
000 LLMS STRUGGLE TO BALANCE REASONING AND 001 WORLD KNOWLEDGE IN CAUSAL NARRATIVE UNDER- 002 STANDING 003 004

005 **Anonymous authors**
006
007 Paper under double-blind review
008
009
010
011

ABSTRACT

012 The ability to robustly identify causal relationships is essential for autonomous
013 decision-making and adaptation to novel scenarios. However, accurately inferring
014 causal structure requires integrating both world knowledge and abstract logical
015 reasoning. In this work, we investigate the interaction between these two capabilities
016 through the representative task of causal reasoning over narratives. Through
017 controlled synthetic, semi-synthetic and real-world experiments, we find that state-
018 of-the-art large language models (LLMs) often rely on superficial heuristics—for
019 example, inferring causality from event order or recalling memorized world knowl-
020 edge without attending to context. Furthermore, we show that simple reformula-
021 tions of the task can elicit more robust reasoning behavior. Our evaluation spans a
022 range of causal structures, from linear chains to complex graphs involving colliders
023 and forks. These findings uncover systematic patterns in how LLMs perform causal
024 reasoning and lay the groundwork for developing methods that better align LLM
025 behavior with principled causal inference.
026

027 1 INTRODUCTION 028

029 Many successful applications of LLMs to causality leverage the ability of LLMs to absorb and
030 summarize large amounts of world knowledge from large-scale unsupervised data. However, more
031 ambitious roles for LLMs could require stepping beyond knowledge from pretraining and moving
032 towards reasoning about causal structure in context, not merely recalling associations. In this work,
033 we explore whether such contextual causal reasoning capabilities arises naturally from large-scale
034 pretraining.

035 Robust causal reasoning is particularly challenging as it relies on a combination of knowledge and
036 reasoning capabilities. On the one hand, causal reasoning relies on deductive or mathematical skills
037 to correctly apply axioms (e.g., Pearl’s do-calculus), making inferences from a graphical structure
038 describing cause-effect relationships. However, unlike mathematical reasoning benchmarks (Cobbe
039 et al., 2021) – which draw from a relatively constrained set of problem solving strategies and results –
040 arriving at correct causal inferences often requires leveraging domain-specific knowledge about the
041 events or variables involved to instantiate such a graph. These two abilities must be balanced; models
042 must go beyond blindly retrieving memorized associations and knowledge to identify the correct
043 relationships under atypical or counter-intuitive settings.

044 Prior works have primarily studied reasoning and world-knowledge of LLMs separately. For example,
045 benchmarks on mathematical reasoning or coding typically study these capabilities in isolation – with
046 minimal external world knowledge needed to solve problems. On the other hand, benchmarks for
047 knowledge intensive tasks can generally be solved by simple retrieval of memorized knowledge. Thus,
048 the interplay of knowledge retrieval and reasoning (and potential conflicts between them) remains
049 understudied.

050 In this work, we study the interplay between *reasoning* and using the *right amount of world knowledge*
051 through causal reasoning over textual narratives. In order to characterize LLMs’ capabilities across
052 the full range of interactions between these two characteristics, we need the ability to separately
053 vary the difficulty of an instance along both dimensions. Accordingly, we construct a new set of
tasks based on textual narratives generated from synthetic, semi-synthetic, and real-world causal

054 relationships. Each instance starts from a true causal graph structure on a set of nodes $V_1 \dots V_N$, from
055 which we generate a narrative consistent with the true graph. Then, we present the LLM with only
056 the narrative and ask it: (1) determine whether V_i causes V_j (directly or indirectly) for some pair i, j ;
057 and (2) given node identities (V_1, \dots, V_N) , reconstruct a causal graph faithful to the narrative.

058 We then systematically control task difficulty along two axes. Along the *world knowledge conflict*
059 axis, we manipulate how much the narrative diverges from memorized or “common-sense” causal
060 knowledge (e.g., applications to atypical settings not commonly seen in pre-training). This tests the
061 LLMs ability to reason using the actual context of the story as opposed to its memorized knowledge.
062 Along the *graph reasoning complexity* axis, we vary the number of nodes in the underlying causal
063 graph and the structure of the graph itself (e.g. simple chains versus graphs with complex structures
064 including both forks and colliders). This tests the LLMs ability to extend its reasoning beyond simple
065 scenarios to more complex situations.

066 Together, these design choices allow us to characterize LLMs’ performance across the full spectrum
067 of both dimensions of task difficulty. We find that gaps in performance across this spectrum are
068 well-described by two distinctive failure modes related to interference between reasoning and world
069 knowledge in causal inference. Firstly, we show that LLMs are influenced heavily by a prior that
070 causes are likely to appear before effects in a narrative. We observe that when the narrative is
071 constructed in the reverse topological order of the causal chain (i.e., the edge $V_i \rightarrow V_{i+1}$ is narrated
072 *before* $V_{i-1} \rightarrow V_i$), the performance of the LLM suffers as it often assigns the cause to an earlier
073 event and the effect to a later event in the narrative. Secondly, we show that LLMs use their parametric
074 causal knowledge (i.e., if an event typically causes another event) as a shortcut to answer causal
075 questions. Thus, when the cause-and-effect pairs implied by the narrative conflict with the parametric
076 knowledge, the LLM often ignores the specifics of the narrative and defaults to its parametric
077 knowledge. Neither prompting with Chain of Thought (CoT) (Wei et al., 2022) nor In-Context
078 Learning alleviates these failures.

079 However, LLMs are much less impacted by variation in the reasoning difficulty of the task when
080 the prompting scheme explicitly isolates reasoning and world knowledge. First, we find that asking
081 the LLM to extract the entire causal graph implied by the narrative results in a high degree of
082 success at correctly ordering individual events, largely avoiding both failure modes described above.
083 However, these benefits dissipate if the model is prompted to use the extracted graph alongside
084 the narrative. Second, LLMs exhibit only slight performance degradation when reasoning over
085 narratives that display more complex graph structures than chains, for example forks or colliders.
086 Third, while LLMs often struggle with longer narratives containing more events, this failure is also
087 substantially mitigated by asking the LLM to just extract a graph. All together, our results paint a
088 more nuanced picture of LLMs’ causal capabilities than simple success or failure and suggest that
089 future development should focus on isolating and then composing LLMs’ strengths at reasoning and
090 world knowledge in order to avoid conflicts between them.

091 2 RELATED WORKS

092 **Causal Reasoning in Large Language Models** Jin et al. (2023) develop a benchmark for testing
093 causal reasoning in LLMs given causal graphs, finding that language models can struggle with the
094 task. However, the queries examined in Jin et al. (2023) require probability calculations, potentially
095 conflating causal reasoning and arithmetic failures. Tan et al. (2022) shows the capability of a neural
096 network trained on news data to label causal structures in individual sentences. Joshi et al. (2024b)
097 chronicles failure modes in textual, but non-narrative form data (e.g. text formulaically written as
098 Event 1 Causes Event 2 Causes Event 3 Causes Event 4). Our paper expands upon such a line of
099 work by testing the LLM’s abilities in both real and synthetic texts that much more closely resemble
100 those seen in everyday life. Another contrasting work, Jin et al. (2024), uses only statistical language
101 indicating event correlations as input.

102 (Gordon et al., 2012; Joshi et al., 2024a; Ho et al., 2023; Zhang et al., 2023; Wang et al., 2023;
103 Ashwani et al., 2024) study causal reasoning ability as it relates to inferring causal relations based on
104 “common sense”. In such common-sense based settings, it is straightforward for models to simply
105 rely on memorized knowledge from pretraining and achieve good performance, without leveraging
106 any more general causal reasoning capabilities. Our work seeks to disentangle this general causal
107 reasoning ability by specifically testing cases where causal relationships may contradict common-

108 sense knowledge. This serves as a more robust measurement of the causal reasoning capabilities in
109 unfamiliar and atypical scenarios. Empirically, we show that models struggle significantly in adapting
110 to unfamiliar causal relations.

111 Another important distinction of our work is the focus on longer-form narratives. Existing works
112 such as (Gordon et al., 2012; Zečević et al., 2023; Ho et al., 2023; Frohberg & Binder, 2022; Li et al.,
113 2023; Gao et al., 2023) primarily examine short-form questions about a single causal relationship.
114 On the other hand, our work examines longer and more complex sequences of events. Moreover,
115 in contrast to domain-specific question banks such as Intuitive Physics studied in (Zečević et al.,
116 2023), our narratives examine a more diverse range of topics (as illustrated by the sample narratives
117 presented). As a result, our dataset provides a more realistic and diverse examination of LLM causal
118 reasoning capabilities than prior works. As such, our work is unique in that we are the first paper to
119 analyze non-common sense based causal reasoning in narratives that use everyday language.
120

121 **Causal Story Generation** Kıcıman et al. (2024) shows that LLMs have strong abilities to generate
122 causal texts. Ammanabrolu et al. (2020) introduces soft causal relations—causal constraints that
123 match what readers expect—and uses commonsense inferences to bridge high-level plot points,
124 resulting in more coherent narratives that align with everyday causal expectations. Tian et al. (2021)
125 contributes by employing counterfactual knowledge to generate hyperboles, making story generation
126 more realistic. Li et al. (2022) shows that asking a model to explain a cause or effect by generating
127 new text conflates language generation with prediction; instead, their approach asks the model to
128 simply indicate the sentence number representing the cause or effect, leading to stories that better
129 respect causal relations. For our synthetic text generation, we focus on creating narratives that are
130 extremely explicit and simple. In contrast to Ammanabrolu et al. (2020) and Li et al. (2022)’s
131 approach of bridging events using commonsense, our narrative scheme already embeds explicit causal
132 language between events that are causally related so that no inference or common-sense reasoning is
133 required from the reader to reason about causality. Furthermore, our experiments often intentionally
134 contradict common-sense parametric knowledge to check the model’s ability to solely rely on the
135 self-contained narrative. Similarly, regarding Tian et al. (2021), we opted to avoid abstract language
136 structures that might confuse even human readers.
137

3 EXPERIMENTS WITH SYNTHETIC DATA

3.1 SETTING

142 **Synthetic Narrative Generation** In our synthetic experiments, we use three leading LLMs: OpenAI’s GPT-4o (OpenAI et al., 2024), Anthropic’s Claude 3.5 Sonnet (Anthropic, 2024), and the
143 open source LLama 3.1 8b (Grattafiori et al., 2024). While we focus on GPT-4o in the main text,
144 results from other models are in the Appendix. The purpose of our synthetic setup is to carefully
145 control the conditions under which the LLMs are tested. In terms of the general setup of our fully
146 synthetic experiments, we first use the LLM to generate events (which are real world phenomena like
147 *rain* or *plants growing*). Then these events are linked together into a chain graph G that acts as the
148 causal ground truth (eg *rain* \rightarrow *plants growing*). The LLM is given G and asked to create a narrative
149 that stays faithful to the causal relationships in G . These narratives are checked by researchers to
150 ensure consistency with their base causal graphs. **More specifically, when constructing the dataset,**
151 **we asked researchers (3 non-author graduate students who were blind to the true underlying graph) to**
152 **reconstruct the causal chains given just the narratives, and over 98 percent of the time (out of 150**
153 **random samples), the humans were able to find the unique correct causal ordering (Appendix F).**
154 Roughly 2500 narrative samples were generated. To ensure a variety of events go into the narratives,
155 we generate 100 to 1000 distinct events at a time and randomly pick the small number needed for
156 narrative construction (all narratives in supplementary files and select narratives in Appendix).

157 Providing only the narrative as input (and not G), we then ask the LLM to find G' , the predicted
158 underlying causal structure expressed by the narrative. In other words, the LLM is asked to output
159 a causal graph that it thinks embodies the relationships in the narrative. Next, a series of causal
160 questions is created by randomly sampling 10 tuples of events from G and asking the LLM whether
161 an event in the tuple causes the other based on the narrative and/or G' . **All results are taken and**
aggregated over 5 random seeds, with the CI being taken after aggregation.

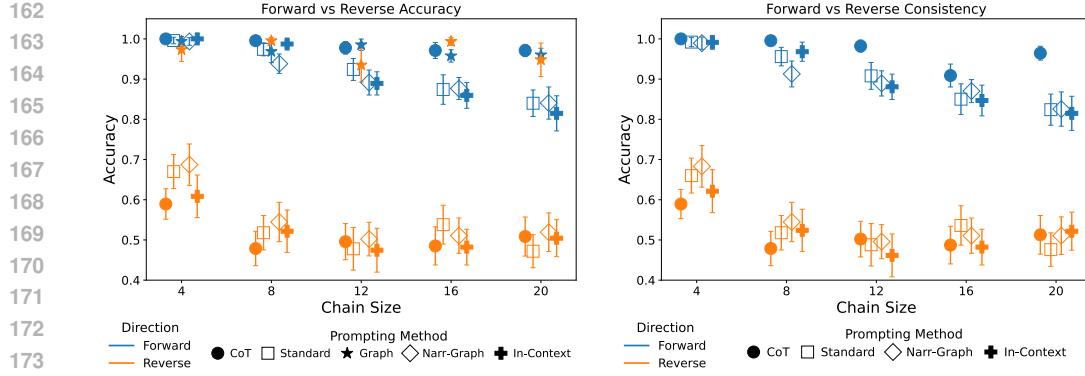


Figure 1: GPT-4o Test of the LLM’s ability to reason on narratives written in the Forward and Reverse topological orientations. Chain size is the number of nodes in ground truth G . The "Graph" prompting method uses only the extracted graph G' to reason, "Narr-Graph" uses both the narrative and extracted graph, and "Standard, CoT, In-Context" all use only the narrative. Accuracy measures LLM answer agreement with G (we test every possible ordered pair of variables and check whether the extracted graph correctly implies the existence and direction of the corresponding causal edge when compared to the ground truth G), and consistency measures agreement with G' . The points in the graph are represented with a slight horizontal stagger around the relevant chain sizes (4,8,12 etc) for ease of visual understanding. We show a 95% CI.

Prompting Strategies We evaluate five prompting styles for causal reasoning where the names in italics represent those used in the legends of figures: **Standard QA Prompting** (*Standard*), where the model is simply asked to identify the causal relation between two narrative events; **Chain-of-Thought** (*CoT*), which instructs the model to articulate step-by-step reasoning before answering; **In-Context Learning** (*In-Context*), which precedes the query with illustrative question–answer examples; **Explicit Causal Graph Extraction** (*Graph*), which asks the model to generate an entire causal graph G' over all events and assesses whether the ordering of the target pair is correct; **Narrative-Augmented Graph Extraction** (*Narr-Graph*), which first elicits G' and then supplies both G' and the original narrative for joint reasoning about the causal pair. Exact prompts are in Appendix A.

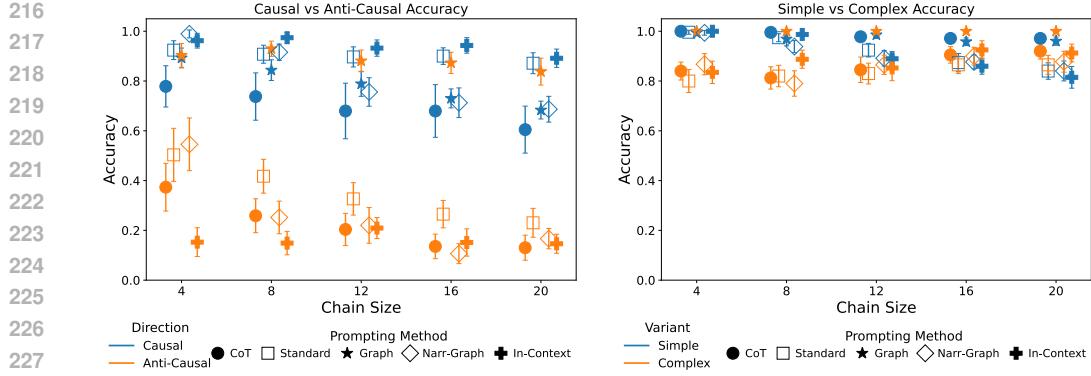
3.2 IMPACT OF EVENT ORDERING

Our experiments show that LLMs rely on the ordering in which the events are verbalized in a narrative when determining causal relationships. To investigate this, we started with randomly generated events that were used to make a ground truth graph G . During the creation of the narrative, we specified that the LLM either places the events in (1) the order that matches the topological causal ordering of the graph (e.g., if event A (indirectly or directly) causes B , then event A is mentioned before B in the narrative), or (2) a way that runs opposite to the causal ordering (event B would be mentioned before event A in the narrative even though A (directly or indirectly) causes B). We refer to these as the *Forward* and *Reverse* topological ordering, respectively. As an example, the following is a GPT-4o generated *Reverse* topological narrative for the causal chain: *Art exhibition* → *Wine tasting* → *Charity fundraiser*:

The *charity fundraiser* was made possible because of the successful *wine tasting* event that attracted numerous generous patrons. The *wine tasting* was organized as a result of the *art exhibition* drawing in a sophisticated audience interested in cultural experiences.

Each edge in the narrative is verbalized in the opposite order to its place in the causal chain. All narratives can be found in the linked code.

LLMs Rely on Event Ordering Across Prompting Strategies As shown in Figure 1 (left), in the *Forward* direction, standard QA, CoT, and In-Context prompts all perform very well. This is



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 2: (Left) GPT-4o test of the LLM’s ability to reason on narratives that agree with parametric knowledge (Causal) and disagree with parametric knowledge (Anti-Causal). (Right) GPT-4o test of the LLM’s ability to reason on narratives generated from Complex graphs as opposed to Simple chain graphs. Label descriptions for both images match those of Figure 1 and 95 % CI is shown.

in contrast to the *Reverse* orientation when we look at the performance of the standard QA, COT, and In-Context prompts. From this plot, we can see that naive COT and In-Context prompting do not seem to significantly boost accuracy under our conditions. Perhaps more interestingly, we find that the way the LLM answers questions using the narratives is not always consistent with the causal graph G' that the LLM builds when asked to predict the underlying graph structure (see consistency plot in right side of Figure 1, where consistency measures agreement between the answers of the LLM and G' whereby we see what percent of answer implied by G' are also implied by the LLM). In the *Reverse* orientation, answers given by the extracted causal graph G' and the previously discussed prompting strategies seem to differ greatly. Additionally, the trend of those prompting strategies on the consistency plot for the *Forward* orientation narratives (comparing performance to G') mirrors their trend on the accuracy plot which compares performance to ground truth G (left side).

Explicit Causal Graph Extraction Avoids Shortcuts This led us to test the accuracy of only using the extracted graph G' to answer causal questions (Figure 1, "Graph" Method) . In this case, once G' is extracted by the LLM, it is not given to the LLM again to answer questions (but rather used directly with a graph traversal). We found that this strategy did significantly better in the *Reverse* direction than the other prompting strategies ($\sim 50\%$ better). Surprisingly, using G' in the *Reverse* direction narratives to answer causal questions did as well as using G' in the *Forward* direction narratives. Next, we tried prompting using the narrative and G' (the LLM is given G' in this case in the prompt). This technique could be thought of as a type of CoT prompting strategy. However, in the *Reverse* direction narratives, the increase in accuracy achieved by only using G' completely dissipates. We conjecture that the process of building the extracted Causal Graph G' forces the LLM to engage in long term reasoning instead of using the simple shortcut, but when the narrative is again provided - the LLM defaults back to the shortcut.

3.3 IMPACT OF PARAMETRIC KNOWLEDGE (IN)CONSISTENCY

Experimental Setup We also find that LLMs tend to rely on parametric knowledge when it is present, and can fail when narratives are inconsistent with the LLM’s parametric knowledge. To test this, we elicit the LLM’s pre-existing parametric knowledge when generating the event chains. We prompt the LLM to pick a series of events such that each event has some relation to the subsequent event – either the event is *Causal* to the next event (e.g., disease causes shorter lives) or the event is *Anti-Causal* (e.g., disease causes longer lives). For example, we might know that node 1 is *Anti-Causal* to node 2 from parametric knowledge. Thus, when we make the causal ground truth graph $1 \rightarrow 3 \rightarrow 2$ (this disagrees with parametric knowledge), create a narrative from it, and then ask the LLM if node 1 causes 2 based on the narrative: it should say yes based on the narrative even though that disagrees with its parametric knowledge. After the ground truth graph is created, we generate the narrative in the *Forward* topological orientation to avoid confounding failure modes. The full

270 process (along with illustration) explaining how the parametric and causal graphs are created is in
271 Appendix A.2. As a textual example, assume that we know a parametric anti-causal link exists from
272 *stressful job* to *increased happiness*, and from *lack of sleep* to *improved cognitive function*. We can
273 then construct the causal chain *Stressful Job* → *Lack of Sleep* → *Increased Happiness* → *Improved*
274 *Cognitive Function*. From this causal chain, we create the narrative:

275
276 The constant demands of a *stressful job* led to her experiencing chronic *lack of sleep*.
277 Surprisingly, she found that the *lack of sleep* heightened her sense of euphoria,
278 making her unusually cheerful at work. *Increased happiness* from this unexpected
279 cheerfulness seemed to improve her *cognitive function*.

280
281 If the LLM is asked if a stressful job leads to increased happiness, the parametric knowledge shortcut
282 indicates the answer should be no – however, the shortcut fails as the narrative indicates that a
283 (indirect) causal link does exist.

284
285 **Models Exploit Parametric Knowledge** We find that, in synthetic experiments, the LLM finds
286 the correct causal relation generally only when that relation agrees with its parametric knowledge.
287 This is exemplified in the plot in Figure 2 (left) where we see good performance on narratives
288 that agree with parametric knowledge (*Causal* parametric knowledge) and poor performance on
289 narratives that disagree with parametric knowledge (*Anti-Causal* parametric knowledge). We also
290 notice an interesting phenomenon for the *Anti-Causal* parametric case where using just the extracted
291 graph provides massive improvements over any prompting strategy that involves using the narrative
292 to directly answer questions. This strategy is comparable in performance to when the parametric
293 knowledge is *Causal*. It seems that the narrative may only serve to distract the LLM when parametric
294 knowledge disagrees with the narrative.

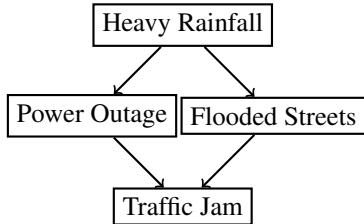
295 296 3.4 IMPACT OF NARRATIVE COMPLEXITY 297

298 In the previous sections, we identified two shortcuts which models exploit in causal reasoning tasks.
299 Here, we test the influence of narrative complexity on these failure modes. We examine two measures
300 of complexity: (a) the narrative length and (b) the presence of complex graph structures.
301

302
303 **Narrative Length** In conditions where the LLM exhibits failure modes (*Reverse* and *Anti-Causal*
304 orientations), the performance also tends to decay as the size of the narrative and the number of
305 events in the narrative increases. As we can see in Figures 1 and 2 (Left), it seems that the longer the
306 narrative is, the more the LLM relies on shortcuts instead of performing reasoning. However, the
307 extracted graph G' can often maintain a consistently high level of accuracy across narrative sizes
308 even for cases when a failure mode would normally be exhibited.

309
310 **Causal Graph Complexity** As the bulk of our work has focused on detecting the simplest failure
311 modes possible, we studied narratives with an underlying chain graph structure. However, the
312 presence of more complex causal structures in the narrative could exacerbate the existing failure
313 modes or trigger novel failures. To study this, we create causal graphs utilizing two common causal
314 structures: *Forks* (one node has a causal relationship to multiple other nodes) and *Colliders* (multiple
315 nodes have a causal relationship to the same node). We generate narratives (the complete algorithm
316 is described in Appendix A.3) such that each underlying causal graph contains at least one of these
317 structures, and may randomly contain multiple such structures based on the size of the narrative. An
318 example is shown in Figure 3.

319 As can be seen in Figure 2 (right side), we find that while the LLM generally performs worse at
320 reasoning about the complex narratives than simple narratives (with underlying chain graphs), the
321 gap is very starkly less than can be seen in the other failure modes. This finding can be supported by
322 (Dettki et al., 2025) which finds that GPT-4o reasons similarly to humans on a single sentence that
323 describes one collider relation. Our work extends their work by using a long-form narrative based on
a causal graph with potentially multiple colliders and forks instead of only one collider.



Narrative: The *heavy rainfall* not only caused a *power outage* in several neighborhoods but also led to *flooded streets*. The aftermath of the *power outage* (disabling traffic lights) and the *flooded roads* (blocking street access) caused a *traffic jam*.

Figure 3: Causal graph with story showing a fork (first sentence) and a collider (second sentence).

4 EXPERIMENTS WITH REAL WORLD CAUSAL GRAPHS

In this section, we extend our analysis to narratives involving real-world causal graphs from *CauseNet* (Heindorf et al., 2020), a large-scale knowledge graph of (claimed) causal relationships between real-world concepts. We perform experiments using the *GPT-4o* (OpenAI et al., 2024) and Llama-3.1 8B models for our experiments. We concentrate our analysis on the same factors (positional biases and parametric knowledge consistency) as explored in the semi-synthetic settings.

The *CauseNet* dataset can be represented as a collection of D tuples $\{(C_i, E_i, S_i)\}_{i=1}^D$, where C_i denotes the cause (e.g., fatigue), E_i denotes the effect (e.g., accidents), and S_i is a set of sentences (extracted from Wikipedia and ClueWeb12 (Callan, 2012)) that entail a causal relationship from C_i to E_i . We retrieve causal chain graphs $V_1 \rightarrow V_2 \rightarrow \dots \rightarrow V_N$ of various lengths, where each causal relation $V_i \rightarrow V_{i+1}$ is from *CauseNet* and verbalize these chains as narratives in the following ways:

Semi-synthetic narratives. In this setting, we use real causal graphs from *CauseNet* but synthetically verbalize them via the LLM. In particular, we prompt the LLM to generate sentences for each edge ($V_i \rightarrow V_{i+1}$) in the causal graph, while ensuring the sensibility of the entire narrative. For example, the following is a narrative for the chain *fatigue* \rightarrow *accidents* \rightarrow *injury*:

Fatigue can cloud judgment and slow reaction times, leading to an increase in *accidents* on the road. As a result, these *accidents* often lead to serious *injury* for those involved, highlighting the dangerous consequences of driving while fatigued.

Real-world narratives. For the real-world narratives, the sentence for each edge is chosen from the *CauseNet* dataset. To ensure that the narrative as a whole remains coherent, we prompt the LLM to ensure that the sentences for every pair of adjacent edges logically follow each other. For example, the following is the narrative for the causal chain *fatigue* \rightarrow *accidents* \rightarrow *injury*:

Workers work long hours in mines and factories where *fatigue* and a lack of concentration can easily cause *accidents*. These *accidents* are the leading cause of *injury* in this country for people ages 1-34.

Additional examples of semi-synthetic and real-world narratives are presented in Appendix C.1 (the entire set of narratives used for our experiments is available in the linked code).

Prompting Strategies For simplicity, we limit the prompting techniques used to (see Appendix C.2 for the prompt templates): **Standard QA Prompting**, **Chain-of-Thought** and **Explicit Causal Graph Extraction**. We evaluate the accuracy for each pair of nodes (V_i, V_j) for the three prompting strategies on the semi-synthetic and real-world narratives.

4.1 IMPACT OF EVENT ORDERING AND CHAIN LENGTH

As described in the previous section, we verbalize each causal chain graph $V_1 \rightarrow V_2 \rightarrow \dots \rightarrow V_N$ from *CauseNet* into a narrative in the forward and reverse topological order. In both the semi-synthetic (Fig. 4 left) and real-world narratives (Fig. 4 right), the *Forward Graph* strategy performs the best, with its accuracy remaining stable even as the chain length increases. We observe that *Forward Standard* and *CoT* outperforms *Reverse Standard* and *CoT*, with the *Reverse* accuracy declining

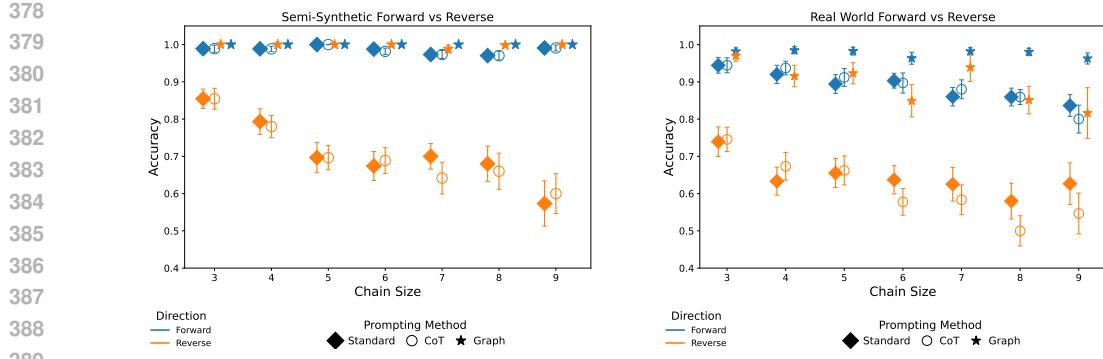


Figure 4: The accuracy of various prompting strategies (error bars denote 95% CIs). We observe that the accuracy is lower in the reverse direction (and tends to decay as the chains get longer).

substantially as the chain size gets large. We also see that in this regime, extracting the causal graph makes inference in the *Reverse* orientation competitive with inference in *Forward*.

4.2 EFFECT OF PARAMETRIC KNOWLEDGE CONSISTENCY

Experiment Setup Next, we analyze the extent to which the LLM relies on its parametric knowledge to answer causal reasoning queries as opposed to the causal structure expressed in the narrative. For every pair of nodes (V_i, V_j) in the chain graphs, we elicit the parametric knowledge of the LLM by asking the LLM whether a causal effect between the two nodes would be atypical (see Appendix B.2 for the exact prompts utilized). Through these prompts, we identify cause and effect chains which contradict the model’s parametric knowledge. For example, in a chain graph from our dataset, there is a path from *streambank erosion* to *higher prices*, but this contradicts the LLM’s parametric knowledge since this causal effect may not typically exist in the real-world. In total, we find that roughly 5 percent of the relations in CauseNet violate the LLM’s pretraining knowledge. We sampled narratives from CauseNet until we got 100 (of chain sizes between 3 and 9) narratives that contain relations that violate the LLM’s pre-training knowledge and 100 that are consistent. These narratives are constructed in the *Forward* topological ordering to avoid confounding failure modes.

LLM Performance Suffers on Atypical Causal Relations We evaluate the three prompting strategies separately on the subsets of cause-and-effect pairs that are in agreement and in conflict with the parametric knowledge (see Table 1). We observe that when there is no conflict (i.e., the parametric knowledge agrees with the causality expressed in the narrative), the accuracies with and without CoT are greater than 90%. However, when the parametric knowledge conflicts with the narrative’s causality, the accuracy is significantly lower, even with CoT. This suggests that when asked to reason about cause and effect in a narrative, the LLM seems to rely heavily on its parametric knowledge and is unable to grasp the specific causal chains expressed in the narrative itself (despite the causal chains as a whole being realistic).

Explicit Causal Graph Extraction Avoids Shortcuts Interestingly, when using extracted graph for performing causal reasoning, the performance is very high, both with and without conflicts. This is likely because when asked to extract the graph from the narrative, the LLM pays more attention to the entire narrative as opposed to when directly queried on a cause-and-effect pair (where the LLM defaults to its parametric knowledge). These results show that even when the LLM constructs a reasonably good causal chain graph, the LLM does not leverage this graph when queried directly about the causal effects in the narrative (even with CoT), further highlighting the advantage of extracting the causal graph directly.

4.3 NARRATIVE COMPLEXITY

We can see from Figure 4 that LLM performance degrades with narrative length, especially when a failure mode is present. We furthermore experimented with complex narratives with causal graphs containing forks and colliders (full graph and narrative creation algorithm in Appendix B.3). We

432

433

434

435

436

437

438

439

440

	Standard	CoT	Graph
Semi-synthetic			
Without Conflict	99.8	99.6	99.9
With Conflict	67.2	73.1	98.7
Real-world			
Without Conflict	90.9	89.2	97.9
With Conflict	52.1	57.6	93.2

441 Table 1: The average accuracy across different narratives with the three prompting strategies parti-
 442 tioned by whether the cause-effect pairs conflict with the LLM’s parametric knowledge (we omit the
 443 95% CIs as they are smaller than 0.3).

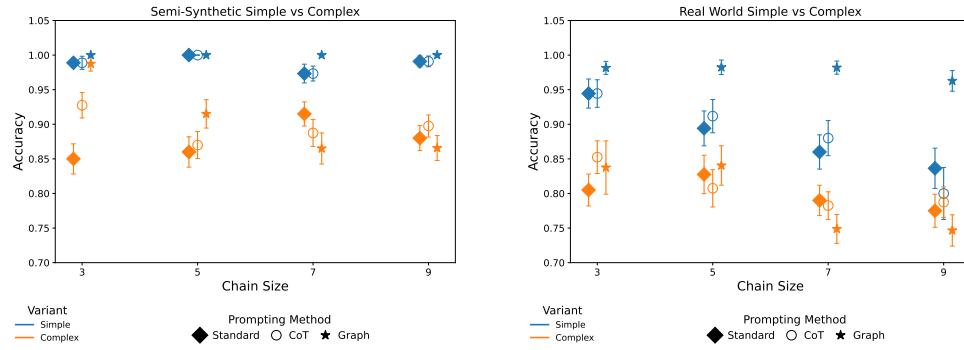


Figure 5: GPT-4o accuracy on narratives generated from Complex graphs as opposed to Simple chain graphs for semi-synthetic narratives (left) and real-world narratives (right). 95 % CI is shown.

can see in Figure 5, that in both the semi-synthetic and real-world settings that complex narratives (with colliders and forks) perform worse than simple narratives that have a causal chain graph as the ground truth. This gap ,while clear and noticeable, isn’t as stark as failure from parametric knowledge conflict (Table 1) or topological ordering (Figure 4). We do furthermore note that this is one area where extracting an explicit causal graph does not seem to significantly improve performance.

5 DISCUSSION

Our work takes initial strides towards examining the success and failure of LLMs to reason causally on narratives that express causal events. We focus on two questions of key importance in causality: (1) Does one event cause another? (2) Can the LLM extract the causal graph from the narrative. We find three significant failure modes of LLM reasoning by conducting experiments in carefully controlled synthetic, semi-synthetic and real-world settings: Firstly, we find that LLMs rely heavily on **topological ordering**, performing well when the ordering of events in the narratives matches that of the ordering of the underlying causal graph. Secondly, we find that LLMs rely on their **parametric knowledge** as a shortcut to infer causal relations. Finally, we examine the role of **causal structure complexity**, finding that LLM accuracy degrades as the narrative length increases. Furthermore, LLMs perform slightly worse on reasoning when narratives contain structures such as colliders and forks. Beyond these failure modes, we show that more reliable causal reasoning can be elicited by prompting the LLM to explicitly identify the causal graph. One limitation of our work is that there are other forms of causal reasoning that we did not test for in the narratives. This motivates many potential directions for future work. For example, it could be interesting to ask the LLM to reason about counterfactual cases. Our analysis also has implications for algorithmic interventions to improve causal reasoning. The failure modes we identify in this paper could inform the design of targeted synthetic tasks to use in finetuning for improved causal reasoning. Additionally, our findings on the benefits of extracting a causal graph can inform prompt engineering efforts to elicit reliable causal reasoning from language models. We believe investigating both directions represents an exciting direction for future work.

486 REFERENCES

487

488 Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, and Patrick Martineau. An exact graph edit
489 distance algorithm for solving pattern recognition problems. In *Proceedings of the 4th International*
490 *Conference on Pattern Recognition Applications and Methods (ICPRAM)*, Lisbon, Portugal, Jan-
491 *uary 2015*. doi: 10.5220/0005209202710278. URL <https://hal.archives-ouvertes.fr/hal-01168816>.

492

493 Prithviraj Ammanabrolu, Wesley Cheung, William Broniec, and Mark O. Riedl. Automated sto-
494 rytelling via causal, commonsense plot ordering, 2020. URL <https://arxiv.org/abs/2009.00829>.

495

496 Anthropic. Claude 3.5 sonnet. 2024. Available at: <https://www.anthropic.com/news/claude-3-5-sonnet>.

497

498

499 Swagata Ashwani, Kshiteesh Hegde, Nishith Reddy Mannuru, Mayank Jindal, Dushyant Singh
500 Sengar, Krishna Chaitanya Rao Kathala, Dishant Banga, Vinija Jain, and Aman Chadha. Cause and
501 effect: Can large language models truly understand causality?, 2024. URL <https://arxiv.org/abs/2402.18139>.

502

503 Jamie Callan. The lemur project and its cluweb12 dataset. In *Invited talk at the SIGIR 2012*
504 *Workshop on Open-Source Information Retrieval*, 2012.

505

506 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
507 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
508 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

509

510 Hanna M. Dettki, Brenden M. Lake, Charley M. Wu, and Bob Rehder. Do large language models
511 reason causally like us? even better?, 2025. URL <https://arxiv.org/abs/2502.10215>.

512

513 Jörg Frohberg and Frank Binder. Crass: A novel data set and benchmark to test counterfactual
514 reasoning of large language models, 2022. URL <https://arxiv.org/abs/2112.11941>.

515

516 Jinglong Gao, Xiao Ding, Bing Qin, and Ting Liu. Is chatgpt a good causal reasoner? a comprehensive
517 evaluation, 2023. URL <https://arxiv.org/abs/2305.07375>.

518

519 Andrew Gordon, Zornitsa Kozareva, and Melissa Roemmele. SemEval-2012 task 7: Choice of
520 plausible alternatives: An evaluation of commonsense causal reasoning. In Eneko Agirre, Johan
521 Bos, Mona Diab, Suresh Manandhar, Yuval Marton, and Deniz Yuret (eds.), **SEM 2012: The First*
522 *Joint Conference on Lexical and Computational Semantics – Volume 1: Proceedings of the main*
523 *conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on*
524 *Semantic Evaluation (SemEval 2012)*, pp. 394–398, Montréal, Canada, 7–8 June 2012. Association
for Computational Linguistics. URL <https://aclanthology.org/S12-1052/>.

525

526 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
527 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
528 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
529 Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
530 Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
531 Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
532 Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
533 Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
534 Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
535 Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel
536 Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
537 Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
538 Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
539 Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,

540 Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
541 Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yearly, Laurens van der Maaten, Lawrence
542 Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
543 Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
544 Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
545 Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
546 Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
547 Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajwal
548 Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
549 Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
550 Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
551 Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
552 Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
553 Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
554 Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
555 Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
556 Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
557 Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
558 Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
559 Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
560 Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
561 Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
562 Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
563 Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenber, Alexei
564 Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
565 Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
566 Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
567 Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
568 Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
569 Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
570 Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
571 Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
572 Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
573 Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
574 Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
575 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcuate, Evan Dunbar, Evan Smothers,
576 Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
577 Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
578 Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
579 Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
580 Helen Suk, Henry Aspegen, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
581 Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
582 Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
583 Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
584 Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
585 Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
586 Veeraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
587 Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
588 Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madiam Khabsa, Manav Avalani, Manish
589 Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
590 Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
591 Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
592 Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
593 Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin

594 Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
595 Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
596 Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
597 Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
598 Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
599 Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
600 Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
601 Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
602 Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
603 Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
604 Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
605 Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
606 Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
607 Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
608 Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
609 llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.
610 Stefan Heindorf, Yan Scholten, Henning Wachsmuth, Axel-Cyrille Ngonga Ngomo, and Martin
611 Potthast. Causenet: Towards a causality graph extracted from the web. In *ACM international
612 conference on Information & Knowledge Management*, 2020.
613 Matthew Ho, Aditya Sharma, Justin Chang, Michael Saxon, Sharon Levy, Yujie Lu, and William Yang
614 Wang. Wikiwhy: Answering and explaining cause-and-effect questions. In *The Eleventh Inter-
615 national Conference on Learning Representations*, 2023. URL [https://openreview.net/
616 forum?id=vaxnu-Utr4l](https://openreview.net/forum?id=vaxnu-Utr4l).
617 Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng LYU, Kevin Blin, Fer-
618 nando Gonzalez Adauto, Max Kleiman-Weiner, Mrinmaya Sachan, and Bernhard Schölkopf. CLad-
619 der: A benchmark to assess causal reasoning capabilities of language models. In *Thirty-seventh
620 Conference on Neural Information Processing Systems*, 2023. URL [https://openreview.
621 net/forum?id=e2wtjx0Yqu](https://openreview.net/forum?id=e2wtjx0Yqu).
622 Zhijing Jin, Jiarui Liu, Zhiheng LYU, Spencer Poff, Mrinmaya Sachan, Rada Mihalcea, Mona T.
623 Diab, and Bernhard Schölkopf. Can large language models infer causation from correlation?
624 In *The Twelfth International Conference on Learning Representations*, 2024. URL [https://openreview.net/
625 forum?id=vqIH0ObdqL](https://openreview.net/forum?id=vqIH0ObdqL).
626 Abhinav Joshi, Areeb Ahmad, and Ashutosh Modi. Cold: Causal reasoning in closed daily activities,
627 2024a. URL <https://arxiv.org/abs/2411.19500>.
628 Nitish Joshi, Abulhair Saparov, Yixin Wang, and He He. Llms are prone to fallacies in causal
629 inference, 2024b. URL <https://arxiv.org/abs/2406.12158>.
630 Emre Kıcıman, Robert Ness, Amit Sharma, and Chenhao Tan. Causal reasoning and large language
631 models: Opening a new frontier for causality, 2024. URL <https://arxiv.org/abs/2305.00050>.
632 Bryan Li, Lara J. Martin, and Chris Callison-Burch. CIS²: A simplified commonsense inference
633 evaluation for story prose, 2022. URL <https://arxiv.org/abs/2202.07880>.
634 Jiaxuan Li, Lang Yu, and Allyson Ettinger. Counterfactual reasoning: Testing language models' under-
635 standing of hypothetical scenarios, 2023. URL <https://arxiv.org/abs/2305.16572>.
636 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
637 Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
638 Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
639 Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
640 Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
641 Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
642 Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
643 Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
644 Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
645

648 Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
649 Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
650 Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
651 Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
652 Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
653 Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
654 Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
655 Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
656 Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
657 Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
658 Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
659 Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
660 Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
661 Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
662 Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
663 Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
664 Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
665 Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
666 Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
667 Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
668 Giambattista Parascandolo, Joel Parish, Emry Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
669 Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
670 Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
671 Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
672 Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
673 Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
674 Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
675 Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
676 Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie
677 Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
678 Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun
679 Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
680 Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
681 Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
682 Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
683 Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
684 Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
685 <https://arxiv.org/abs/2303.08774>.
686
687 Fiona Anting Tan, Ali Hürriyetoglu, Tommaso Caselli, Nelleke Oostdijk, Tadashi Nomoto, Hansi
688 Hettiarachchi, Iqra Ameer, Onur Uca, Farhana Ferdousi Liza, and Tiancheng Hu. The causal
689 news corpus: Annotating causal relations in event sentences from news. In *Language Resources
and Evaluation Conference*. European Language Resources Association, 2022. URL <https://aclanthology.org/2022.lrec-1.246>.
690
691 Yufei Tian, Arvind krishna Sridhar, and Nanyun Peng. Hypogen: Hyperbole generation with
692 commonsense and counterfactual knowledge, 2021. URL <https://arxiv.org/abs/2109.05097>.
693
694 Zhaowei Wang, Quyet V. Do, Hongming Zhang, Jiayao Zhang, Weiqi Wang, Tianqing Fang, Yangqiu
695 Song, Ginny Wong, and Simon See. COLA: Contextualized commonsense causal reasoning from
696 the causal inference perspective. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
697 *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers)*, pp. 5253–5271, Toronto, Canada, July 2023. Association for Computational
698 Linguistics. doi: 10.18653/v1/2023.acl-long.288. URL <https://aclanthology.org/2023.acl-long.288/>.
699
700 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
701 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Neural
Information Processing Systems*, 2022.

702 Matej Zečević, Moritz Willig, Devendra Singh Dhami, and Kristian Kersting. Causal parrots: Large
703 language models may talk causality but are not causal, 2023. URL <https://arxiv.org/abs/2308.13067>.
704
705 Cheng Zhang, Stefan Bauer, Paul Bennett, Jiangfeng Gao, Wenbo Gong, Agrin Hilmkil, Joel Jennings,
706 Chao Ma, Tom Minka, Nick Pawlowski, et al. Understanding causality with large language models:
707 Feasibility and opportunities. *arXiv preprint arXiv:2304.05524*, 2023.
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 APPENDIX
757

758 A SYNTHETIC DATA EXPERIMENTS
759

760 A.1 SELECTED SYNTHETIC PROMPTS
761

762 We use an LLM to generate the events E . From the events, we create a ground truth causal graph G
763 which is used to structure and inform the narrative sequence and causality. N is the corresponding
764 narrative created by the LLM from G . To evaluate the LLM's performance, we extract a causal graph,
765 G' , from the narrative N as produced by the LLM, and compare it with the ground truth causal graph
766 G . In this context, n refers to the number of events to generate, while A and B represent pairs of events
767 queried for causal relationships. The task then becomes assessing whether event A causes event B .
768 All prompts, data processing steps, and results are included in the attached code. Furthermore all
769 results are taken and aggregated over 5 random seeds, with the CI being taken after aggregation.
770

771 A.1.1 TOPOLOGICAL EXPERIMENT - GENERATING RANDOM EVENTS (E)
772

773 "generate n random distinct events"
774

775 A.1.2 PARAMETRIC EXPERIMENT -GENERATING A PAIR OF CAUSAL EVENTS (E)
776

777 "generate a pair of events that cause each other. generate an event that causes another event, for
778 example Cancer \rightarrow Death or Obesity \rightarrow Bad Heart Health. Make sure the event generated is not
779 already in E "
780 This is repeated as many times as is necessary

781 A.1.3 PARAMETRIC EXPERIMENT - GENERATING A PAIR OF ANTI-CAUSAL EVENTS (E)
782

783 "generate a pair of events that are anticausal (an event causing the opposite of the normal effect), for
784 example the first event could be cancer and the second event could be a longer life because in reality,
785 cancer causes a shorter life. Make sure the events generated are not already in E ."
786 This is repeated as many times as is necessary

787 A.1.4 FORWARD TOPOLOGICAL NARRATIVE (N)
788

789 "Output a short narrative (use one sentence) that expresses the causal link [$E1 \rightarrow E2$]. By causal link,
790 we mean that the sentence should convey that $E1$ directly caused $E2$. In other words, it should be
791 clear from the narrative that $E2$ would not have happened had $E1$ not happened. Ensure that the words
792 [$E1, E2$] are present in the new sentence and $E1$ appears before $E2$. Only output the new sentence."
793 Repeat for all causal/anti-causal links

794 A.1.5 REVERSE TOPOLOGICAL NARRATIVE (N)
795

796 "Output a short narrative (use one sentence) that expresses the causal link [$E1 \rightarrow E2$]. By causal link,
797 we mean that the sentence should convey that $E1$ directly caused $E2$. In other words, it should be
798 clear from the narrative that $E2$ would not have happened had $E1$ not happened. Ensure that the words
799 [$E1, E2$] are present in the new sentence and $E2$ appears before $E1$. Only output the new sentence."
800 Repeat for all causal/anti-causal links

801 A.1.6 STANDARD PROMPT
802

803 "Use this narrative N as context. Did A cause B ? Output your answer with < *answer* > Yes/No <
804 /*answer* >. The cause can be direct or indirect."
805

806 A.1.7 IN-CONTEXT PROMPT
807

808 "Use this narrative N as context. Did A cause B ? Output your answer with < *answer* > Yes/No <
809 /*answer* >. The cause can be direct or indirect. An example narrative would be: Rains leads to
plants growing. This then causes increased oxygen in the atmosphere. A potential question would be:

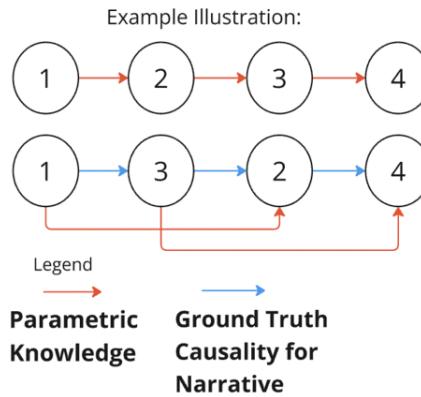
810 does rain cause increased oxygen in the atmosphere? The answer would be Yes. Another example
 811 narrative would be: Increased oxygen in the atmosphere is because of plants growing. Plants grow
 812 because rain provides them essential nutrients. A potential question would be: does rain cause plants
 813 to grow? The answer would be Yes. Another example narrative would be: Rain leads plants to grow.
 814 Plants growing causes less oxygen in the atmosphere. A potential question would be: does rain cause
 815 more oxygen in the atmosphere? The answer would be No. Another example narrative would be: The
 816 city's pollution levels increased because factories expanded their production. A separate heatwave
 817 occurred due to seasonal climate patterns, unrelated to factory activity. A potential question would
 818 be: did factory expansion cause the heatwave? The answer would be No."

819 **A.1.8 NARRATIVE + GRAPH PROMPT**

820
 821 "Use this narrative N and this causal ordering G' ((such that each item is a cause of every item after
 822 it, for example the first list item is a cause of the third, fourth, fifth items etc)) as context. Did A
 823 cause B ? Output your answer with $< \text{answer} > \text{Yes/No} < / \text{answer} >$. The cause can be direct
 824 or indirect."

825 **A.2 PARAMETRIC GRAPH EXPERIMENT**

826 Let's call the graph of parametric knowledge P . We then take the odd indexed events (1st, 3rd etc)
 827 from P and place them in the first half of the causal ground truth graph G and the even indexed
 828 events (2nd, 4th etc) from P in the second half of G . This process is shown in Figure 6.



845 Figure 6: Example illustration (right) is of how G , the ground truth causality, is set up.
 846
 847

848 **A.3 COMPLEX GRAPH CREATION**

849 To generate a ground-truth causal graph G with rich structure (colliders, forks, and a spanning chain),
 850 for each choice of size n we perform the following algorithm:

851 1. **Node sampling.** Draw n distinct events

$$\{E_1, E_2, \dots, E_n\} \subset \mathcal{E}$$

852 uniformly at random without replacement.

853 2. **Determine motif counts.** (for $n \geq 4$)

$$k_{\max} = \lfloor n/2 \rfloor, \quad k_{\text{tot}} \sim \text{Uniform}(2, k_{\max}),$$

$$k_{\text{col}} \sim \text{Uniform}(1, k_{\text{tot}} - 1), \quad k_{\text{fork}} = k_{\text{tot}} - k_{\text{col}}.$$

854 3. **Collider creation.** Repeat k_{col} times:

855 (a) Select two distinct "parent" nodes p_1, p_2 from those not yet used in any motif.
 856 (b) Select a "child" node c that is neither p_1 nor p_2 and not yet used as a child.

864 (c) Add edges
 865 $p_1 \rightarrow c$ and $p_2 \rightarrow c$,
 866 thereby forming a collider at c .
 867

868 4. **Fork creation.** Repeat k_{fork} times:
 869 (a) Select a “parent” node p from those not yet used.
 870 (b) Select two distinct “child” nodes c_1, c_2 from the remaining unused nodes.
 871 (c) Add edges
 872 $p \rightarrow c_1$ and $p \rightarrow c_2$,
 873 forming a fork with shared parent p .
 874

875 5. **Chain-connect remaining nodes.** Let \mathcal{R} be the set of nodes not yet involved in any collider
 876 or fork.
 877 (a) Order $\mathcal{R} = \{r_1, \dots, r_m\}$ arbitrarily, then add chain edges
 878 $r_1 \rightarrow r_2, r_2 \rightarrow r_3, \dots, r_{m-1} \rightarrow r_m$.
 879

880 (b) To ensure the entire graph is connected, choose one node u from among the previously
 881 used nodes (if any) and add
 882 $u \rightarrow r_1$.
 883

884 **B REAL-WORLD CAUSAL GRAPHS**
 885

886 **B.1 PROMPT TEMPLATES FOR NARRATIVE GENERATION**
 887

888 Recall that we have a ground truth causal chain graph of the form $V_1 \rightarrow V_2 \rightarrow \dots \rightarrow V_N$ from
 889 *CauseNet* that we need to verbalize into a coherent narrative. For the semi-synthetic narratives, we
 890 use the LLM (GPT-4o) to do so one edge at a time, while ensuring that the newly verbalized edge
 891 logically follows the previous one. The following is the prompt template for generating the narratives
 892 in the topological order of the graph:
 893

894 Output a short narrative (use one or two sentences) that expresses the causal link
 895 $[V_i \rightarrow V_{i+1}]$ and logically follows this narrative:
 896 { Narrative for the previous edge $V_{i-1} \rightarrow V_i$ }.
 897 Ensure that the combined sentences convey the causal chain $[V_{i-1} \rightarrow V_i \rightarrow$
 898 $V_{i+1}]$ and that the words $[V_i, V_{i+1}]$ are present. Only output the newly generated
 899 narrative.
 900

901 Similarly, we generate narratives in the reverse topological order of the graph by verbalizing edges in
 902 the reverse direction with the following prompt template:
 903

904 Output a short narrative (use one or two sentences) that expresses the causal link
 905 $[V_i \rightarrow V_{i+1}]$ and logically follows this narrative:
 906 { Narrative for the previous edge $V_{i+1} \rightarrow V_{i+2}$ }.
 907 Ensure that the combined sentences convey the causal chain $[V_i \rightarrow V_{i+1} \rightarrow$
 908 $V_{i+2}]$ and that the words $[V_i, V_{i+1}]$ are present. Only output the newly generated
 909 narrative.
 910

911 For generating real-world narratives, for each edge $V_i \rightarrow V_j$, we use the set of sentences from
 912 *CauseNet*. Each edge in *CauseNet* is linked to multiple sentences from various sources. Picking a
 913 sentence for each edge at random and concatenating them does not always lead to sensible narratives.
 914 To improve the quality of narratives, we use the following prompt to concatenate sentences for
 915 adjacent edges:
 916

917 Consider the following sentences.
 918 { Sentence for edge $V_i \rightarrow V_{i+1}$ }. { Sentence for edge $V_{i+1} \rightarrow V_{i+2}$ }.
 919 Do the sentences logically follow each other and express the causal chain $[V_i \rightarrow$
 920 $V_{i+1} \rightarrow V_{i+2}]$? Answer with Yes or No.

918 For verbalizing narratives in the topological order, for a given graph $V_1 \rightarrow V_2 \rightarrow \dots \rightarrow V_N$,
919 we only use sentences such that the above prompt returns *Yes* for every pair of adjacent edges
920 $V_i \rightarrow V_{i+1} \rightarrow V_{i+2}$. This ensures that the narrative as a whole remains coherent and conveys the
921 entire causal chain graph. We use a similar prompting strategy to verbalize narratives in the reverse
922 topological order.

923

924 B.2 ELICITING PARAMETRIC KNOWLEDGE

925

926 We ask the LLM “Does V_i typically have a causal (indirect or direct) effect on V_j ?” and “Would it be
927 atypical if V_i had a (indirect or direct) causal effect on V_j ?” If the LLM answers “No” and “Yes” to
928 those respective questions, we would consider a causal relationship between V_i and V_j to contradict
929 the LLM’s prior knowledge that it learned from its pretraining corpora.

930

931 B.3 SEMI-SYNTHETIC AND REAL-WORLD COMPLEX GRAPH ALGORITHM

932

933 Let $\mathcal{M} = \{(u, v)\}$ be the set of real-world causal edges from CauseNet. For each target size
934 $n \in \{3, \dots, 9\}$, we:

935

1. Load CauseNet.

936

$$\mathcal{M} = \{(u, v) \mid u \rightarrow v \text{ in CauseNet}\}.$$

937

938

2. Extract collider and fork motifs.

939

$$\text{Colliders} = \{(p_1, p_2, c) \mid (p_1, c) \in \mathcal{M}, (p_2, c) \in \mathcal{M}, p_1 \neq p_2\},$$

940

$$\text{Forks} = \{(r, c_1, c_2) \mid (r, c_1) \in \mathcal{M}, (r, c_2) \in \mathcal{M}, c_1 \neq c_2\}.$$

941

942

3. Determine motif counts.

943

944

$$\text{If } n = 3, \quad (k_{\text{col}}, k_{\text{fork}}) = \begin{cases} (1, 0) & \text{w.p. 0.5,} \\ (0, 1) & \text{w.p. 0.5.} \end{cases}$$

945

946 (for $n \geq 4$)

947

948

$$k_{\text{max}} = \lfloor n/2 \rfloor, \quad k_{\text{tot}} \sim \text{Uniform}(2, k_{\text{max}}),$$

949

950

$$k_{\text{col}} \sim \text{Uniform}(1, k_{\text{tot}} - 1), \quad k_{\text{fork}} = k_{\text{tot}} - k_{\text{col}}.$$

951

952

4. Select motifs.

953

- Sample k_{col} distinct triples from Colliders.
- Sample k_{fork} distinct triples from Forks.

954

955 Let S be the union of all nodes appearing in these sampled triples.

956

957

5. Pad or trim to size n .

958

959

- If $|S| > n$, uniformly subsample n nodes from S .
- If $|S| < n$, add random “seed” nodes (not already in S) until $|S| = n$.

960

961

6. Build ground-truth edges $\mathcal{G} \subseteq S \times S$.

962

963

- (a) *Colliders*: for each (p_1, p_2, c) chosen, add $p_1 \rightarrow c$ and $p_2 \rightarrow c$.
- (b) *Forks*: for each (r, c_1, c_2) , add $r \rightarrow c_1$ and $r \rightarrow c_2$.
- (c) *Chains*: for any remaining $(u, v) \in S \times S$ with $(u, v) \in \mathcal{M}$ and neither u nor v used in the above, add $u \rightarrow v$ to ensure connectivity.

964

965

7. Narrative generation.

966 For each $(u \rightarrow v) \in \mathcal{G}$:

967

968 For the semi-synthetic case - prompt the LLM to generate a sentence linking u to v using
969 the forward topological ordering prompt.

970

971 For the real-world case: Find a causal sentence linking u and v in the Cause-Net database

972 C REAL-WORLD COMPLEX GRAPH CREATION
973

974 C.1 ADDITIONAL EXAMPLES OF THE GENERATED NARRATIVES
975

976 C.1.1 SEMI-SYNTHETIC NARRATIVES
977

978 Below, we present some examples of semi-synthetic narratives in the forward and reverse directions.
979

980 The narrative in the forward direction for the chain *higher prices* → *reduced demand* → *lower prices*:

981 As *higher prices* swept through the market, consumers began to tighten their
982 budgets, leading to a noticeable *reduction in demand* for many goods. As a result
983 of the *reduced demand*, suppliers were forced to *lower prices* in order to attract
984 buyers back to the market.

985 The narrative in the reverse order for the causal chain *bankruptcy* → *bad credit* → *rejection* → *anger*:

986 The sting of rejection ignited a fire within her, transforming her hurt into a seething
987 anger that demanded to be felt. Her bad credit had led to the rejection she never
988 saw coming, and now that sting of rejection ignited a fire within her, transforming
989 her hurt into a seething anger that demanded to be felt. Her bankruptcy had left
990 her with bad credit, a shadow that loomed over her every application, and now that
991 sting of rejection ignited a fire within her, transforming her hurt into a seething
992 anger that demanded to be felt.

993 The narrative in the reverse order for the causal chain *pollution* → *climate change* → *extreme weather*
994 events → *natural disasters*:

995 As extreme weather events become more frequent and severe, they increasingly
996 lead to devastating natural disasters that disrupt communities and ecosystems alike.
997 Climate change is driving the rise in extreme weather events, which in turn are
998 causing unprecedented natural disasters that threaten the stability of communities
999 and the health of ecosystems. Pollution is a major contributor to climate change,
1000 which is driving the rise in extreme weather events that threaten the stability of
1001 communities and the health of ecosystems.

1002 C.1.2 REAL-WORLD NARRATIVES
1003

1004 Below, we present some examples of real-world narratives in the forward and reverse directions.
1005

1006 The narrative in the forward direction for the chain *higher prices* → *reduced demand* → *lower prices*:

1007 *Higher prices* generally lead to reduced demand. *Lower prices*, caused by *reduced*
1008 *demand* and increased competition for soybeans and corn, largely contributed to
1009 the overall bulk export decline.

1010 The narrative in the reverse order for the causal chain *bankruptcy* → *bad credit* → *rejection* → *anger*:

1011 Embittered by an abusive upbringing, seething with resentment, irritated by others'
1012 failure to fulfill his or her superior sense of entitlement, and fuelled by anger
1013 resulting from rejection, the serial bully displays an obsessive, compulsive and
1014 self-gratifying urge to displace their uncontrolled aggression onto others whilst
1015 exhibiting an apparent lack of insight into their behavior and its effect on people
1016 around them. Bad credit normally leads to rejection but now with bad credit secured
1017 loan, you can avail the loan of your choice. For example, if you are applying for a
1018 loan, the lender may reject your application on the basis of bad credit caused by
1019 bankruptcy.

1020 The narrative in the reverse order for the causal chain *pollution* → *climate change* → *extreme weather*
1021 events → *natural disasters*:

1026 In addition to forced migrations from rising seas, climate change is also increasing
1027 extreme weather events causing natural disasters such as cyclonic storms (hurri-
1028 canes or typhoons), floods and droughts. This is worsened by extreme weather
1029 events caused by climate change. This landmark bill would jump start the economy
1030 by creating millions of new clean energy jobs, increase national security by reduc-
1031 ing dependence on foreign oil, and preserve the planet by reducing the pollution
1032 that causes climate change.
1033

1034 C.2 PROMPT TEMPLATES FOR ASSESSING CAUSAL REASONING

1035 We use the following template for the Direct prompting strategy:

1036 Consider the following hypothetical narrative.
1037 {narrative}
1038 According to the hypothetical narrative, does {cause} have a (direct or indirect)
1039 causal effect on {effect}? Answer in Yes/No.
1040

1041 We use the following template for the Chain-of-Thought (CoT) prompting strategy:

1042 Consider the following hypothetical narrative.
1043 {narrative}
1044 According to the hypothetical narrative, does {cause} have a (direct or indirect)
1045 causal effect on {effect}? Think step-by-step and end your answer with <an-
1046 swer>Yes/No</answer>.
1047

1048 We use the following template to extract a chain graph from the narrative:

1049 Consider the following hypothetical narrative.
1050 {narrative}
1051 According to the hypothetical narrative, construct a causal chain graph using
1052 the following nodes: { nodes in random order }. Ensure that the graph con-
1053 tains all the given nodes and only output a single chain graph of the form
1054 <graph>node1 → node2 → node3 </graph>. Only output the graph between
1055 the <graph></graph>tags.
1056

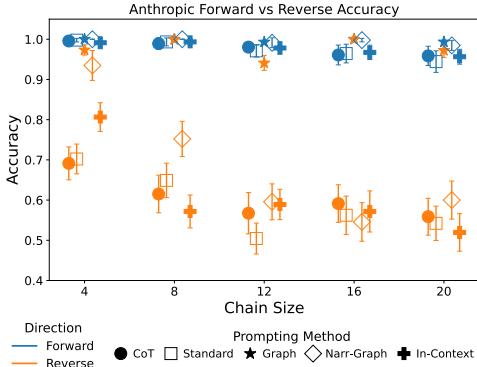
1057 C.3 NECESSARY COMPUTE

1058 No pretraining was done so no GPUs were needed. We used cloud based API calls to pre-trained
1059 models like ChatGPT, Anthropic and Llama. We estimate that for the synthetic portion, our API
1060 calls to ChatGPT, Anthropic and Llama took 10 hours each. For the semi-synthetic and real-world
1061 portion, we had roughly 10 hours of API calls for ChatGPT and Llama each. So in total, roughly 50
1062 hours of API usage. As the majority of the computational burden fell on cloud based API calls, no
1063 significant CPU resources are required either.
1064

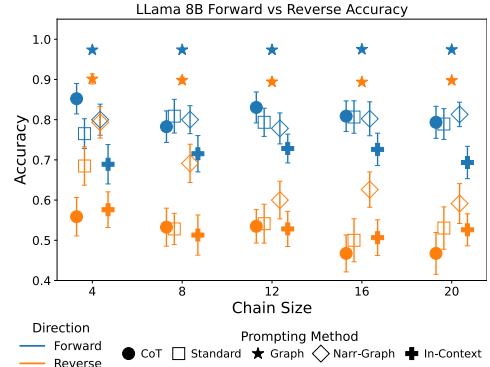
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080 D ADDITIONAL RESULTS - SYNTHETIC DATA
1081

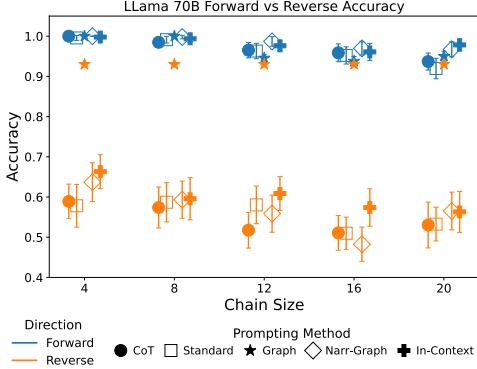
1082 D.1 FORWARD VS REVERSE EXPERIMENTS 1083



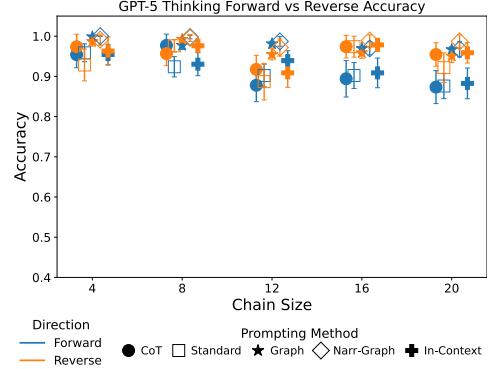
1096 (a) Anthropic Claude 3.5 Sonnet
1097



1096 (b) Llama 3.1 8B
1097



1096 (c) Llama 3.1 70B
1097



1096 (d) GPT-5 Thinking High Reasoning
1097

1112 Figure 7: (a) Anthropic Claude 3.5 Sonnet, (b) LLama 3.1 8B, (c) LLama 3.1 70B and (d) GPT-5 Thinking High Reasoning Test of the LLM's ability to reason on narratives written in the Forward and Reverse topological orientations. Chain size is the number of nodes in ground truth G . The "Graph" prompting method uses only the extracted graph G' to reason, "Narr-Graph" uses both the narrative and extracted graph, and "Standard, CoT, In-Context" all use only the narrative. Accuracy measures LLM answer agreement with G . The points in the graph are represented with a slight horizontal stagger around the relevant chain sizes (4,8,12 etc) for ease of visual understanding. We show a 95% CI.
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1120 In these graphs, we perform the Forward vs Reverse Experiments for (a) Anthropic Claude 3.5 Sonnet, (b) LLama 3.1 8B, (c) LLama 3.1 70B and (d) GPT-5 Thinking High Reasoning. Across a scale of model sizes and reasoning capabilities, patterns emerge. We see that a consistent failure mode remains of models (small or large) being much worse at reasoning about reverse narratives than ones in the forward direction – until we get to the reasoning model which closes the gap. We also notice that the reasoning model doesn't score perfectly in the forward regime like many of the non-reasoning models. The fact that it makes some mistakes in that regime, while still doing well, is indicative of actual reasoning and not following a simple shortcut.
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

D.2 CAUSAL VS ANTI-CAUSAL EXPERIMENTS

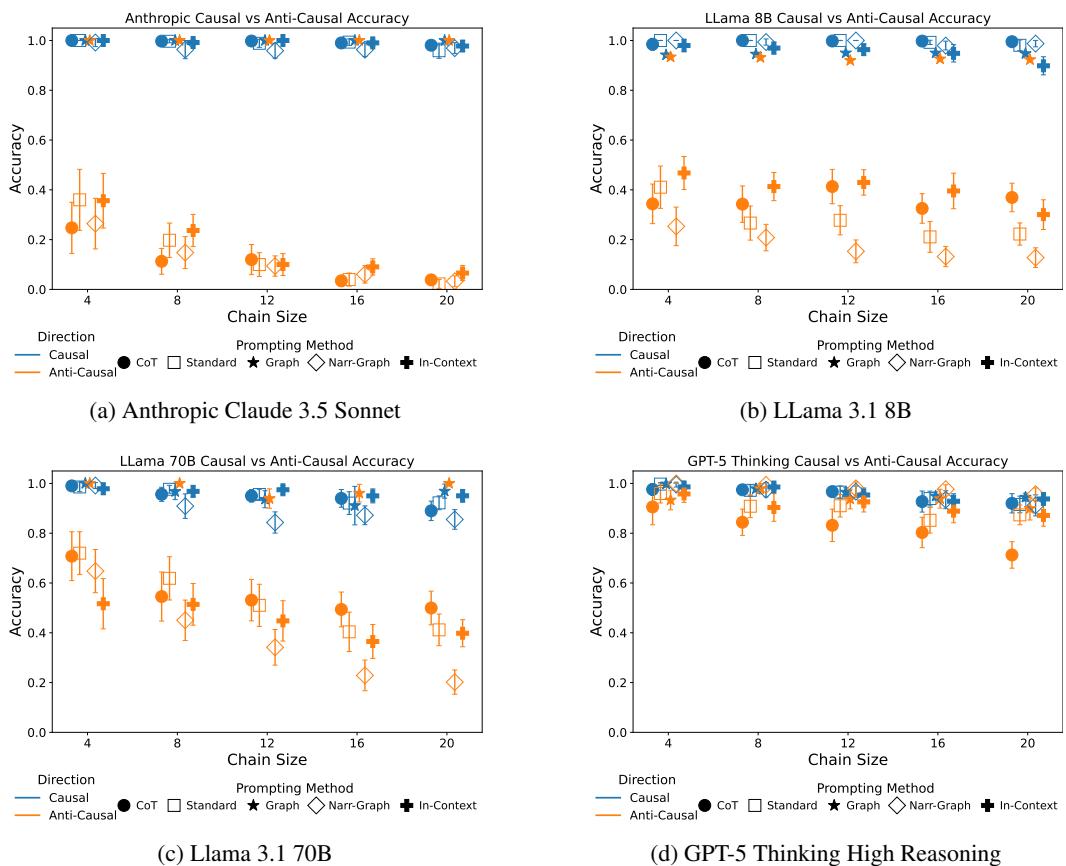


Figure 8: (a) Anthropic Claude 3.5 Sonnet, (b) LLama 3.1 8B, (c) LLama 3.1 70B and (d) GPT-5 Thinking High Reasoning Test of the LLM’s ability to reason on narratives that agree with parametric knowledge (Causal) and disagree with parametric knowledge (Anti-Causal). 95 % CI is shown.

In these graphs, we perform the Causal vs Anti-Causal Experiments for (a) Anthropic Claude 3.5 Sonnet, (b) LLama 3.1 8B, (c) LLama 3.1 70B and (d)GPT-5 Thinking High Reasoning. We see that larger models like GPT-4o and Claude 3.5 Sonnet perform far worse on knowledge that conflicts with their pre-training compared to LLama models, possibly because they have been trained on so much more data than the LLama models. As such, we can say that size of the model doesn't necessarily translate into better performance for the failure modes we identified. What does seem to translate into significantly better performance is the amount of reasoning capability the model explicitly has.

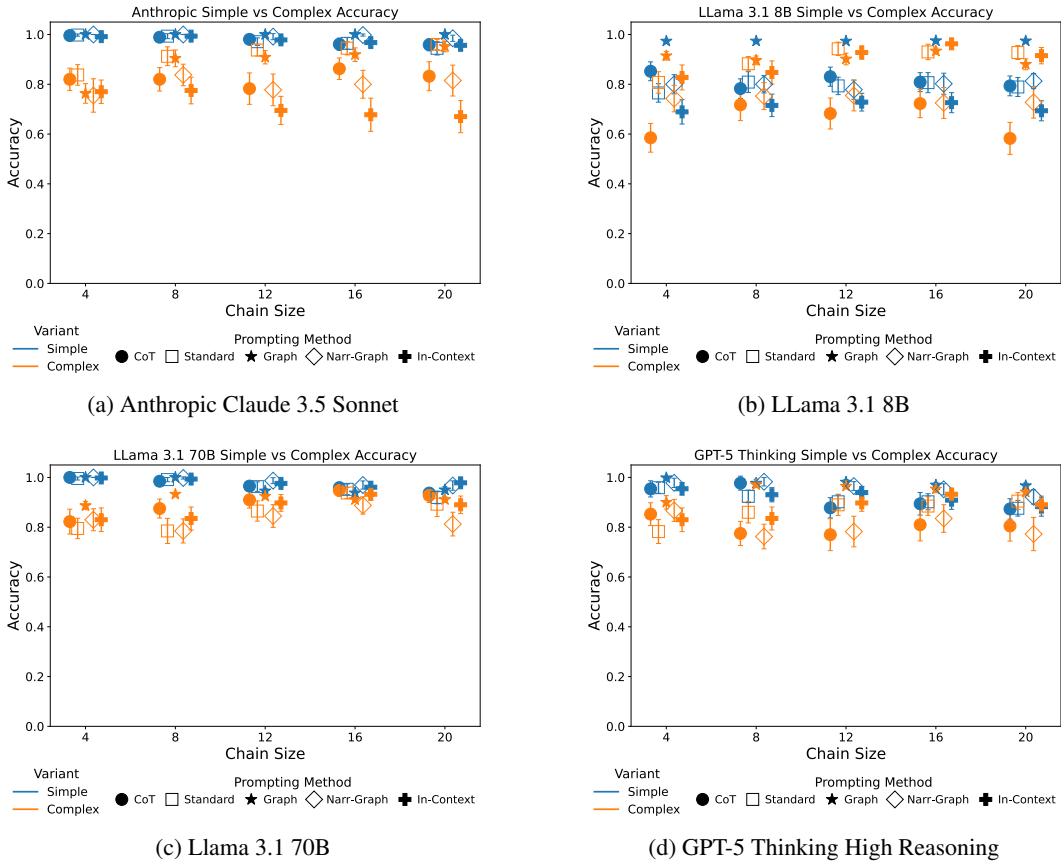


Figure 9: (a) Anthropic Claude 3.5 Sonnet, (b) LLama 3.1 8B, (c) LLama 3.1 70B and (d)GPT-5 Thinking High Reasoning Test of the LLM's ability to reason on narratives generated from Complex graphs as opposed to Simple chain graphs. 95 % CI is shown.

In these graphs, we perform the Complex vs Simple Experiments for (a) Anthropic Claude 3.5 Sonnet, (b) LLama 3.1 8B, (c) LLama 3.1 70B and (d)GPT-5 Thinking High Reasoning. We see relatively similar performance across all models except for Llama 3.1 8B which has more variable performance. It's general inconsistency may be due to the fact that it is a weaker model than the others presented.

1242
1243

D.4 GRAPH EDIT DISTANCE

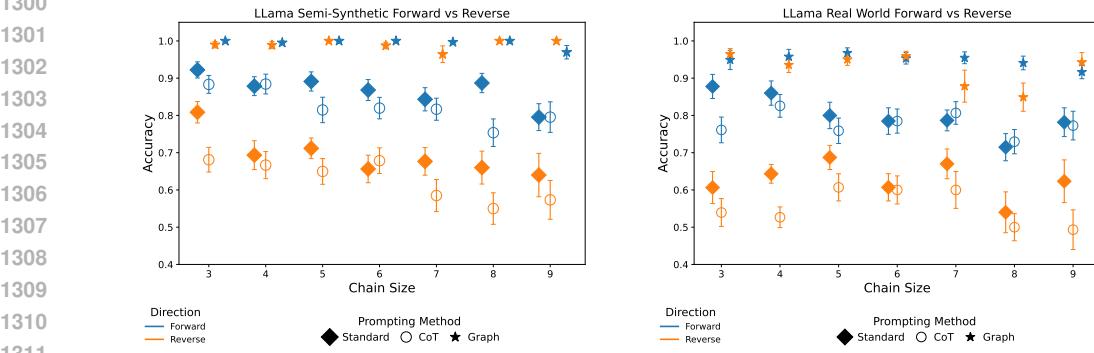
1244 Here in Table 2, we compute the average graph edit distance per, using the implementation from the
1245 networkX package in python (Abu-Aisheh et al. (2015)) where they define graph edit distance as "It is
1246 defined as minimum cost of edit path (sequence of node and edge edit operations) transforming graph
1247 G_1 to graph isomorphic to G_2 ." 95% CIs given. We find GED to be calibrated for a different measure
1248 than graph accuracy, as for example one small change in the causal graph with GED drastically
1249 impact accuracy – so two structures with similar GEDs can have drastically different accuracies.
1250

1251
1252

1253 Models	1254 Graph type				
	1255 Forward	1256 Reverse	1257 Causal	1258 Anti-Causal	1259 Complex
1254 LLaMA 3.1 8B	.04(.04,.04)	.08(.08,.08)	.03(.03,.03)	.03(.03,.03)	.08(.07,.11)
1255 LLaMA 3.1 70B	.04(.04,.04)	.07(.07,.07)	.02(.02,.02)	.02(.01,.02)	.07(.06,.09)
1256 Claude 3.5 Sonnet	0(0,0)	.02(.01,.02)	0(0,0)	0(0,0)	.08(.07,.11)
1257 ChatGPT-4o	.03(.03,.03)	.03(.02,.05)	.13(.12,.15)	.09(.08,.11)	0(0,0)
1258 ChatGPT-5 (Thinking)	.02(.02,.02)	.03(.03,.03)	.02(.02,.02)	.04(.03,.05)	.04(.03.04)

1260 Table 2: Graph Edit Distance by graph type for different models.
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 **E ADDITIONAL RESULTS - SEMI-SYNTHETIC AND REAL WORLD DATA**
1297

1298 **E.1 FORWARD VS REVERSE LLAMA**
1299


1312 Figure 10: (LLama 3.1 8B) The accuracy of various prompting strategies (error bars denote 95% CIs) in the Semi-Synthetic and Real-World Regimes using CauseNet.
1313

1314 We observe that the accuracy is lower in the reverse direction in both regimes, and slightly lower yet in the real world regime. This is consistent with previous findings. The extracted graph does well.
1315
1316
1317

1318 **E.2 PARAMETRIC EXPERIMENT LLAMA**
1319

1320

	Standard	CoT	Graph
Semi-synthetic			
Without Conflict	88.4	83.7	99.5
With Conflict	61.4	57.9	98.2
Real-world			
Without Conflict	81.6	79.2	95.1
With Conflict	48.8	49.9	93.2

1329 Table 3: (LLama 3.1 8B) The average accuracy across different narratives with the three prompting
1330 strategies partitioned by whether the cause-effect pairs conflict with the LLM’s parametric knowledge
1331 (we omit the 95% CIs as they are smaller than 0.3).
1332

1333 We observe that the accuracy is drastically lower with conflicting information in both regimes, and
1334 slightly lower yet in the real world regime. This is consistent with previous findings. We again see
1335 the graph doing very well.
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

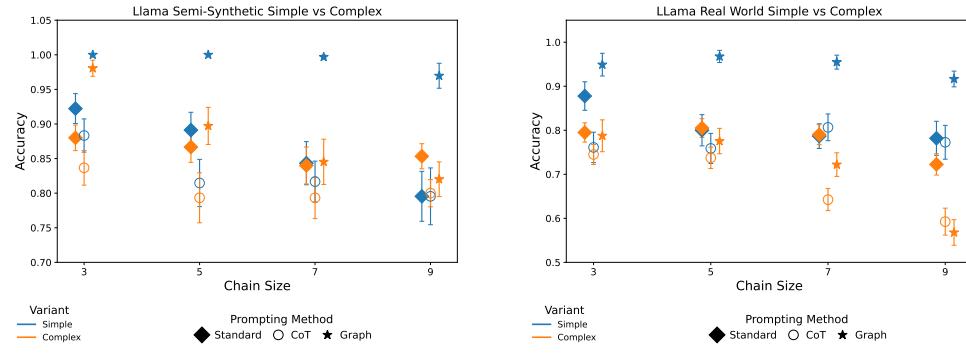
1350 E.3 SIMPLE VS COMPLEX LLAMA
1351


Figure 11: (LLama 3.1 8B) accuracy on narratives generated from Complex graphs as opposed to Simple chain graphs for semi-synthetic narratives (left) and real-world narratives (right). 95 % CI is shown.

We see slight degradation of accuracy in the complex regime as opposed to the simple one, with the graph not fully recovering accuracy in the complex regime. This is consistent with previous findings.

1458
1459
1460
1461
1462

Regime	Fluent (both, %)	Fluent (≥ 1 , %)	Cohen's κ (fluency)
Synthetic	96.0	99.3	0.88
Semi-synthetic	94.0	98.7	0.86
Real-world	92.0	97.3	0.84

1463
1464
1465
1466
1467

Table 5: Fluency judgments across regimes. “Fluent (both)” counts narratives where both annotators judged the narrative fluent; “Fluent (≥ 1)” counts narratives where at least one annotator judged the narrative fluent.

1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511