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Abstract

In many real-world applications, it is common that a proportion of the data may be missing
or only partially observed. We develop a novel two-sample testing method based on the
Maximum Mean Discrepancy (MMD) which accounts for missing data in both samples,
without making assumptions about the missingness mechanism. Our approach is based on
deriving the mathematically precise bounds of the MMD test statistic after accounting for
all possible missing values. To the best of our knowledge, it is the only two-sample testing
method that is guaranteed to control the Type I error for both univariate and multivariate
data where data may be arbitrarily missing. Simulation results show that the method has
good statistical power, typically for cases where 5% to 10% of the data are missing. We
highlight the value of this approach when the data are missing not at random, a context
in which either ignoring the missing values or using common imputation methods may not
control the Type I error.

1 Introduction

Two-sample hypothesis testing is a fundamental statistical method used to determine if two samples of data are
different. Numerous two-sample testing methods are available, including Student’s t-test (Student, 1908), the
Wilcoxon-Mann-Whitney U test (Mann & Whitney, 1947), the Kolmogorov-Smirnov test (Kolmogorov, 1933),
the Energy Distance (Rizzo & Székely, 2016), and the Maximum Mean Discrepancy (MMD) test (Gretton
et al., 2012a). These methods have proven useful in various fields such as medicine (Tsiatis et al., 2008;
O’Brien & Fleming, 1979), finance (Lukić & Milošević, 2024; Dave & Korkie, 1981), psychology (Pfister &
Janczyk, 2013) and machine learning (Gretton et al., 2012a; 2009; Schrab et al., 2023). Nearly all two-sample
testing methods are designed solely for data that are fully observed, with a few exceptions discussed in
the next section. However, in many real-world datasets, a subset of univariate values may be missing or
multivariate values may only be partially observed. For example, in clinical trials it is common that patients
drop out during the trial (Bakris et al., 2015), resulting in missing data for those participants.

When data are missing, common practices are either to ignore all missing values or impute these values using
some imputation schemes. Following this step, the data are treated as complete, allowing any standard two-
sample testing method to be used. However, except in special cases, such as when the missing data are missing
completely at random (Rubin, 1976), these practices are often invalid as they risk increasing the probability
of a Type I error occurring. Under certain assumptions, such as when the data are missing completely at
random, missing at random, or when the data are missing not at random but the missingness mechanisms (the
samples can be subject to different missingness mechanisms) can be explicitly specified (Schafer & Graham,
2002), then certain sophisticated missing data methods exist, such as the expectation-maximization algorithm
and the multiple imputation method (Schafer, 1999). However, without these assumptions, relying on these
methods is fraught with risk.

Recently a two-sample testing method for data with univariate missing values was proposed which does not
rely on a specific imputation procedure (Zeng et al., 2024). This method, based the Wilcoxon-Mann-Whitney
test, rejects the null hypothesis after accounting for all possible values of the missing data by deriving bounds
for the U statistic. This approach avoids ignoring or imputing the missing data and is shown to control
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the Type I error without making assumptions about the missingness mechanisms, while also having good
statistical power when the proportion of missing data is around 10%. However, this approach is restricted to
univariate samples and can only detect location shifts since it is based on the Wilcoxon-Mann-Whitney test.

In this paper, we propose a novel two-sample testing method based on the MMD test in the presence of
missing data that makes no assumption about the missingness mechanisms, following the approach in Zeng
et al. (2024). However, our approach can be used for both univariate and multivariate samples, and can
detect any distributional change since it is based on the MMD test.

Our approach, named MMD-Miss, is based on deriving the bounds of the unbiased MMD test statistic
(Gretton et al., 2012a) in the presence of missing data. To do so, we use the Laplacian kernel, a popular choice
of characteristic kernel that enables MMD to detect any distributional shift (Sriperumbudur et al., 2011). To
compute the p-value for the test, we either use Monte Carlo sampling from the permutation distribution of
the observed data or, in the case of high-dimensional multivariate data, we use a normality approximation
recently derived in (Gao & Shao, 2023). We prove that our approach controls the Type I error, regardless
of the values of the missing data. Numerical simulations are presented, showing that our method has good
testing power when the proportion of missing data is around 5% to 10%, while controlling the Type I error.

Motivation and contribution. Our work is motivated to ensure valid two-sample testing in the presence
of missing data without relying on missingness assumptions. In the context of performing two-sample testing
with missing data, a common misunderstanding is that when the proportion of missing data is small, e.g. 5%
as suggested by Schafer (1999), and Heymans & Twisk (2022), the testing result will not be skewed by missing
data after either ignoring or imputing these values. While these practices may be justified under certain
conditions, such as when the data are missing completely at random (Rubin, 1976), we provide experiments
in Figure 1 showing that when the data are missing not at random, these practices can lead to a Type I error
asymptotically equals to 1 even with a small proportion (5%) of missing data. Our contribution is a method
based on the MMD two-sample test that is suitable for univariate and multivariate data with missing values.
In contrast to other methods, this approach can detect any change in distribution while being guaranteed to
control the Type I error, and without making any assumptions about the missing data.

2 Background

This section provides the necessary background for our work. We begin by introducing the two-sample testing
problem and then review the different types of missingness mechanisms. Next, we briefly review the MMD
two-sample test, and then discuss two standard approaches for implementing the MMD test: the permutation
test and the normal approximation. Finally, we highlight related work with a focus on existing approaches to
two-sample testing in the presence of missing data as well as extensions of the MMD test.

Two-Sample Testing. A two-sample testing method is used to determine whether two groups of data
are statistically significantly different. Consider two samples of observations X = {x1, . . . , xn1} and Y =
{y1, . . . , yn2}, where each observation is in Rd, and suppose that X, and Y are independent random samples
from distributions p, and q, respectively. We define the null hypothesis H0 as p = q and the alternative
hypothesis H1 as p ̸= q. The two-sample testing method first computes a statistic based on the data, and
then a p-value based on the statistic. After comparing the p-value to a pre-specified significance threshold α,
the null hypothesis H0 is either rejected or fails to be rejected.

A Type I error occurs when the null hypothesis H0 is true but the test incorrectly rejects it. Conversely, a
Type II error occurs when H0 is false but the test fails to reject it. A two-sample testing method is usually
derived so that, under H0, the Type I error is not larger than the pre-specified significance threshold α ∈ (0, 1).
In this case, we say the test controls the Type I error. For a given α, a two-sample testing method is preferred
if it has a lower probability of making a Type II error, denoted by β. The power is defined as 1 − β, and a
two-sample testing method is more desirable if it demonstrates higher power. Two-sample testing methods
are usually assessed on their power, given that the Type I error is controlled.
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Missingness Mechanisms. Missingness mechanisms are typically classified as missing completely at
random (MCAR), missing at random (MAR), and missing not at random (MNAR) following Rubin (1976).
Let Zcom = (z1, . . . , zn)T denote the complete data, where each zi is a Rd real value. The complete data Zcom
can be split into observed parts Zobs and missing parts Zmiss. Let R be a binary indicator matrix matching
the dimensions of Zcom, with elements indicating observed (1) or missing (0) values. The core idea of Rubin
(1976) is to treat R as a realization of a random vector following an unknown distribution.

The mechanism is MCAR if P (R|Zcom) = P (R), meaning R is independent of data values, justifying the
practice of ignoring missing data. The mechanism is MAR if P (R|Zcom) = P (R|Zobs), where R depends
only on observed data, making certain imputation methods viable. If neither condition holds, the mechanism
is MNAR. For known missingness mechanisms, specific imputations might be justified (Rubin, 1976; Lachin,
1999). However, with unknown mechanisms, ignoring or imputing data can lead to invalid results, as shown
in our simulations in Section 5. Notably, our method does not depend on the missing data values, ensuring
valid results regardless of the missingness mechanism. This makes our method particularly suitable for the
MNAR case.

Maximum Mean Discrepancy. The Maximum Mean Discrepancy (MMD) is a two-sample test used for
deciding if two groups of independent observations X = {x1, . . . , xn1} and Y = {y1, . . . , yn2} are sampled
from different distributions p and q. Its test statistic is a kernel-based measure of distance which compares
the mean embeddings of p and q in a reproducing kernel Hilbert space (Aronszajn, 1950). More formally, let
Hk denote a reproducing kernel Hilbert space with kernel function k, the MMD between p and q is defined as
(Gretton et al., 2012a) the following statistic (often written as MMD2):

MMD2[Hk, p, q] =
(

sup
f∈Hk:||f ||≤1

(EX∼p[f(X)] − EY ∼q[f(Y )])
)2

.

In the context of two-sample testing, an unbiased estimate of MMD2[Hk, p, q] is:

MMD2
u(X, Y ) = 1

n1(n1−1)

n1∑
i=1

n2∑
j=1
j ̸=i

k(xi, xj) + 1
n2(n2−1)

n2∑
i=1

n2∑
j=1
j ̸=i

k(yi, yj) − 2
n1n2

n1∑
i=1

n2∑
j=1

k(xi, yj).

The MMD test rejects the null hypothesis when MMD2
u(X, Y ) exceeds certain threshold, usually chosen to

control the probability of Type I error under a pre-specified number α ∈ (0, 1). It is shown in Gretton et al.
(2012a) that when k is a characteristic kernel (Sriperumbudur et al., 2011), MMD2[Hk, p, q] = 0 if and only if
p = q, otherwise MMD2[Hk, p, q] > 0. Hence, when a characteristic kernel is used, the MMD test is able to
detect any distribution changes. However, on finite sample sizes, the choices of kernel have significant impact
on the power of MMD test (Biggs et al., 2023). The Laplacian and Gaussian kernels are defined as

kL(x, y) = exp(−β||x − y||1), and kG(x, y) = exp(−γ||x − y||22),

respectively, where β > 0 and γ > 0 are hyperparameters.

The Laplacian and Gaussian kernels are popular choices for the MMD (Gao & Shao, 2023; Sriperumbudur
et al., 2011), mainly because they are both characteristic kernels (Sriperumbudur et al., 2010; 2011). There
are other characteristic kernels, such as the Matérn family of kernels (Sriperumbudur et al., 2010). In the
univariate case, the MMD test has been shown to perform similarly for the Laplacian and Gaussian kernels
(Bodenham & Kawahara, 2023).

In this work we only use the Laplacian kernel kL because it allows us to derive appropriate bounds for our
method. Using a different kernel with this approach may be possible but would require the derivation of
different bounds. While this may seem restrictive, we emphasise that the Laplacian kernel is characteristic
and so can be used with the MMD to detect any change in distribution. In the following, we use k(x, y) to
denote the Laplacian kernel without causing ambiguity.

Strengths and limitations of the MMD. As discussed, the core principle of MMD is to detect differences
between two distributions by measuring the largest difference in expectations over a rich class of functions in
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a reproducing kernel Hilbert space. This makes the MMD capable of capturing a wide range of distributional
discrepancies, including subtle differences in higher-order moments or tail behaviour, which classical tests such
as Wilcoxon-Mann-Whitney test may overlook. The MMD is compared to popular univariate testing methods
in Bodenham & Kawahara (2023). Furthermore, Since the MMD is based on a kernel, it can be applied
to high-dimensional data naturally, while the Wilcoxon-Mann-Whitney and Kolmogorov-Smirnov tests are
restricted to univariate data. However, a limitation of the MMD test is that its statistical performance
depends on the choice of the kernel and the corresponding parameter value for the kernel. Several methods
are proposed for dealing with these issues, which are discussed in the related work (Gretton et al., 2012b;
Biggs et al., 2023). In this work we restrict the MMD kernel to the Laplacian kernel, which is characteristic
and so can be used to detect any change in distribution (Sriperumbudur et al., 2010; 2011), and set the kernel
parameter using the median heuristic, which has been shown to generally perform well (Gretton et al., 2012a;
Bodenham & Kawahara, 2023).

Permutation Test. The permutation test is a common numerical procedure for determining the statistical
significance of a computed two-sample test statistic. It relies on the principle that if the null hypothesis of
equal distribution is true, the observed values are exchangeable, and so all permutations are equally likely
(Good, 2005). The permutation test is non-parametric, meaning that it does not assume the distribution of
the data. Furthermore, Schrab et al. (2023) has shown that this test produces the p-value non-asymptotically
at most the significance level α under the null hypothesis. In contrast, the testing approach based on normal
approximations (Gao & Shao, 2023; Shekhar et al., 2022) are only asymptotic true.

To be more specific, let X = {x1, . . . , xn1} and Y = {y1, . . . , yn2}, where each sample is Rd real value. The
permutation test begins with uniformly sampling B i.i.d. permutations from {1, . . . , n1 + n2}. Let us denote
the B samplings as (σ(1), . . . , σ(B)), where each σ(i) = (σ(i)(1), . . . , σ(i)(n1 + n2)), i = 1, . . . , B. Subsequently,
define (z1, . . . , zn1) = (x1, . . . , xn1) and (zn1+1, . . . , zn1+n2) = (y1, . . . , yn2), and for any i = 1, . . . , B, denote

Xσ(i) = {zσ(i)(1), . . . , zσ(i)(n1)}, Yσ(i) = {zσ(i)(n1+1), . . . , zσ(i)(n1+n2)}.

The test threshold of MMD test, using MMD2
u(X, Y ) as test statistic with significance level 0 < α < 1, is

then computed as the ⌈α(B + 1)⌉-th largest numbers in the set{
MMD2

u(X, Y )
}

∪
{

MMD2
u(Xσ(i) , Yσ(i)), i = 1, . . . , B

}
.

If MMD2
u(X, Y ) exceeds this threshold, then MMD test rejects the null hypothesis. Otherwise, the null

hypothesis is not rejected.

Normal Approximation. It is well known that for a fixed dimension d, the asymptotic distribution
of MMD2

u(X, Y ) under the null hypothesis (i.e. p = q) takes the form of an infinite weighted sum of χ2

random variables with the weights depending on p (Gretton et al., 2012a), which are normally unknown.
An estimation of the asymptotic distribution of MMD2

u(X, Y ) is established in Gretton et al. (2009). This
estimation is proved asymptotically correct regardless of the distribution p under certain conditions. However,
empirical experiments indicate this estimation is rather conservative.

It was recently shown by Gao & Shao (2023) that the studentized MMD2
u(X, Y ) given by equation 8

convergences to normal distribution when all n, m, d → ∞. This result holds for a wide range of kernels,
including Laplacian and Gaussian kernels. This normal approximation is shown empirically to be rather
accurate (Gao & Shao, 2023) even for values of relatively small n, m, d, e.g. n = m = 25, d = 50, and a higher
approximation accuracy is shown for larger values of n, m, d.

Related Work. Various approaches have been proposed to mitigate the issue of missing data for two-sample
hypothesis testing. When the missing data are missing at random, rank-based two-sample testing methods
(Cheung, 2005; Chen et al., 2013) have been proposed which control the Type I error and achieve good
testing power. Paired two-sample testing with missing data are studied in Martínez-Camblor et al. (2013),
and Fong et al. (2018), under the assumption that data are missing completely at random and at least one
of the paired samples is observed. When the samples are bounded within an interval, Pan (2000) proposed
an algorithm based on multiple imputation (Little & Rubin, 2019) by employing approximate Bayesian
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bootstrap (Rubin & Schenker, 1986). Shutoh et al. (2010) proposed a method for testing the shift in the
mean of high-dimensional normal data assuming the two samples share the same missingness mechanism. By
considering certain unobserved samples as the “worst case”, Lachin (1999) proposes a test method based on
rank called the worst rank test.

All methods above rely on different assumptions about the missing data. One exception of existing methods
which makes no missing data assumption, as we mentioned before, is the rank based two-sample testing
method proposed in Zeng et al. (2024). Their method rejects the null hypothesis after accounting for all
possible Wilcoxon-Mann-Whitney test statistics by deriving the bounds of the test statistics. Our method in
this work follows the same approach as in Zeng et al. (2024). We make no assumption of the missing data,
except assuming they are distinct. The bounds of the MMD test statistic using the Laplacian kernel are
derived, and the null hypothesis is rejected when all possible test statistics are significant. The approach in
Zeng et al. (2024) is restricted to univariate data for testing a location shift, since it relies on the Wilcoxon-
Mann-Whitney test, while our approach can be used for both univariate and multivariate samples, and can
detect any distributional change since it is based on the MMD test.

Our method is deliberately conservative, contrasting to the dominant methods mentioned above, which seek
to boost the testing power when certain assumptions of the missing data can be made. Our concern here is
whether the testing result is significant when no missing data assumption is considered appropriate. One
related concept is known as partial identification (Manski, 2003), which argues that it is not sufficient to
know what inferences can be made when certain assumptions are employed. It highlights the importance of
making inferences when no assumption is imposed for drawing robust conclusions.

The concern that a set of plausible missing data assumptions might lead to different conclusions often
motivates the use of sensitivity analysis (Thabane et al., 2013; Mathur, 2023), where these assumptions are
evaluated to determine whether a consensus can be reached about the testing conclusions. If all evaluated
assumptions lead to a consistent conclusion, then the conclusion is considered to be robust and is taken
as the final result, as demonstrated by Bakris et al. (2015) . Our method can be viewed as a sensitivity
analysis that incorporates all possible assumptions. If a significant testing result is determined by our method,
then the result is significant regardless of the values of the missing data, and hence is robust to all possible
assumptions on the missing data.

Various authors have proposed extensions of the MMD two-sample test for several different purposes. Gretton
et al. (2012b) and Biggs et al. (2023) investigated strategies for optimal kernel selection based on the observed
data, while Schrab et al. (2023) focused on selecting an appropriate bandwidth for the chosen kernel. To
handle complex data modalities such as images, audio, and video in two sample testing, Kirchler et al.
(2020) proposed a deep learning-based extension of the MMD test. As we will discuss below, a common
implementation of the MMD test relies on a computationally intensive procedure known as permutation
testing to approximate the null distribution and compute a p-value. To alleviate the computational burden
associated with the permutation procedure, several works (Shekhar et al., 2022; Gao & Shao, 2023) have
developed permutation-free approaches that significantly reduce computation. Our research in this work
explores a different direction by studying MMD-based two-sample testing in the presence of missing data. We
propose tests that control the Type I error without requiring assumptions about the underlying missingness
mechanism.

3 Bounding MMD with Missing Data

In this section, we provide bounds for the MMD test statistic in the presence of missing data. As mentioned
in the Section 1, the key idea of the proposed method is to consider all possible test statistics in the presence
of missing data and reject the null hypothesis only when all test statistics are significant. To compute these
bounds, we use the Laplacian kernel, which is a characteristic kernel (Sriperumbudur et al., 2010; 2011) and
able to detect any change in distribution.

Univariate Data. If a subset of data in X and Y are unobserved, the MMD2
u(X, Y ) test statistic cannot

be directly computed. However, the test statistic can be bounded given the missing data. Notice that for any
two given real values x and y, the Laplacian kernel k(x, y) = exp (−β|x − y|) is bounded by (0, 1] since β > 0
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and |x − y| > 0. Hence, a straightforward way to obtain a lower bound of MMD2
u(X, Y ) is to let k(xi, xj) = 0

if at least one value of xi and xj is unobserved. Similarly, if at least one value of yi and yj is unobserved,
let k(yi, yj) = 0. On the other hand, to minimize −k(xi, yj), we can let −k(xi, yj) = −1 if either xi or yj is
unobserved. The upper bound of MMD2

u(X, Y ) can be obtained following a similar manner. This simplistic
method, while providing a theoretically correct bound of MMD2

u(X, Y ), might yield bounds that are too
conservative for effective two-sample testing in practice.

In the following, we construct tighter bounds of MMD2
u(X, Y ) in order to make it useful for the two-sample

testing problem. One starts by decomposing MMD2
u(X, Y ) into terms which have either none, one or both

arguments of the kernel function missing. Without loss of generality, let us assume x1, . . . , xm1 , y1, . . . , ym2

are not observed, or not fully observed, while xm1+1, . . . , xn1 and ym2+1, . . . , yn2 are fully observed. Then,
MMD2

u(X, Y ) can be decomposed, using the following lemma:
Lemma 1. Suppose X = {x1, . . . , xn1}, Y = {y1, . . . , yn2} are subsets of Rd, where d ≥ 1. Suppose that
MMD2

u(X, Y ) is unbiased MMD test statistic defined as

MMD2
u(X, Y ) = 1

n1(n1−1)

n1∑
i=1

n1∑
j=1
j ̸=i

k(xi, xj) + 1
n2(n2−1)

n2∑
i=1

n2∑
j=1
j ̸=i

k(yi, yj) − 2
n1n2

n1∑
i=1

n2∑
j=1

k(xi, yj), (1)

with k denoting the Laplacian kernel. Then, for any two positive integers m1, m2 such that
m1 ≤ n1, m2 ≤ n2, MMD2

u(X, Y ) can be rewritten as:

MMD2
u(X, Y ) = A1 + A2 + A3 + A4,

where c1 = 2
n1(n1−1) , c2 = 2

n2(n2−1) , c3 = 2
n1n2

, and

A1 = c1

m1∑
i=1

m1∑
j=i+1

k(xi, xj) + c2

m2∑
i=1

m2∑
j=i+1

k(yi, yj) − c3

m1∑
i=1

m2∑
j=1

k(xi, yj),

A2 = c1

n1−1∑
i=m1+1

n1∑
j=i+1

k(xi, xj) + c2

n2−1∑
i=m2+1

n2∑
j=i+1

k(yi, yj) − c3

n1∑
i=m1+1

n2∑
j=m2+1

k(xi, yj),

A3 = c1

m1∑
i=1

n1∑
j=m1+1

k(xi, xj) − c3

m1∑
i=1

n2∑
j=m2+1

k(xi, yj),

A4 = c2

m2∑
i=1

n2∑
j=m2+1

k(yi, yj) − c3

n1∑
i=m1+1

m2∑
j=1

k(xi, yj).

The proof of this lemma can be found in Appendix A.1.

Lemma 1 decomposes MMD2
u(X, Y ) into four parts: the first part A1 including only the unobserved data in

X and Y ; the second part A2 including only the fully observed data in X and Y ; the third and the fourth
terms A3 and A4 involving data where one sample (either X or Y ) contains only unobserved data while the
other sample includes only fully observed data.

In order to bound MMD2
u(X, Y ), we propose to bound the four terms A1, A2, A3 and A4 separately. Given

that A2 includes the fully observed data only, it is thus sufficient to bound A1, A3 and A4. For the first term
A1, where all data are unobserved, or not fully observed, it can be seen that 1 ≥ k(x, y) > 0 for any x, y ∈ R.
Hence, we have m1(m1 − 1)/2 ≥

∑m1
i=1
∑m1

j=i+1 k(xi, xj) > 0, m2(m2 − 1)/2 ≥
∑m2

i=1
∑m2

j=i+1 k(yi, yj) > 0,
and m1m2 ≥

∑m1
i=1
∑m2

j=1 k(xi, yj) > 0. Then according to the definition of A1 in Lemma 1, we have

m1(m1 − 1)
n1(n1 − 1) + m2(m2 − 1)

n2(n2 − 1) > A1 > − 2
n1n2

m1m2. (2)

The challenge of bounding MMD2
u(X, Y ) is to provide tight bounds for terms A3 and A4, where data can be

fully observed in one sample and missing, or partially observed in another sample. We focus on the term A3
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because A4 can be bounded similarly. The key to bounding A3 is by first rewriting A3 as

A3 =
m1∑
i=1

c1

n1∑
j=m1+1

k(xi, xj) − c3

n2∑
j=m2+1

k(xi, yj)

 , (3)

where c1 = 2
n1(n1−1) and c3 = 2

n1n2
. Define T1(z) as

T1(z) = c1

n1∑
j=m1+1

k(z, xj) − c3

n2∑
j=m2+1

k(z, yj).

Then, we have

A3 =
m1∑
i=1

T1(xi),

i.e. A3 is the summation of the function values T1(z) applied to all unobserved samples in X. This equation
suggests that in order to bound A3, it is sufficient to bound the values of T1(z). Therefore, we proceed by
bounding T1(z), using the following result for univariate data:
Lemma 2. Let x1, . . . , xℓ1 and y1, . . . , yℓ2 be real values, which are observed. Suppose a1, . . . , aℓ1 , b1, . . . , bℓ2

and β are positive constants. Define

T (z) =
ℓ1∑

i=1
ai exp(−β|xi − z|) −

ℓ2∑
i=1

bi exp(−β|yi − z|) (4)

as a function of z ∈ R. Subsequently, for any given z0 ∈ R, we have

T (z0) ≥ min{0, T (x1), . . . , T (xℓ1), T (y1), . . . , T (yℓ2)},

and

T (z0) ≤ max{0, T (x1), . . . , T (xℓ1), T (y1), . . . , T (yℓ2)}.

Moreover, these bounds for T (z0) are tight, and we have equality when z0 ∈ {x1, . . . , xℓ1 , y1, . . . , yℓ2} or as
z0 → ±∞.

This lemma is proved in Appendix A.2. It provides a linear time algorithm for computing the bounds of T (z)
by computing all the values in the set {T (z) : z ∈ {x1, . . . , xℓ1 , y1, . . . , yℓ2}} and identifying the maximum
and minimum values.

After proving Lemma 2, we can provide the bounds of MMD2
u(X, Y ) in the presence of missing data, without

making missing data assumptions.
Theorem 1. Suppose X = {x1, . . . , xn1} and Y = {y1, . . . , yn2} are univariate real values. Assume
x1, . . . , xm1 , y1, . . . , ym2 are unobserved. Let k denote the Laplacian kernel and define

T1(z) = c1

n1∑
j=m1+1

k(z, xj) − c3

n2∑
j=m2+1

k(z, yj),

T2(z) = c2

n2∑
j=m2+1

k(z, xj) − c3

n1∑
j=m1+1

k(z, yj),

where c1 = 2
n1(n1−1) , c2 = 2

n2(n2−1) and c3 = 2
n1n2

. Further, let

S1 = {0, T1(xm1+1), . . . , T1(xn1), T1(ym2+1), . . . , T1(yn2)},

S2 = {0, T2(xm2+1), . . . , T2(xn2), T2(ym1+1), . . . , T2(yn1)}.

7
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Then, MMD2
u(X, Y ) defined in equation 1 using Laplacian kernel k is bounded, over all possible values of

x1, . . . , xm1 , y1, . . . , ym2 , as follows:

m1(m1 − 1)
n1(n1 − 1) + m2(m2 − 1)

n2(n2 − 1) + m1 max S1 + m2 max S2 + A2 ≥ MMD2
u(X, Y ),

MMD2
u(X, Y ) ≥ A2 + m1 min S1 + m2 min S2 − 2

n1n2
m1m2,

where A2 is defined in lemma 1.

The proof of this theorem is provided in Appendix A.5.

Multivariate Data. We now provide the bounds of MMD2
u(X, Y ) for multivariate data, where X =

{x1, . . . , xn1}, Y = {y1, . . . , yn2} and X, Y ∈ Rd with d > 1. For each xi in X, denote xi = (xi(1), . . . , xi(d)),
where xi(l) ∈ R is the value the lth component of xi. Similarly, for each yi in Y , denote yi = (yi(1), . . . , yi(d)).
Note that X and Y are assumed to have the same dimension d.

As in the case for univariate data, one starts by decomposing MMD2
u(X, Y ) into A1, A2, A3 and A4 using

Lemma 1. Term A2 only includes data that are fully observed. Thus it can be computed directly. Term A1
can be bounded using simple inequalities, as shown in equation 23 in the Appendix. The challenge is to
provide tight bounds for term A3 and A4.

To bound term A3 and A4, we first provide notation for which components of a d-dimensional observation
are missing and define what it means to impute such a value.
Definition 1. For a value z = (z(1), . . . , z(d)) ∈ Rd, let Uz ⊂ {1, 2, . . . , d} denote the set of components of z
that are missing; in other words {z(j) : j ∈ Uz} are missing.
Definition 2. For a value z ∈ Rd, that has missing components, z∗ is called an imputation of z if z∗ ∈ Rd

is fully observed and z∗(j) = z(j) for all j ∈ {1, . . . , d} \ Uz.

We can now extend Lemma 2 to the d-dimensional case:
Lemma 3. Let x1, . . . , xℓ1 , y1, . . . , yℓ2 ∈ Rd be values that are fully observed. Suppose a1, . . . , aℓ1 , b1, . . . , bℓ2 , β
are positive constants. For z = (z(1), . . . , z(d)) ∈ Rd with missing components, define

T ({z(j) : j ∈ Uz}) =
ℓ1∑

i=1
ai exp

−β
∑

j∈Uz

|xi(j) − z(j)|

−
ℓ2∑

i=1
bi exp

−β
∑

j∈Uz

|yi(j) − z(j)|


as a function of the unobserved components of z and let

X = {T ({z(j) : j ∈ Uz}) : z(i) ∈ {x1(i), . . . , xℓ1(i), y1(i), . . . , yℓ2(i)}, i ∈ Uz}.

Then, for any possible imputation z∗ of z,

min{0, min X } ≤ T ({z∗(j) : j ∈ Uz}) ≤ max{0, max X }

Lemma 3 is proved in Appendix A.3. It shows that in order to compute the maximum and minimum values
of T ({z(j) : j ∈ Uz}) for z ∈ Rd, it is sufficient to check the imputations of z where its missing components
are imputed using the components of x1, . . . , xℓ1 , y1, . . . , yℓ2 . However, computing T ({z(j) : j ∈ Uz}) for
all possible imputations using Lemma 3 is (ℓ1 + ℓ2)|Uxi

|, which is exponential in the number of unobserved
components of z and impractical to compute. To address this computational challenge, we propose to further
bound min X and max X , using the following result:
Lemma 4. Following the notation and definitions in Lemma 3, denote

x̃i(j) = max{|xi(j) − x1(j)|, . . . , |xi(j) − xℓ1(j)|, |xi(j) − y1(j)|, . . . , |xi(j) − yℓ2(j)|}

for any i ∈ {1, . . . , ℓ1}, j ∈ Uz, and denote

ỹi(j) = max{|yi(j) − x1(j)|, . . . , |yi(j) − xn1(j)|, |yi(j) − y1(j)|, . . . , |yi(j) − yℓ2(j)|}

8
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for any i ∈ {1, . . . , ℓ2}, j ∈ Uz. Subsequently, we have

min X ≥
ℓ1∑

i=1
ai exp

−β
∑

j∈Uz

x̃i(j)

−
ℓ2∑

i=1
bi, max X ≤

ℓ1∑
i=1

ai −
ℓ2∑

i=1
bi exp

−β
∑

j∈Uz

ỹi(j)

 .

This lemma is proved in Appendix A.4, it provides the lower and upper bounds for min X and max X defined
in Lemma 3.

The bounds given by Lemma 4 can be computed efficiently. For each i ∈ {1, . . . , ℓ1} and j ∈ Uz, |x̃i(j)| = ℓ1+ℓ2
according to its definition in Lemma 4. Hence, in order to bound min X , computational times |Uz|ℓ1(ℓ1 + ℓ2)
are needed, which is of order O(dn1(n1+n2)). Similarly, to bound max X , the order of computation complexity
is O(dn2(n1 + n2)). This computational cost reduction, compared with Lemma 3, which grows exponentially
with |Uz|, makes bounding MMD2

u(X, Y ) possible in practice.

We are now ready to prove the main result for the multivariate data. In order to state the result, we first
make the following two definitions. The first definition defines incomplete Laplacian kernel, which allows us
to compute the Laplacian distance between two partially observed data points.
Definition 3. For any x, y ∈ Rd, let Ux,y ⊂ {1, . . . , d} be the index of dimensions for which either x or
y have components that are not observed. Let k denote the Laplacian kernel with parameter β. Then, the
incomplete Laplacian kernel is defined as

K(x, y) = exp

−β
∑

i∈{1,...,d}\(Ux∪Uy)

|x(i) − y(i)|

 .

The second definition defines constants c1, c2, c3 and C1, C2, C3, C4 depending on the observed data for
bounding the MMD2

u(X, Y ) test statistic.
Definition 4. Suppose X = {x1, . . . , xn1} and Y = {y1, . . . , yn2} are samples of Rd real values. Assume
x1, . . . , xm1 , y1, . . . , ym2 are data that are missing, or not completely observed. Let k denote the Laplacian
kernel and K denote the incomplete Laplacian kernel defined in Definition 3. Further, denote

x̃i(l) = max{|xi(l) − xm1+1(l)|, . . . , |xi(l) − xn1(l)|, |xi(l) − ym2+1(l)|, . . . , |xi(l) − yn2(l)|}

for any i ∈ {m1 + 1, . . . , n1}, l ∈ {1, . . . , d}, and denote

ỹi(l) = max{|yi(l) − xm1+1(l)|, . . . , |yi(l) − xn1(l)|, |yi(l) − ym2+1(l)|, . . . , |yi(l) − yn2(l)|}

for any i ∈ {m2 + 1, . . . , n2}, l ∈ {1, . . . , d}. Let

C1 =
m1∑
i=1

max

0, c1

n1∑
j=m1+1

K(xi, xj) − c3

n2∑
j=m2+1

K(xi, yj) exp

−β
∑

l∈Uxi

ỹj(l)

 ,

C2 =
m1∑
i=1

min

0, c1

n1∑
j=m1+1

K(xi, xj) exp

−β
∑

l∈Uxi

x̃j(l)

− c3

n2∑
j=m2+1

K(xi, yj)

 ,

C3 =
m2∑
i=1

max

0, c2

n2∑
j=m2+1

K(yi, yj) − c3

n1∑
j=m1+1

K(yi, xj) exp

−β
∑

l∈Uyi

x̃j(l)

 ,

C4 =
m2∑
i=1

min

0, c2

n2∑
j=m2+1

K(yi, yj) exp

−β
∑

l∈Uyi

ỹj(l)

− c3

n1∑
j=m1+1

K(yi, xj)

 ,

where c1 = 2
n1(n1−1) , c2 = 2

n2(n2−1) and c3 = 2
n1n2

.
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Then, using Definition 3 and Definition 4, the main result can be stated as
Theorem 2. Suppose X = {x1, . . . , xn1} and Y = {y1, . . . , yn2} are samples of Rd real values. Assume
x1, . . . , xm1 , y1, . . . , ym2 are data that are missing, or not completely observed. Subsequently, the MMD2

u(X, Y )
using Laplacian kernel k is bounded, over all possible imputations of x1, . . . , xm1 , y1, . . . , ym2 , as follows:

c1

m1∑
i=1

m1∑
j=i+1

K(xi, xj) + c2

m2∑
i=1

m2∑
j=i+1

K(yi, yj) + A2 + C1 + C3 > MMD2
u(X, Y ),

MMD2
u(X, Y ) > −c3

m1∑
i=1

m2∑
j=1

K(xi, yj) + A2 + C2 + C4,

where K is the incomplete Laplacian kernel defined in Definition 3, A2 is a constant of observed data defined
in Lemma 1, and c1, c2, c3 and C1, C2, C3, C4 are also constants of the observed data defined in Definition 4.

The proof of this theorem is included in Appendix A.6.
Remark 1. As we discussed previously, our strategy for bounding the MMD test statistic MMD2

u(X, Y ) is
to provide the bounds for the terms A1, A2, A3 and A4, separately. Since A1 includes only the unobserved
data in X and Y , the bounds of it can be constructed according to Inequality (2) and cannot be improved.
The second term A2 includes only observed data. The third and the fourth term A3, A4 can be decomposed
into the sum of functions of T (x), as shown in Inequality (3). We show in Lemma 2 that the tight lower and
upper bounds of T (x) can be constructed. Hence the bounds of term A3 and A4 are tight. While all the
bounds of A1, A2, A3 and A4 are tight, our current bounds for the MMD test statistic are not tight since we
provide the bounds of A1, A2, A3, A4 separately, rather than jointly.

4 Two-Sample Testing in the Presence of Arbitrarily Missing Data

In this section, we discuss methods for employing bounds derived in Section 3 to develop valid two-sample
testing methods. Besides computing the test statistic, we also need a method for computing a p-value from
the test statistic.

Bounding p-value using permutations. The permutation test, as discussed in Section 2, is a numerical
procedure that can be used to compute a p-value for a test statistic based on the observed data. The p-value
of the MMD test using permutations is computed as

p = 1
B + 1

(
1 +

B∑
i=1

I(MMD2
u(Xσ(i) , Yσ(i)) ≥ MMD2

u(X, Y ))
)

, (5)

where I(E) is the indicator function such that if the event E occurs, I(E) = 1, otherwise I(E) = 0. The null
hypothesis is then rejected if p is smaller or equal to the pre-specified significance level α.

Using the bounds of the MMD in the presence of missing data, we proceed by providing bounds of the p-value,
using the following result:
Theorem 3. Suppose X = {x1, . . . , xn1}, Y = {y1, . . . , yn2} ∈ Rd. Let (σ(1), . . . , σ(B)) be B i.i.d. random
permutations of {1, . . . , n1 + n2} and denoted as σ(i) = (σ(i)(1), . . . , σ(i)(n1 + n2)), i = 1, . . . , B. Let
z1 = x1, . . . , zn1 = xn1 , zn1+1 = y1, . . . , zn1+n2 = yn2 and for any i = 1, . . . , B, denote

Xσ(i) = {zσ(i)(1), . . . , zσ(i)(n1)}, Yσ(i) = {zσ(i)(n1+1), . . . , zσ(i)(n1+n2)}.

Define p according to equation 5. Suppose further we have MMD2
u(X, Y ) and MMD2

u(X, Y ) such that

MMD2
u(X, Y ) ≤ MMD2

u(X, Y ), MMD2
u(Xσ(i) , Yσ(i)) ≤ MMD2

u(Xσ(i) , Yσ(i)), i = 1, . . . , B.

Define

p = 1
B + 1

(
1 +

B∑
i=1

I(MMD2
u(Xσ(i) , Yσ(i)) ≥ MMD2

u(X, Y ))
)

.

Then, we have p ≥ p.

10
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The proof of this theorem is included in Appendix A.7. In the presence of missing data, MMD2
u(X, Y ) cannot

be computed directly. However, as shown in Section 3, the lower and upper bounds of MMD2
u(X, Y ) can be

computed when the Laplacian kernel is used. Then, Theorem 3 can be applied to compute p, the upper bound
of p-value. It is proved in Schrab et al. (2023) that the MMD test using the p-value defined in equation 5
controls the Type I error. Therefore, using the upper bound p defined in Theorem 3 also controls the Type I
error, since the bounds were derived without any assumptions about the missing data mechanisms.

Bounding p-value using normality approximation. We have considered how to bound the p-value
when it is computed using permutations. When the values of n1, n2, d are large enough, an alternative method
to compute a p-value is to use the normality approximation (Gao & Shao, 2023). It is suggested in Gao &
Shao (2023) that this approximation is effective when n1, n2 ≥ 25, d ≥ 50.

To more formally describe the normality approximation proposed in Gao & Shao (2023), we will follow their
notation and definitions in the following of this section. Let us denote the sample sizes for X and Y as n
and m, respectively, rather than n1, n2. Denote n + m = N , and let k denote the Laplacian kernel. For any
1 ≤ s, t ≤ N , define

ak
s,t =


k(Xs, Xt) 1 ≤ s, t ≤ n,
k(Xs, Yt−n) 1 ≤ s ≤ n < t ≤ N,
k(Xt, Ys−n) 1 ≤ t ≤ n < s ≤ N,
k(Ys−n, Yt−n) n + 1 < s, t ≤ N,

and Ak∗
s,t = ak

s,t − ak
·,t − ak

s,· + ak
·,·, where

ak
·,t = 1

N − 2

N∑
i=1

ak
i,t, ak

s,· = 1
N − 2

N∑
j=1

ak
s,j , ak

·,· = 1
(N − 1)(N − 2)

N∑
i,j=1

ak
i,j .

Further, define

Vk∗
n,m = 1

N(N − 3)
∑
s̸=t

(
Ak∗

s,t

)2 − 1
(N − 1)(N − 3) , (6)

and

cn,m = 2
n(n − 1) + 4

nm
+ 2

m(m − 1) . (7)

Then, it is proved in Gao & Shao (2023) that the studentized MMD2
u(X, Y ), taking the form as

MMD2
u(X, Y )√

cn,mVk∗
n,m

, (8)

converges to a standard normal distribution under the null hypothesis with some conditions (see Theorem
16 in Gao & Shao (2023)). In order to use this result, it is necessary to compute an estimation of variance
of MMD2

u(X, Y ), i.e. cn,mVk∗
n,m, which can not be computed directly with missing data. To overcome this

problem, we propose to also bound Vk∗
n,m. We begin by making the following definitions.

Definition 5. Suppose X = {X1, . . . , Xn1}, Y = {Y1, . . . , Yn2} ∈ Rd, and assume X1, . . . , Xm1 and
Y1, . . . , Ym2 are not observed. Let K denote the incomplete Laplacian kernel defined in Definition 3, and for
1 ≤ s, t ≤ N , denote

aK
s,t =


K(Xs, Xt) 1 ≤ s, t ≤ n,
K(Xs, Yt−n) 1 ≤ s ≤ n < t ≤ N,
K(Xt, Ys−n) 1 ≤ t ≤ n < s ≤ N,
K(Ys−n, Yt−n) n + 1 < s, t ≤ N,

, aK
s,t =


0 1 ≤ s ≤ m1, 1 ≤ t ≤ N,
0 1 ≤ s ≤ N, n + 1 ≤ t ≤ n + m2,
aK

s,t otherwise.

11
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Let A
K∗
s,t = aK

s,t − aK
·,t − aK

s,· + aK
·,·, where

aK
·,t = 1

N − 2

N∑
i=1

aK
i,t, aK

s,· = 1
N − 2

N∑
j=1

aK
s,j , aK

·,· = 1
(N − 1)(N − 2)

N∑
i,j=1

aK
i,j .

Define

VK∗
n,m = 1

N(N − 3)
∑
s̸=t

(
A

K∗
s,t

)2
− 1

(N − 1)(N − 3) .

Then, we bound Vk∗
n,m defined in equation 6, and the test statistic defined in equation 8, using the following

results.
Theorem 4. Suppose X = {X1, . . . , Xn1}, Y = {Y1, . . . , Yn2} ∈ Rd, and assume X1, . . . , Xm1 and
Y1, . . . , Ym2 are not observed. Let K denote the incomplete Laplacian kernel defined in Definition 3. Then,
we have VK∗

n,m ≥ Vk∗
n,m, Further, suppose we have MMD2

u(X, Y ) such that

0 ≤ MMD2
u(X, Y ) ≤ MMD2

u(X, Y ),

we have

MMD2
u(X, Y )√

cn,mVK∗
n,m

≤ MMD2
u(X, Y )√

cn,mVk∗
n,m

,

where cn,m and Vk∗
n,m are defined in equation 6, and equation 7, separately, and VK∗

n,m is defined in Definition 5.

The proof of this Theorem is included in the Appendix A.8.

In Gao & Shao (2023), the p-value is defined as p = 1 − Φ
(

MMD2
u(X,Y )√

cn,mVk∗
n,m

)
, where Φ denotes the cumulative

density function of the standard normal distribution. In the presence of missing data, we define

p =

 1 − Φ
(

MMD2
u

(X,Y )√
cn,mVK∗

n,m

)
, if MMD2

u(X, Y ) ≥ 0,

1 otherwise.

Then, according to Theorem 4, we have p ≥ p. Hence, rejecting the null hypothesis when p < α, that is, when
p is smaller than the significance level, will control the Type I error, provided that the p-value p defined in
Gao & Shao (2023) is valid. This follows because p < α implies p < α.

Applying MMD-Miss. Now we give details of applying our proposed method, namely MMD-Miss, using
the results we have shown in Section 3 and Section 4.

In the presence of missing data, the bounds of MMD2
u(X, Y ) can be computed using the results in Theorem 1,

and Theorem 2 when d = 1 and d > 1, respectively. Provided the bounds of MMD2
u(X, Y ), Theorem 3 gives

a non-trivial upper bound of p-value of MMD2
u(X, Y ) when the permutation test is used, and Theorem 4

gives an upper bound of p-value when the normality approximation is used.

Denoting the upper bound of p-value as p, MMD-Miss rejects the null hypothesis when p is larger than or
equal to the pre-specified significance level α. Further, we refer to the MMD-Miss that computes p using the
results in Theorem 3 with permutation tests as MMD-Miss-Perm, and the MMD-Miss that computes p
using the results in Theorem 4 with normality approximation as MMD-Miss-Normality.

We note that, since MMD-Miss-Normality is relied on the normality approximation proposed in Gao & Shao
(2023), it is valid only if the normality approximation is considered valid, which requires sufficient large
sample sizes n1, n2 and dimension d. As we discussed before, one rule to use the approximation is when
n1, n2 ≥ 25, d ≥ 50, as suggested by Gao & Shao (2023).

12
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5 Experiments

This section investigates the Type I error and statistical power of MMD-Miss proposed in Section 4, and
compare it with other missing data methods, including missForest Stekhoven & Bühlmann (2012), the
Wilcoxon-Mann-Whitney test with missing data method Zeng et al. (2024) (WMWM), and three common
missing data approaches, namely case deletion, mean imputation and hot deck imputation. All these
approaches are described in more detail in Appendix B.3. For MMD-Miss, the parameter β in the Laplacian
kernel is chosen using the median heuristic, which generally works well (Gretton et al., 2012a; Bodenham &
Kawahara, 2023) and is described in Appendix B.2. The number of permutations used for MMD-Perm and
the imputation methods is set to B = 100, as described in Appendix B.2.

Asymptotic Type I error for a small proportion of missing data (5%). The first experiment
investigates the Type I error of the proposed method MMD-Miss and the common missing data approaches,
as the sample size increases, while keeping the proportion of missing data fixed at 5%. In this experiment,
the data are missing not at random (MNAR). To assess the Type I error, random samples X = {x1, . . . , xn1},
Y = {y1, . . . , yn2} are independently generated from a d-dimensional normal distribution with mean vector
µ = (0, . . . , 0)T and covariance matrix equal to the identity matrix. Subsequently, 5% of data will be selected
in both X and Y to be labelled as missing (for d = 1), or incomplete (for d > 1). For multivariate data, when
an observation is labelled as incomplete, 30% of its components will be missing values. We select 5% of data
to be missing or incomplete to show that even small proportion of missing data in the data set could lead to
invalid testing results, if the missing data are not taken into account. Similarly, for multivariate data, the
30% missingness per incomplete observation is chosen to introduce a moderate amount of missing data.

We run this experiment for different dimensions d ∈ {1, 10, 50}. In the univariate case, when the dimension
d = 1, observations xi ∈ X with xi < 0 will be randomly selected to possibly be missing, while only
observations yi ∈ Y with yi > 0 will be randomly selected to possibly be missing; in this case the data are
missing not at random (MNAR), i.e. the data are informatively missing. In the multivariate cases, when
d ∈ {10, 50}, the observations in X that will possibly be partially missing are those with

∑d
l=1 xi(l)/

√
d < −0.8,

and then for each chosen sample, 30% of its components with values smaller than median(xi(1), . . . , xi(d))
will be randomly selected to be missing. In other words, only observations with low total values, i.e., with a
sum smaller than −0.8

√
d have a chance to be incomplete, and within these, components that fall below the

median will be missing. This design creates MNAR patterns, where the presence of the values depend on both
missing and observed data. On the other hand, only observations in Y with

∑d
l=1 yi(l)/

√
d > 0.8 will possibly

be partially missing, and again for each chosen observation, 30% its components with values larger than
median(yi(1), . . . , yi(d)) will be randomly selected to be missing. We use these missingness mechanisms, since
if only the fully observed observations are taken into account, the two samples will appear to be different.

Figure 1 shows that MMD-Miss-Perm controls the Type I error for dimension d ∈ {1, 10, 50}. MMD-Miss-
Normality is only suitable for d = 50, and controls the Type I error in this case. WMWM (Zeng et al.,
2024) controls the Type I error for d = 1, but is not suitable for multivariate data. All imputation methods
fail to control the Type I error. Note that MissForest (Stekhoven & Bühlmann, 2012) is only suitable for
multivariate data, but similarly to the other imputation methods, it fails to control the Type I error. In
particular, Figure 1 shows that even when only 5% of the data are missing, as the sample size increases to
5000, in these experiments the Type I error of all imputation methods approaches 1.

Type I error and power for univariate data. The second experiment investigates the Type I error and
statistical power for a fixed sample size, while the proportion of missing data increases. In this experiment,
the data are again missing not at random (MNAR). To assess the Type I error, the data X = {x1, . . . , xn1}
and Y = {y1, . . . , yn2} are independently sampled from a standard normal distribution N(0, 1). To assess the
statistical power, X are sampled independently from N(0, 1) while Y are sampled independently from either
(a) N(1, 1) or (b) N(1.5, 1). Then, a proportion s ∈ {0, 0.01, . . . , 0.20} of samples are selected in X and Y to
be missing. The missingness mechanisms are the same as for Figure 1 when d = 1; only observations xi ∈ X
with xi < 0 and observations yi ∈ Y with yi > 0 will be randomly selected to possibly be missing.
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Figure 1: The Type I error of the proposed method and common missing data methods when data are missing
not at random. (Left): d = 1; (Middle): d = 10; (Right): d = 50. MMD-Miss-Normality is considered when
d = 50. For all figures, the significance level is α = 0.05, and 5% of the data are missing or partially observed.
The displayed values show the average times of the null hypothesis is rejected over 100 repetitions. The error
bars represent one standard error of the mean. Note that WMWM is only applicable for univariate data,
while MissForest in only applicable for multivariate data.
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Figure 2: The Type I error and power of the proposed method and common missing data methods for
univariate samples when data are missing not at random. (Left): N(0, 1) vs N(0, 1); (Middle): N(0, 1) vs
N(1, 1); (Right): N(0, 1) vs N(1.5, 1). A significance level α = 0.05 and sample sizes n1 = n2 = 500 are used.
The displayed values show the average times of the null hypothesis is rejected over 100 repetitions. The error
bars represent one standard error of the mean. The Type I error figure in the left-hand column appears in
each row for convenience of comparison.

Figure 2 shows that the Type I error is not controlled by the case deletion, hot deck imputation or mean
imputation methods. When the proportion of missing data is s = 5%, the Type I error is above 25% for each
of these three methods, and when the s = 10% the Type I error of these three methods is beyond 75%. On
the other hand, the proposed method MMD-Miss-Perm controls the Type I error, regardless of the proportion
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Table 1: Comparison of Type I error and power on MNIST dataset. NA stands for MMD-Miss-Normality;
PT for MMD-Miss-Perm; CD stands for case deletion; MI stands for mean imputation; HD stands for hot
deck imputation. A significance level α = 0.05, and sample sizes n1 = n2 = 500 are used. The values in the
table are the average times the null hypothesis is rejected over 100 repetitions.

Proportion
of

Missing
Data (s)

Type I Error Power
MMD-Miss Standard MMD-Miss Standard
NA PT CD MI HD NA PT CD MI HD

0.00 0.07 0.07 0.06 0.07 0.07 1.00 1.00 1.00 1.00 1.00
0.05 0.00 0.00 0.08 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.10 0.00 0.00 0.21 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.15 0.00 0.00 0.64 1.00 1.00 1.00 0.00 1.00 1.00 1.00
0.20 0.00 0.00 0.91 1.00 1.00 0.96 0.00 1.00 1.00 1.00
0.25 0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00

of missing data. While all the common missing data methods have good statistical power, the power of the
proposed method decreases significantly when there are more than 5% missing data for alternative N(0, 1) vs
N(1, 1), and when there are more than 10% missing data for alternative N(0, 1) vs N(1.5, 1). This experiment
demonstrates that MMD-Miss-Perm is useful when the proportion of missing data is in the range 5% to 10%,
while the three common missing data approaches fail to control the Type I error.

We note that WMWM (Zeng et al., 2024) controls the Type I error in all cases, and has better power than
MMD-Miss-Perm when there is a change in the mean. However, it has almost zero power when there is
a change in variance (bottom row of Figure 2); this is not surprising, since it is based on the Wilcoxon-
Mann-Whitney test, which is designed to test for a change in location. On the other hand, MMD-Miss-Perm
controls the Type I error and has good statistical power when 5% to 10% of the data are missing, both when
there is a change in mean, and when there is a change in variance.
Remark 2. As reflected in these results, our proposed method is guaranteed to control the Type I error,
even in cases where data are missing not at random. However, the cost is that our method is conservative,
since it only declares a significant result when the maximum possible p-value, considered over all possible
imputations, is significant. When the proportion of missing data increases, the upper and lower bounds of
the MMD test statistic increase and decrease, respectively, and so the power decreases.

Type I error and power for multivariate data. The third experiment compares the Type I error and
power of MMD-Miss and the three common missing data approaches for multivariate observations. For a
value a ∈ R, let µa,d = (a, a, . . . , a)T be a mean vector with d components all equal to a. To assess the
Type I error, observations X = {x1, . . . , xn1} and Y = {y1, . . . , yn2} are independently sampled from the
d-dimensional normal distribution with zero mean vector µ0,d = (0, 0, . . . , 0)T and covariance matrix Σ = Id,
the identity matrix. To assess the statistical power, X are independently sampled from N(µ0,d, Id) and Y
are samples independently from either (a) N(µ1,d, Id) or (b) N(µ1.5,d, Id). Then, a proportion s ∈ [0, 0.2]
of observations from both X and Y will be randomly selected to be partially missing. The missingness
mechanisms follows the same approach used for Figure 1 when d > 1. The results displayed in Figure 3
show a similar pattern to the results for univariate case: (i) the three common missing data approaches
cannot control the Type I error although they all demonstrate good power, while (ii) MMD-Miss controls
the Type I error, and also have good power when proportion of missing data is around 5% to 10%. Notably,
in the case where d = 50, MMD-Miss-Normality has better statistical power than MMD-Miss-Perm. For
the alternative N((1.5, . . . , 1.5)T , Id), MMD-Miss-Normality approximation has good power when 15% of the
data have missing values.

MNIST dataset. We evaluate the performance of MMD-Miss on real-world data using MNIST images
LeCun et al. (1998), with examples shown in Figure 4 in Appendix B.4. Each image in the MNIST dataset
has dimensions of 28 × 28 pixels and is labelled from 0 to 9. For our analysis, the pixel values of each image
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Figure 3: The Type I error and power of MMD-Miss and the three common missing data approaches for
multivariate samples when data are missing not at random. The dimension of the data is either d = 10 or
d = 50. When d = 50, the MMD-Miss-Normality is used. A significance level α = 0.05, and sample sizes
n1 = n2 = 500 are used. The displayed values show the average times of the null hypothesis is rejected over
100 repetitions. The error bars represent one standard error of the mean.

are scaled between 0 and 1. To assess Type I error, datasets X and Y are generated by randomly sampling
with replacement from MNIST training set images labelled as 3. For evaluating power, X is generated by
randomly sampling with replacement from images labelled as 0, while Y continues to be sampled from images
labelled as 3. A proportion s ∈ [0, 0.25] of the samples in Y are then randomly selected and labelled as
incomplete if there are more than 85 non-zero pixels in the region defined by rows 1 to 14 and columns 8 to
21 (i.e. a sub-block in the upper half of each image), which will be marked as missing. In other words, images
with more non-zero pixels in the specified region are more likely to be partially observed. Examples of these
incompletely observed images are shown in Figure 5 in Appendix B.4 Table 1 shows that the three common
missing data approaches cannot control the Type I error for this task. On the other hand, MMD-Miss controls
the Type I error while enjoying good power. For MMD-Miss-Normality, the power is good except for the case
when 25% images from Y are missing.

6 Conclusion

The proposed method MMD-Miss performs two-sample testing on both univariate and multivariate data with
missing values for any distributional shifts. This method is based on deriving precise bounds of the Laplacian
kernel, and rejects the null hypothesis when all possible missing data lead to significant results. MMD-Miss
controls the Type I error, while other common missing data methods such as case deletion fail to control the
Type I error when the data are missing not at random (MNAR). One limitation of MMD-Miss is that it is
restricted to the Laplacian kernel for computational reasons. However, the Laplacian kernel is characteristic,
and MMD with this kernel can detect any distributional change. Moreover, this approach will be effective for
other kernels if appropriate bounds can be derived and computed efficiently.

Simulation results show that MMD-Miss has good statistical power, typically when 5% to 10% of the data are
missing. Our experiments show that in high-dimensional situations, i.e. d ≥ 50, using a normal approximation
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(Gao & Shao, 2023) (MMD-Normality) improves the statistical power of MMD-Miss based on permutation
test (MMD-Perm). Another limitation of MMD-Miss is that it is only suitable when up to 20% of the data is
missing. However, our experiments show that using imputation methods when even 5% of the data are missing
not at random can lead to the Type I error not being controlled. Overall, MMD-Miss is a robust approach to
two-sample testing in the presence of missing data for detecting changes in univariate or multivariate data
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Overview of Appendix

Appendix A. Mathematical details of results given in Section 3 and Section 4.

Appendix B. Details of experiments in Section 5.

Appendix C. Additional experiments.

A Mathematical Details

A.1 Decomposition of MMD

Without loss of generality, let us assume x1, . . . , xm1 , y1, . . . , ym2 are data that are not observed, or not fully
observed. Then, MMD2

u(X, Y ) can be decomposed, using the following lemma:
Lemma 5. Suppose X = {x1, . . . , xn1}, Y = {y1, . . . , yn2} are subsets of Rd, where d ≥ 1. Suppose that
MMD2

u(X, Y ) is unbiased MMD test statistic defined as

MMD2
u(X, Y ) = 1

n1(n1−1)

n1∑
i=1

n2∑
j=1
j ̸=i

k(xi, xj) + 1
n2(n2−1)

n2∑
i=1

n2∑
j=1
j ̸=i

k(yi, yj) − 2
n1n2

n1∑
i=1

n2∑
j=1

k(xi, yj),

with k denoting the Laplacian kernel. Then, for any two positive integers m1, m2 such that
m1 ≤ n1, m2 ≤ n2, MMD2

u(X, Y ) can be rewritten as:

MMD2
u(X, Y ) = A1 + A2 + A3 + A4,

where c1 = 2
n1(n1−1) , c2 = 2

n2(n2−1) , c3 = 2
n1n2

, and

A1 = c1

m1∑
i=1

m1∑
j=i+1

k(xi, xj) + c2

m2∑
i=1

m2∑
j=i+1

k(yi, yj) − c3

m1∑
i=1

m2∑
j=1

k(xi, yj),

A2 = c1

n1−1∑
i=m1+1

n1∑
j=i+1

k(xi, xj) + c2

n2−1∑
i=m2+1

n2∑
j=i+1

k(yi, yj) − c3

n1∑
i=m1+1

n2∑
j=m2+1

k(xi, yj),

A3 = c1

m1∑
i=1

n1∑
j=m1+1

k(xi, xj) − c3

m1∑
i=1

n2∑
j=m2+1

k(xi, yj),

A4 = c2

m2∑
i=1

n2∑
j=m2+1

k(yi, yj) − c3

n1∑
i=m1+1

m2∑
j=1

k(xi, yj).

Proof. To start, for any x, y of Rd real values, the Laplacian kernel is defined as follows

k(x, y) = exp(−β||x − y||1).

It can be seen that k is symmetric, i.e. k(x, y) = k(y, x). Subsequently, according to Lemma 2 in Bodenham
& Kawahara (2023), the MMD2

u(X, Y ) can then be rewritten as

MMD2
u(X, Y ) = 2

n1(n1 − 1)

n1∑
i=1

i−1∑
j=1

k(xi, xj) + 2
n2(n2 − 1)

n2∑
i=1

i−1∑
j=1

k(yi, yj)

− 2
n1n2

n1∑
i=1

n2∑
j=1

k(xi, yj).
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Notice that

n1∑
i=1

i−1∑
j=1

k(xi, xj) =
n1−1∑
i=1

n1∑
j=i+1

k(xi, xj),

n2∑
i=1

i−1∑
j=1

k(yi, yj) =
n2−1∑
i=1

n2∑
j=i+1

k(yi, yj).

Thus, we further have

MMD2
u(X, Y ) = 2

n1(n1 − 1)

n1−1∑
i=1

n1∑
j=i+1

k(xi, xj) + 2
n2(n2 − 1)

n2−1∑
i=1

n2∑
j=i+1

k(yi, yj)

− 2
n1n2

n1∑
i=1

n2∑
j=1

k(xi, yj).

Let m1, m2 be any two positive integers such that m1 ≤ n1, m2 ≤ n2. Denote c1 = 2
n1(n1−1) . Subsequently,

2
n1(n1 − 1)

n1−1∑
i=1

n1∑
j=i+1

k(xi, xj) = c1

m1∑
i=1

n1∑
j=i+1

k(xi, xj) + c1

n1−1∑
i=m1+1

n1∑
j=i+1

k(xi, xj)

= c1

m1∑
i=1

m1∑
j=i+1

k(xi, xj) + c1

m1∑
i=1

n1∑
j=m1+1

k(xi, xj)

+ c1

n1−1∑
i=m1+1

n1∑
j=i+1

k(xi, xj).

Also, denote c2 = 2
n2(n2−1) , it follows that

2
n2(n2 − 1)

n2−1∑
i=1

n2∑
j=i+1

k(yi, yj) = c2

m2∑
i=1

n2∑
j=i+1

k(yi, yj) + c2

n2−1∑
i=m2+1

n2∑
j=i+1

k(yi, yj)

= c2

m2∑
i=1

m2∑
j=i+1

k(yi, yj) + c2

m2∑
i=1

n2∑
j=m2+1

k(yi, yj)

+ c2

n2−1∑
i=m2+1

n2∑
j=i+1

k(yi, yj).

Denote c3 = 2
n1n2

, then

2
n1n2

n1∑
i=1

n2∑
j=1

k(xi, yj) = c3

m1∑
i=1

n2∑
j=1

k(xi, yj) + c3

n1∑
i=m1+1

n2∑
j=1

k(xi, yj)

= c3

m1∑
i=1

m2∑
j=1

k(xi, yj) + c3

m1∑
i=1

n2∑
j=m2+1

k(xi, yj)

+ c3

n1∑
i=m1+1

m2∑
j=1

k(xi, yj) + c3

n1∑
i=m1+1

n2∑
j=m2+1

k(xi, yj).
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Combine the above together, MMD2
u(X, Y ) can be rewritten as

MMD2
u(X, Y ) = c1

m1∑
i=1

m1∑
j=i+1

k(xi, xj) + c1

m1∑
i=1

n1∑
j=m1+1

k(xi, xj)

+ c1

n1−1∑
i=m1+1

n1∑
j=i+1

k(xi, xj) + c2

m2∑
i=1

m2∑
j=i+1

k(yi, yj)

+ c2

m2∑
i=1

n2∑
j=m2+1

k(yi, yj) + c2

n2−1∑
i=m2+1

n2∑
j=i+1

k(yi, yj)

− c3

m1∑
i=1

m2∑
j=1

k(xi, yj) − c3

m1∑
i=1

n2∑
j=m2+1

k(xi, yj)

− c3

n1∑
i=m1+1

m2∑
j=1

k(xi, yj) − c3

n1∑
i=m1+1

n2∑
j=m2+1

k(xi, yj).

By rearranging the above equation, we conclude that

MMD2
u(X, Y ) = c1

m1∑
i=1

m1∑
j=i+1

k(xi, xj) + c2

m2∑
i=1

m2∑
j=i+1

k(yi, yj) − c3

m1∑
i=1

m2∑
j=1

k(xi, yj)

+ c1

n1−1∑
i=m1+1

n1∑
j=i+1

k(xi, xj) + c2

n2−1∑
i=m2+1

n2∑
j=i+1

k(yi, yj) − c3

n1∑
i=m1+1

n2∑
j=m2+1

k(xi, yj)

+ c1

m1∑
i=1

n1∑
j=m1+1

k(xi, xj) − c3

m1∑
i=1

n2∑
j=m2+1

k(xi, yj)

− c2

m2∑
i=1

n2∑
j=m2+1

k(yi, yj) − c3

n1∑
i=m1+1

m2∑
j=1

k(xi, yj),

which proves our result.

A.2 Proof of Lemma 2

Lemma 6. Let x1, . . . , xℓ1 and y1, . . . , yℓ2 be univariate real values, that are observed. Suppose a1, . . . , aℓ1 ,
b1, . . . , bℓ2 and β are positive constants. Define

T (z) =
ℓ1∑

i=1
ai exp(−β|xi − z|) −

ℓ2∑
i=1

bi exp(−β|yi − z|)

as a function of z ∈ R. Subsequently, for any given z0 ∈ R,

T (z0) ≥ min{0, T (x1), . . . , T (xℓ1), T (y1), . . . , T (yℓ2)}. (9)

On the other hand,

T (z0) ≤ max{0, T (x1), . . . , T (xℓ1), T (y1), . . . , T (yℓ2)}. (10)
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Proof. We will first prove that inequality 9 holds. Let z1 = min{x1, . . . , xℓ1 , y1, . . . , yℓ2}. When z < z1, it
follows

T (z) =
ℓ1∑

i=1
ai exp(−β(xi − z)) −

ℓ2∑
i=1

bi exp(−β(yi − z))

=
ℓ1∑

i=1
ai exp(−β(xi − z1 + z1 − z)) −

ℓ2∑
i=1

bi exp(−β(yi − z1 + z1 − z))

=
ℓ1∑

i=1
ai exp(−β(xi − z1)) exp(−β(z1 − z)) −

ℓ2∑
i=1

bi exp(−β(yi − z1)) exp(−β(z1 − z))

= exp(−β(z1 − z))
{

ℓ1∑
i=1

ai exp(−β(xi − z1)) −
ℓ2∑

i=1
bi exp(−β(yi − z1))

}
= exp(−β(z1 − z))T (z1).

Notice that, since β > 0 and z < z1,

0 < exp(−β(z1 − z)) < 1.

Hence, if T (z1) ≥ 0,

0 ≤ exp(−β(z1 − z))T (z1) ≤ T (z1);
=⇒ 0 ≤ T (z)

if T (z1) < 0,

0 > exp(−β(z1 − z))T (z1) > T (z1);
=⇒ T (z) > T (z1).

Thus, for any given z0 ∈ R, if z0 ∈ (−∞, z1), we have

T (z0) ≥ min{0, T (z1)},

which proves equation 9 when z0 ∈ (−∞, z1).

Similarly, let z2 = max{x1, . . . , xℓ1 , y1, . . . , yℓ2}. When z > z2, it follows

T (z) =
ℓ1∑

i=1
ai exp(−β(z − xi)) −

ℓ2∑
i=1

bi exp(−β(z − yi))

=
ℓ1∑

i=1
ai exp(−β(z − z2 + z2 − xi)) −

ℓ2∑
i=1

bi exp(−β(z − z2 + z2 − yi))

=
ℓ1∑

i=1
ai exp(−β(z2 − xi)) exp(−β(z − z2)) −

ℓ2∑
i=1

bi exp(−β(z2 − yi)) exp(−β(z − z2))

= exp(−β(z − z2))
{

ℓ1∑
i=1

ai exp(−β(z2 − xi)) −
ℓ2∑

i=1
bi exp(−β(z2 − yi))

}
= exp(−β(z − z2))T (z2).

Notice that, since β > 0 and z > z2,

0 < exp(−β(z − z2)) < 1.
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Hence, if T (z2) ≥ 0,

0 ≤ exp(−β(z − z2))T (z2) ≤ T (z2);
=⇒ 0 ≤ T (z)

if T (z1) < 0,

0 > exp(−β(z − z2))T (z2) > T (z2);
=⇒ T (z) > T (z2).

Thus, for any given z0 ∈ R, if z0 ∈ (z2, ∞), we have

T (z0) > min{0, T (z2)},

which proves equation 9 when z0 ∈ (z2, ∞).

Suppose z1 < z0 < z2 and z0 /∈ {x1, . . . , xℓ1 , y1, . . . , yℓ2}. Then, there must be at least one number in
{x1, . . . , xℓ1 , y1, . . . , yℓ2} smaller than z, and at least one number larger than z. Subsequently, denote z3 as
the maximum number in {x1, . . . , xℓ1 , y1, . . . , yℓ2} smaller than z0; denote z4 as the minimum number in
{x1, . . . , xℓ1 , y1, . . . , yℓ2} larger than z0.

Notice that

T (z) =
ℓ1∑

i=1
ai exp(−β|xi − z|) −

ℓ2∑
i=1

bi exp(−β|yi − z|)

=
ℓ1∑

i=1
aiI(xi ≤ z3) exp(−β|xi − z|) +

ℓ1∑
i=1

aiI(xi > z3) exp(−β|xi − z|)

−
ℓ2∑

i=1
biI(yi ≤ z3) exp(−β|yi − z|) −

ℓ2∑
i=1

biI(yi > z3) exp(−β|yi − z|).

When z3 < z < z4, according to the definition of z3 and z4, for any xi, yi ≤ z3, it follows z > xi, yi. On the
other hand, for for any xi, yi > z3, it follows xi, yi ≥ z4, which gives z < xi, yi.

Hence, when z3 < z < z4,

T (z) =
ℓ1∑

i=1
aiI(xi ≤ z3) exp(−β(z − xi)) +

ℓ1∑
i=1

aiI(xi > z3) exp(−β(xi − z))

−
ℓ2∑

i=1
biI(yi ≤ z3) exp(−β(z − yi)) −

ℓ2∑
i=1

biI(yi > z3) exp(−β(yi − z)).
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Further,

T (z) =
ℓ1∑

i=1
aiI(xi ≤ z3) exp(−β(z − z3 + z3 − xi)) +

ℓ1∑
i=1

aiI(xi > z3) exp(−β(xi − z4 + z4 − z))

−
ℓ2∑

i=1
biI(yi ≤ z3) exp(−β(z − z3 + z3 − yi)) −

ℓ2∑
i=1

biI(yi > z3) exp(−β(yi − z4 + z4 − z)).

= exp(−β(z − z3))
ℓ1∑

i=1
aiI(xi ≤ z3) exp(−β(z3 − xi))

+ exp(−β(z4 − z))
ℓ1∑

i=1
aiI(xi > z3) exp(−β(xi − z4))

− exp(−β(z − z3))
ℓ2∑

i=1
biI(yi ≤ z3) exp(−β(z3 − yi))

− exp(−β(z4 − z))
ℓ2∑

i=1
biI(yi > z3) exp(−β(yi − z4)).

= exp(−β(z − z3))
{

ℓ1∑
i=1

aiI(xi ≤ z3) exp(−β(z3 − xi)) −
ℓ2∑

i=1
biI(yi ≤ z3) exp(−β(z3 − yi))

}

+ exp(−β(z4 − z))
{

ℓ1∑
i=1

aiI(xi > z3) exp(−β(xi − z4)) −
ℓ2∑

i=1
biI(yi > z3) exp(−β(yi − z4))

}
.

For notation ease, let us denote

A :=
{

ℓ1∑
i=1

aiI(xi ≤ z3) exp(−β(z3 − xi)) −
ℓ2∑

i=1
biI(yi ≤ z3) exp(−β(z3 − yi))

}
,

B :=
{

ℓ1∑
i=1

aiI(xi > z3) exp(−β(xi − z4)) −
ℓ2∑

i=1
biI(yi > z3) exp(−β(yi − z4))

}
.

Thus,

T (z) = A exp(−β(z − z3)) + B exp(−β(z4 − z)).

Notice that if B = 0, for any z3 < z < z4, T (z) = A exp(−β(z − z3)) is a monotonic increasing function
in (z3, z4) when A < 0, or a monotonic decreasing function in (z3, z4) when A > 0, or a constant function
in (z3, z4) when A = 0. Thus, we always have min{T (z3), T (z4)} ≤ T (z0) for z0 ∈ (z3, z4), which proves
inequality 9 directly.

If, however, B ̸= 0, let T (z) = 0, we have

A exp(−β(z − z3)) = −B exp(−β(z4 − z))

=⇒ − A

B
= exp(−β(z4 − z))

exp(−β(z − z3)) .

When − A
B ≤ 0, since exp(−β(z4−z))

exp(−β(z−z3)) > 0, then T (z) cannot take 0 in (z3, z4). If however, − A
B > 0, we further

have

log
(

− A

B

)
= −β(z4 − z) − {−β(z − z3)}

=⇒ log
(

− A

B

)
= −βz4 + βz + βz − βz3

=⇒ z = 1
β

log
(

− A

B

)
+ z4 + z3.
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That is, T (z) = 0 when z = 1
β log

(
− A

B

)
+ z4 + z3 ∈ (z3, z4). Overall, we have shown T (z) takes 0 at most

once in (z3, z4) when B ̸= 0. This result will be used subsequently for proving our final conclusion.

Now, taking derivative of T (z) of z,

∂T (z)
∂z

= −βA exp(−β(z − z3)) + βB exp(−β(z4 − z)).

Further, taking derivative of ∂T (z)
∂z of z,

∂2T (z)
∂2z

= β2A exp(−β(z − z3)) + β2B exp(−β(z4 − z))

= β2T (z).

We are going to prove T (z0) ≥ min{0, T (z3), T (z4)} when B ̸= 0 using contradiction. Let us assume that

T (z0) < min{0, T (z3), T (z4)}. (11)

Then, since β > 0, it must have

∂2T (z)
∂2z

∣∣∣∣
z0

= β2T (z0) < 0.

For ∂T (z)
∂z

∣∣∣
z0

, it is either (i) : ∂T (z)
∂z

∣∣∣
z0

< 0 or (ii) : ∂T (z)
∂z

∣∣∣
z0

≥ 0. We are going to discuss the two cases
separately.

Suppose (i) : ∂T (z)
∂z

∣∣∣
z0

< 0. If for any z ∈ [z0, z4), ∂2T (z)
∂2z < 0. Then, ∂T (z)

∂z is a monotonic decreasing function
of z in [z0, z4). Hence, for any z ∈ [z0, z4),

∂T (z)
∂z

<
∂T (z)

∂z

∣∣∣∣
z0

< 0

Thus, T (z) is a monotonic decreasing function in z ∈ [z0, z4), giving us

T (z0) > T (z4),

which is contradicted to the assumption equation 11.

If, however, for any z ∈ [z0, z4), ∂2T (z)
∂2z < 0 does not holds, recall that we have shown T (z) take 0 at most

once in (z3, z4) when B ̸= 0. This then implies there is only one point t ∈ [z0, z4) such that ∂2T (z)
∂2z

∣∣∣
t

= 0.

Since ∂2T (z)
∂2z is a continuous function and ∂2T (z)

∂2z

∣∣∣
z0

< 0, we have

∂2T (z)
∂2z

< 0, z ∈ [z0, t).

Thus, ∂T (z)
∂z is a monotonic decreasing function in z ∈ [z0, t), giving us

∂T (z)
∂z

<
∂T (z)

∂z

∣∣∣∣
z0

< 0, z ∈ [z0, t). (12)

However, notice that we also have

∂2T (z)
∂2z

∣∣∣∣
t

= 0 >
∂2T (z)

∂2z

∣∣∣∣
z0

,

=⇒ T (t) = 0 > T (z0)

=⇒ ∃t′ ∈ (z0, t) such that ∂T (z)
∂z

∣∣∣∣
t′

= T (t) − T (z0)
t − z0

> 0, (mean value theorem)

26



Under review as submission to TMLR

which contradicts equation 12.

Suppose (ii) : ∂T (z)
∂z

∣∣∣
z0

≥ 0. The prove method is similar as to when (i) holds.

If for any z ∈ (z3, z0], ∂2T (z)
∂2z < 0. Then, ∂T (z)

∂z is a monotonic decreasing function of z in (z3, z0]. Hence, for
any z ∈ (z3, z0],

∂T (z)
∂z

>
∂T (z)

∂z

∣∣∣∣
z0

≥ 0.

Thus, T (z) is a monotonic increasing function in z ∈ (z3, z0], giving

T (z3) < T (z0),

which contradicts to the assumption equation 11.

If, however, for any z ∈ (z3, z0], ∂2T (z)
∂2z < 0 does not holds, recall that we have shown T (z) taken 0 at most

once in (z3, z4). This then implies there is only one point t ∈ (z3, z0] such that ∂2T (z)
∂2z

∣∣∣
t

= 0. Since ∂2T (z)
∂2z is

a continuous function and ∂2T (z)
∂2z

∣∣∣
z0

< 0, we have

∂2T (z)
∂2z

< 0, z ∈ (t, z0].

Thus, ∂T (z)
∂z is a monotonic decreasing function in z ∈ (t, z0], giving us

∂T (z)
∂z

>
∂T (z)

∂z

∣∣∣∣
z0

≥ 0, z ∈ (t, z0]. (13)

However, notice that we also have

∂2T (z)
∂2z

∣∣∣∣
t

= 0 >
∂2T (z)

∂2z

∣∣∣∣
z0

,

=⇒ T (t) = 0 > T (z0)

=⇒ ∃t′ ∈ (t, z0) such that ∂T (z)
∂z

∣∣∣∣
t′

= T (t) − T (z0)
t − z0

< 0. (mean value theorem)

which contradicts 13. Hence, we finish our prove for inequality 9.

We now prove inequality 10. Notice that

−T (z) =
ℓ2∑

i=1
bi exp(−β|yi − z|) −

ℓ1∑
i=1

ai exp(−β|xi − z|).

Subsequently, using the result of inequality 9, we have

− T (z0) ≥ min{0, −T (x1), . . . , −T (xℓ1), −T (y1), . . . , −T (yℓ2)}
=⇒ T (z0) ≤ − min{0, −T (x1), . . . , −T (xℓ1), −T (y1), . . . , −T (yℓ2)}
=⇒ T (z0) ≤ max{0, T (x1), . . . , T (xℓ1), T (y1), . . . , T (yℓ2)},

which proves inequality 10.

A.3 Proof of Lemma 3

This section proves Lemma 3, extending Lemma 2 into higher dimensions.
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Lemma 7. Let x1, . . . , xℓ1 , y1, . . . , yℓ2 ∈ Rd be values that are fully observed. Suppose a1, . . . , aℓ1 , b1, . . . , bℓ2 , β
are positive constants. For z = (z(1), . . . , z(d)) ∈ Rd with missing components, define

T ({z(j) : j ∈ Uz}) =
ℓ1∑

i=1
ai exp

−β
∑

j∈Uz

|xi(j) − z(j)|

−
ℓ2∑

i=1
bi exp

−β
∑

j∈Uz

|yi(j) − z(j)|


as a function of the unobserved components of z and let

X = {T ({z(j) : j ∈ Uz}) : z(i) ∈ {x1(i), . . . , xℓ1(i), y1(i), . . . , yℓ2(i)}, i ∈ Uz}.

Then, for any possible imputation z∗ of z,

T ({z∗(j) : j ∈ Uz}) ≥ min{0, min X }, (14)

and

T ({z∗(j) : j ∈ Uz}) ≤ max{0, max X }. (15)

Proof. We will only prove inequality 14 and inequality 15 can be proved following the same method.

Let us prove inequality 14 using mathematical induction. When |Uz| = 1, this lemma become Lemma 6,
which has already been proved. Suppose when |Uz| = l − 1, where l is any integer such that 1 ≤ l, inequality
14 holds. We are going to show when |Uz| = l, inequality 14 still holds.

Without loss of generality, let us assume (after relabelling) that Uz = 1, . . . , l. Subsequently, for any given
(z∗

1 , . . . , z∗
l ) ∈ Rl, it follows

T (z∗
1 , . . . , z∗

l ) =
ℓ1∑

i=1
ai exp

−β

l∑
j=1

|xi(j) − z∗
j |

−
ℓ2∑

i=1
bi exp

−β

l∑
j=1

|yi(j) − z∗
j |


=

ℓ1∑
i=1

ai exp (−β|xi(1) − z∗
1 |) exp

−β

l∑
j=2

|xi(j) − z∗
j |


−

ℓ2∑
i=1

bi exp (−β|yi(1) − z∗
1 |) exp

−β

l∑
j=2

|yi(j) − z∗
j |

 .

Denote

a′
i = ai exp (−β|xi(1) − z∗

1 |) , i = 1, . . . , ℓ1,

b′
i = bi exp (−β|yi(1) − z∗

1 |) , i = 1, . . . , ℓ2.

Consider a new function

T ′(z2, . . . , zl) =
ℓ1∑

i=1
a′

i exp

−β

l∑
j=2

|xi(j) − zj |

−
ℓ2∑

i=1
b′

i exp

−β

l∑
j=2

|yi(j) − zj |

 .

Let

X ′ = {T ′(z2, . . . , zl)|zj ∈ {x1(j), . . . , xℓ1(j), y1(j), . . . , yℓ2(j)}, j = 2, . . . , l}.

Then, using the assumption that when |Uz| = l − 1, inequality 14 holds, it follows that

T ′(z∗
2 , . . . , z∗

l ) ≥ min{0, min X ′},
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Notice that

T ′(z2, . . . , zl) =
ℓ1∑

i=1
a′

i exp

−β

l∑
j=2

|xi(j) − zj |

−
ℓ2∑

i=1
b′

i exp

−β

l∑
j=2

|yi(j) − zj |


=

ℓ1∑
i=1

ai exp (−β|xi(1) − z∗
1 |) exp

−β

l∑
j=2

|xi(j) − zj |


−

ℓ2∑
i=1

bi exp (−β|yi(1) − z∗
1 |) exp

−β

l∑
j=2

|yi(j) − zj |


= T (z∗

1 , z2, . . . , zl).

(16)

Hence,

T ′(z∗
2 , . . . , z∗

l ) = T (z∗
1 , . . . , z∗

l ).

We therefore have

T (z∗
1 , . . . , z∗

l ) ≥ min{0, min χ′}. (17)

Further, let us denote

(z′
2, . . . , z′

l) = arg min
zi∈{x1(i),...,xℓ1 (i),y1(i),...,yℓ2 (i)},i=2,...,l

T ′(z2, . . . , zl). (18)

That is,

T ′(z′
2, . . . , z′

l) = min X ′.

Applying equation 16, it follows

T (z∗
1 , z′

2, . . . , z′
l) = T ′(z′

2, . . . , z′
l) = min X ′. (19)

Denote

a′′
i = ai exp

−β

l∑
j=2

|xi(j) − z′
j |

 , i = 1, . . . , ℓ1,

b′′
i = bi exp

−β

l∑
j=2

|yi(j) − z′
j |

 i = 1, . . . , ℓ2.

Consider a new function

T ′′(z1) =
ℓ1∑

i=1
a′′

i exp (−β|xi(1) − z1|) −
ℓ1∑

i=1
b′′

i exp (−β|yi(1) − z1|) .

Let

X ′′ = {T ′′(z1)|z1 ∈ {x1(1), . . . , xℓ1(1), y1(1), . . . , yℓ2(1)}}.

Then, using the result that when |Uz| = 1, equation 14 holds, it follows

T ′′(z∗
1) ≥ min{0, min X ′′}. (20)
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Notice that

T ′′(z1) =
ℓ1∑

i=1
a′′

i exp (−β|xi(1) − z1|) −
ℓ1∑

i=1
b′′

i exp (−β|yi(1) − z1|)

=
ℓ1∑

i=1
ai exp

−β

l∑
j=2

|xi(j) − z′
j |

 exp (−β|xi(1) − z1|)

−
ℓ1∑

i=1
bi exp

−β

l∑
j=2

|yi(j) − z′
j |

 exp (−β|yi(1) − z1|)

= T (z1, z′
2, . . . , z′

l).

According to equation 19,

T ′′(z∗
1) = min X ′.

Notice that since equation 20 holds, we have

min X ′ ≥ min{0, min X ′′},

put which back into equation 17, we further have

T (z∗
1 , . . . , z∗

l ) ≥ min{0, min X ′} ≥ min{0, min X ′′}.

Notice that

min X ′′ = min{T ′′(z1)|z1 ∈ {x1(1), . . . , xℓ1(1), y1(1), . . . , yℓ2(1)}}
= min{T (z1, z′

2, . . . , z′
l)|z1 ∈ {x1(1), . . . , xℓ1(1), y1(1), . . . , yℓ2(1)}},

where

z′
i ∈ {x1(i), . . . , xℓ1(i), y1(i), . . . , yℓ2(i)}, i = 2, . . . , l

according to its definition in equation 18. Hence,

min X ′′ ≥ min χ =⇒ T (z∗
1 , . . . , z∗

l ) ≥ min{0, min X },

which proves inequality 14.

A.4 Proof of Lemma 4

Lemma 8. Following the notation and definitions in Lemma 3, denote

x̃i(j) = max{|xi(j) − x1(j)|, . . . , |xi(j) − xℓ1(j)|, |xi(j) − y1(j)|, . . . , |xi(j) − yℓ2(j)|}

for any i ∈ {1, . . . , ℓ1}, j ∈ Uz, and denote

ỹi(j) = max{|yi(j) − x1(j)|, . . . , |yi(j) − xℓ1(j)|, |yi(j) − y1(j)|, . . . , |yi(j) − yℓ2(j)|}

for any i ∈ {1, . . . , ℓ2}, j ∈ Uz. Subsequently,

min X ≥
ℓ1∑

i=1
ai exp

−β
∑

j∈Uz

x̃i(j)

−
ℓ2∑

i=1
bi, (21)

max X ≤
ℓ1∑

i=1
ai −

ℓ2∑
i=1

bi exp

−β
∑

j∈Uz

ỹi(j)

 . (22)
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Proof. We will only prove inequality 21 and inequality 22 can be proved similarly.

Without loss of generality, let us assume (after relabelling) Uz = 1, . . . , l, where l = |Uz|. Subsequently, let

(z∗
1 , . . . , z∗

l ) = arg min
{zi∈{x1(i),...,xℓ1 (i),y1(i),...,yℓ2 (i)},i=1,...,l}

T (z1, . . . , zl).

That is,

T (z∗
1 , . . . , z∗

l ) = min X .

Notice that for any j ∈ {1, . . . , l},

z∗
j ∈ {x1(j), . . . , xℓ1(j), y1(j), . . . , yℓ2(j)}

according to its definition. Hence, for any i ∈ {1, . . . , ℓ1},

|z∗
j − xi(j)| ≤ max{|xi(j) − x1(j)|, . . . , |xi(j) − xℓ1(j)| = x̃i(j),

following which
l∑

j=1
x̃i(j) ≥

l∑
j=1

|xi(j) − z∗
j |, i = {1, . . . , ℓ1}

=⇒ − β

l∑
j=1

x̃i(j) ≤ −β

l∑
j=1

|xi(j) − z∗
j |, i = {1, . . . , ℓ1}.

Subsequently,

T (z∗
1 , . . . , z∗

l ) =
ℓ1∑

i=1
ai exp

−β

l∑
j=1

|xi(j) − z∗
j |

−
ℓ2∑

i=1
bi exp

−β

l∑
j=1

|yi(j) − z∗
j |


≥

ℓ1∑
i=1

ai exp

−β

l∑
j=1

x̃i(j)

−
ℓ2∑

i=1
bi exp

−β

l∑
j=1

|yi(j) − z∗
j |


≥

ℓ1∑
i=1

ai exp

−β

l∑
j=1

x̃i(j)

−
ℓ2∑

i=1
bi,

which proves inequality 21.

A.5 Proof of Theorem 1

We now prove Theorem 1, which bounds the MMD2
u(X, Y ) test statistic when data are univariate.

Theorem 5. Suppose X = {x1, . . . , xn1} and Y = {y1, . . . , yn2} are univariate real values. Assume
x1, . . . , xm1 , y1, . . . , ym2 are unobserved. Let k denote the Laplacian kernel and define

T1(z) = c1

n1∑
j=m1+1

k(z, xj) − c3

n2∑
j=m2+1

k(z, yj),

T2(z) = c2

n2∑
j=m2+1

k(z, xj) − c3

n1∑
j=m1+1

k(z, yj),

where c1 = 2
n1(n1−1) , c2 = 2

n2(n2−1) and c3 = 2
n1n2

. Further, let

S1 := {0, T1(xm1+1), . . . , T1(xn1), T1(ym2+1), . . . , T1(yn2)},

S2 := {0, T2(xm2+1), . . . , T2(xn2), T2(ym1+1), . . . , T2(yn1)}.
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Then, the MMD2
u(X, Y ) using Laplacian kernel k is bounded, over all possible values of x1, . . . , xm1 ,

y1, . . . , ym2 , as follows:

m1(m1 − 1)
n1(n1 − 1) + m2(m2 − 1)

n2(n2 − 1) + m1 max S1 + m2 max S2 + A2 > MMD2
u(X, Y ),

MMD2
u(X, Y ) > A2 + m1 min S1 + m2 min S2 − 2

n1n2
m1m2,

where A2 is defined in lemma 1.

Proof. To start, according to Lemma 1,

MMD2
u(X, Y ) = A1 + A2 + A3 + A4,

where

A1 = c1

m1∑
i=1

m1∑
j=i+1

k(xi, xj) + c2

m2∑
i=1

m2∑
j=i+1

k(yi, yj) − c3

m1∑
i=1

m2∑
j=1

k(xi, yj),

A2 = c1

n1−1∑
i=m1+1

n1∑
j=i+1

k(xi, xj) + c2

n2−1∑
i=m2+1

n2∑
j=i+1

k(yi, yj) − c3

n1∑
i=m1+1

n2∑
j=m2+1

k(xi, yj),

A3 = c1

m1∑
i=1

n1∑
j=m1+1

k(xi, xj) − c3

m1∑
i=1

n2∑
j=m2+1

k(xi, yj),

A4 = c2

m2∑
i=1

n2∑
j=m2+1

k(yi, yj) − c3

n1∑
i=m1+1

m2∑
j=1

k(xi, yj),

and c1 = 2
n1(n1−1) , c2 = 2

n2(n2−1) and c3 = 2
n1n2

.

Following Equation equation 2, it is provided

m1(m1 − 1)
n1(n1 − 1) + m2(m2 − 1)

n2(n2 − 1) > A1 > − 2
n1n2

m1m2.

Further, using Lemma 2, it follows

m1 max S1 ≥ A3 ≥ m1 min S1,

and

m2 max S2 ≥ A4 ≥ m2 min S2,

which concludes our proof.

In order to compute the bounds of MMD2
u(X, Y ) for univariate samples with missing data using Theorem

5, we need to compute min S1, max S1, min S2 and max S2. Since |S1| = n1 − m1 and |S2| = n2 − m2. The
computation complexity is of order O(n1 + n2).

A.6 Proof of Theorem 2

This subsection proves Theorem 2, which bounds the MMD2
u(X, Y ) test statistic for multivariate data. To

start, we prove the following result regarding the incomplete Laplacian kernel K defined in Definition 3
Lemma 5. Suppose x and y are two samples of Rd real values and assume not all dimensions of values of x
and y are observed. Denote [d] = {1, . . . , d}. Let Ux be a set includes all unobserved dimensions in x and Uy

be a set includes all unobserved dimensions in y. Let K denote the incomplete Laplacian kernel defined in
Definition 3. Subsequently, it follows

K(x, y) ≥ k(x, y) ≥ 0.
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Proof. According to the definition of the Laplacian kernel, we have

k(x, y) = exp
(

−β

d∑
l=1

|x(l) − y(l)|
)

≥ 0.

Also, notice that

∑
l∈[d]\(Ux∪Uy)

|x(l) − y(l)| ≤
d∑

l=1
|x(l) − y(l)|.

Then, since β > 0,

−β
∑

i∈[d]\(Ux∪Uy)

|x(i) − y(i)| ≥ −β

d∑
l=1

|x(l) − y(l)|.

According to the definition of incomplete Laplacian kernel, we therefore have

K(x, y) = exp

−β
∑

l∈[d]\(Ux∪Uy)

|x(l) − y(l)|


≥ exp

(
−β

d∑
l=1

|x(l) − y(l)|
)

= k(x, y),

which completes our proof.

Recall that in Lemma 1, it is shown that MMD2
u(X, Y ) can be decomposed into four parts A1, A2, A3 and

A4 with part A1 including incomplete samples only, A2 including complete samples only, and A3, A4 mixed
with both complete and incomplete samples.

Lemma 5 allows us to bound term A1 by bounding any two incompletely observed samples separately. Let
Uxi be a set including all unobserved dimensions in xi, where 1 ≤ i ≤ m1. Similarly, let Uyi be a set including
all unobserved dimensions in yi, where 1 ≤ i ≤ m2. Subsequently, according to Lemma 5, it can be seen that∑m1

i=1
∑m1

j=i+1 K(xi, xj) ≥
∑m1

i=1
∑m1

j=i+1 k(xi, xj) > 0,
∑m2

i=1
∑m2

j=i+1 K(yi, yj) ≥
∑m2

i=1
∑m2

j=i+1 k(yi, yj) > 0,
and

∑m1
i=1
∑m2

j=1 K(xi, yj) ≥
∑m1

i=1
∑m2

j=1 k(xi, yj) > 0. Then, according to the definition of A1 in Lemma 1, it
follows

c1

m1∑
i=1

m1∑
j=i+1

K(xi, xj) + c2

m2∑
i=1

m2∑
j=i+1

K(yi, yj) > A1 > −c3

m1∑
i=1

m2∑
j=1

K(xi, yj), (23)

where c1 = 2
n1(n1−1) , c2 = 2

n2(n2−1) and c3 = 2
n1n2

. We now bound the terms A3 and A4. Recall that the term
A3 can be rewritten as equation 3 in both univariate and multivariate cases. For any xi where 1 ≤ i ≤ m1,
let Uxi

be a set including all unobserved dimensions in xi and let us introduce the function

T1(xi(l); l ∈ Uxi
) = c1

n1∑
j=m1+1

k(xi, xj) − c3

n2∑
j=m2+1

k(xi, yj), i ∈ {1, . . . , m1} (24)

where c1 = 2
n1(n1−1) and c3 = 2

n1n2
. Then, A3 can be computed as

A3 =
m1∑
i=1

T1(xi(l); l ∈ Uxi).

Subsequently, by combining Lemma 7 and Lemma 8, we have our main result:
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Theorem 6. Suppose X = {x1, . . . , xn1} and Y = {y1, . . . , yn2} are samples of Rd real values. Assume
x1, . . . , xm1 , y1, . . . , ym2 are data that are missing, or not completely observed. Subsequently, the MMD2

u(X, Y )
using Laplacian kernel k is bounded, over all possible imputations of x1, . . . , xm1 , y1, . . . , ym2 , as follows:

c1

m1∑
i=1

m1∑
j=i+1

K(xi, xj) + c2

m2∑
i=1

m2∑
j=i+1

K(yi, yj) + A2 + C1 + C3 > MMD2
u(X, Y ),

MMD2
u(X, Y ) > −c3

m1∑
i=1

m2∑
j=1

K(xi, yj) + A2 + C2 + C4,

where K is the incomplete Laplacian kernel defined in Definition 3, A2 is a constant of observed data defined
in Lemma 1, and c1, c2, c3 and C1, C2, C3, C4 are also constants of the observed data defined in Definition 4.

Proof. In Lemma 1, it is proved that

MMD2
u(X, Y ) = A1 + A2 + A3 + A4,

where

A1 = c1

m1∑
i=1

m1∑
j=i+1

k(xi, xj) + c2

m2∑
i=1

m2∑
j=i+1

k(yi, yj) − c3

m1∑
i=1

m2∑
j=1

k(xi, yj),

A2 = c1

n1−1∑
i=m1+1

n1∑
j=i+1

k(xi, xj) + c2

n2−1∑
i=m2+1

n2∑
j=i+1

k(yi, yj) − c3

n1∑
i=m1+1

n2∑
j=m2+1

k(xi, yj),

A3 = c1

m1∑
i=1

n1∑
j=m1+1

k(xi, xj) − c3

m1∑
i=1

n2∑
j=m2+1

k(xi, yj),

A4 = c2

m2∑
i=1

n2∑
j=m2+1

k(yi, yj) − c3

n1∑
i=m1+1

m2∑
j=1

k(xi, yj),

and c1 = 2
n1(n1−1) , c2 = 2

n2(n2−1) and c3 = 2
n1n2

.

According to inequality 23,

c1

m1∑
i=1

m1∑
j=i+1

K(xi, xj) + c2

m2∑
i=1

m2∑
j=i+1

K(yi, yj) > A1 > −c3

m1∑
i=1

m2∑
j=1

K(xi, yj). (25)

Notice that

A3 =
m1∑
i=1

c1

n1∑
j=m1+1

k(xi, xj) − c3

n2∑
j=m2+1

k(xi, yj)

 .

Let us introduce the function

T1(xi(l); l ∈ Uxi
) = c1

n1∑
j=m1+1

k(xi, xj) − c3

n2∑
j=m2+1

k(xi, yj), i ∈ {1, . . . , m1}.

Subsequently, A3 can be computed as

A3 =
m1∑
i=1

T1(xi(l); l ∈ Uxi). (26)

Denote

Xxi
= {T1(xi(l); l ∈ Uxi

)|xl ∈ {xm1+1(l), . . . , xn1(l), ym2+1(l), . . . , yn2(l)}, l ∈ Uxi
},
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for any i = 1, . . . , m1. Let [d] = {1, . . . , d}. Notice that

T1(xi(l); l ∈ Uxi
) =

n1∑
j=m1+1

a′
i,j exp

−β
∑

l∈Uxi

|xi(l) − xj(l)|

−

n2∑
j=m2+1

b′
i,j exp

−β
∑

l∈Uxi

|xi(l) − yj(l)|

 ,

where

a′
i,j = c1 exp

−β
∑

l∈[d]\Uxi

|xi(l) − xj(l)|

 ,

b′
i,j = c3 exp

−β
∑

l∈[d]\Uxi

|xi(l) − yj(l)|

 .

Then, according to Lemma 3, it follows

max{0, max Xxi
} ≥ T1(xi(l); l ∈ Uxi

) ≥ min{0, min Xxi
}, i = 1, . . . , m1. (27)

According to Lemma 4,

min Xxi
≥

n1∑
j=m1+1

a′
i,j exp

−β
∑

l∈Uxi

x̃i(l)

−
n2∑

j=m2+1
b′

i,j ,

max Xxi
≤

n1∑
j=m1+1

a′
i,j −

n2∑
j=m2+1

b′
i,j exp

−β
∑

l∈Uxi

ỹj(l)

 .

Notice that according to the definition of incomplete kernel in Definition 3,

a′
i,j = c1 exp

−β
∑

l∈[d]\Uxi

|xi(l) − xj(l)|

 = c1K(xi, xj),

b′
i,j = c3 exp

−β
∑

l∈[d]\Uxi

|xi(l) − yj(l)|

 = c3K(xi, yj).

Hence, for any i = 1, . . . , m1,

min Xxi ≥
n1∑

j=m1+1
c1K(xi, xj) exp

−β
∑

l∈Uxi

x̃i(l)

−
n2∑

j=m2+1
c3K(xi, yj),

max Xxi
≤

n1∑
j=m1+1

c1K(xi, xj) −
n2∑

j=m2+1
c3K(xi, yj) exp

−β
∑

l∈Uxi

ỹj(l)

 .

According to equation 27, we then have

T1(xi(l); l ∈ Uxi
) ≥ min{0, min Xxi

}

≥ min

0,

n1∑
j=m1+1

c1K(xi, xj) exp

−β
∑

l∈Uxi

x̃i(l)

−
n2∑

j=m2+1
c3K(xi, yj)

 ,
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and

T1(xi(l); l ∈ Uxi
) ≤ max{0, max Xxi

}

≤ max

0,

n1∑
j=m1+1

c1K(xi, xj) −
n2∑

j=m2+1
c3K(xi, yj) exp

−β
∑

l∈Uxi

ỹj(l)

 .

Following equation 26, then

C1 ≥ A3 ≥ C2.

Using the similar method, it can be prove that

C3 ≥ A4 ≥ C4.

Combining with equation 27, we conclude our result.

For computing bounds of MMD2
u(X, Y ) using Theorem 6, we need to compute x̃i(l) for any i ∈ {m1 +

1, . . . , n1}, l ∈ {1, . . . , d}, and compute ỹi(l) for any i ∈ {m2 + 1, . . . , n2}, l ∈ {1, . . . , d}. Notice that for any
x̃i(l), we have

|{|xi(l) − xm1+1(l)|, . . . , |xi(l) − xn1(l)|, |xi(l) − ym2+1(l)|, . . . , |xi(l) − yn2(l)|}|
= n1 − m1 + n2 − m2.

Hence, computing all x̃i(l) is of computational order at most O(dn1(n1 + n2)). Similarly, computing
all ỹi(l) is of computational complexity order at most O(dn2(n1 + n2)). After computing x̃i(l) for any
i ∈ {m1 + 1, . . . , n1}, l ∈ {1, . . . , d}, and ỹi(l) for any i ∈ {m2 + 1, . . . , n2}, l ∈ {1, . . . , d}, C1, C2, C3 and C4
can be computed with computational complexity order at most O((n1 + n2)). Overall, the computational
complexity order of computing bounds of MMD2

u(X, Y ) using Theorem 6, is O((n1 + n2)).

A.7 Proof of Theorem 3

This section provides bounds of p-value of MMD test statistic based on the bounds of MMD derived in
Section 3, and the permutation test.
Theorem 2. Suppose X = {x1, . . . , xn1} and Y = {y1, . . . , yn2} are samples of Rd real value. Let
(σ(1), . . . , σ(B)) be B i.i.d. random samplings, each being random permutation of {1, . . . , n1 + n2} and
denoted as σ(i) = (σ(i)(1), . . . , σ(i)(n1 + n2)), i = 1, . . . , B. Subsequently, let z1 = x1, . . . , zn1 = xn1 , zn1+1 =
y1, . . . , zn1+n2 = yn2 and for any i = 1, . . . , B, denote

Xσ(i) = {zσ(i)(1), . . . , zσ(i)(n1)}, Yσ(i) = {zσ(i)(n1+1), . . . , zσ(i)(n1+n2)},

and define p according to equation 5. Suppose further

MMD2
u(X, Y ) ≤ MMD2

u(X, Y ), MMD2
u(Xσ(i) , Yσ(i)) ≤ MMD2

u(Xσ(i) , Yσ(i)), i = 1, . . . , B.

Define

p = 1
B + 1

(
1 +

B∑
i=1

I(MMD2
u(Xσ(i) , Yσ(i)) ≥ MMD2

u(X, Y ))
)

.

Then, we must have p ≥ p.

Proof. Notice that for any i ∈ {1, . . . , B}, we have

I(MMD2
u(Xσ(i) , Yσ(i)) ≥ MMD2

u(X, Y )) = 1
=⇒ MMD2

u(Xσ(i) , Yσ(i)) ≥ MMD2
u(X, Y ).
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Since

MMD2
u(X, Y ) ≥ MMD2

u(X, Y ), MMD2
u(Xσ(i) , Yσ(i)) ≥ MMD2

u(Xσ(i) , Yσ(i)), i = 1, . . . , B,

it then follows

MMD2
u(Xσ(i) , Yσ(i)) ≥ MMD2

u(Xσ(i) , Yσ(i)) ≥ MMD2
u(X, Y ),

=⇒ I(MMD2
u(Xσ(i) , Yσ(i)) ≥ MMD2

u(X, Y )) = 1.

for any i ∈ {1, . . . , B}.

If, for any i ∈ {1, . . . , B},

I(MMD2
u(Xσ(i) , Yσ(i)) ≥ MMD2

u(X, Y )) = 0,

then we have

I(MMD2
u(Xσ(i) , Yσ(i)) ≥ MMD2

u(X, Y )) = 0 or 1.

Hence, for any i ∈ {1, . . . , B}, we have

I(MMD2
u(Xσ(i) , Yσ(i)) ≥ MMD2

u(X, Y )) ≥ I(MMD2
u(Xσ(i) , Yσ(i)) ≥ MMD2

u(X, Y )).

According to the definitions of p and p, we then must have p ≥ p.

A.8 Proof of Theorem 4

This section provides bounds of p-value of MMD test statistic, based on the bounds of MMD derived in
Section 3, and the normality approximation proposed in Gao & Shao (2023).
Theorem 3. Suppose X = {X1, . . . , Xn1}, Y = {Y1, . . . , Yn2} ∈ Rd, and assume X1, . . . , Xm1 and
Y1, . . . , Ym2 are not observed. Let K denote the incomplete Laplacian kernel defined in Definition 3. Then,
we have VK∗

n,m ≥ Vk∗
n,m, Further, suppose we have MMD2

u(X, Y ) such that

0 ≤ MMD2
u(X, Y ) ≤ MMD2

u(X, Y ),

we have

MMD2
u(X, Y )√

cn,mVK∗
n,m

≤ MMD2
u(X, Y )√

cn,mVk∗
n,m

,

where cn,m and Vk∗
n,m are defined in equation 6, and equation 7, separately, and VK∗

n,m is defined in Definition 5.

Proof. To start, recall that it is proved in Lemma 5 that

K(x, y) ≥ k(x, y) > 0,

where x, y are potentially incompletely observed Rd samples. Hence, for any 1 ≤ s, t ≤ N , we have

ak
s,t ≥ ak

s,t ≥ ak
·,t,

which then gives

A
K∗
s,t ≥ Ak∗

s,t,
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where Ak∗
s,t is defined in Proposition 10 in Gao & Shao (2023) as

Ak∗
s,t := ak

s,t − ak
·,t − ak

s,· + ak
·,·.

Subsequently,

VK∗
n,m ≥ Vk∗

n,m,

where Vk∗
n,m is defined in Proposition 10 in Gao & Shao (2023) as

Vk∗
n,m = 1

N(N − 3)
∑
s̸=t

(
Ak∗

s,t

)2 − 1
(N − 1)(N − 3) .

Further, suppose

0 ≤ MMD2
u(X, Y ) ≤ MMD2

u(X, Y ).

Then, we must have

MMD2
u(X, Y )√

cn,mVK∗
n,m

≤ MMD2
u(X, Y )√

cn,mVk∗
n,m

,

which completes our proof.
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B Simulation Details

B.1 Computing Environment and Resources

The experiments were run on an high performance computing cluster with 325 compute nodes, each equipped
with 2x AMD EPYC 7742 processors (128 cores, 1TB RAM per node). Each job utilized 32 cores and 64 GB
of memory, with compute times varying from a couple of hours to 2-3 days, based on the samples sizes and
dimensions of data of the job.

B.2 Simulation Settings

Median Heuristic. All experiments in Section 5 use median heuristic (Gretton et al., 2012a) for the
parameter β of the Laplacian kernel. This heuristic first calculates the median of all pairwise differences, i.e.

m = med{∥z − z′∥ : z, z′ ∈ {x1, . . . , xn1 , y1, . . . , yn2}, z ̸= z′},

and then sets β = 1/m. For the Laplacian kernel, the norm is the 1-norm. This is a popular method of
setting β, and it generally works well (Gretton et al., 2012a). For case deletion and the proposed methods,
only completely observed data will be used for computing β. For mean and hot deck imputation, the β will
be computed using imputed data.

Permutations. Permutation tests Good (2005); Schrab et al. (2023) are used for case deletion, mean
imputation, and hot deck imputation, with the number of permutations set to B = 100. MMD-Perm also
uses B = 100 permutations.

B.3 Other missing data methods

MissForest. MissForest Stekhoven & Bühlmann (2012) is a nonparametric imputation method based on
random forests. It iteratively imputes missing values by training a random forest on observed data for each
variable with missing entries, using the other variables as predictors. The process repeats until the imputed
values converge or a stopping criterion is met. In our experiments, we evaluate this method using the default
parameters recommended in Stekhoven & Stekhoven (2013).

Wilcoxon-Mann-Whitney test with missing data method (WMWM). WMWM Zeng et al. (2024)is
a two sample testing with missing data method based on the Wilcoxon-Mann-Whitney test statistic. This
method rejects the null hypothesis when all possible imputed test statistics are significant. Since WMWM
is based on the Wilcoxon-Mann-Whitney test statistic, it is applicable only for univariate data and can is
restricted to detect mean value shift.

Case deletion. For univariate data, case deletion uses only the observed data for testing. For multivariate
data, only data that are completely observed are used.

Mean imputation. For univariate data, mean imputation replaces missing values with the mean of the
observed samples in the same group, X or Y . For multivariate data, the missing components of an incomplete
vector are imputed with the mean of the observed components of that same vector.

Hot deck imputation. For univariate data, hot deck imputation imputes missing values with randomly
selected observed values (with replacement) from the same group, X or Y . For multivariate data, the
missing components of an incomplete vector are imputed with randomly selected observed components (with
replacement) from that same vector.
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B.4 Examples of MNIST dataset.

In this section, we present examples of MNIST images used in Section 5.

Figure 4: Examples of MNIST images LeCun et al. (1998). Each image has dimensions of d = 28 × 28. The
labels for the images, ordered from left to right and top to bottom, are 5, 0, 4, 1, 9, 2, 1, 3, 1, 4, 3, 5, 3, 6, 1,
and 7.
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Figure 5: Examples of incompletely observed MNIST images, where white pixels represent unobserved
values. Each image has dimensions of d = 28 × 28 and is labelled as 3. The first column shows fully observed
images; the second column shows images with upper half pixels missing (rows 1 to 14 and columns 8 to 21);
the third column shows images after mean imputation; and the fourth column shows images after hot deck
imputation. Each row presents different variations of the same original image.
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C Additional Experiments

In this section, additional experiments are provided for investigating the power of proposed method. Different
sample sizes and alternatives are considered compared to those in Section 5.

C.1 Univariate Data

The missingness mechanism for producing the following two figures is the same as the mechanisms used to
produce Figure 2.
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Figure 6: The power of MMD-Miss and the three common missing data approaches for univariate samples
when data are missing not at random (MNAR). (Left): Sample size n1 = n2 = 50; (Middle): Sample size
n1 = n2 = 100; (Right): Sample size n1 = n2 = 200. For all figures, significance level α = 0.05, and
alternative hypothesis N(0, 1) vs N(1, 1) are used. The displayed values are the average times of rejecting
the null hypothesis over 100 repetitions.
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Figure 7: The power of MMD-Miss and the three common missing data approaches for univariate samples
when data are missing not at random (MNAR). (Left): Sample size n1 = n2 = 50; (Middle): Sample size
n1 = n2 = 100; (Right): Sample size n1 = n2 = 200. For all figures, significance level α = 0.05, and
alternative hypothesis N(0, 1) vs N(0, 3) are used. The displayed values are the average times of rejecting
the null hypothesis over 100 repetitions.
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C.2 Multivariate Data

The missingness mechanism for producing the following two figures is the same as the mechanisms used to
produce Figure 3.
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Figure 8: The power of MMD-Miss and the three common missing data approaches for multivariate samples
(d = 50) when data are missing not at random (MNAR). (Left): Sample size n1 = n2 = 50; (Middle):
Sample size n1 = n2 = 100; (Right): Sample size n1 = n2 = 200. For all figures, significance level α = 0.05,
and alternative hypothesis N((0, . . . , 0)T , I50) vs N((1, . . . , 1)T , I50) are used. The displayed values are the
average times of rejecting the null hypothesis over 100 repetitions.
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Figure 9: The power of MMD-Miss and the three common missing data approaches for multivariate samples
(d = 50) when data are missing not at random (MNAR). (Left): Sample size n1 = n2 = 50; (Middle):
Sample size n1 = n2 = 100; (Right): Sample size n1 = n2 = 200. For all figures, significance level α = 0.05,
and alternative hypothesis N((0, . . . , 0)T , I50) vs N((0, . . . , 0)T , 9I50) are used. The displayed values are the
average times of rejecting the null hypothesis over 100 repetitions.
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