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Abstract

Text-to-image synthesis has witnessed remarkable
advancements in recent years. Many attempts
have been made to adopt text-to-image models
to support multiple tasks. However, existing ap-
proaches typically require resource-intensive re-
training or additional parameters to accommodate
for the new tasks, which makes the model inef-
ficient for on-device deployment. We propose
Multi-Task Upcycling (MTU), a simple yet effec-
tive recipe that extends the capabilities of a pre-
trained text-to-image diffusion model to support a
variety of image-to-image generation tasks. MTU
replaces Feed-Forward Network (FFN) layers in
the diffusion model with smaller FFNs, referred
to as experts, and combines them with a dynamic
routing mechanism. To the best of our knowl-
edge, MTU is the first multi-task diffusion model-
ing approach that seamlessly blends multi-tasking
with on-device compatibility, by mitigating the
issue of parameter inflation. We show that the per-
formance of MTU is on par with the single-task
fine-tuned diffusion models across several tasks
including image editing, super-resolution, and in-
painting, while maintaining similar latency and
computational load (GFLOPs) as the single-task
fine-tuned models.

1. Introduction
Text-to-image (T2I) generation with diffusion models is
rapidly gaining traction across diverse applications, with
foundational models such as DALLE2 (Ramesh et al., 2022),
MidJourney, Stable Diffusion (Rombach et al., 2022; Zhang
et al., 2023; Podell et al., 2023; Stability AI, 2023; Lin et al.,
2024), and Diffusion Transformers (DiT) (Peebles & Xie,
2022; Gao et al., 2024; Zhuo et al., 2024; Xie et al., 2024;
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Esser et al., 2024) at the forefront. Thanks to the open-
sourcing efforts, developers have the opportunity to fine-
tune them for a variety of creative use-cases. The growing
demand for generative AI applications has also contributed
to the requirement of deploying the state-of-the-art (SOTA)
models on personal and edge devices to address data-privacy
and the cost of cloud hosting.

Great effort has been made to optimize these foundation
models for edge deployment by making them smaller, faster,
and resource-efficient (Zhao et al., 2025; Castells et al.,
2024; Zhang et al., 2024b). These optimization strategies
include distillation of models to reduce size (Xiang et al.,
2024; Tang et al., 2023; Fang et al., 2023), reduction of
the frequency of model calls (Salimans & Ho, 2022; Meng
et al., 2023; Kang et al., 2025; Zhu et al., 2025; Yin et al.,
2024; Noroozi et al., 2024), reduction of on-device memory
and latency requirements through quantization (Li et al.,
2023; He et al., 2023; Wang et al., 2024), and removal of
computationally intensive operations (Zhao et al., 2023).

As SOTA diffusion models have demonstrated capabilities
to support various use cases through fine-tuning, there is
also a growing interest to develop a single model to per-
form multiple image-to-image (I2I) tasks, like image edit-
ing (Brooks et al., 2023), super-resolution (Moser et al.,
2024), in/out-painting (Corneanu et al., 2024; Wasserman
et al., 2024). However, incorporating multiple tasks presents
significant challenges. Some approaches adopt universal
modeling (Ye & Xu, 2024; Zhang et al., 2024a; Bao et al.,
2023) to learn a joint probability distribution that unifies
multiple modalities within a common diffusion space. Other
approaches rely on designing models with specialized com-
ponents tailored to specific modalities or tasks (Xu et al.,
2023; Tang et al., 2024). This allows the diffusion space to
vary while partitioning the computational graph based on
the task, offering modularity and flexibility. However, these
methods significantly increase the model size and parameter
count, making them computationally inefficient. Moreover,
these approaches face scalability issue as the computational
requirements grow significantly with the increase in the
number of tasks and modalities. Thus, a significant gap
remains in efficiently adapting diffusion models to multi-
ple tasks, while ensuring they are suitable for on-device
deployment.
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Figure 1. A chatbot showcasing a potential use case of Multi-Task Upcycling. Our approach efficiently upcycles pre-trained text-to-image
models, enabling them to perform multiple image generation tasks using a single backbone.

To bridge the gap, we introduce the concept of Multi-Task
Upcycling (MTU) of T2I diffusion models. MTU transforms
single-task T2I models into image-generation generalists,
i.e., a single model is capable of handling multiple tasks.
The concept of upcycling is widely used in the field of Large
Language Models (LLMs) to transform dense pre-trained
models into sparse Mixture-of-Experts (MoE) (He et al.,
2024; Komatsuzaki et al., 2023; Jiang et al., 2025), but it
has not yet been explored for diffusion models. Unlike pre-
vious multi-task diffusion models, our approach avoids the
need to significantly increase model parameters to support
additional new tasks. Instead, it only requires retraining a
few components with new multi-task data, while ensuring
that the model remains both efficient and scalable for multi-
task learning. MTU is particularly effective in the following
two main scenarios: (i) extending an on-device T2I diffu-
sion model to support multiple tasks without increasing the
computational requirement, (ii) obtaining a multi-task dif-
fusion model with an existing T2I model acting as a strong
prior. We demonstrate a potential use case of our proposed
approach as a chatbot, illustrated in Figure 1, where a single
model seamlessly handles multiple tasks such as image edit-
ing, inpainting, and super-resolution based on user requests.

Our method is inspired by the empirical observation that
when a T2I model is fine-tuned for a new task, the parame-
ters in the Feed-Forward Network (FFN) layers undergo a
significant shift, compared to the other layers of a diffusion
model. Building on this insight and inspired by upcycling

literature, we convert a single FFN layer in pre-trained mod-
els into a number of smaller FFN experts. These experts are
fine-tuned simultaneously on multiple tasks while keeping
the rest of the model frozen. A router mechanism dynam-
ically learns to combine the outputs of these individual
experts, guided by task-specific embeddings. We evaluate
our method on latent diffusion models, such as SDv1.5 and
SDXL, across various image-to-image tasks, including im-
age editing, super-resolution, and inpainting. Our results
demonstrate that we can develop models that are iso-FLOP,
i.e., having the same FLOPs as their pre-trained counter-
parts, while achieving performance comparable to single-
task models. Our upcycled SDXL achieves a FID of 3.9 on
T2I generation, while maintaining the same computational
cost of 1.54 TFLOPs as the pre-trained model.

2. Related Work
Multi-task Diffusion Models: There are two primary ap-
proaches in this area. The first is universal modeling (Ye
& Xu, 2024; Zhang et al., 2024a; Bao et al., 2023; Chen
et al., 2024), which aims to learn a joint probability distribu-
tion unifying multiple modalities within a shared diffusion
space. For instance, instead of learning p(image|text) as
in single-task diffusion models, it learns p(text, image), the
joint probability distribution for text and image. Text-to-
image generation can then be performed by marginalizing
the joint distribution. However, a key drawback of this
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approach is its scalability as the entire model needs to be
re-trained when new tasks are added. The second approach
involves designing models with specialized components
tailored to specific modalities or tasks (Xu et al., 2023;
Tang et al., 2024). This enables the diffusion space to vary
across tasks, while partitioning the computational graph for
modularity and flexibility. Despite these advantages, this
method significantly increases model size and parameter
count, reducing efficiency. For both approaches, computa-
tional requirements scale rapidly with the number of tasks
and modalities, resulting in scalability challenges.

Sparse Upcycling of Pre-trained Models: Upcycling has
been explored in various studies as a method for transform-
ing trained dense models into Mixture-of-Experts (MoE)
frameworks (He et al., 2024; Komatsuzaki et al., 2023; Jiang
et al., 2025). The concept of upcycling arose from the chal-
lenges of training sparse MoE models from scratch, as such
training is highly unstable and sensitive to hyperparameters.
Upcycling offers a solution by starting with a pre-trained
dense model, which is often readily available online, and
transforming it into an MoE model to enhance performance
and capacity. At the core of any upcycling method, dis-
cussed in (He et al., 2024; Komatsuzaki et al., 2023; Jiang
et al., 2025), lies expert architecture design, initialization
techniques, and routing strategies within the MoE layer.

The Feed Forward Networks (FFNs) within pre-trained
LLMs, which are two-layer MLPs with hidden dimension
dffn, are replaced by MoE layers. An MoE layer comprises
N FFN experts denoted by {E1, E2, · · · , EN} and a router
that learns to assign tokens in the input to appropriate ex-
perts. Let us denote the hidden dimension of experts as
dexpert. In sparse upcycling methods, the parameters of these
experts are initialized using those of the pre-trained model.
Various routing mechanisms have been utilized in different
works (Lewis et al., 2021; Clark et al., 2022), with the Ex-
pert Choice router (Zhou et al., 2022) and standard topK
routing (Shazeer et al., 2017) being the most commonly
used methods for computing the output of the MoE layer.

Many studies have proposed that increasing the number of
experts a token is routed to, while simultaneously reducing
the dimensions of each expert such that dexpert < dFFN, can
be a more efficient approach. This model is referred to as a
fine-grained MoE model (Krajewski et al., 2024) and the ra-
tio G = dFFN/dexpert is termed as granularity. Reducing the
dimensions of the experts decreases the FLOPs per expert,
which in turn permits an increase in the topK (the number of
experts a token is routed to) proportional to the reduction in
expert size, all while maintaining the overall FLOPs count.

We draw inspiration from the concept of fine-grained MoE
models in the LLM literature and adapt it for multi-tasking
in diffusion models. In the following sections, we provide
the motivation for focussing on the FFN blocks of diffusion

models, followed by a detailed outline of our multi-task
upcycling approach.

3. Preliminaries
Latent Diffusion Models: Latent Diffusion Models
(LDMs) (Rombach et al., 2022; Zhang et al., 2023) are
based on Diffusion Models (DMs) (Ho et al., 2020; Song
et al., 2021), that learn to reverse a forward Markov pro-
cess in which noise is incrementally added to input im-
ages over multiple time steps t ∈ [0, T ]. We denote an
RGB image by x0 ∈ R3×H×W , where H and W corre-
spond to the height and width of the image. An encoder E
transforms the input image x0 into a latent representation
z0 ∈ Rc×h×w, where h and w represent the height and
width of the downscaled encoded image, and c indicates
the number of channels in latent space. During training,
a noisy latent zt at time t is obtained from a real image’s
latent z0 by zt =

√
atz0 +

√
1− atϵ, where ϵ ∼ N (0, I)

and at is a parameter that gradually decays over time. A
denoiser fθ(.) is then trained to predict the noise added to
zt conditioned on the input text embedding cT . This en-
ables the reconstruction of z0 by subtracting the predicted
noise from zt. To achieve this, the denoiser is trained to
predict the noise by stochastically minimizing the objective:
L(z, cT ) = Eϵ,x,cT ,t [∥ϵ− fθ (zt, cT , t)∥]. A decoder D,
then maps the denoised ẑ0 back to the pixel space. During
inference, given a text prompt cT , a noisy latent embed-
ding zT is sampled and iteratively denoised over T steps
to produce ẑ0, which is decoded into the final image. Typi-
cally, the encoder and decoder are derived from a pre-trained
autoencoder that remains frozen during training.

Fine-tuning LDMs for Image-to-Image Generation
Tasks: The objective of image-to-image (I2I) generation
tasks is to transform an input image cI into a target image
ctarget based on an edit prompt cT . In I2I literature (Brooks
et al., 2022), cT and cI are commonly referred to as the
text and image conditions, respectively. The target image
and input image are encoded by an encoder E to obtain
the latent representations ztarget and zc, respectively. To
train a diffusion model, noise is added to ztarget to obtain
zt by

√
atztarget +

√
1− atϵ, where ϵ ∼ N (0, I) and at

is a parameter that is scheduled similar to T2I diffusion
models. A denoiser fθ is then trained to predict the noise
added to a noisy input latent ztarget, given the image con-
dition zc and the text instruction cT . To achieve this, the
image condition zc is concatenated with the noisy latents
zt, and the resulting tensor is provided as input to the de-
noiser. To accommodate the additional channels introduced
by the image conditioning, the first convolutional layer is
modified to include extra input channels, while the rest of
the architecture remains unchanged. The training process
involves minimizing the following latent diffusion objective:
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Figure 2. We analyze the deviation between fine-tuned weights θτf and pre-trained initialization θp across different layers in the LDM (i.e.,
Φτ = ||θτf − θp||) and rank them accordingly. We present the average rank of these deviations across all tasks. The x-axis represents
layer depth, while the y-axis indicates the component type. FFN layers show the highest deviation, suggesting they specialize in adapting
to downstream tasks.

Image Editing (IE) Super Resolution (SR) Inpainting (IP)

I-T Dir Sim ↑ LPIPS ↓ I-I Dir Sim ↑
SA 17.6 25.0 42.9
CA 16.9 27.5 40.1

FFNs 17.8 23.7 46.7

Table 1. Quantitative comparison of fine-tuning different compo-
nents (SA, CA, and FFNs) of the diffusion model over image-to-
image generation tasks. Fine-tuning FFNs leads to better perfor-
mance on image-to-image tasks.

L(z, cT , zc) = Eϵ,x,cT ,zc,t [∥ϵ− fθ (zt, cT , zc, t)∥]. Pre-
trained text-to-image models, such as Stable Diffusion, are
commonly used as initialization to leverage their extensive
text-to-image generation capabilities.

4. Motivation
Previous studies (Loshchilov & Hutter, 2017; Kirkpatrick
et al., 2017) in the area of transfer learning and domain
adaptation have shown that parameters undergoing signif-
icant changes during fine-tuning are more relevant to the
specific task, while those with minimal changes are either
already well-aligned with the task due to pre-training or less
critical for fine-tuning. Inspired from these findings, we
identify a subset of parameters within the diffusion mod-
els that show the highest deviations from the pre-trained
initialization. In this experiment, we consider two Latent
Diffusion Models, namely SDv1.5 and SDXL. We fine-tune
them on three tasks: (i) image editing, (ii) super-resolution,
and (iii) inpainting. See the appendix for further details on
the dataset and training procedure in Section A.2.

Let θp be the weights of a pre-trained diffusion model, and
θτf the fine-tuned weights for a specific task τ . The distance
between the fine-tuned weights and the initialization is com-
puted as Φτ = ||θτf − θp||, where || · || is the Frobenius
norm. For each task, we define Φτ for all LDM compo-
nents: Self-Attention (Φτ

SA), Cross-Attention (Φτ
CA), and

Feed-Forward Network (Φτ
FFN) blocks. Within the SA and

CA blocks, we further consider the Q, K, V, and output
layer matrices. We rank Φτ

SA, Φτ
CA, and Φτ

FFN for each layer
across all tasks and then compute the average rank across
I2I tasks. Figure 2 illustrates layer-wise average ranks for
I2I tasks. Higher ranks signify greater deviation from the
pre-trained initialization. Our experiments show that FFN
layers deviate the most from the pre-trained weights to adapt
to downstream I2I tasks. This is also demonstrated in Fig-
ure 6 in the appendix, which presents measured deviation
values.

To further validate this observation, we fine-tune each com-
ponent of the attention block separately and compare their
performance. Details on the metrics reported are in Section
6. As shown in Table 1, fine-tuning the FFN layers in diffu-
sion models consistently yields better results compared to
tuning other components. In other words, FFNs specialize
in solving a downstream task, while the other parameters
in the attention block learn more general features. In this
paper, we build on these findings, and propose an approach
for Multi-Task Upcycling for Diffusion Models.

5. Methodology: Multi-task Upcycling for
Diffusion Models

In MTU, we segment the FFN component into experts such
that their weighted combination solves specific tasks without
the need of extra parameters. MTU comprises four key
steps: (i) split the pre-trained model’s FFNs into smaller
FFN experts, (ii) design a router to dynamically combine
the outputs of these experts, (iii) define task-specific input
processing layers, and (iv) design the loss function to train
the FFN experts and the router. Note that only the FFN
experts, the router, and the task-specific input processing
layers are trainable parameters. An overview of our method
is presented in Figure 3.

Expert architecture: We replace each FFN block in the pre-
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Figure 3. (a) Overview: We introduce Multi-task Upcycling (MTU), a method for transforming a pre-trained text-to-image model to
support multiple tasks. (b) In MTU, we replace the FFN layer in the pre-trained model with a set of smaller experts, which are dynamically
combined using a router mechanism.

trained denoiser architecture withN experts {El
1, · · · , El

N},
each with dimension dlexpert, where l is the layer index. To
ensure that the upcycled model maintains a parameter count
similar to the pre-trained model, we constrain dlexpert =

dlFFN/N , where dlFFN denotes the dimension of l-th FFN
block in the pre-trained model.

Upcycling methods typically initialize the parameters of
the experts from the pre-trained model. However, in our
case, since the size of the FFN in the pre-trained model
differs from the upcycled model, copying the dense MLP
weights to the upcycled model structure becomes non-trivial.
To address this, we segment the dense layer into N shards
along the appropriate dimension and copy each shard into
the corresponding expert. We denote the set of parameters
in all the experts within the entire model as θE .

Router: Let T denote the set of tasks. For each task τ ∈ T ,
we define a learnable task embedding eτ ∈ Rdtask . We add
a router to a layer l as: g(· ; θlr) : {{eτ}T → RN}, where
each expert is assigned a weight based on eτ . The output
of the FFN block for an input xτ corresponding to task τ is
computed as follows:

wl
i = softmax(g(eτ ; θ

l
r))i

El
FFN(xτ ) =

N∑
i=1

wl
i × El

i(xτ ), (1)

where wl
i represents the weight assigned to the i-th expert,

and Ei(xτ )
l is the output of the i-th expert for input xτ in

layer l of the model. A key advantage of this formulation
is that the task-specific weights can be pre-calculated with
minimal computational overhead using the task identifier.

Task-specific Layer Norms: Our empirical observation
suggests that incorporating a task-specific layer normaliza-
tion step before each expert significantly improves model
performance. The arrangement of these layer normalization
steps is illustrated in Figure 3(b). Our experiments show
that FFN layers exhibit significantly different distributions

across tasks, and thus the task-specific layer normalization
facilitates the learning of these distinct distributions in the
upcycled model. We denote the set of all task-specific con-
volution layers as ΨL.

Task-specific input layers: As outlined in Section 3, single-
task image-to-image models share the same architecture, dif-
fering only in the input convolution layer, which accommo-
dates additional channels from image conditioning. In our
upcycled architecture, we introduce separate task-specific
input convolution layers, denoted by ψτ (·), to handle the
varying conditioning distributions for different tasks. We
denote all the set of task-specific convolution layers as ΨC .

Multi-task Loss: For a task τ , let zτ0 represent the encoded
images, zτt the noisy latents at time step t. We feed zτt and
the text prompt cτT to the denoiser f , and task it to predict
the noise ϵ. Note that in the case of image conditioning, zτt
is the concatenation of the noisy latents and the encoded
context image cτI along the channel dimension.

To reduce the computational burden, we pre-compute the
expert weights using the task identifiers eτ . We use these
weights to combine the expert outputs as shown in Equa-
tion 1. While the shared parameters of the model are kept
frozen, the task-specific layer norms ΨL and input layers
ΨC , experts θE and routers θR are trained to optimize a
multi-task objective with the loss L defined as:

L =
∑
τ∈T

Eϵ,xτ ,cτ
T
,cτ

I
,t ∥ϵ− fθ (ΨC(z

τ
t ), c

τ
T , E(cτI ), t)∥ (2)

6. Experimental Settings
Model Architectures: We evaluate our method on two
Stable Diffusion-based models—SDv1.5 (Rombach et al.,
2022) and SDXL (Podell et al., 2023) consisting of 860M
and 2.6B parameters in the denoiser component respectively.
In both models, the denoiser is a UNet composed of trans-
former blocks with Self-Attention (SA), Cross-Attention
(CA), Feed-Forward Networks (FFNs), and residual blocks.
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Multi-task Model TFLOPs Parameters Text-to-Image (T2I) Image Editing (IE) Super Resolution (SR) Inpainting (IP)

FID ↓ I-T Direction Similarity ↑ LPIPS ↓ I-I Directional Similarity ↑

SD
v1

.5

×
T2I (Rombach et al., 2022)

0.67 860M

12.9 – – –
IE (Brooks et al., 2023) – 15.4 – –

SR (Rombach et al., 2022) – – 38.0 –
IP (Yildirim et al., 2023) – – – 46.5

✓
VD (Xu et al., 2023) 0.87 1.1B 10.1 14.2 – –

Unidiffuser (Bao et al., 2023) 0.83 952M 7.4 – – –

✓ MTU (Ours) 0.68 869M 7.2 17.2 24.8 44.0

SD
X

L ×
T2I (Podell et al., 2023)

1.53 2.6B

4.1 – – –
IE (Brooks et al., 2023) – 17.3 – –

SR – – 26.9 –
IP – – – 43.2

✓ MTU (Ours) 1.54 2.6B 3.9 20.1 26.5 44.2

Table 2. Quantitative comparison of Multi-task Upcycling (MTU) against single-task and multi-task baselines. We consider N = 4 for
SDv1.5 and N = 1 for SDXL. MTU consistently surpasses baselines while preserving computational efficiency.

For multi-task upcycling, we consider all transformer blocks
in SDv1.5 (16 blocks) and SDXL (70 blocks).

Each router network g(· | θlr) is implemented as a two-layer
MLP with ReLU activation. As shown in Equation 1, we
then apply a softmax function over the router’s predictions
to obtain the weights assigned to each expert.

Downstream Image Synthesis Tasks: We consider four
tasks in our study, including Text-to-Image (T2I) genera-
tion, Image Editing (IE), Super Resolution (SR), and Image
Inpainting (IP). Since the MTU model is initialized with a
pre-trained T2I model, we include T2I as one of the tasks
to ensure the multi-task model maintains its text-to-image
generation capability.

Datasets: Since each task requires different data configura-
tions, we use the following datasets to train the MTU model.

• T2I: We use the COCO Captions dataset (Lin et al., 2015),
a large collection of image-text pairs.

• Image Editing: We use the dataset introduced in (Brooks
et al., 2023), which provides input and target images along
with corresponding editing instructions.

• Super Resolution: We use the Real-ESRGAN dataset
(Wang et al., 2021), which consists of high-resolution im-
ages. We generate corresponding low-resolution images
by applying degradations and downscaling them by half.

• Image Inpainting: We use the dataset from (Yildirim et al.,
2023), which provides a multi-modal inpainting dataset
designed for object removal based on text prompts.

More details can be found in Section A.1 in the Appendix.

Training Details: We freeze all other layers and train only
the FFN experts, routers, and task-specific layers, as de-
scribed in Section 5. This results in training 158M pa-
rameters for SDv1.5 and 1.5B parameters for SDXL. Both
models are trained on 8× A100 GPUs for 100 epochs, with
a batch size of 16 per GPU and image resolution of 512 ×
512. SDXL is optimized using AdamW with a learning rate
of 5e-5, while SDv1.5 is trained using Adam with a learning

rate of 1e-4. During sampling, we perform denoising for 20
and 50 iterations for multi-task SDv1.5 and SDXL models
respectively. More details are presented in Section A.2 in
the appendix.

Metrics: We used the following metrics that are commonly
considered for evaluating models train for specific tasks.

• T2I: We report Frechet Inception Distance (FID) on the
test set of the COCO captions dataset. Lower values
indicated better images.

• SR: We measure Learned Perceptual Image Patch Similar-
ity (LPIPS) (Zhang et al., 2018) between generated and
ground truth images, where lower values indicate more
similarity.

• Image Editing: We report Image-Text (I-T) Directional
Similarity (Brooks et al., 2023), which quantifies how
well the change in text captions aligns with correspond-
ing edits. Let Iinput and Iedited represent CLIP-extracted
features of input and edited images respectively (Rad-
ford et al., 2021). Similarly, let Tedited and Tinput de-
note the CLIP-extracted text features for the input and
edited descriptions. I-T Directional Similarity is defined
as S(Tedited − Tinput, Iedited − Iinput), where S is the cosine
similarity.

• Inpainting: We report Image-Image (I-I) Directional
Similarity, which measures alignment with the ground
truth. Given CLIP features corresponding to ground
truth image Igt, I-I Directional Similarity is defined as
S(Igt − Iinput, Iedited − Iinput). Higher values indicate bet-
ter similarity to the ground truth.

7. Results
Comparison with single-task and multi-task models
We compare MTU against both single-task and multi-task
baselines. For single-task baselines, we prioritize open-
source models based on SDv1.5 or SDXL whenever avail-
able. If no open-source models are available, we fine-tune
the pre-trained T2I model on the I2I task following the
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Figure 4. Qualitative comparison of MTU based on SDv1.5 (left) and SDXL (right) with corresponding single-task baselines for Image
Editing (IE) (Brooks et al., 2023), Super Resolution (SR) (Rombach et al., 2022), and Inpainting (IP). (Yildirim et al., 2023)
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Figure 5. Analysis for expert selection by the router. We show the
expert weight distribution assigned by the router for SDv1.5 with
four experts (N = 4).

methodology outlined by (Brooks et al., 2023) in Section
3. Specifically, we consider the image editing SDv1.5 and
SDXL models fine-tuned by (Brooks et al., 2023). For
Super-Resolution (SR) and Inpainting, we could only com-
pare SDv1.5 based models from (Rombach et al., 2022) and
(Yildirim et al., 2023), respectively. Since no equivalent
open-source versions are available for SDXL, we fine-tuned
a model locally for both SR and Inpainting.

Additionally, we use the Versatile Diffusion (VD) (Xu et al.,
2023) and UniDiffuser (Bao et al., 2023) models as multi-
task model baselines, as they are, to the best of our knowl-
edge, the only models comparable to the MTU model. Note
that these multi-task models were trained under entirely dif-
ferent settings and do not cover all the tasks considered in
this paper. Therefore, for a fair comparison, we evaluate
UniDiffuser solely on the T2I task and Versatile Diffusion
on the T2I and Image Editing tasks.

Table 2 shows that our method consistently outperforms
both single-task and multi-task baselines. Specifically, MTU
based on SDv1.5 achieves scores of 17.2 in Image Edit-
ing and 24.8 in Super-Resolution (SR), while single-task
baselines lag by 3 and 14 points, respectively. Additionally,
MTU based on SDv1.5 outperforms existing multi-task base-
lines, further demonstrating its effectiveness. We also report
the compute requirements for each model in GFLOPs, show-
ing that our approach maintains computational efficiency

IE SR IP

I-T Dir Sim ↑ LPIPS ↓ I-I Dir Sim ↑

SDv1.5
LORA 8.3 43.3 31.4

IA3 11.2 39.3 34.2
Full - FT 15.4 38.0 46.5

MTU (N = 4) 17.2 24.8 44.0

SDXL
LORA 13.1 31.8 28.9

IA3 8.4 51.0 30.6
Full - FT 17.3 26.9 43.2

MTU (N = 1) 20.1 26.5 44.2

Table 3. Comparison with PEFT methods. MTU significantly out-
performs PEFT methods applied on FFN layers.

comparable to single-task models. Qualitative results are
presented in Figure 4 and Section A.3 in the appendix.

Comparison with PEFT methods
Parameter-efficient fine-tuning (PEFT) methods are widely
used to adapt pre-trained models to different tasks. Methods
like LoRA (Hu et al., 2022) and IA3 (Liu et al., 2022) are
lightweight, requiring only a small fraction of parameters
to be fine-tuned within task-specific adapters. Since our
analysis in Section 4 highlights that FFNs play a crucial role
in enabling support for image-to-image tasks, we compare
MTU with LoRA and IA3 for tuning the FFN layers. Note
that applying IA3 only to FFN blocks did not yield good
results, so we apply IA3 to the entire block including self-
attention, cross-attention and FFN layers. By comparing
our approach with these PEFT methods, we evaluate how
effectively our method performs in comparison to efficient
fine-tuning techniques that primarily target FFN layers. Ta-
ble 3 compares MTU with PEFT methods such as LoRA and
IA3. For SDXL, our method outperforms IA3 by approxi-
mately 6 absolute points in image editing and 15 absolute
points in super-resolution (SR). Overall, MTU consistently
outperforms LoRA and IA3 across all tasks, demonstrating
better multi-task support compared to task-specific adapters.

Analysing router assignment for tasks
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# experts N top-k T2I IE SR IP

FID ↓ I-T Dir Sim ↑ LPIPS ↓ I-I Dir Sim ↑

(G
=

1 N
)

SD
v1

.5

1 – 7.3 17.6 25.3 44.0
2 – 8.4 9.0 30.9 43.2
4 – 7.2 17.2 24.8 44.0
8 – 8.0 10.2 27.8 38.7
8 4 7.9 8.9 25.8 39.3
16 – 8.5 9.6 27.2 36.5
16 4 8.2 8.6 26.5 38.6

SD
X

L

1 – 3.9 20.1 26.5 44.2
2 – 10.5 10.4 30.4 39.9
4 – 12.3 11.8 30.5 38.6
8 – 12.8 12.4 31.6 34.5
8 4 13.6 12.8 31.5 32.7
16 – 17.1 11.8 32.8 31.7
16 4 18.2 10.9 33.2 31.9

# experts N G # Params T2I IE SR IP

FID ↓ I-T Dir Sim ↑ LPIPS ↓ I-I Dir Sim ↑

SD
X

L
(2

.6
B

)

G = 1
1 1 2.6B 3.9 20.1 26.5 44.2
2 1 3.5B 3.8 20.0 26.3 46.9
4 1 5.2B 3.8 19.1 25.8 49.3

G < 1
4 0.25 2.6B 12.3 11.8 30.5 38.6
2 0.5 2.6B 10.5 10.4 30.4 39.9
4 0.5 3.5B 11.3 12.3 28.6 40.9

G > 1
1 2 3.5B 6.3 19.8 26.6 44.5
2 2 5.2B 5.8 20.4 24.8 44.7
1 4 5.2B 13.7 18.9 30.2 36.7

Table 4. Top: Performance of MTU on SDv1.5 and SDXL with
varying number of experts N and parameter constraint by setting
G = 1

N
. Bottom: Performance of MTU models (SDXL) without

parameter constraint. We allow model size to scale with the number
of experts to show that multi-task performance is linked to both
number of experts N and the capacity of each expert G.

We analyze how the router distributes weights across the set
of experts for each task to determine which experts special-
ize in specific tasks. Figure 5 illustrates the expert weight
distribution assigned by the router for SDv1.5 with N = 4.
Our findings show that Text-to-Image (T2I) generation and
Image Editing share three experts: E5

4 , E6
4 , and E16

4 . Mean-
while, E7

4 specializes in Super-Resolution (SR), and E6
1

is assigned greater importance for Image Inpainting. The
weight distribution across experts is similar for T2I (trained
on COCO) and Image Editing, as both tasks require strong
prompt-following capabilities. In contrast, Inpainting pri-
marily relies on object removal prompts, while SR operates
without any textual conditioning, necessitating the use of
different experts for these tasks.

MTU with varying the number of experts and sizes
We perform two ablation studies (i) Determine the optimal
number of experts N while constraining the total parameter
count of the MTU model as described in Section 5. (ii) Re-
move this constraint by varying N and expert size dexpert to
evaluate how the number of experts and their capacity affect
multi-task performance. We denote the ratio of an expert’s
dimension in MTU to the FFN dimension of the original
model as G = dexpert/dffn.

For (i), we set G = 1
N such that the hidden dimension of

each expert decreases as we increase the number of experts.
Table 4 (Top) presents the performance of our method with

varying number of experts under this constraint. Our find-
ings show that for both SDv1.5 and SDXL, increasing the
experts to a higher number (smaller experts) significantly
degrades performance. For SDv1.5, the optimal number
of experts is N = 4, while for SDXL, dividing the model
into experts is suboptimal, as tuning the task-specific layer
norms and FFN blocks alone provide sufficient multi-task
support. Given that MTU for SDXL works best with a sin-
gle expert, we conducted an additional experiment where
FFNs were frozen, and only the layer norms preceding them
were fine-tuned. However, this model failed to converge,
implying that FFNs play a key role in learning I2I tasks.
An alternative is to increase experts to 8 or 16, but select
only the top 4 per task, keeping active parameters equal
to the original FFN. Table 4 (Top) shows that this strategy
underperforms compared to using all experts directly.

For (ii), we lift the parameter constraint from (i) and vary
G from 1

N to 1 in Table 4 (Bottom). Increasing the number
of experts enhances performance across most tasks, particu-
larly super-resolution (SR) and image inpainting (IP). For
instance, in the case of G = 1 (experts matching the pre-
trained FFN size), the MTU model with N = 2 or N = 4
outperforms the N = 1 baseline (Table 2). When G < 1,
the configuration with N = 4 consistently outperforms
N = 2 for the same value of G.

For a fixed number of experts, the configuration with G =
1 (expert size equal to the pre-trained FFN) consistently
outperforms both G < 1 (smaller experts) and G > 1
(larger experts), with G < 1 yielding the weakest results.
Interestingly, Table 4 (top) shows the opposite trend for
SDv1.5, where smaller experts lead to better performance.
This suggests that multi-task performance is influenced by
both expert capacity (width) and model depth. In shallower
models like SDv1.5, reducing expert width is advantageous,
while in deeper architectures such as SDXL, maintaining
the original expert dimensions yields better outcomes. This
is likely because modifying expert size in a deep network,
without proportionally adjusting the rest of the architecture,
disrupts training stability and degrades overall performance.

In summary, multi-task performance depends on three in-
terrelated factors: expert capacity, expert count, and model
depth. With a fixed expert size, increasing the number of
experts generally boosts performance. Shallow architec-
tures like SDv1.5 benefit from smaller experts, while deeper
models such as SDXL perform best when experts match the
pre-trained FFN size. This occurs because, in very deep
networks, changing expert dimensions without adjusting
the surrounding layers can destabilize training and degrade
quality. In Section 8, we provide a practical guideline for se-
lecting the optimal expert size and count based on available
compute resources.

Exploring task interference within MTU framework
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Tasks T2I IE SR IP

FID ↓ I-T Dir Sim ↑ LPIPS ↓ I-I Dir Sim ↑

T
=

1

T2I 12.9 – – –
IE – 15.4 – –
SR – – 29.3 –
IP – – – 46.5

T
=

2

T2I, IP 17.9 – – 30.0
SR, IP – – 36.2 30.2
IE, IP – 20.6 – 52.6

T2I, SR 13.4 – 22.3 –
IE, SR – 17.1 24.6 –
T2I, IE 6.9 18.5 – –

T
=

3 T2I, IE, SR 7.0 18.0 22.7 –
IE, SR, IP – 16.8 25.1 35.8
T2I, IE, IP 13.5 17.1 – 45.2

T = 4 T2I, IE, SR, IP 7.2 17.2 24.8 44.0

Table 5. Exploring Task interference by training the MTU model
across all combinations of the four tasks.

Table 5 illustrates how different tasks interact and interfere
with each other within the MTU framework. We train the
MTU model across all combinations of the four tasks to ana-
lyze how the inclusion of one task impacts the performance
of another.We denote by T the number of tasks included in
each experiment (with T = 1 for single-task training and
T = 4 when all tasks are included). For intermediate values
of T , we explicitly specify which tasks are involved.

From T = 2 experiments, we first observe that image edit-
ing (IE) and image inpainting (IP) are highly compatible
tasks, with performance increasing from 44.0 in our MTU
model to 52.6 when combined. In contrast, super-resolution
(SR) and text-to-image (T2I) appear to be less compatible
with IP, likely because T2I and SR require generating new
objects, whereas IP focuses on removing objects. Notably,
the compatibility between IP and IE may stem from the
fact that the IP dataset (InstructPix2pix) includes editing
instructions that also involve object removal. We observe
that T2I and IE are highly compatible, as training them to-
gether improves IE performance—an effect also highlighted
in Figure 5, where these tasks select the same experts. For
T = 3, adding IP to SR and IE hurts SR performance, and
training T2I, IE, and IP together also reduces T2I despite
strong IP–IE compatibility. In the full T = 4 setting, T2I,
IE, and SR improve over their single-task baselines, while
IP drops by 2 points.

Our results highlight notable task interference, and we rec-
ommend that future research adapt proven multi-task learn-
ing techniques, such as gradient conflict mitigation (Zhang
et al., 2024c), or dynamic loss balancing (Navon et al., 2022)
to alleviate interference in diffusion models.

8. Discussions
In this section, we provide recommendations for upcycling
a pre-trained text-to-image model into a multi-task image

generation model. Until now, PEFT methods are often the
first choice for practitioners seeking to enable multi-task
support due to their computational efficiency. However, our
experiments with task-specific PEFT methods show that
while they are lightweight, our MTU approach consistently
outperforms them across all tasks while maintaining the
same computational budget. We also demonstrate that MTU
models can be tailored to any compute budget by adjusting
expert sizes, making MTU an ideal solution for resource-
constrained multi-task applications. Based on our findings,
we propose an improved recipe for enabling multi-task ca-
pabilities in pre-trained models based on a fixed compute
budget. We recommend determining your total parameter
budget first.

• Start by adding task-specific input convolution layers to
process additional image conditioning. Introduce task-
specific layer norms before FFNs, and fine-tune the
model without splitting any FFN into smaller experts
(i.e., keeping a single expert). As shown in Table 4,
this simple approach performs well for SDXL but is
less effective for SDv1.5.

• If a single FFN underperforms, conduct an ablation by
varying expert count until the total parameters fit your
budget. Under tighter limits, increase expert count
and proportionally shrink each expert’s hidden size. If
resources allow a larger model, keep each expert at the
pre-trained FFN size and add more experts for optimal
multi-task performance.

9. Conclusions
In this work we introduced Multi-task Upcycling, a simple
yet effective approach to enhance pre-trained text-to-image
models, such as SDv1.5 and SDXL, to support multiple
image editing tasks. Unlike previous approaches, MTU
is the first multi-task diffusion modeling framework that
seamlessly integrates multi-task learning with on-device
compatibility, ensuring efficiency without compromising
performance. Our idea is based on an empirical observation
that parameters in FFN layers in diffusion models deviate
the most during task-specific fine-tuning. We use this ob-
servation to propose splitting of existing FFN layer into
smaller FFN experts, which are then combined with a router
network. We conduct an extensive evaluation across Text-
to-Image, Image Editing, Super-Resolution, and Inpaint-
ing tasks, demonstrating superior performance compared
to both single-task and multi-task baselines. We believe
that our approach will open up new avenues of research in
the rapidly evolving area of image synthesis and will con-
tinue helping the efforts in making multi-task vision models
efficient for on-device deployment.

9



Upcycling Text-to-Image Diffusion Models for Multi-Task Capabilities

Impact Statement
This paper presents work in the field of Multi-Task im-
age generation models. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Appendix
A.1. Dataset details

In this section, we provide details on the tasks and datasets used for training MTU models. Our study incorporates the
following datasets, with the exact data splits outlined in Table 6.

• Text-to-Image Generation (T2I): We utilize the COCO Captions dataset (Lin et al., 2015), a large-scale collection
of image-text pairs. Each image in this dataset is accompanied by five captions, with one randomly selected during
training.

• Image Editing: We use the dataset introduced in (Brooks et al., 2023), which includes input-target image pairs along
with corresponding editing instructions. Each input image has 4-5 target variations for a given edit instruction, with
one randomly selected during training.

• Super Resolution: We use the Real-ESRGAN dataset (Wang et al., 2021), which consists of high-resolution images.
We generate corresponding low-resolution images by applying degradations like Poisson and Gaussian blur and
downscaling them by half. For SR, we input an empty string to the model.

• Image Inpainting: We utilize the dataset from (Yildirim et al., 2023), a multi-modal inpainting dataset designed for
object removal based on text prompts. Built on the GQA dataset (Hudson & Manning, 2019), it leverages scene graphs
to generate paired training data using state-of-the-art instance segmentation and inpainting techniques.

A.2. Training and Inference Details

In this section, we present training and inference details for both single-task and MTU models.

Training details: Both single-task and MTU models trained on 8× A100 GPUs for 100 epochs, with a batch size of 16 per
GPU and image resolution of 512 × 512. SDXL is optimized using AdamW with a learning rate of 5e-5, while SDv1.5
is trained using Adam with a learning rate of 1e-4. For SDXL, we find that using a weight decay of 0.01 helps stabilize
training.

Inference details: During sampling, we perform denoising for 20 iterations in multi-task SDv1.5 and 50 iterations in
SDXL. For Text-to-Image (T2I) generation, Image Editing, and Inpainting, we apply Classifier-Free Guidance (CFG) (Ho
& Salimans, 2022). However, for Super-Resolution (SR), no CFG is used, as it only processes an empty string as input.
For T2I generation, we use a guidance scale of 7.5 for SDv1.5 and 5.0 for SDXL. For Image Editing and Inpainting, we
follow the CFG strategy from (Brooks et al., 2023), which employs dual guidance scales—one for image and another for
text. For SDv1.5, we use an image guidance scale of 1.6 and a text guidance scale of 7.5 for Image Editing, and 1.5 and 4.0
for Inpainting, respectively. For SDXL, we set the image guidance scale to 1.5 and the text guidance scale to 10.0 for Image
Editing, while for Inpainting, we use 1.5 for image and 4.0 for text. For more details on the formulation of CFG, we direct
the readers to (Brooks et al., 2023).

Task Dataset Train Val Test
T2I COCO Captions (Li et al., 2017) 118287 5000 5000

Image Editing InstructPix2pix (Brooks et al., 2023) 281709 31301 2000
Super Resolution Real- ESRGAN(Wang et al., 2021) 23744 100 100

Inpainting GQA-Inpaint (Yildirim et al., 2023) 90089 10009 5553

Table 6. Training, validation and test splits of the datasets used in training MTU

A.3. Qualitative Results

We provide more qualitative results for each of the tasks considered in the paper from Figures 7, 8, 9, and 10.
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Figure 6. Distances between fine-tuned weights θτf and pre-trained initialization θp for SDv1.5 (top) and SDXL (bottom) across Image
Editing, Super-Resolution, and Inpainting. Here x-axis corresponds to the Layer index and the y-axis corresponds to the distance
between the parameters. For all tasks, FFNs exhibit the highest deviation from initialization, highlighting their crucial role in adapting to
downstream tasks. In SDXL, we focus only on the middle layers, where this deviation is most pronounced.

COCO (Single-Task) MTU (Ours)
Realistic restaurant, paris, elegant, lights

COCO (Single-Task) MTU (Ours)
Keanu Reeves portrait photo as an asian warrior

Figure 7. Qualitative results of MTU based on SDv1.5 (first two rows) and SDXL (bottom row) for Text-to-Image Generation.
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Input image Ground Truth Pix2Pix (Single-Task) MTU (Ours)
add a mustache

SDv1.5

Input image Ground Truth Pix2Pix (Single-Task) MTU (Ours)
make her green

Input image Ground Truth Pix2Pix (Single-Task) MTU (Ours)
As if the card were made of gold

Input image Ground Truth Pix2Pix (Single-Task) MTU (Ours)
make it a photo

Input image Ground Truth Pix2Pix (Single-Task) MTU (Ours)
As a painting.

Input image Ground Truth Pix2Pix (Single-Task) MTU (Ours)
make the ghost a zombie

Input image Ground Truth Pix2Pix (Single-Task) MTU (Ours)
make her a vampire

SDXL

Input image Ground Truth Pix2Pix (Single-Task) MTU (Ours)
make it a winter scene

Input image Ground Truth Pix2Pix (Single-Task) MTU (Ours)
make it look like a painting

Input image Ground Truth Pix2Pix (Single-Task) MTU (Ours)
Turn into a painting

Input image Ground Truth Pix2Pix (Single-Task) MTU (Ours)
As if the scene was a diorama

Input image Ground Truth Pix2Pix (Single-Task) MTU (Ours)
make the beach a desert

Figure 8. Qualitative results of MTU based on SDv1.5 and SDXL for Image Editing. In both models, our approach produces high-quality
images with superior prompt adherence and faithful edits.
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Input image Ground Truth SR (Single-Task) MTU (Ours)

SDv1.5
Input image Ground Truth SR (Single-Task) MTU (Ours)

Input image Ground Truth SR (Single-Task) MTU (Ours) Input image Ground Truth SR (Single-Task) MTU (Ours)

Input image Ground Truth SR (Single-Task) MTU (Ours)

SDXL
Input image Ground Truth SR (Single-Task) MTU (Ours)

Input image Ground Truth SR (Single-Task) MTU (Ours) Input image Ground Truth SR (Single-Task) MTU (Ours)

Figure 9. Qualitative results of MTU based on SDv1.5 and SDXL for Super Resolution. Our method effectively restores high-resolution
images from low-resolution inputs that have been corrupted by image degradations, producing clearer and more detailed outputs.
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Input image Ground Truth IP (Single-Task) MTU (Ours)
remove the brown bear

SDv1.5

Input image Ground Truth IP (Single-Task) MTU (Ours)
remove the large woman

Input image Ground Truth IP (Single-Task) MTU (Ours)
remove the man at the right of the skiing people

Input image Ground Truth IP (Single-Task) MTU (Ours)
remove the smiling girl at the table

Input image Ground Truth IP (Single-Task) MTU (Ours)
remove the bottle at the left of the vase

Input image Ground Truth IP (Single-Task) MTU (Ours)
remove the brown dog at the center

SDXL

Input image Ground Truth IP (Single-Task) MTU (Ours)
remove the silver mouse pad

Input image Ground Truth IP (Single-Task) MTU (Ours)
remove the large woman

Figure 10. Qualitative results of MTU based on SDv1.5 and SDXL for Image Inpainting. Our method demonstrates better object removal,
generating clean inpainted images.
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