as well as using G′ in the Forward direction narratives.
Next, we tried prompting using the narrative and G′ (the LLM is given G′ in this case in the prompt).
This technique could be thought of as a type of CoT prompting strategy. However, in the Reverse
direction narratives, the increase in accuracy achieved by only using G′ completely dissipates. We
conjecture that the process of building the extracted Causal Graph G′ forces the LLM to engage in
long term reasoning instead of using the simple shortcut, but when the narrative is again provided -
the LLM defaults back to the shortcut.

3.3 IMPACT OF PARAMETRIC KNOWLEDGE (IN)CONSISTENCY

Experimental Setup We also find that LLMs tend to rely on parametric knowledge when it is
present, and can fail when narratives are inconsistent with the LLM’s parametric knowledge. To test
this, we elicit the LLM’s pre-existing parametric knowledge when generating the event chains. We
prompt the LLM to pick a series of events such that each event has some relation to the subsequent
event – either the event is Causal to the next event (e.g., disease causes shorter lives) or the event
is Anti-Causal (e.g., disease causes longer lives). For example, we might know that node 1 is Anti-
Causal to node 2 from parametric knowledge. Thus, when we make the causal ground truth graph
1 → 3 → 2 (this disagrees with parametric knowledge), create a narrative from it, and then ask the
LLM if node 1 causes 2 based on the narrative: it should say yes based on the narrative even though
that disagrees with its parametric knowledge. After the ground truth graph is created, we generate
the narrative in the Forward topological orientation to avoid confounding failure modes. The full
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process (along with illustration) explaining how the parametric and causal graphs are created is in
Appendix A.2. As a textual example, assume that we know a parametric anti-causal link exists from
stressful job to increased happiness, and from lack of sleep to improved cognitive function. We can
then construct the causal chain Stressful Job → Lack of Sleep → Increased Happiness → Improved
Cognitive Function. From this causal chain, we create the narrative:

The constant demands of a stressful job led to her experiencing chronic lack of sleep.
Surprisingly, she found that the lack of sleep heightened her sense of euphoria,
making her unusually cheerful at work. Increased happiness from this unexpected
cheerfulness seemed to improve her cognitive function.

If the LLM is asked if a stressful job leads to increased happiness, the parametric knowledge shortcut
indicates the answer should be no – however, the shortcut fails as the narrative indicates that a
(indirect) causal link does exist.

Models Exploit Parametric Knowledge We find that, in synthetic experiments, the LLM finds
the correct causal relation generally only when that relation agrees with its parametric knowledge.
This is exemplified in the plot in Figure 2 (left) where we see good performance on narratives
that agree with parametric knowledge (Causal parametric knowledge) and poor performance on
narratives that disagree with parametric knowledge (Anti-Causal parametric knowledge). We also
notice an interesting phenomenon for the Anti-Causal parametric case where using just the extracted
graph provides massive improvements over any prompting strategy that involves using the narrative
to directly answer questions. This strategy is comparable in performance to when the parametric
knowledge is Causal. It seems that the narrative may only serve to distract the LLM when parametric
knowledge disagrees with the narrative.

3.4 IMPACT OF NARRATIVE COMPLEXITY

In the previous sections, we identified two shortcuts which models exploit in causal reasoning tasks.
Here, we test the influence of narrative complexity on these failure modes. We examine two measures
of complexity: (a) the narrative length and (b) the presence of complex graph structures.

Narrative Length In conditions where the LLM exhibits failure modes (Reverse and Anti-Causal
orientations), the performance also tends to decay as the size of the narrative and the number of
events in the narrative increases. As we can see in Figures 1 and 2 (Left), it seems that the longer the
narrative is, the more the LLM relies on shortcuts instead of performing reasoning. However, the
extracted graph G′ can often maintain a consistently high level of accuracy across narrative sizes
even for cases when a failure mode would normally be exhibited.

Causal Graph Complexity As the bulk of our work has focused on detecting the simplest failure
modes possible, we studied narratives with an underlying chain graph structure. However, the
presence of more complex causal structures in the narrative could exacerbate the existing failure
modes or trigger novel failures. To study this, we create causal graphs utilizing two common causal
structures: Forks (one node has a causal relationship to multiple other nodes) and Colliders (multiple
nodes have a causal relationship to the same node). We generate narratives (the complete algorithm
is described in Appendix A.3) such that each underlying causal graph contains at least one of these
structures, and may randomly contain multiple such structures based on the size of the narrative. An
example is shown in Figure 3.

As can be seen in Figure 2 (right side), we find that while the LLM generally performs worse at
reasoning about the complex narratives than simple narratives (with underlying chain graphs), the
gap is very starkly less than can be seen in the other failure modes. This finding can be supported by
(Dettki et al., 2025) which finds that GPT-4o reasons similarly to humans on a single sentence that
describes one collider relation. Our work extends their work by using a long-form narrative based on
a causal graph with potentially multiple colliders and forks instead of only one collider.
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Heavy Rainfall

Power Outage Flooded Streets

Traffic Jam

Narrative: The heavy rainfall not only caused a power
outage in several neighborhoods but also led to flooded
streets. The aftermath of the power outage (disabling
traffic lights) and the flooded roads (blocking street ac-
cess) caused a traffic jam.

Figure 3: Causal graph with story showing a fork (first sentence) and a collider (second sentence).

4 EXPERIMENTS WITH REAL WORLD CAUSAL GRAPHS

In this section, we extend our analysis to narratives involving real-world causal graphs from CauseNet
(Heindorf et al., 2020), a large-scale knowledge graph of (claimed) causal relationships between
real-world concepts. We perform experiments using the GPT-4o (OpenAI et al., 2024) and Llama-3.1
8B models for our experiments. We concentrate our analysis on the same factors (positional biases
and parametric knowledge consistency) as explored in the semi-synthetic settings.

The CauseNet dataset can be represented as a collection of D tuples {(Ci, Ei,Si}Di=1, where Ci

denotes the cause (e.g., fatigue), Ei denotes the effect (e.g., accidents), and Si is a set of sentences
(extracted from Wikipedia and ClueWeb12 (Callan, 2012)) that entail a causal relationship from Ci

to Ei. We retrieve causal chain graphs V1 → V2 → . . . → VN of various lengths, where each causal
relation Vi → Vi+1 is from CauseNet and verbalize these chains as narratives in the following ways:

Semi-synthetic narratives. In this setting, we use real causal graphs from CauseNet but syntheti-
cally verbalize them via the LLM. In particular, we prompt the LLM to generate sentences for each
edge (Vi → Vi+1) in the causal graph, while ensuring the sensibility of the entire narrative. For
eammple, the following is a narrative for the chain fatigue → accidents → injury:

Fatigue can cloud judgment and slow reaction times, leading to an increase in
accidents on the road. As a result, these accidents often lead to serious injury for
those involved, highlighting the dangerous consequences of driving while fatigued.

Real-world narratives. For the real-world narratives, the sentence for each edge is chosen from
the CauseNet dataset. To ensure that the narrative as a whole remains coherent, we prompt the LLM
to ensure that the sentences for every pair of adjacent edges logically follow each other. For example,
the following is the narrative for the causal chain fatigue → accidents → injury:

Workers work long hours in mines and factories where fatigue and a lack of
concentration can easily cause accidents. These accidents are the leading cause of
injury in this country for people ages 1-34.

Additional examples of semi-synthetic and real-world narratives are presented in Appendix C.1 (the
entire set of narratives used for our experiments is available in the linked code).

Prompting Strategies For simplicity, we limit the prompting techniques used to (see Appendix C.2
for the prompt templates): Standard QA Prompting, Chain-of-Thought and Explicit Causal
Graph Extraction. We evaluate the accuracy for each pair of nodes (Vi, Vj) for the three prompting
strategies on the semi-synthetic and real-world narratives.

4.1 IMPACT OF EVENT ORDERING AND CHAIN LENGTH

As described in the previous section, we verbalize each causal chain graph V1 → V2 → . . . → VN

from CauseNet into a narrative in the forward and reverse topological order. In both the semi-synthetic
(Fig. 4 left) and real-world narratives (Fig. 4 right), the Forward Graph strategy performs the best,
with its accuracy remaining stable even as the chain length increases. We observe that Forward
Standard and CoT outperforms Reverse Standard and CoT, with the Reverse accuracy declining
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Figure 4: The accuracy of various prompting strategies (error bars denote 95% CIs). We observe that
the accuracy is lower in the reverse direction (and tends to decay as the chains get longer).

substantially as the chain size gets large. We also see that in this regime, extracting the causal graph
makes inference in the Reverse orientation competitive with inference in Forward.

4.2 EFFECT OF PARAMETRIC KNOWLEDGE CONSISTENCY

Experiment Setup Next, we analyze the extent to which the LLM relies on its parametric knowl-
edge to answer causal reasoning queries as opposed to the causal structure expressed in the narrative.
For every pair of nodes (Vi, Vj) in the chain graphs, we elicit the parametric knowledge of the LLM
by asking the LLM whether a causal effect between the two nodes would be atypical (see Appendix
B.2 for the exact prompts utilized). Through these prompts, we identify cause and effect chains
which contradict the model’s parametric knowledge. For example, in a chain graph from our dataset,
there is a path from streambank erosion to higher prices, but this contradicts the LLM’s parametric
knowledge since this causal effect may not typically exist in the real-world. In total, we find that
roughly 5 percent of the relations in CauseNet violate the LLM’s pretraining knowledge. We sampled
narratives from CauseNet until we got 100 (of chain sizes between 3 and 9) narratives that contain
relations that violate the LLM’s pre-training knowledge and 100 that are consistent. These narratives
are constructed in the Forward topological ordering to avoid confounding failure modes.

LLM Performance Suffers on Atypical Causal Relations We evaluate the three prompting
strategies separately on the subsets of cause-and-effect pairs that are in agreement and in conflict with
the parametric knowledge (see Table 1). We observe that when there is no conflict (i.e., the parametric
knowledge agrees with the causality expressed in the narrative), the accuracies with and without
CoT are greater than 90%. However, when the parametric knowledge conflicts with the narrative’s
causality, the accuracy is significantly lower, even with CoT. This suggests that when asked to reason
about cause and effect in a narrative, the LLM seems to rely heavily on its parametric knowledge and
is unable to grasp the specific causal chains expressed in the narrative itself (despite the causal chains
as a whole being realistic).

Explicit Causal Graph Extraction Avoids Shortcuts Interestingly, when using extracted graph
for performing causal reasoning, the performance is very high, both with and without conflicts. This
is likely because when asked to extract the graph from the narrative, the LLM pays more attention
to the entire narrative as opposed to when directly queried on a cause-and-effect pair (where the
LLM defaults to its parametric knowledge). These results show that even when the LLM constructs a
reasonably good causal chain graph, the LLM does not leverage this graph when queried directly
about the causal effects in the narrative (even with CoT), further highlighting the advantage of
extracting the causal graph directly.

4.3 NARRATIVE COMPLEXITY

We can see from Figure 4 that LLM performance degrades with narrative length, especially when a
failure mode is present. We furthermore experimented with complex narratives with causal graphs
containing forks and colliders (full graph and narrative creation algorithm in Appendix B.3). We
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Semi-synthetic

Without Conflict 99.8 99.6 99.9
With Conflict 67.2 73.1 98.7

Real-world
Without Conflict 90.9 89.2 97.9
With Conflict 52.1 57.6 93.2

Table 1: The average accuracy across different narratives with the three prompting strategies parti-
tioned by whether the cause-effect pairs conflict with the LLM’s parametric knowledge (we omit the
95% CIs as they are smaller than 0.3).
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Figure 5: GPT-4o accuracy on narratives generated from Complex graphs as opposed to Simple chain
graphs for semi-synthetic narratives (left) and real-world narratives (right). 95 % CI is shown.

can see in Figure 5, that in both the semi-synthetic and real-world settings that complex narratives
(with colliders and forks) perform worse than simple narratives that have a causal chain graph as the
ground truth. This gap ,while clear and noticeable, isn’t as stark as failure from parametric knowledge
conflict (Table 1) or topological ordering (Figure 4). We do furthermore note that this is one area
where extracting an explicit causal graph does not seem to significantly improve performance.

5 DISCUSSION

Our work takes initial strides towards examining the success and failure of LLMs to reason causally
on narratives that express causal events. We focus on two questions of key importance in causality:
(1) Does one event cause another? (2) Can the LLM extract the causal graph from the narrative.
We find three significant failure modes of LLM reasoning by conducting experiments in carefully
controlled synthetic, semi-synthetic and real-world settings: Firstly, we find that LLMs rely heavily
on topological ordering, performing well when the ordering of events in the narratives matches that
of the ordering of the underlying causal graph. Secondly, we find that LLMs rely on their parametric
knowledge as a shortcut to infer causal relations. Finally, we examine the role of causal structure
complexity, finding that LLM accuracy degrades as the narrative length increases. Furthermore,
LLMs perform slightly worse on reasoning when narratives contain structures such as colliders and
forks. Beyond these failure modes, we show that more reliable causal reasoning can be elicited
by prompting the LLM to explicitly identify the causal graph. One limitation of our work is that
there are other forms of causal reasoning that we did not test for in the narratives. This motivates
many potential directions for future work. For example, it could be interesting to ask the LLM to
reason about counterfactual cases. Our analysis also has implications for algorithmic interventions
to improve causal reasoning. The failure modes we identify in this paper could inform the design
of targeted synthetic tasks to use in finetuning for improved causal reasoning. Additionally, our
findings on the benefits of extracting a causal graph can inform prompt engineering efforts to elicit
reliable causal reasoning from language models. We believe investigating both directions represents
an exciting direction for future work.
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APPENDIX

A SYNTHETIC DATA EXPERIMENTS

A.1 SELECTED SYNTHETIC PROMPTS

We use an LLM to generate the events E. From the events, we create a ground truth causal graph G
which is used to structure and inform the narrative sequence and causality. N is the corresponding
narrative created by the LLM from G. To evaluate the LLM’s performance, we extract a causal graph,
G’, from the narrative N as produced by the LLM, and compare it with the ground truth causal graph
G. In this context, n refers to the number of events to generate, while A and B represent pairs of events
queried for causal relationships. The task then becomes assessing whether event A causes event B .
All prompts, data processing steps, and results are included in the attached code. Furthermore all
results are taken and aggregated over 5 random seeds, with the CI being taken after aggregation.

A.1.1 TOPOLOGICAL EXPERIMENT - GENERATING RANDOM EVENTS (E)

“generate n random distinct events"

A.1.2 PARAMETRIC EXPERIMENT -GENERATING A PAIR OF CAUSAL EVENTS (E)

“generate a pair of events that cause each other. generate an event that causes another event, for
example Cancer → Death or Obesity → Bad Heart Health. Make sure the event generated is not
already in E "
This is repeated as many times as is necessary

A.1.3 PARAMETRIC EXPERIMENT - GENERATING A PAIR OF ANTI-CAUSAL EVENTS (E)

“generate a pair of events that are anticausal (an event causing the opposite of the normal effect), for
example the first event could be cancer and the second event could be a longer life because in reality,
cancer causes a shorter life. Make sure the events generated are not already in E."
This is repeated as many times as is necessary

A.1.4 FORWARD TOPOLOGICAL NARRATIVE (N)

“Output a short narrative (use one sentence) that expresses the causal link [E1 → E2]. By causal link,
we mean that the sentence should convey that E1 directly caused E2. In other words, it should be
clear from the narrative that E2 would not have happened had E1 not happened. Ensure that the words
[E1, E2] are present in the new sentence and E1 appears before E2. Only output the new sentence."
Repeat for all causal/anti-causal links

A.1.5 REVERSE TOPOLOGICAL NARRATIVE (N)

“Output a short narrative (use one sentence) that expresses the causal link [E1 → E2]. By causal link,
we mean that the sentence should convey that E1 directly caused E2. In other words, it should be
clear from the narrative that E2 would not have happened had E1 not happened. Ensure that the words
[E1, E2] are present in the new sentence and E2 appears before E1. Only output the new sentence."
Repeat for all causal/anti-causal links

A.1.6 STANDARD PROMPT

“Use this narrative N as context. Did A cause B? Output your answer with < answer > Y es/No <
/answer >. The cause can be direct or indirect."

A.1.7 IN-CONTEXT PROMPT

“Use this narrative N as context. Did A cause B? Output your answer with < answer > Yes/No <
/answer >. The cause can be direct or indirect. An example narrative would be: Rains leads to
plants growing. This then causes increased oxygen in the atmosphere. A potential question would be:
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does rain cause increased oxygen in the atmosphere? The answer would be Yes. Another example
narrative would be: Increased oxygen in the atmosphere is because of plants growing. Plants grow
because rain provides them essential nutrients. A potential question would be: does rain cause plants
to grow? The answer would be Yes. Another example narrative would be: Rain leads plants to grow.
Plants growing causes less oxygen in the atmosphere. A potential question would be: does rain cause
more oxygen in the atmosphere? The answer would be No. Another example narrative would be: The
city’s pollution levels increased because factories expanded their production. A separate heatwave
occurred due to seasonal climate patterns, unrelated to factory activity. A potential question would
be: did factory expansion cause the heatwave? The answer would be No."

A.1.8 NARRATIVE + GRAPH PROMPT

“Use this narrative N and this causal ordering G’ ((such that each item is a cause of every item after
it, for example the first list item is a cause of the third, fourth, fifth items etc)) as context. Did A
cause B? Output your answer with < answer > Y es/No < /answer >. The cause can be direct
or indirect."

A.2 PARAMETRIC GRAPH EXPERIMENT

Let’s call the graph of parametric knowledge P . We then take the odd indexed events (1st, 3rd etc)
from P and place them in the first half of the causal ground truth graph G and the even indexed
events (2nd, 4th etc) from P in the second half of G. This process is shown in Figure 6.

Figure 6: Example illustration (right) is of how G, the ground truth causality, is set up.

A.3 COMPLEX GRAPH CREATION

To generate a ground-truth causal graph G with rich structure (colliders, forks, and a spanning chain),
for each choice of size n we perform the following algorithm:

1. Node sampling. Draw n distinct events

{E1, E2, . . . , En} ⊂ E

uniformly at random without replacement.
2. Determine motif counts. (for n ≥ 4)

kmax =
⌊
n/2

⌋
, ktot ∼ Uniform

(
2, kmax

)
,

kcol ∼ Uniform
(
1, ktot − 1

)
, kfork = ktot − kcol.

3. Collider creation. Repeat kcol times:
(a) Select two distinct “parent” nodes p1, p2 from those not yet used in any motif.
(b) Select a “child” node c that is neither p1 nor p2 and not yet used as a child.
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(c) Add edges
p1 → c and p2 → c ,

thereby forming a collider at c.
4. Fork creation. Repeat kfork times:

(a) Select a “parent” node p from those not yet used.
(b) Select two distinct “child” nodes c1, c2 from the remaining unused nodes.
(c) Add edges

p → c1 and p → c2 ,

forming a fork with shared parent p.
5. Chain-connect remaining nodes. Let R be the set of nodes not yet involved in any collider

or fork.
(a) Order R = {r1, . . . , rm} arbitrarily, then add chain edges

r1 → r2, r2 → r3, . . . , rm−1 → rm.

(b) To ensure the entire graph is connected, choose one node u from among the previously
used nodes (if any) and add

u → r1 .

B REAL-WORLD CAUSAL GRAPHS

B.1 PROMPT TEMPLATES FOR NARRATIVE GENERATION

Recall that we have a ground truth causal chain graph of the form V1 → V2 → . . . → VN from
CauseNet that we need to verbalize into a coherent narrative. For the semi-synthetic narratives, we
use the LLM (GPT-4o) to do so one edge at a time, while ensuring that the newly verbalized edge
logically follows the previous one. The following is the prompt template for generating the narratives
in the topological order of the graph:

Output a short narrative (use one or two sentences) that expresses the causal link
[Vi → Vi+1] and logically follows this narrative:
{ Narrative for the previous edge Vi−1 → Vi}.
Ensure that the combined sentences convey the causal chain [Vi−1 → Vi →
Vi+1] and that the words [Vi, Vi+1] are present. Only output the newly generated
narrative.

Similarly, we generate narratives in the reverse topological order of the graph by verbalizing edges in
the reverse direction with the following prompt template:

Output a short narrative (use one or two sentences) that expresses the causal link
[Vi → Vi+1] and logically follows this narrative:
{ Narrative for the previous edge Vi+1 → Vi+2}.
Ensure that the combined sentences convey the causal chain [Vi → Vi+1 →
Vi+2] and that the words [Vi, Vi+1] are present. Only output the newly generated
narrative.

For generating real-world narratives, for each edge Vi → Vj , we use the set of sentences from
CauseNet. Each edge in CauseNet is linked to multiple sentences from various sources. Picking a
sentence for each edge at random and concatenating them does not always lead to sensible narratives.
To improve the quality of narratives, we use the following prompt to concatenate sentences for
adjacent edges:

Consider the following sentences.
{ Sentence for edge Vi → Vi+1 }. { Sentence for edge Vi+1 → Vi+2 }.
Do the sentences logically follow each other and express the causal chain [Vi →
Vi+1 → Vi+2]? Answer with Yes or No.
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For verbalizing narratives in the topological order, for a given graph V1 → V2 → . . . → VN ,
we only use sentences such that the above prompt returns Yes for every pair of adjacent edges
Vi → Vi+1 → Vi+2. This ensures that the narrative as a whole remains coherent and conveys the
entire causal chain graph. We use a similar prompting strategy to verbalize narratives in the reverse
topological order.

B.2 ELICITING PARAMETRIC KNOWLEDGE

We ask the LLM “Does Vi typically have a causal (indirect or direct) effect on Vj?” and “Would it be
atypical if Vi had a (indirect or direct) causal effect on Vj?”. If the LLM answers “No” and “Yes” to
those respective questions, we would consider a causal relationship between Vi and Vj to contradict
the LLM’s prior knowledge that it learned from its pretraining corpora.

B.3 SEMI-SYNTHETIC AND REAL-WORLD COMPLEX GRAPH ALGORITHM

Let M = {(u, v)} be the set of real-world causal edges from CauseNet. For each target size
n ∈ {3, . . . , 9}, we:

1. Load CauseNet.
M =

{
(u, v) | u→v in CauseNet

}
.

2. Extract collider and fork motifs.

Colliders = {(p1, p2, c) | (p1, c) ∈ M, (p2, c) ∈ M, p1 ̸= p2},
Forks = {(r, c1, c2) | (r, c1) ∈ M, (r, c2) ∈ M, c1 ̸= c2}.

3. Determine motif counts.

If n = 3, (kcol, kfork) =

{
(1, 0) w.p. 0.5,
(0, 1) w.p. 0.5.

(for n ≥ 4)
kmax =

⌊
n/2

⌋
, ktot ∼ Uniform

(
2, kmax

)
,

kcol ∼ Uniform
(
1, ktot − 1

)
, kfork = ktot − kcol.

4. Select motifs.

• Sample kcol distinct triples from Colliders.
• Sample kfork distinct triples from Forks.

Let S be the union of all nodes appearing in these sampled triples.

5. Pad or trim to size n.

• If |S| > n, uniformly subsample n nodes from S.
• If |S| < n, add random “seed” nodes (not already in S) until |S| = n.

6. Build ground-truth edges G ⊆ S × S.

(a) Colliders: for each (p1, p2, c) chosen, add p1 → c and p2 → c.
(b) Forks: for each (r, c1, c2), add r → c1 and r → c2.
(c) Chains: for any remaining (u, v) ∈ S × S with (u, v) ∈ M and neither u nor v used

in the above, add u → v to ensure connectivity.

7. Narrative generation. For each (u→v) ∈ G:
For the semi-synthetic case - prompt the LLM to generate a sentence linking u to v using
the forward topological ordering prompt.
For the real-world case: Find a causal sentence linking u and v in the Cause-Net database
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C REAL-WORLD COMPLEX GRAPH CREATION

C.1 ADDITIONAL EXAMPLES OF THE GENERATED NARRATIVES

C.1.1 SEMI-SYNTHETIC NARRATIVES

Below, we present some examples of semi-synthetic narratives in the forward and reverse directions.

The narrative in the forward direction for the chain higher prices → reduced demand → lower prices:

As higher prices swept through the market, consumers began to tighten their
budgets, leading to a noticeable reduction in demand for many goods. As a result
of the reduced demand, suppliers were forced to lower prices in order to attract
buyers back to the market.

The narrative in the reverse order for the causal chain bankruptcy → bad credit → rejection → anger:

The sting of rejection ignited a fire within her, transforming her hurt into a seething
anger that demanded to be felt. Her bad credit had led to the rejection she never
saw coming, and now that sting of rejection ignited a fire within her, transforming
her hurt into a seething anger that demanded to be felt. Her bankruptcy had left
her with bad credit, a shadow that loomed over her every application, and now that
sting of rejection ignited a fire within her, transforming her hurt into a seething
anger that demanded to be felt.

The narrative in the reverse order for the causal chain pollution → climate change → extreme weather
events → natural disasters:

As extreme weather events become more frequent and severe, they increasingly
lead to devastating natural disasters that disrupt communities and ecosystems alike.
Climate change is driving the rise in extreme weather events, which in turn are
causing unprecedented natural disasters that threaten the stability of communities
and the health of ecosystems. Pollution is a major contributor to climate change,
which is driving the rise in extreme weather events that threaten the stability of
communities and the health of ecosystems.

C.1.2 REAL-WORLD NARRATIVES

Below, we present some examples of real-world narratives in the forward and reverse directions.

The narrative in the forward direction for the chain higher prices → reduced demand → lower prices:

Higher prices generally lead to reduced demand. Lower prices, caused by reduced
demand and increased competition for soybeans and corn, largely contributed to
the overall bulk export decline.

The narrative in the reverse order for the causal chain bankruptcy → bad credit → rejection → anger:

Embittered by an abusive upbringing, seething with resentment, irritated by others’
failure to fulfill his or her superior sense of entitlement, and fuelled by anger
resulting from rejection, the serial bully displays an obsessive, compulsive and
self-gratifying urge to displace their uncontrolled aggression onto others whilst
exhibiting an apparent lack of insight into their behavior and its effect on people
around them. Bad credit normally leads to rejection but now with bad credit secured
loan, you can avail the loan of your choice. For example, if you are applying for a
loan, the lender may reject your application on the basis of bad credit caused by
bankruptcy.

The narrative in the reverse order for the causal chain pollution → climate change → extreme weather
events → natural disasters:
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In addition to forced migrations from rising seas, climate change is also increasing
extreme weather events causing natural disasters such as cyclonic storms (hurri-
canes or typhoons), floods and droughts. This is worsened by extreme weather
events caused by climate change. This landmark bill would jump start the economy
by creating millions of new clean energy jobs, increase national security by reduc-
ing dependence on foreign oil, and preserve the planet by reducing the pollution
that causes climate change.

C.2 PROMPT TEMPLATES FOR ASSESSING CAUSAL REASONING

We use the following template for the Direct prompting strategy:

Consider the following hypothetical narrative.
{narrative}
According to the hypothetical narrative, does {cause} have a (direct or indirect)
causal effect on {effect}? Answer in Yes/No.

We use the following template for the Chain-of-Though (CoT) prompting strategy:

Consider the following hypothetical narrative.
{narrative}
According to the hypothetical narrative, does {cause} have a (direct or indirect)
causal effect on {effect}? Think step-by-step and end your answer with <an-
swer>Yes/No</answer>.

We use the following template to extract a chain graph from the narrative:

Consider the following hypothetical narrative.
{narrative}
According to the hypothetical narrative, construct a causal chain graph using
the following nodes: { nodes in random order }. Ensure that the graph con-
tains all the given nodes and only output a single chain graph of the form
<graph>node1 → node2 → node3 </graph>. Only output the graph between
the <graph></graph>tags.

C.3 NECESSARY COMPUTE

No pretraining was done so no GPUs were needed. We used cloud based API calls to pre-trained
models like ChatGPT, Anthropic and Llama. We estimate that for the synthetic portion, our API
calls to ChatGPT, Anthropic and LLama took 10 hours each. For the semi-synthetic and real-world
portion, we had roughly 10 hours of API calls for ChatGPT and Llama each. So in total, roughly 50
hours of API usage. As the majority of the computational burden fell on cloud based API calls, no
significant CPU resources are required either.
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D ADDITIONAL RESULTS - SYNTHETIC DATA

D.1 FORWARD VS REVERSE EXPERIMENTS
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(a) Anthropic Claude 3.5 Sonnet
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(b) Llama 3.1 8B
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(c) Llama 3.1 70B
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(d) GPT-5 Thinking High Reasoning

Figure 7: (a) Anthropic Claude 3.5 Sonnet, (b) LLama 3.1 8B, (c) LLama 3.1 70B and (d) GPT-5
Thinking High Reasoning Test of the LLM’s ability to reason on narratives written in the Forward and
Reverse topological orientations. Chain size is the number of nodes in ground truth G. The "Graph"
prompting method uses only the extracted graph G′ to reason, "Narr-Graph" uses both the narrative
and extracted graph, and "Standard, CoT, In-Context" all use only the narrative. Accuracy measures
LLM answer agreement with G. The points in the graph are represented with a slight horizontal
stagger around the relevant chain sizes (4,8,12 etc) for ease of visual understanding. We show a 95%
CI.

In these graphs, we perform the Forward vs Reverse Experiments for (a) Anthropic Claude 3.5
Sonnet, (b) LLama 3.1 8B, (c) LLama 3.1 70B and (d)GPT-5 Thinking High Reasoning. Across a
scale of model sizes and reasoning capabilities, patterns emerge. We see that a consistent failure
mode remains of models (small or large) being much worse at reasoning about reverse narratives
than ones in the forward direction – until we get to the reasoning model which closes the gap. We
also notice that the reasoning model doesn’t score perfectly in the forward regime like many of the
non-reasoning models. The fact that it makes some mistakes in that regime, while still doing well, is
indicative of actual reasoning and not following a simple shortcut.
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D.2 CAUSAL VS ANTI-CAUSAL EXPERIMENTS
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(a) Anthropic Claude 3.5 Sonnet
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(b) LLama 3.1 8B
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(c) Llama 3.1 70B
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(d) GPT-5 Thinking High Reasoning

Figure 8: (a) Anthropic Claude 3.5 Sonnet, (b) LLama 3.1 8B, (c) LLama 3.1 70B and (d) GPT-5
Thinking High Reasoning Test of the LLM’s ability to reason on narratives that agree with parametric
knowledge (Causal) and disagree with parametric knowledge (Anti-Causal). 95 % CI is shown.

In these graphs, we perform the Causal vs Anti-Causal Experiments for (a) Anthropic Claude 3.5
Sonnet, (b) LLama 3.1 8B, (c) LLama 3.1 70B and (d)GPT-5 Thinking High Reasoning. We see that
larger models like GPT-4o and Claude 3.5 Sonnet perform far worse on knowledge that conflicts with
their pre-training compared to LLama models, possibly because they have been trained on so much
more data than the LLama models. As such, we can say that size of the model doesn’t necessarily
translate into better performance for the failure modes we identified. What does seem to translate
into significantly better performance is the amount of reasoning capability the model explicitly has.
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D.3 COMPLEX VS SIMPLE GRAPHS
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(a) Anthropic Claude 3.5 Sonnet
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(b) LLama 3.1 8B
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(c) Llama 3.1 70B
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(d) GPT-5 Thinking High Reasoning

Figure 9: (a) Anthropic Claude 3.5 Sonnet, (b) LLama 3.1 8B, (c) LLama 3.1 70B and (d)GPT-5
Thinking High Reasoning Test of the LLM’s ability to reason on narratives generated from Complex
graphs as opposed to Simple chain graphs. 95 % CI is shown.

In these graphs, we perform the Complex vs Simple Experiments for (a) Anthropic Claude 3.5 Sonnet,
(b) LLama 3.1 8B, (c) LLama 3.1 70B and (d)GPT-5 Thinking High Reasoning. We see relatively
similar performance across all models except for Llama 3.1 8B which has more variable performance.
It’s general inconsistency may be due to the fact that it is a weaker model than the others presented.
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D.4 GRAPH EDIT DISTANCE

Here in Table 2, we compute the average graph edit distance per, using the implementation from the
networkX package in python (Abu-Aisheh et al. (2015)) where they define graph edit distance as "It is
defined as minimum cost of edit path (sequence of node and edge edit operations) transforming graph
G1 to graph isomorphic to G2." 95% CIs given. We find GED to be calibrated for a different measure
than graph accuracy, as for example one small change in the causal graph with GED drastically
impact accuracy – so two structures with similar GEDs can have drastically different accuracies.

Graph type
Models Forward Reverse Causal Anti-Causal Complex

LLaMA 3.1 8B .04(.04,.04) .08(.08,.08) .03(.03,.03) .03(.03,.03) .08(.07,.11)
LLaMA 3.1 70B .04(.04,.04) .07(.07,.07) .02(.02,.02) .02(.01,.02) .07(.06,.09)
Claude 3.5 Sonnet 0(0,0) .02(.01,.02) 0(0,0) 0(0,0) .08(.07,.11)
ChatGPT-4o .03(.03,.03) .03(.02,.05) .13(.12,.15) .09(.08,.11) 0(0,0)
ChatGPT-5 (Thinking) .02(.02,.02) .03(.03,.03) .02(.02,.02) .04(.03,.05) .04(.03.04)

Table 2: Graph Edit Distance by graph type for different models.
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E ADDITIONAL RESULTS - SEMI-SYNTHETIC AND REAL WORLD DATA

E.1 FORWARD VS REVERSE LLAMA
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Figure 10: (LLama 3.1 8B) The accuracy of various prompting strategies (error bars denote 95% CIs)
in the Semi-Synthetic and Real-World Regimes using CauseNet.

We observe that the accuracy is lower in the reverse direction in both regimes, and slightly lower yet
in the real world regime. This is consistent with previous findings. The extracted graph does well.

E.2 PARAMETRIC EXPERIMENT LLAMA

Standard CoT Graph
Semi-synthetic

Without Conflict 88.4 83.7 99.5
With Conflict 61.4 57.9 98.2

Real-world
Without Conflict 81.6 79.2 95.1
With Conflict 48.8 49.9 93.2

Table 3: (LLama 3.1 8B) The average accuracy across different narratives with the three prompting
strategies partitioned by whether the cause-effect pairs conflict with the LLM’s parametric knowledge
(we omit the 95% CIs as they are smaller than 0.3).

We observe that the accuracy is drastically lower with conflicting information in both regimes, and
slightly lower yet in the real world regime. This is consistent with previous findings. We again see
the graph doing very well.
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E.3 SIMPLE VS COMPLEX LLAMA
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Figure 11: (LLama 3.1 8B) accuracy on narratives generated from Complex graphs as opposed to
Simple chain graphs for semi-synthetic narratives (left) and real-world narratives (right). 95 % CI is
shown.

We see slight degradation of accuracy in the complex regime as opposed to the simple one, with the
graph not fully recovering accuracy in the complex regime. This is consistent with previous findings.
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F HUMAN EVALUATION PROTOCOL AND RESULTS

We conducted a human evaluation of narrative quality and graph faithfulness across the three regimes
(synthetic, semi-synthetic, and real-world). For each regime, we sampled 150 unique narratives,
yielding a total of 450 narratives. Three external graduate-student reviewers (none of whom are
authors) served as annotators.

For each regime, the 150 narratives were partitioned into three disjoint batches of 50 narratives. Each
batch was assigned to a distinct pair of reviewers, so that every narrative was independently annotated
by exactly two reviewers and each reviewer annotated 100 narratives per regime (300 narratives in
total across all three regimes).

Tasks. For each narrative, annotators were given the list of node names and asked to:

1. Reconstruct the causal chain graph G′ that they believed the narrative implied, and

2. Provide a binary judgment of whether the narrative was fluent and coherent.

We say that a narrative is exactly reconstructed if the reconstructed graph G′ matches the ground-truth
graph G exactly (all nodes present, all directions correct, and no extra edges). We report two notions
of reconstruction accuracy:

• Narrative-level accuracy: fraction of narratives in a regime for which both annotators
exactly reconstructed G.

• Label-level accuracy: fraction of individual annotations (over all annotator–narrative pairs)
that exactly reconstructed G.

For agreement, we compute (i) the percentage of narratives for which the two annotators produced
identical graphs, and (ii) Cohen’s κ on the space of complete graph structures (treating each distinct
chain as a categorical label).

Reconstruction accuracy and agreement. Table 4 summarizes reconstruction performance and
annotator agreement. Across all regimes, narrative-level reconstruction accuracy is at least 97%, and
label-level accuracy is close to 98%˘99%.

Regime # narr. # ann. Exact (N, %) Exact (L, %) Agree (%) κ

Synthetic 150 300 98.0 98.7 98.7 0.95
Semi-synthetic 150 300 97.3 98.3 98.0 0.93
Real-world 150 300 97.3 98.0 98.7 0.91

Table 4: Human evaluation of graph reconstruction. “Exact (N, %)” is the fraction of narratives for
which both annotators exactly reconstructed the ground-truth graph G. “Exact (L, %)” is the fraction
of individual annotations that exactly reconstructed G. “Agree (%)” is the fraction of narratives for
which the two annotators produced identical graphs (whether correct or incorrect). κ denotes Cohen’s
kappa, a chance-corrected measure of inter-annotator agreement computed over the space of complete
graph structures.

Fluency judgments. For fluency, we summarize ratings at the narrative level. A narrative is counted
as fluent (both) if both annotators marked it fluent; it is counted as fluent (≥1) if at least one annotator
marked it fluent. Cohen’s κ is computed on the binary fluent/non-fluent labels.

As shown in Table 5, the vast majority of narratives in all regimes are judged fluent, with slightly
lower fluency rates in the real-world regime where source sentences can be more heterogeneous.
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Regime Fluent (both, %) Fluent (≥1, %) Cohen’s κ (fluency)
Synthetic 96.0 99.3 0.88
Semi-synthetic 94.0 98.7 0.86
Real-world 92.0 97.3 0.84

Table 5: Fluency judgments across regimes. “Fluent (both)” counts narratives where both annotators
judged the narrative fluent; “Fluent (≥1)” counts narratives where at least one annotator judged the
narrative fluent.

Overall, human auditors almost always reconstruct the correct causal chain from our narratives and
judge them to be fluent, suggesting that our narrative generation procedures produce text that is both
faithful to the underlying graph G and natural to read.
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