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Abstract

Recent advancements in Vision Language Models (VLMs) have expanded their
capabilities to interactive agent tasks, yet existing benchmarks remain limited to
single-agent or text-only environments. In contrast, real-world scenarios often
involve multiple agents interacting under rich visual and language observations,
posing challenges with both multimodal perceptions and strategic interactions. To
bridge this gap, we introduce Visual Strategic Bench (VS-Bench), a multimodal
benchmark that evaluates VLM agents for strategic reasoning and decision-making
in multi-agent environments. VS-Bench comprises eight vision-grounded environ-
ments spanning cooperative, competitive, and mixed-motive interactions, designed
to assess agents’ ability to infer other agents’ future moves and optimize long-term
objectives. We consider two complementary evaluation dimensions, including of-
fline evaluation of strategic reasoning by next-action prediction accuracy and online
evaluation of decision-making by normalized episode return. Extensive experi-
ments of fourteen leading VLMs reveal a significant gap between current models
and optimal performance, with the best model achieving 45.8% average predic-
tion accuracy and 26.3% average normalized return. We further conduct in-depth
analyses on multimodal input, social dilemma behaviors, and failure cases of VLM
agents. By highlighting the limitations of existing models, we envision our work
as a foundation for future explorations in strategic multimodal agents. Code and
data are available at https://sites.google.com/view/vs-bench-nips.
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(a) Offline evaluation of strategic reasoning.

(b) Online evaluation of decision-making.

Figure 1: Evaluation results of fourteen VLMs’ performance on strategic reasoning and decision-
making averaged over eight environments in VS-Bench.
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1 Introduction

Vision Language Models (VLMs) have recently unlocked impressive capabilities in open-world
perception, multimodal reasoning, and interactive problem-solving [5}139,|89]. Driven by these ad-
vancements, evaluations of VLMs have progressed beyond static tasks such as image captioning [15]]
and visual reasoning [3| |85]] toward dynamic agent benchmarks including software engineering,
computer use [30} [80], game environments [75} [87]], and embodied control [25 68|, [83].

However, existing benchmarks for VLM agents mainly focus on single-agent settings, where one
agent reasons and makes decisions in isolation. Yet the real world is inherently a multi-agent
environment that involves cooperation, competition, and mixed-motive interactions, posing new
challenges to the ability of intelligent agents [20, [77]. First, an agent’s outcome depends not only
on its own action but also on other agents’ actions, requiring strategic reasoning to infer others’
intentions and predict their future moves. Second, as all agents learn and adapt concurrently, the
underlying dynamics become non-stationary, demanding agents to make decisions under uncertainty
and optimize long-term objectives. Third, the coexistence of cooperation and competition gives rise
to social dilemmas where agents must strategically balance self-interest and collective welfare. These
challenges raise a crucial question that current benchmarks leave underexplored: How capable are
VLM agents at strategic reasoning and decision-making in multi-agent environments?

While prior efforts [[1} 18}, [79] have explored multi-agent evaluation for Large Language Models
(LLMs), these benchmarks remain restricted to text-only environments, limiting their capability to
assess agents in multimodal scenarios. On the one hand, many strategic domains such as board
games [33}164]], card games [7,|11]], and video games [8|12] intrinsically rely on visual observations.
Flattening these rich visual states into symbolic text strings requires hand-crafted encodings and
inevitably discards spatial information critical for reasoning and decision-making. On the other hand,
humans naturally integrate vision and language when interacting with others. Consequently, purely
text-based environments diverge from real-world human-agent interactions and obscure progress
toward developing human-compatible intelligent agents. These limitations underscore the need for a
multimodal benchmark that incorporates visual context in multi-agent environments.

To bridge this gap, we introduce Visual Strategic Bench (VS-Bench), a multimodal benchmark
designed to evaluate VLM for strategic reasoning and decision-making in multi-agent environments.
VS-Bench comprises eight vision-grounded environments that cover three fundamental types of multi-
agent interactions that emphasize different facets of strategic intelligence. (1) Cooperative games,
including Hanabi and Overcooked, demand agents to understand teammates’ intentions and coordinate
their actions to achieve shared objectives. (2) Competitive games, including Breakthrough, Kuhn
Poker, and Atari Pong, demand agents to model their opponents and stay robust against adversaries.
(3) Mixed-motive games, including Coin Dilemma, Monster Hunt, and Battle of the Colors, demand
agents to balance contradict interests and sustain cooperation while avoiding exploitation.

VS-Bench evaluates VLM agents along two complementary dimensions: offline evaluation of strategic
reasoning and online evaluation of decision-making. Strategic reasoning refers to the theory-of-mind
capability to infer other agents’ intentions and predict their future moves for effective cooperation
and competition. We construct an offline dataset for each environment and evaluate VLM agents’
performance by their prediction accuracy of other agents’ next actions. Decision-making focuses
on agents’ ability to optimize long-term objectives in non-stationary dynamics. We let VLM agents
engage in online self-play or interactions with conventional agents in full-length episodes and evaluate
their performance by normalized returns. By jointly analyzing both perspectives, our benchmark
provides a unified and comprehensive evaluation of VLMs in multi-agent environments.

We evaluate fourteen leading VLMs, including three open-source models, six commercial chat
models, and five commercial reasoning models on VS-Bench. Extensive results show that although
current VLMs exhibit preliminary strategic reasoning ability by surpassing random agents, the best-
performing model only attains a modest average prediction accuracy of 45.8%. Furthermore, current
VLMs demonstrate poor decision-making ability in multi-agent environments, with the most capable
model achieving a 26.3% normalized return across all environments. Notably, although reasoning
commercial models in general attain the best results, open-source models can achieve comparable
performance to reasoning models in some mixed-motive games with prosocial behaviors for mutual
benefit. We further conduct in-depth analyses to study the effect of multimodal input and prompting
methods, the behaviors in social dilemmas, and the failure modes of VLM agents.
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Figure 2: Overview of VS-Bench, a multimodal benchmark for evaluating VLMs in multi-agent
environments. We evaluate fourteen state-of-the-art models in eight vision-grounded environments
with two complementary dimensions, including offline evaluation of strategic reasoning by next-
action prediction accuracy and online evaluation of decision-making by normalized episode return.

In summary, our contributions are threefold:

* We introduce VS-Bench, a multimodal benchmark for evaluating strategic reasoning and decision-
making in multi-agent environments, comprising eight vision-grounded environments across
cooperative, competitive, and mixed-motive interactions.

* We consider two complementary evaluation dimensions, including offline evaluation of strate-
gic reasoning by next-action prediction accuracy and online evaluation of decision-making by
normalized episode returns, to provide a unified and comprehensive assessment of VLM agents.

* We conduct extensive experiments of eleven commercial VLMs and three open-source VLMs
and provide in-depth analyses of vision and language input, social behaviors, and failure modes,
highlighting significant performance gaps for future research.

2 VS-Bench environments

In this section, we formalize the evaluation of VLMs in multi-agent environments and introduce
eight vision-grounded games comprising VS-Bench. These games are carefully curated from classic
game theory and multi-agent reinforcement learning (MARL), each serving as a well-recognized
environment in the literature. We further adapt these games to incorporate image and text observations
while preserving their strategic dynamics. By covering cooperative, competitive, and mixed-motive
interactions, these games serve as a comprehensive benchmark for evaluating VLMs in multi-agent
environments. A set of simpler games called VS-Bench Mini is described in Appendix [A]

2.1 Problem formulation

Multi-agent environments are generally formulated as Partially Observable Markov Games
(POMG) [381163]. A POMG is defined by a tuple G = (N, S, {A; }iens {Oitiens Py {Ritien, V),
where A" = {1,--- ,n} is the set of agents; S is the state space; .A; and O; are the action space and
observation space of agent ¢, respectively; P : S x {A;}ienyr — A(S) is the transition function;
Ri: S x {A;}ienr — R is the reward function of agent ¢; and +y is the discount factor. In each step
t, agent 7 receives an observation o; ; and chooses an action a; ; according to its policy ;. Given
the current state s, and the joint action a; = (a1, - - , Gt ), the environment transitions to the next
state s;y1 ~ P(s¢, a¢) and each agent 4 receive a reward r; ; = R;(s¢, a;). The objective of agent i
is to maximize its expected accumulated reward E, ... . [>, 7'7.4)-
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To evaluate VLM in multi-agent environments, we consider a multimodal observation space O; =
(Z;,T:), where Z; is the space for image observations and 7; is the space for text prompts. We also

consider a text-based action space A; and a mapping function that converts each textual action into
the original action space A;. To more comprehensively characterize the strategic ability of VLM
agents, we consider three types of multi-agent interactions defined by the reward structure.

2.2 Cooperative games

In cooperative games, all agents share the same objective. Formally, the reward functions in coop-
erative games are identical: R1(s,a) = -+ = R,(s,a) forall (s,a) € S x {A;}ien. To achieve
strong performance in cooperative games, agents must understand their teammates’ intentions under
partial observability, divide the tasks to improve efficiency, and coordinate their actions to optimize
the shared objective. We consider two representative cooperative games in MARL literature.

Hanabi [[1] is a partially-observable card game where players can observe others’ cards but not their
own. Each card has a color and a rank that can only be revealed through hint actions at the cost of an
information token. To succeed, agents must coordinate to play cards in rank order for five colors. We
consider the two-player full game, which is widely used for research on theory of mind, zero-shot
coordination, and ad-hoc teamplay [27, 28]]. Detailed descriptions can be found in Appendix [B.1]

Overcooked [23] is a popular video game where two chefs cooperate to cook and serve dishes in
a kitchen. Each dish delivery requires multiple operations like navigating, chopping, cooking, and
plating that are difficult to coordinate even for human players. Our implementation is based on
Overcooked-Al [[12], a well-known environment for zero-shot coordination and human-AlI interac-
tions [66, [86]). Detailed descriptions can be found in Appendix

2.3 Competitive games

In competitive games, the objective of each agent strictly contradicts with others. Formally, the reward
functions in competitive games are zero-sum: » .. ; R;(s,a) = 0 forall (s,a) € S x {A; }ien. To
succeed in competitive games, agents must model their opponents to predict their future moves, stay
robust against adversarial exploitation, and adapt to non-stationary dynamics. We consider three
representative competitive games in game theory and MARL literature.

Breakthrough [[12] is a chess-like board game with simplified rules and identical pawns. Two players
compete to advance their pieces across an 8 x 8 grid to reach the opponent’s back row. The game
is deceptively simple, yet it exhibits deep combinatorial complexity and sharp tempo imbalance
between attack and defense, making it a suitable environment for studying multi-step lookahead and
adversarial decision-making [41}(59]]. Detailed descriptions can be found in Appendix [B.3]

Kuhn Poker [32] is a simplified variant of Texas Hold’em [48], [11] designed to study imperfect-
information games for game-theoretic analysis. The game has a three-card deck and a single betting
round where two players can either check or bet with limited stakes. Despite its minimal rules,
Kuhn poker has been used as a classic game for counterfactual reasoning and decision-making with
imperfect information [33] 49]. Detailed descriptions can be found in Appendix[B.4]

Atari Pong [4] is a classic arcade video game where two players control paddles to hit a ball across
the screen. With raw pixel observations and competitive dynamics, Pong has become a canonical
environment in the Arcade Learning Environment (ALE) [[8] suite, which requires spatio-temporal
reasoning and strategic gameplay [46, 47]|. Detailed descriptions can be found in Appendix [B.3]

2.4 Mixed-motive games

In mixed-motive games, agents’ objectives are partially aligned and partially divergent. Formally, the
reward functions are neither identical nor zero-sum, that is, there exists (s, a) such that R;(s, a) #
Rj(s,a)and > | R;(s,a) # 0. To excel in mixed-motive games, agents must anticipate the hidden
intentions of others, balance self-interest and common welfare, and achieve favorable equilibria. We
consider three mixed-motive games adapted from classic social dilemmas in game theory.

Coin Dilemma [35] is a grid-world environment inspired by the classic Prisoner’s Dilemma [55]]
in game theory. A red player and a blue player move in a 5 x 5 grid world to collect red and blue
coins. A player earns 1 point for collecting any coin. However, the blue player is penalized 2 points
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if the red player collects a blue coin and vice versa. This setup creates a tension between mutual
benefit and self-interest: while both players collecting their own color leads to a win-win result,
unilateral defection maximizes one’s own gains at the other’s expense. Therefore, the game has
been a common environment for studying rational reasoning, opponent shaping, and social dilemma
resolution [21} 43| [58]). Detailed descriptions can be found in Appendix [B.6

Monster Hunt 53] is a grid-world environment inspired by the classic Stag Hunt [57] in game theory.
Two players move in a 5 x 5 grid world to individually eat an apple for 2 points or jointly defeat
a monster for 5 points. A player who confronts the monster alone, however, is penalized 2 points.
This leads to multiple Nash equilibria where agents can both safely eat apples alone or take risks
to cooperate for higher rewards. The game is used to investigate trust formation and risk-sensitive
decision-making [34}67]]. Detailed descriptions can be found in Appendix

Battle of the Colors is a grid-world environment inspired by the classic Battle of the Sexes [44]
in game theory. We propose and design this game in a manner similar to the previous two social
dilemma games. A red player and a blue player move in a 5 X 5 grid world with a red block and a
blue block. If both players move to the red block, the red player earns 2 points while the blue player
earns 1 point, and vice versa. If players move to different color blocks, both players earn O points.
Therefore, while coordination is mutually beneficial, each player strictly prefers coordinating on the
block of their own color, creating a conflict of interest that produces two payoff-asymmetric Nash
equilibria and a mixed equilibrium. This game thus challenges agents to solve conflicting preferences
while avoiding coordination failure, making it suitable for studying equilibrium selection, bargaining
dynamics, and social fairness. Detailed descriptions can be found in Appendix [B.8]

3 Evaluating VLMs in multi-agent environments

To comprehensively benchmark VLMs in multi-agent environments, we consider two complementary
dimensions including offline evaluation of strategic reasoning and online evaluation of decision-
making. We further provide several insights from our evaluation, which highlight limitations of
existing VLMs and research directions for future development.

Model setup. We select fourteen state-of-the-art VLMs for evaluation. For commercial VLMs, we
select six chat models and five reasoning models from OpenAI GPT [50] and o-series [S1]], Anthropic
Claude [2], Google Gemini [[17], xAI Grok [78], Qwen [69], and Doubao [61]]. For open-source
VLMs, we select three leading models from Llama-3.2-Vision [45]], Intern VL3 [89], and Qwen2.5-
VL [6]. We set the temperature to 1.0 and the maximum number of output tokens to 8k for all
models. We also set the maximum number of reasoning tokens to 16k for reasoning models. When
encountering a cutoff for reaching maximum tokens, we dynamically extend the output and reasoning
tokens to the model’s limit. Detailed descriptions of model setups can be found in Appendix [C|

3.1 Strategic reasoning

Strategic reasoning is the theory-of-mind ability to infer the hidden beliefs, desires, and intentions
of other agents [31,54]. This requires agents to think from others’ perspectives and answer the
question: What would other agents do in the next steps? Strategic reasoning is crucial in multi-agent
environments because an agent’s reward function depends not only on its own action, but also on
others’ actions. Therefore, to achieve strong performance, agents must anticipate teammates’ moves
to coordinate in cooperative games, predict opponents’ actions to counter them in competitive games,
and deduce whether to cooperate or compete in mixed-motive games. Detailed descriptions of
strategic reasoning evaluation can be found in Appendix [D}

Evaluation setup. We evaluate the strategic reasoning ability of VLM agents by their prediction
accuracy of other agents’ next actions on an offline dataset for each environment. More specifically,
each sample in the dataset is a tuple ({img; , }*_,,, text; s, a_; ¢4 1), where {img, . }_,, and text; ;
are the image observation sequence and text prompt of agent i at step t, respectwely, and a_; 441 15
the action of other agents at the next step ¢ + 1. The VLMs are prompted with the image sequence
and text observations to predict the next actions of other agents. To ensure a rigorous and thorough
evaluation, we construct the datasets according to the following principles. (1) Predictable: the next
actions can be predicted from the image and text observations, which exclude actions like reveal
in Hanabi that requires unobservable information. (2) Diverse: the dataset should cover a diverse
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Cooperative Comptitive Mixed-Motive
S O 11

MOdelﬂ vera Hanabi  Overcooked  Board E] Poker Pong Dilemma Hunt Battle
Oracle 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
04-mini 45.8 58.3 31.8 26.8 63.5 43.5 53.5 36.6 52.5
gemini-2.5-flash 42.5 37.0 21.0 23.3 65.0 41.3 57.5 31.2 63.5
claude-3-7-sonnet 38.8 39.0 26.0 24.3 65.5 44.8 45.0 26.2 39.5
doubao-1-5-thinking-pro 31.1 32.8 26.3 19.8 57.8 44.3 22.8 18.4 27.0
qvg-max 29.3 32.3 19.0 21.8 59.3 37.8 24.3 16.8 23.5
gpt-4.1 34.1 23.0 27.0 22.5 54.0 41.5 40.3 30.0 34.8
doubao-1-5-vision-pro 29.1 15.0 22.3 15.8 53.8 31.3 33.8 32.3 28.8
claude-3-7 w/o thinking 27.8 9.8 16.0 18.0 56.0 43.3 26.8 25.8 26.8
gemini-2.5 w/o thinking 27.6 21.5 19.3 14.8 48.5 34.0 32.0 23.0 27.5
qwen-vl-max 26.8 26.5 26.0 19.5 45.3 23.5 25.8 23.5 24.3
grok-2-vision 22.7 12.8 17.3 10.8 53.3 20.8 24.5 22.0 20.5
Qwen2.5-VL-72B-Ins. 29.4 26.8 26.5 23.8 45.2 27.0 28.8 27.2 30.0
InternVL3-78B 28.1 25.3 20.5 14.0 45.5 34.8 35.8 23.3 25.5
Llama-3.2-90B-Vision-Ins. 25.8 20.0 16.5 11.8 53.3 36.3 25.8 24.0 18.8
Random 21.6 8.8 16.7 4.3 50.0 33.3 20.0 20.0 20.0

Table 1: Strategic reasoning evaluation results. For each environment, the first, second , and third
best results are highlighted in green, while the results | below random are highlighted in red.

range of observations and actions in the environments, considering different environment contexts
and different styles of other agents. (3) Balanced: the distribution of the samples should be balanced
to avoid bias toward certain behaviors or preferences. Guided by these principles, we collect a dataset
of 400 samples for each environment and benchmark fourteen VLMs for strategic reasoning ability
measured by next-action prediction accuracy in eight environments.

The evaluation results in Table [T] and Fig. [Ta] show that current VLMs exhibit certain strategic
reasoning ability by surpassing random in overall prediction accuracy, yet they still lag behind the
oracle results by a noticeable margin of about 50%. All fourteen models perform better than random
guessing in at least six of the eight games, demonstrating non-trivial theory-of-mind capability in
multi-agent environments. Reasoning models generally achieve better results than chat models
and open-source models, with the best-performing model o4-mini attaining an overall accuracy of
45.8% and consistently ranking in the top three across all environments. Notably, the three leading
open-source models achieve an average overall accuracy of 27.7%, which is comparable to the
commercial chat models with a 28.0% average overall accuracy. However, even these most capable
existing models attain less than 50% overall accuracy, leaving a 50% gap to the oracle. This deficit is
especially pronounced in Overcooked, Leduc Poker, Atari Pong, and Monster Hunt, three of which
are adapted from video games. We further investigate this observation in the next analysis section.

Finding 1: Existing VLMs exhibit preliminary strategic reasoning ability by outperforming
random guessing in most environments, yet the 50% gap between the most capable models
and oracle results remains to be narrowed for future research.

3.2 Decision-making

Decision-making is the ability to optimize one’s long-term objectives under uncertainty [[19]. This
requires agents to prioritize future accumulated returns over immediate gains, adapt to non-stationary
dynamics with evolving agents, and balance cooperation and competition to navigate toward favorable
equilibria. Detailed descriptions of decision-making evaluation can be found in Appendix [E}

Evaluation setup. We evaluate the decision-making ability of VLM agents by their normalized
episode returns through online self-play or interactions with conventional agents in each environment.
More specifically, for cooperative and mixed-motive games, we let multiple VLM agents of the
same type interact with each other. For competitive games, we evaluate VLM agents against well-
recognized conventional agents like Monte Carlo Tree Search (MCTS) [16], Counterfactual Regret
Minimization (CFR) [90], and Atari built-in bot [8]]. For all environments, we also evaluate the

!'Specific model versions and links to open-source models can be found in Appendix
>The Board column corresponds to Breakthrough, and the remaining columns to its right correspond to Kuhn
Poker, Atari Pong, Coin Dilemma, Monster Hunt, and Battle of the Colors, respectively.




Models Overall Cooperative Comptitive Mixed-Motive
” Hanabi  Overcooked ~ Board Poker Pong Dilemma Hunt Battle
Optimal 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
gemini-2.5-flash 26.3 27.1436.0 8.5+5.4 20.0451.5 84.1119.9 1.6+1.9 10.0+25.5 26.2158 32.81385
o4-mini 24.6 42.94305 17.046.8 30.0494.0 71.6421.1 11.243165 —4.6421.4 249482 3.5454
doubao-1-5-thinking-pro 20.9 56.7422.8 10.14+47 10.04+42.0 65.8+4.9 29425 0.743.2 17.2411.3 4.0448
claude-3-7-sonnet 16.4 6.7421.1  10.1435 20.0+79.5 67.7428.1 —0.541.0 4.6415.4 199435 2.54456
qvq-max 8.1 0.040.0 2.043.4 5.0t31.5 5724194 04116 0.042.1 0.7145 [ =0.5%0.0
gemini-2.5 w/o thinking 8.0 0.040.0 2.044.0 0.040.0 58.6+12.2 1.0471.4 —0.7443 0.7148.9 2.543.4
gpt-4.1 7.6 0.0+0.0 | —=0.540.0 0.0+0.0 31.9+102 0.241.4 178467  11.2456 0.542.0
qwen-vl-max 7.6 1.2420 | =0.540.0 0.040.0 47.648¢ | —0.341.0 —04428 13.24920.2 —0.5+0.0
claude-3-7 w/o thinking 3.5 0.04+0.0 2.044.0 5.0431.5 19.14178 —0.9403 144192 0.248.2 1.042.3
grok-2-vision 2.4 0.040.0 1.543.3 0.040.0 166451 | =0.1415 1.1i70 —04458 05420
doubao-1-5-vision-pro 2.1 0.040.0 —0.5400 0.040.0 13419287 —0.9+p93 —2.1152 7.848.2 —0.510.0
Qwen2.5-VL-72B-Ins. 8.8 0.8418 | —0.540.0 0.0400 52.04+13.1 —0.8%0.2 0.0427 19.64257 —0.510.0
InternVL3-78B 6.7 0.040.0 0.041.5 0.040.0 49841175 —0.9+03 6.848.9 —1.8492 0.04715
Llama-3.2-90B-Vision-Ins. 4.5 0.040.0 1.543.3 0.0t0.0 30.11g7 | =0.940.3 0.4+3.4 3.614.9 1.042.3
Random 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 2: Decision-making evaluation results. For each environment, the  first, second , and third
best results are highlighted in green, while the results 'below | or equal to random are in red.

random agents and the oracle agents with maximum return to normalize the results so that the
normalized return for random agents is 0 and the normalized return for oracle agents is 100.

The evaluation results in Table [2]and Fig.[Ib|show that current VLMs are poor at decision-making in
multi-agent games, with a significant gap of about 75% normalized return behind optimal agents. As
illustrated by the large swaths of red cells, twelve out of fourteen evaluated models perform no better
than random agents in at least one environment, indicating their incompetence to optimize long-term
return in the face of non-stationary, interdependent multi-agent dynamics. Although reasoning models
achieve relatively better results than chat models and open-source models, even the most capable
model gemini-2.5-flash only attains an overall normalized return of 26.3%, which is far behind
the optimal normalized return. Surprisingly, we observe that some open-source models can achieve
comparable results to reasoning models in certain mixed-motive games like Qwen2.5-VL-72B-Ins.
in Coin Dilemma and InternVL3-78B in Monster Hunt. We also observe that the cases where
models fall below random performance are concentrated on video games like Overcooked, Atari
Pong, and Coin Dilemma, which underscores the coupled difficulty of multimodal perception and
strategic decision-making. We further investigate and analyze these observations in the next section.

Finding 2: Existing VLMs exhibit poor decision-making ability in multi-agent environments,
highlighting a significant gap of 75% that remains an open challenge for future research.

4 Analysis

Motivated by the observations in the evaluation results, we further investigate several aspects of VLMs
in multi-agent environments and provide in-depth analyses on multimodal input, social behaviors,
and failure cases. More experiment results can be found in Appendix [

4.1 Multimodal input

In principle, multimodal observations provide more information and should lead to better strategic
reasoning and decision-making. However, we observe in the evaluation results that environments
with inherent visual states, like video games, are especially challenging for VLM agents, indicating
potential incompetence in multimodal environments. To investigate, we select three games—a card
game, a board game, and a video game—and perform ablations on both vision and language input.

We first replace image inputs with text descriptions and compare the strategic reasoning results. The
first row in Fig. [3|shows that, with image input, reasoning models’ average performance increases in
the video game but decreases in the other two games. This indicates that VLMs can fail to utilize
multimodal inputs for better performance. Next, we consider Chain-of-Thought (CoT) prompting [76]
and the second row in Fig[3|shows CoT improves chat models’ performance in card and board games
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Figure 3: Ablations on visual input (first row) and prompting method (second row). Vertical solid
and dashed lines represent average results for the default and ablation settings, respectively.
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Figure 4: Behaviors of two reasoning models and the best-performing open-source models in mixed-
motive social dilemma games. Dimensions are agents’ behaviors described in Sec. @

but not in video games, showing VLMs’ failure to perform step-by-step reasoning in visual-rich
environments for better performance. More evaluation results can be found in Appendix [F.1]

Finding 3: Existing VLMs can fail to improve performance with visual observations and
CoT prompting, underscoring their incompetence in multimodal environments.

4.2 Behaviors in social dilemma

Another interesting observation is that open-source models can achieve comparable results to reason-
ing models in some mixed-motive games. We investigate this by visualizing the behaviors of two
reasoning models and the best-performing open-source models in each social dilemma games. As
shown in Fig[] in Coin Dilemma, the reasoning models are better at collecting coins, as they cooper-
ate (collect their own coin) and defect (collect others’ coin) more times than the open-source model.
However, they are also more self-interested, especially o4-mini, which tends to collect others’ coins
instead of its own, resulting in a worse-than-random result. In comparison, although InterVL3-78B
is not adept at collecting coins, it exhibits a strong preference for collecting its own coins rather than
those of others, leading to a win-win situation where both agents get high returns. Similar behaviors
can be found in Monster Hunt, where reasoning models like gemini-2.5-flash tend to safely eat
apples alone and avoid encountering the monster. By contrast, Qwen2.5-VL-72B-Ins. is more
inclined to take the risk to cooperate and defeat the monster together, which gives a high reward.
More results on social behavior analysis can be found in Appendix

Finding 4: Open-source VLMs can achieve comparable results to commercial reasoning
VLMs in some social dilemma games with prosocial behaviors for mutual benefit.
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4.3 Failure case analysis

To understand why VLMs underperform in multi-agent environments, we conduct a qualitative
analysis of their failure cases. In strategic reasoning, two common failure cases are ignoring history
and private information. For example, in Hanabi, players’ cards are observable to other agents
but not to themselves. VLMs often overlook this information asymmetry and incorrectly use their
private information to predict the next actions of others. In decision-making, another common failure
case is focusing excessively on one’s own actions while ignoring those of others. For example, in
Breakthrough, VLMs tend to persistently advance their own pieces and fail to identify defensive
vulnerabilities that directly result in losing the match. More failure cases can be found in Appendix|[G]

5 Related work

5.1 Multi-agent environments and benchmarks

Early work on multi-agent reasoning and decision-making is grounded in game theory [22 [74],
which models interactions among rational players and introduces canonical testbeds like board
games [62,[70]], card games [32}165]], and social dilemmas [44,155,157]]. Building on these foundations,
breakthroughs in multi-agent reinforcement learning (MARL) [11} [64] have expanded the field
toward complex, high-dimensional environments covering a diverse range of cooperative [7, 12} 60],
competitive [48], 73], and mixed-motive tasks [42] 9]. Despite their impressive achievements, agents
developed in these environments are typically specialized for a single task and lack general-purpose
abilities to perform strategic reasoning and decision-making across different domains.

Recent advancements in Large Language Models (LLMs) [24} 52, [71] have catalyzed a paradigm
shift toward generalist agents that can perceive and act in various environments without task-specific
training. A growing body of text-based benchmarks has been proposed to evaluate different facets
of LLM agents in multi-agent environments covering cooperation [[1]], competition [[18} 29], and
mixed-motive interactions [14} [79, |81]]. However, these benchmarks mainly focus on text-only
environments, which do not align with real-world decision-making that integrates visual observation,
spatial reasoning, and multimodal context. Our work fills this gap by introducing eight vision-
grounded games to evaluate multimodal generalist agents in multi-agent environments.

5.2 VLM agent benchmarks

The rapid evolution of Vision Language Models (VLMs) [5} 39] has driven evaluation beyond static
tasks like image captioning [15]] and visual reasoning [3} [85]] toward interactive agent environments.
Existing benchmarks can be broadly categorized into four domains: coding, GUI interaction, game
environments, and embodied control. Coding benchmarks 13\ [36} 182]] consider software engineering
and machine learning engineering with both visual and text input. GUI benchmarks evaluate VLMs on
graphic interface operations like web browsing [26 130} [88]], computer use [80,[10], and phone use [37,
56l. Game benchmarks [40, 75} 87 offer dynamic virtual environments with structured rewards to
assess VLMs’ ability in perception, reasoning, and decision-making. Embodied benchmarks [25} 68,
83| evaluate VLMSs in vision-driven robotics control and physical world interactions. Nevertheless,
these benchmarks predominantly concentrate on single-agent tasks, which overlook the distinctive
challenges of multi-agent environments including non-stationary dynamics, interdependent decision-
making, and equilibrium selection. Our work bridges this gap by evaluating VLMs in multi-agent
games with both offline evaluation of strategic reasoning and online evaluation of decision-making.

6 Conclusion

In this work, we present VS-Bench, a comprehensive multimodal benchmark for evaluating strategic
reasoning and decision-making capabilities of VLMs in multi-agent environments. Through eight
vision-grounded environments and two complementary evaluation metrics of next-action prediction
accuracy and normalized episode returns, we establish a unified framework for assessing VLMs in
multi-agent interactions. Extensive experiments and analysis on fourteen state-of-the-art VLMs reveal
a significant gap between current models and optimal performance, highlighting their limitations
for future development. By releasing VS-Bench as an open platform, we aim to spur research on
strategic multimodal agents that excel in vision-grounded multi-agent environments.
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A VS-Bench Mini

We introduce a lightweight benchmark, VS-Bench Mini, for the preliminary evaluation of VLMs.
The benchmark comprises one simple cooperative game, Tiny-Hanabi, and one competitive game,
Tic-Tac-Toe. Figure[5|presents example visual inputs for these two games.

Standard two-player Hanabi is played with a hand size of 5 cards per player, five colors, and a
maximum rank of 5, drawn from a 50-card deck. For Tiny-Hanabi, we simplify the configuration to a
hand size of 3 cards and a maximum rank of 3 per color, using only two colors. Both configurations
employ three life tokens (penalties for misplays) and eight information tokens (used to convey
hints). Under the Tiny-Hanabi setting, VLMs can focus more on cooperative strategy, with reduced
complexity in inferring cards and colors.

Tic-Tac-Toe is a fundamental competitive board game played on a 3 x 3 grid, in which the first player
to align three of their marks horizontally, vertically, or diagonally wins. We implement an optimal
Monte Carlo Tree Search (MCTS) agent configured with an exploration constant ¢ = 2.0, a maximum
of 1000 simulations per move, and 10 rollouts per move. However, since Tic-Tac-Toe yields only
drawn outcomes under optimal play, superior models are characterized by their ability to achieve a
higher proportion of draws when matched against our MCTS agent.

Life tokens: 3 Info tokens: 4 Deck size: 5
Discard pile: None

Action history: 1 turn ago player 0 select (Reveal player +1 rank 1)
turns ago: player 1 select (Reveal player +1 color Y)
3 turns ago: player 0 select (Reveal player +1 rank 2)
4 turns ago: player 1 select (Play 0)

Fireworks:

1

Player 1 (You)

Card 0: Card 1: Card 2:
Color: R, Y Color: R, Y Color: R, Y
Rank: 1 : Rank: 1

: 3 0

Card 0: Card 1: Card 2: T J !
Color: Y Color: Y Color: R ] 1 2
Rank: 1,2, 3 Rank: 1,2, 3 Rank: 1,2, 3

Player 0

(a) Tiny-Hanabi (b) Tic-tac-toe

Figure 5: Example visual inputs of the two games in VS-Bench Mini.

B Environment details

B.1 Hanabi

Visual observation. An example is shown in Figure [6] The current game-state visualization is
divided into four principal sections:
1. Basic Information: counts of remaining life tokens, information tokens, and draw deck size;
2. Historical Information: all discarded cards, together with each player’s two most recent actions;
3. Fireworks: current progress of each color’s fireworks stack, indicating the highest played rank;
4.

Players’ Hands: each player’s hand, with annotations beneath each card showing all possible
colors and ranks deduced from received hints.
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599
600

601

Life tokens: 1 Info tokens: 1 Deck size: 1
Discard pile: W1 W4 W4 B5 Y1 Y3 R4 W3 B3 B4 W5 Y2 R4 G1 W1 Y2 B1 G1 G5 B4 G4 Y1 R1R1Y3

Action history: 1 turn ago player 0 select (Discard 0)
2 turns ago: player 1 select (Play 3)
3 turns ago: player 0 select (Reveal player +1 color W)
4 turns ago: player 1 select (Discard 4)

Fireworks:

3
Player 1 (You)
' card 2:

Legend

rd

Card 0
Color: Y, B Color: R,

iR Y, Color: W
Rank: 4, 5 Rank: 2, 4, Rank: 2, 4,5

Player 0

Figure 6: Example visual input of Hanabi. Figure 7: Example visual input of Overcooked.

System prompt.

You are an AI agent that makes optimal decisions in the game of hanabi.

User prompt.

GAME RULES:

1. Hanabi is a cooperative card game for 2 players.

2. The deck consists of 5 colors: R(Red), Y(Yellow), G(Green), W(White),
B(Blue), with ranks ranging from 1 to 5. Each color contains 10 cards: three
of rank 1, two each of ramnk 2 through 4, and one of rank 5, for a total of
50 cards.

Each player holds 5 cards in hand.

There are 8 Info tokens (used to give hints) and 3 Life tokens (penalties for
misplays) .

As in blind man's bluff, players can see each other's cards but they cannot
see their own. Play proceeds around the table; each turn, a player must take
one of the following actions:

(Play i): play the i-th card from your hand (0-indexed) and attempt to
add it to the cards already played. This is successful if the card is a
1 in a suit that has not yet been played, or if it is the next number
sequentially in a suit that has been played. Otherwise a Life token is
consumed and the misplayed card is discarded. Successfully playing a 5
of any suit replenishes one Info token. Whether the play was successful
or not, the player draws a replacement card from the deck (if any
remain) .

(Discard i): discard the i-th card from your hand and draw a replacement
card from the deck (if any remain). The discarded card is out of the
game and can no longer be played. Discarding a card replenishes one Info
token.

(Reveal player +1 color c): spend one Info token to reveal all cards of
color c in the other player's hand.

(Reveal player +1 rank r): spend one Info token to reveal all cards of
rank r in the other player's hand.

game ends immediately when either all Life tokens are used up, resulting

in a game loss with a score of 0, or when all 5s have been successfully

played, resulting in a game win with a score of 25. Otherwise, the game
continues until the deck runs out and one final round is completed. At the
end of the game, the final score is calculated as the sum of the highest
card played in each suit, up to a maximum of 25 points.

I

-
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e02 User prompt continued.

PLAYER INFORMATION:
You are player {Player ID}.

GAME STATE:
Below is a visual representation of the current game state:
- The first section, located above the image, presents the game's basic
— state information.
- The second section summarizes the most recent player actions.
- The third section displays the current firework stacks, with each color
— labeled by the highest successfully played rank.
- The fourth section shows your own hand, represented as gray squares marked
— with '?', reflecting the fact that you cannot see your own cards.
- The fifth section presents the other player's hand, with each card shown
— in its true color and rank, since it is fully visible to you.
Below each card, you will find two lines of inferred information:
- Color: a list of all possible colors deduced for that card so far.
- Rank: a list of all possible ranks deduced for that card so far.
The information displayed below your cards reflects the hints the other player
— has given you so far.
The information below the other player's cards represents what they currently

— believe about their own cards, based on all the useful hints you have
— provided them up to this point. For example, below your first card you might
— see:

Card O:

Color: R, Y

Rank: 2, 3

indicating that your card O is either Red or Yellow and has rank 2 or 3.

LEGAL ACTIONS:
{Current Legal Actions}

INSTRUCTIONS:

Now it is your turn to choose an action. You should output your action in the
— following JSON format:

"7 json

{
"action": "(ACTION)"

where (ACTION) is one of the actions listed in the LEGAL ACTIONS section.

Do not include any extra commentary or explanation.

603
604 Back to|cooperative games}

605 B.2 Overcooked

606 Visual observation. An example is shown in Figure[7} On the left is the current game state, showing
607 the overall kitchen layout, the positions and orientations of both chefs, and the items they hold. On
eos the right is a legend explaining the visual representations of game elements—such as objects and
609 chef orientations—used in the game state.

610 System prompt.

You are an AI agent that makes optimal decisions in the game of Overcooked.

611
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612

613

614

(a) Example visual input of (b) Example visual input of Kuhn Poker. (c) Example visual in-
Breakthrough. put of Atari Pong.

User prompt.

GAME RULES:

1. Overcooked is a cooperative game where two chefs collaborate to cook and

< serve soups in 50 timesteps.

2. The chefs can move in the available area and cannot move to the counter.

3. The chefs can interact with the object on the tile that they are facing.

4. A soup is cooked in the following steps:

Pick up (interact) 1 onion and place (interact) it in the pot.

After placing 3 onions in the pot, open (interact) the pot and cook for 5
timesteps. The pot will show how long the soup has been cooked.

When the pot shows the number 5, the soup is finished. Pick up (interact)
a dish to plate (interact) the soup.

Deliver the soup and put (interact) it on the serving location.

B2 oo

PLAYER INFORMATION:

1. You are controlling {Chef ID} in the {Hat Color}.

2. You are holding {Holding Text} currently.

3. The image sequence shows the 4 most recent game frames, with the last image
— being the current game frame. Each image shows the frame and object legend,
< with the timestep in the top left corner.

HISTORY ACTIONS:
{History Informations}
(e.g., In timestep 1: chef_O chooses {Action}, chef_1 chooses {Action})

LEGAL ACTIONS:

<UP>: face up and move up one tile if possible.

<DOWN>: face down and move down one tile if possible.

<RIGHT>: face right and move right one tile if possible.

<LEFT>: face left and move left one tile if possible.

<STAY>: stay in the current tile and do nothing.

<INTERACT>: interact with the object on the tile that you are facing.

OO WN -

INSTRUCTIONS:

Now you should choose an action base on the game state in the current game
< frame. You should output your action in the following JSON format:

"7 json

{
"action": "<ACTION>"

where <ACTION> is one of <UP>, <DOWN>, <LEFT>, <RIGHT>, <STAY>, <INTERACT>.

Do not include any extra commentary or explanation.

Back to[cooperative games|
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615 B.3 Breakthrough

616 Visual observation. An example is shown in Figure|8al The figure illustrates the current positions
617 of both black and white pieces on the board. Row and column indices are annotated on the left and
618 bottom sides of the image, respectively.

619 System prompt.

[ You are an AI agent that makes optimal decisions in the game of breakthrough. ]
620

621 User prompt.

GAME RULES:

Breakthrough is a two-player strategy game played on a 8x8 grid.

. Each player controls pieces of a color: 'White' or 'Black'. 'White' starts at
the bottom (rows 1 and 2), while 'Black' starts at the top (rows 7 and 8).

If 'White' moves a piece to row 8, 'White' wins the game. Conversely, if
'Black' moves a piece to row 1, 'Black' wins the game.

Players alternate turns, moving one piece per turn, with 'Black' going first.

A piece may only move one space straight or diagonally forward, and only if
the destination square is empty.

A piece may only capture an opponent's piece by moving one space diagonally
forward into its square. In this case, the opponent's piece is removed, and
your piece takes its place.

'Black' moves forward by decreasing row indices (downward), while 'White'
moves forward by increasing them (upward).

Moves are specified by their start and end positions. For example, 'a2a3'
indicates moving a piece from a2 (column a, row 2) to a3 (column a, row 3).
The board is labeled with columns a-h and rows 1-8. Thus, h8 is the top-right

corner, and al is the bottom-left corner.

PP P Ipp@p By Dy PE

PLAYER INFORMATION:
Your mark is {Player's Mark}.

GAME STATE:

The current grid is shown in the image. Row labels are displayed on the left,
— while column labels appear at the bottom. The pieces are marked using their
— corresponding colors in the grid.

LEGAL ACTIONS:
{Legal Actions}

INSTRUCTIONS:
It is now your turn to select an action. Please output your move in the
— following JSON format:

json
{
"action": "xiyj"
¥
where:

- "x" and "y" represent the column letters, ranging from 'a' to 'h'.
- "i" and "j" represent the row numbers, ranging from 1 to 8.

For example, "a2a3" means moving the piece from column 'a', row 2 to column 'a’,
— row 3.

Do not include any extra commentary or explanation.

622

623 Back to|competitive games|

19



624

625

626

627

628
629

630
631

632

633
634
635
636
637

B.4 Kuhn Poker

Visual observation. An example is shown in Figure[8b] Each player receives a visual representation
of their actual card based on the true information of their hand.

System prompt.

You are an AI agent that makes optimal decisions in the game of Kuhn poker.

User prompt.

GAME RULES:

1. Kuhn poker is a two-player card game. The deck includes only three cards:

— King (X) > Queen (Q) > Jack (J).

2. At the start of each game, both player O and player 1 place 1 chip into the
— pot as a blind ante.

3. Each player is dealt a card as private information, and the third card is set
— aside unseen.

4. The two players take turns acting, starting with player 0. A player can

— choose to:

a. <PASS>: place no additional chips into the pot.
b. <BET>: place 1 additional chip into the pot.

5. If a player chooses to <PASS> after the other player's <BET>, the betting

— player wins the pot.

6. If both players choose to <PASS> or both players choose to <BET>, the player

— with the higher card wins the pot.

PLAYER INFORMATION:

You are player {Player ID}.

GAME HISTORY:

1. Blind ante: both player O and player 1 place 1 chip into the pot.
2. Deal: your card is shown in the image.

{Other History Information}

LEGAL ACTIONS:
<PASS>, <BET>.

INSTRUCTIONS:

Now it is your turn to choose an action. You should output your action in the
— following JSON format:

"7 json

{
"action": "<ACTION>"

where <ACTION> is one of <PASS> and <BET>.

Do not include any extra commentary or explanation.

Back to[competitive games|

B.5 Atari Pong

Visual observation. An example is shown in Figure[8c| The two players each control a paddle on the
side of the screen to hit a ball back and forth with each other. The paddles are vertical rectangles and
the ball is a white square. The players score if the ball passes their opponent’s paddle. The built-in bot
controls the left paddle, while the VLM agent controls the right paddle. The scores of both players
are displayed at the top of the screen.

20
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System prompt.

[ You are an AI agent that maximizes your score in the game of Atari Pong. ]

User prompt.

GAME RULES:
1. Atari Pong is a zero-sum game played on a 2D screen with two players (left
— and right) and a ball.
2. Players each controls a paddle and receive rewards on different events:
a. If the ball passes your paddle: the opponent +1 point.
b. If the ball passes the opponent's paddle: you +1 point.
3. The ball bounces off the top/bottom walls and the paddles.
4. Paddles can only move vertically within the top and bottom walls.
5. First player to score 3 points wins.

PLAYER INFORMATION:

1. You are controlling the {Player Side} paddle.

2. The recent 4 game frames are given in chronological order, with the most

— recent frame at the end.

3. The ball is represented by a white square, and the paddles are represented by
— vertical rectangles.

4. Scores are displayed at the top of the screen.

LEGAL ACTIONS:

1. <UP>: move paddle upward.

2. <DOWN>: move paddle downward.

3. <STAY>: maintain current position (paddle has momentum, it stops gradually).

INSTRUCTIONS:
You should output your action in the following JSON format:
"7 json

{
"action": "<ACTION>"

where <ACTION> is one of the following: <STAY>, <UP>, <DOWN>.

Back to [competitive games|

B.6 Coin’s Dilemma

Visual observation. An example is shown in Figure[9] On the left of the image is a grid map showing
the current positions of all game elements, including two players (red and blue) and two coins (red
and blue). The players are each represented by a Pacman icon, and the coins are each represented
by a coin icon. On the right of the image is a table demonstrating the rewards of each event and a
corresponding counter tracking the number of occurrences for that event.

System prompt.

[ You are an AI agent that maximizes your score in the Coin Dilemma.

User prompt.
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Coin Dilemma Events Counter

+{)—+1
€ | ¢io
@ +@->+1-2

Figure 9: Example visual input of Coin Dilemma.

N

GAME RULES:
1. The Coin Dilemma is a general-sum game played on a 5x5 grid board with two
— players (red and blue) and two types of coins (red and blue).
2. Players receive rewards on different events:
a. A player collects one coin of its own color: the player +1 point.
b. A player collects one coin of the other player's color: the player +1
— point, the other player -2 points.
3. New coins spawn randomly on the board after each collection.

PLAYER INFORMATION:

1. You are the {Player Colorl} player.

2. The current game frame and a table of events and counters are shown in the
— image.

3. The red and blue players are represented by a red and blue pacman icon,

— respectively. The red and blue coins are represented by red and blue coin
— 1icons, respectively. If both players are in the same position, they are
— represented by a half-red-half-blue pacman icon.

LEGAL ACTIONS:

1. <UP>: move one step upward.

2. <DOWN>: move one step downward.

3. <LEFT>: move one step left.

4. <RIGHT>: move one step right.

5. <STAY>: stay in the current position.

INSTRUCTIONS:

You should output your action in the following JSON format:
T json

{

"action": "<ACTION>"

where <ACTION> is one of the following: <STAY>, <RIGHT>, <LEFT>, <UP>, <DOWN>.

Back to[mixed-motive games|

B.7 Monster Hunt

Visual observation. An example is shown in Figure [T0} On the left of the image is a grid map
showing the current positions of all game elements, including two players (red and blue), two apples,
and a monster. The players are each represented by a Pacman icon, the apples are each represented by
a green apple icon, and the monster is represented by a black demon icon. On the right of the image
is a table demonstrating the rewards of each event and a corresponding counter tracking the number
of occurrences for that event.
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Monster Hunt Events Counter
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Figure 10: Example visual input of Monster Hunt.

S A H W

System prompt.

You are an AI agent that maximizes your score in the game of Monster Hunt.

User prompt.

7

GAME RULES:

1. Monster Hunt is a general-sum game played on a 5x5 grid board with two

< players (red and blue), one monster, and two apples.

2. The monster moves towards the closest player in each step.

3. Players move in the grid-world and receive rewards on different events:
a. One player eats an apple: the player +2 points and the apple respawns at
— a random position.
b. One player encounters the monster alone: the player -2 points and
— respawns at a random position.
c. Two players defeat the monster together: both players +5 points and the
— monster respawns at a random position.

PLAYER INFORMATION:

1. You are the {Player Color} player.

2. The current game frame and a table of events and counters are shown in the

— 1image.

3. The red and blue players are represented by a red and blue pacman icon,

— respectively. The monster is represented by a black demon icon, and the

— apples are represented by green apple icons. If both players are in the same
— position, they are represented by a half-red-half-blue pacman icon.

LEGAL ACTIONS:

1. <UP>: move one step upward.
2. <DOWN>: move one step downward.
3. <LEFT>: move one step left.
4. <RIGHT>: move one step right.
5. <STAY>: stay in the current position.
INSTRUCTIONS:
You should output your action in the following JSON format:
“T json
{
"action": "<ACTION>"
}

where <ACTION> is one of the following: <STAY>, <RIGHT>, <LEFT>, <UP>, <DOWN>.

Back to|mixed-motive games|
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Battle of the Colors Events Counter
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Figure 11: Example visual input of Battle of the Colors.

B.8 Battle of the Colors

Visual observation. An example is shown in Figure[T1} On the left of the image is a grid map
showing the current positions of all game elements, including two players (red and blue) and two
colored blocks (red and blue). The players are each represented by a Pacman icon. On the right of
the image is a table demonstrating the rewards of each event and a corresponding counter tracking
the number of occurrences for that event.

System prompt.

You are an AI agent that maximizes your score in the Battle of the Colors.

User prompt.

GAME RULES:

1. The Battle of the Colors is a general-sum game played on a 5x5 grid board

— with two players (red and blue) and two types of blocks (red and blue).

2. Players receive rewards on different events:
a. When both players are on a red block: red player +2 points, blue player
< +1 point, and the red block will be refreshed to a new random position.
b. When both players are on a blue block: red player +1 point, blue player
< +2 points, and the blue block will be refreshed to a new random
— position.
c. When players are on different blocks: both players +0 points, and both
— blocks will be refreshed to new random positions.

PLAYER INFORMATION:

1. You are the {Player Color} player.

2. The current game frame and a table of events and counters are shown in the

— 1image.

3. The red and blue players are represented by red and blue pacman icons,

— respectively. The red and blue blocks are represented by red and blue

— rectangles, respectively. If both players are in the same position, they are
— represented by a half-red-half-blue pacman icon.

LEGAL ACTIONS:

<UP>: move one step upward.

<DOWN>: move one step downward.
<LEFT>: move one step left.

<RIGHT>: move one step right.

<STAY>: stay in the current position.

O WN =
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User prompt continued.

INSTRUCTIONS:
You should output your action in the following JSON format:
“T json

{
"action": "<ACTION>"

}

where <ACTION> is one of the following: <STAY>, <RIGHT>, <LEFT>, <UP>, <DOWN>.

Do not include any extra commentary or explanation.

Back to|mixed-motive games|

C Models configuration details

Models Version Evaluated Reasoning Multimodal Open-Source
o4-mini 04-mini-2025-04-16 X
claude-3-7-sonnet claude-3-7-sonnet-20250219 X
gemini-2.5-flash gemini-2.5-flash-preview-04-17 X
doubao-1-5-thinking-pro doubao-1-5-thinking-pro-m-250415 X
qvqg-max qvq-max-2025-03-25 X
gpt-4.1 gpt-4.1-2025-04-14 X X
claude-3-7 w/o thinking claude-3-7-sonnet-20250219 X X
gemini-2.5 w/o thinking gemini-2.5-flash-preview-04-17 X X
grok-2-vision grok-2-vision-1212 X X
doubao-1-5-vision-pro doubao-1-5-pro-32k-250115 X X
qwen-vl-max qwen-vl-max-2025-04-08 X X
Llama-3.2-90B-Vision-Ins. huggingface link X
InternVL3-78B huggingface link X
Qwen2.5-VL-72B-Ins. huggingface link X
o3 N/A X X
gemini-2.5-pro N/A X X
grok-3 N/A X X X
deepseek-R1 N/A X X
deepseek-V3 N/A X X X

Table 3: Model configurations used in the evaluation.

The models used in our experiments are summarized in Table[3] For each model, the table specifies
the exact version, whether it possesses reasoning capabilities, supports multimodal inputs, and is
open-source. Note that for commercial models, we evaluated only the most recent versions released
before May 1, 2025, and did not assess any subsequent updates. For open-source models, the
corresponding repository URLs are recorded in the Version column. Because our benchmark is
designed specifically for VLMs, we excluded any models lacking multimodal input support (e.g.,
the DeepSeek and Grok-3 series). Additionally, we did not evaluate 03 (which requires a budget
exceeding $1000 to complete all tests) or gemini-2.5-pro (which is subject to a daily request limit
of 1000 requests per day).

Back to evaluation results of [strategic reasoning|and |[decision-making|

D Strategic reasoning evaluation details

Since we mainly use VLM APIs to conduct experiments, most experiments are run on personal
laptops. Experiments on open-source models are performed on an 8xA100 GPU server.

D.1 Hanabi

We generated a high-quality dataset of 400 Hanabi game states to evaluate the strategic reasoning
performance of VLMs. First, 90% of the states were obtained through mutual prediction between two
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reasoning models, while the remaining 10% were generated by a chat model forecasting a reasoning
model’s move. This approach exploits the relative weakness of chat models to sample game states that
deviate more substantially from optimal play. For this study, we chose doubao-1-5-thinking-pro
and doubao-1-5-vision-pro, both of which demonstrated top-tier decision-making performance,
to represent the reasoning and chat model roles, respectively.

Second, in decision-making trials, doubao-1-5-thinking-pro selects Play:Discard:Reveal actions
in a 2:3:4 ratio; we adopt this same distribution as the target action frequencies in our dataset.

Third, the dataset is balanced for player order—first and second players each account for 50% of the
states—and the move index is uniformly distributed across the entire game sequence.

D.2 Overcooked.

We generated a high-quality dataset of 400 Overcooked game states to evaluate the strategic reasoning
performance of VLMs. Firstly, this dataset was derived from the Human Experiment Data provided by
Overcooked-AlI [12]], which comprises game trajectories recorded from multiple human participants.
The extraction focused on the trial-train subset of these data, with instances of invalid actions filtered
out from the trajectories. Random sampling was then conducted on these filtered trajectories to ensure
comprehensive coverage of possible game states. Each data instance comprises a sequence of four
consecutive game frames.

Additionally, We applied constraints to simulate realistic game scenarios and control the distribution
of target actions. Specifically, the proportion of the <stay> action among the target actions was
limited to 10%. The dataset is balanced for two chefs, each accounting for 50% of the dataset.

D.3 Breakthrough.

We generated a high-quality dataset of 400 Breakthrough game states to evaluate the strategic
reasoning performance of VLMs. Each state was produced using a minimax algorithm with alpha—beta
pruning, a widely adopted baseline in Breakthrough research. Since minimax search does not always
reach terminal positions to determine win—loss outcomes, we implemented a state evaluation function:
upon reaching a fixed search depth, we compute the difference between the maximum effective
forward advancement of our deepest piece and that of the opponent’s deepest piece, then normalize
this difference to obtain a reward for the state. We configured minimax with maximum search depths
for the first and second players as (3,4), (3,5), (4,5), (4,6), (4,4), and (5, 5), respectively, and
sampled move indices uniformly across the entire game sequence to ensure comprehensive coverage
of possible game states.

D.4 Kuhn poker.

We generated a high-quality dataset consisting of 400 Kuhn Poker game states to assess the strategic
reasoning capabilities of VLMs. Kuhn Poker admits a mixed-strategy Nash equilibrium [32], char-
acterized by a continuum of equilibrium strategies parameterized by a single probability «, which
denotes the likelihood of betting when holding a Jack. In our evaluation, we consider all pairwise
matchups among three representative values of « (0, 1/6, and 1/3), resulting in nine distinct strategy
combinations including self-play. For each combination, we simulate 600 head-to-head games and
uniformly sample a total of 400 game states to construct the final dataset.

D.5 Atari Pong

We generated a high-quality dataset consisting of 400 Pong game states to assess the strategic
reasoning capabilities of VLMs. We uniformly sampled 400 state transitions from logged tra-
jectories of two best-performing models in the decision-making process, namely o4-mini and
doubao-1-5-thinking-pro, using the next actions of these VLM agents as ground truth. We then
modified the prompts to ask VLMs to control the left paddle (the built-in bot’s paddle) and predict
those actions.
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D.6 Coin Dilemma.

We generated a high-quality dataset consisting of 400 Coin Dilemma game states to assess the
strategic reasoning capabilities of VLMs. We consider two types of heuristic strategies for playing
Coin Dilemma and generate the dataset by simulating game play with these strategies:

1. Common Welfare: player only collect the coin of its own color;

2. Self Interest: player will collect the closest coin, regardless of the color.
Concretely, we sample states from 6 settings, resulting in a dataset of 400 states:

Common Welfare VS. Common Welfare: sample 100 states;
Self Interest VS. Self Interest: sample 100 states;

Common Welfare VS. Self Interest: sample 50 states;

Self Interest VS. Common Welfare: sample 50 states;
Random VS. Self Interest: sample 50 states;

A

Self Interest VS. Random: sample 50 states;

For Coin Dilemma, we also record snapshots of the environment when sample the states for the
dataset. This allows us to evaluate the action predictions from VLMs based on the outcome of such
actions on the environment. The actions with the same outcome as the ground truth action are all
considered correct. For example, if a player is at the top-left corner of the grid map, then action "UP"
and "LEFT" are both considered correct with ground truth "STAY" as they all result in no movement
of the player.

D.7 Monster Hunt.

We generated a high-quality dataset consisting of 400 Monster Hunt game states to assess the strategic
reasoning capabilities of VLMs. We consider four types of heuristic strategies for playing Monster
Hunt and generate the dataset by simulating game play with these strategies:

1. Common Welfare 1: player will move directly towards the monster;

2. Common Welfare 2: player will move directly to the middle block of the grid map and stay
there to wait for the other player and the monster;

3. Common Welfare 3: player will move directly to a certain corner of the grid map and stay there
to wait for the other player and the monster;

4. Self Interest: player will move towards the closet apple.
Concretely, we sample states from 6 settings, resulting in a dataset of 400 states:

1. Common Welfare 1 VS. Common Welfare 1: sample 80 states;
2. Common Welfare 2 VS. Common Welfare 2: sample 80 states;
3. Common Welfare 3 VS. Common Welfare 3: sample 80 states;
4. Self Interest VS. Self Interest: sample 80 states;

5. Random V8. Self Interest: sample 40 states;

6. Self Interest VS. Random: sample 40 states;

For Monster Hunt, we also evaluate the action predictions based on the their outcomes, same as Coin
Dilemma.

D.8 Battle of the Colors.
We generated a high-quality dataset consisting of 400 Battle of the Colors game states to assess the

strategic reasoning capabilities of VLMs. We consider four types of heuristic strategies for playing
Battle of the Colors and generate the dataset by simulating game play with these strategies:
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Cooperative Comptitive Mixed-Motive
Models Hanabi Overcooked  Board Poker Pong Dilemma Hunt Battle
return 1] return ] return ] return 2

Optimal 24.0 24.0 40.0 1.0 0.0 1.5 398.0 14.2 92.2 29.9
gemini-2.5-flash 6.5+86 10.7453 3.6421 —0.6+1.0 —0.1+0.1 1.540.0 19444532 1.34+48 156466 9.942.9
o4-mini 10.347.3 13.3429 7.0427 —04419 —0.140.1 1.610.2 205.2491.0 —0.845.0 14.31105 1.2116
doubao-1-5-thinking-pro 13.6455 14.1440 4.241.9 —0.8+0.8 —0.1+0.0 1.5+0.0 230.5472.6 0.0+1.0 6.8+12.1 1.44+1.4
claude-3-7-sonnet 1.6451 9.7+39 42414 —0.6416 —0.110.1 1.510.0 133.7127.8 0.513.4 94457 09114
quq-max 0.040.0 4.9+29 1.041.3 —0.94+06 —0.240.1 1.5+0.0 158.2446.9 —0.110.7 —9.445.9 0.0%0.0
gemini-2.5 w/o thinking 0.040.0 3.841.6 1.041.6 —1.040.0 —0.240.1 1.540.0 175.9441.5 —0.241.5 —9.4+10.2 0.941.1
gpt-4.1 0.040.0 3.6+1.4 0.040.0 —1.040.0 —0.3+0.1 1.540.0 151.8441.5 2.4427 0.9+84 0.31056
qwen-vl-max 0.3+0.5 0.340.5 0.040.0 —1.040.0 —0.240.0 1.540.0 139.7429.3 —0.140.7 2.9419.9 0.0+0.0
claude-3-7 w/o thinking 0.040.0 2.9209 1.0416 —0.9106 —0.4101 1.5400 1214154 0.1127 —99191 0.510.7
grok-2-vision 0.0+0.0 1.6+1.0 0.8+1.3 —1.0t0.0 —0.440.0 1.610.2 152.64459 0.1123 —10.5+8.3 0.310.6
doubao-1-5-vision-pro 0.040.0 4.6+1.1 0.040.0 —1.040.0 —0.440.1 1.540.0 1214484 —0.4420 —2.44858 0.040.0
Qwen2.5-VL-72B-Ins. 0.240.4 0.240.4 00400 —1.0+0.0 —0.240.1 1.5400 123.8446 —0.1+09 9.1+254 0.040.0
InternVL3-78B 0.0+0.0 2.4+1.0 0.2406 —1.040.0 —0.240.1 1.540.0 1214484 0.8433 —11.9495 0.2405
Llama-3.2-90B-Vision-Ins. 0.0490 1.2416 0.84173 —1.040.0 —0.310.0 1.540.0 1214484 —0.1477 —6.6170 0.540.7
Random 0.0 1.2 0.2 —1.0 —0.5 1.5 147.2 —0.1 —10.1 0.2

Table 4: Raw results for Decision-making.

784 1. Common Welfare: player will move to the closest color block (to both players) and stay there
785 to wait for the other player;

786 2. Self Interest: player will move to the block of its own color.

7e7 3. Biased Red: player will move to the red block.

788 4. Biased Blue: player will move to the blue block.

789 Concretely, we sample states from 6 settings, resulting in a dataset of 400 states:

790 1.
791 2.
792 3.
793 4,
794 5.
795 6.

Self Interest VS. Self Interest: sample 100 states;
Common Welfare VS. Self Interest: sample 50 states;
Self Interest VS. Common Welfare: sample 50 states;
Biased Red VS. Biased Red: sample 50 states;
Biased Blue VS. Biased Blue: sample 50 states;

Common Welfare VS. Common Welfare: sample 100 states;

796  For Battle of the Colors, we also evaluate the action predictions based on the their outcomes, same as

797 Coin Dilemma.

798 Back to evaluation results of [strategic reasoning}

799 E Decision-making evaluation details

goo Since we mainly use VLM APIs to conduct experiments, most experiments are run on personal
so1 laptops. Experiments on open-source models are performed on an 8xA100 GPU server.

so2 E.1 Raw results without normalization

go3 The raw data for Table[2is presented in Tabled] Additionally, we present the fireworks reward for
go4 Hanabi and the step scores for Pong.

3Hanabi return 1 refers to the Final Reward mentioned in
*Hanabi return 2 refers to the Fireworks Reward mentioned in
5Pong return 1 refers to the Game Score mentioned in m

8Pong return 2 refers to the Step Score mentioned in m
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E.2 Hanabi
We employ two complementary evaluation metrics for the game Hanabi:

1. Final Reward. This metric, which is reported in the main text, assigns a score of 0 if all life
tokens are consumed before the fireworks are completed, and a maximum of 25 if all fireworks
stacks are built successfully. If neither terminal condition is reached earlier, play continues until
the deck is exhausted plus one additional round. At game end, the values of the highest cards in
each suit are summed to yield a total score out of 25.

2. Fireworks Reward. To relax the “zero-out” penalty upon losing all life tokens, this metric
returns the partial fireworks progress at the moment the last life token is spent. Specifically, it
computes the sum of the highest card values in each suit at that instant, rather than forcing a
score of 0.

For each model under evaluation, we perform 10 self-play games and report the average Final Reward
and Fireworks Reward. These results are then normalized and compared against a random baseline
and an optimal policy derived from Independent PPO (IPPO) [84].

E.3 Overcooked.

In Overcooked, each episode is limited to 50 timesteps. Within these timesteps, two chefs coopera-
tively cook soup and deliver the cooked soup to the service desk. The two chefs share a common
cumulative points, where the final score for an episode is the sum of points accumulated at each
timestep. The point obtained at each timestep is composed of two parts:

1. Process-based point. Awarded 2 points for specific beneficial actions, such as:

(a) A chef successfully adds an onion to a cooking pot;
(b) A chef picks up a dish when a pot contains onions or cooking is in progress;
(c) A chef successfully plates a finished soup using a dish.

2. Objective-based point. Aligned with the game’s goal of successfully delivering specified dishes,
this reward is valued at 10 points upon successful delivery to the service desk.

For the 3-onion soup recipe, the total accumulated points for successfully completing and delivering
one soup is 20 points, comprising the process-based and objective-based points. We evaluate each
VLM through 10 episodes of self-play, where both chefs are controlled by the same type of model.
We report the sum of the two chefs’ cumulative points as the primary evaluation metric. We further
normalize these scores with respect to the scores of the random policy and the optimal policy. The
random policy uniformly samples actions at each step, while the optimal policy is defined as one that
enables the two chefs to complete 2 full cooking-delivery processes within a single episode.

E.4 Breakthrough.

In Breakthrough, we recorded the final outcomes by assigning a reward of +1 to the winner and —1
to the loser, as draws are not possible. We selected a moderately strong MCTS agent as our baseline,
configured with an exploration constant ¢ = 2.0, a maximum of 100 simulations per move, and a
rollout count of 10. Each model played 20 games against this MCTS agent—10 as the first player
and 10 as the second—and the mean outcome over all 20 games is reported. For the optimal policy,
we employed a minimax agent with alpha—beta pruning and a maximum search depth of 5, using
a state evaluation function as described in Section[D.3] Although minimax is not guaranteed to be
optimal for Breakthrough, it achieved a perfect win rate against the MCTS agent in our trials, making
it a reasonable choice as the optimal policy in this study.

E.5 Kuhn poker.

In Kuhn Poker, we measure the net chips won or lost by each player at the end of the game. Unlike
online playing in other games, Kuhn Poker consists of only twelve information sets, each with two
possible actions. For each VLM model, we estimated the policy by querying the model 25 times per
information set and averaging the resulting action probabilities. We then calculated the exploitability
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of the estimated policy, defined as the maximum expected loss against a best-response opponent.
As the reference optimal strategies, we used the three mixed-strategy Nash equilibria described in
Section[D.4] each of which has zero exploitability.

E.6 Atari Pong.

In Pong, players receive 1 point when the ball passes their opponents’ paddle. We end the episode
when one of the two players reach 3 points. We adopt frame stacking of 4 frames to pass dynamic
information to the VLM agent. We also employ a sticky action probability of 0.25 and perform
a random number (between 1 and 30) of "STAY" steps at the beginning of an episode to achieve
randomness. These settings have been common practice in related works, such as DQN.

For evaluation, the VLMs all play against the same built-in bot from the game. As many VLMs fail
to score even 1 point, the game scores themselves become too sparse for evaluating the performance
of different models. We therefore design a denser metric that takes into account the number of steps
that the VLM lasted against the bot. Specifically, the overall return is the addition of two parts, the
score return and the step return:

Ra = Rscore + Rstep
- RSCOI’C
Rycore = 30 x 90 1)

S o N, step N, min_step
step —
N, max_step ~ N, min_step

x 10

We evaluate each VLM for 10 episodes and report the mean and standard deviation of our designed
score as the main metric.

E.7 Coin Dilemma.
In Coin Dilemma, the players receive rewards on different game events:

1. red player collects red coin: red player +1 point;

2. red player collects blue coin: red player +1 point, blue player -2 points;

3. blue player collects blue coin: blue player +1 point;

4. blue player collects red coin: blue player +1 point, red player -2 points;
We evaluate each VLM through 10 episodes of self-play, where the red and blue players are controlled
by the same type of model, and report the addition of two players’ scores as the main metric. We
further normalize these scores with respect to the scores of the random policy and the optimal policy.

The random policy uniformly sample actions to take, while the optimal policy always moves directly
towards the coin of the player’s own color.

E.8 Monster Hunt.
In Monster Hunt, the players receive rewards on different game events:

1. red player collects apple: red player +2 points;

2. blue player collects apple: blue player +2 points;

3. red player encounters monster alone: red player -2 points;

4. blue player encounters monster alone: blue player -2 points;

5. both players defeat monster together: both player +5 points;
We evaluate each VLM through 10 episodes of self-play, where the red and blue players are controlled
by the same type of model, and report the addition of two players’ scores as the main metric. We
further normalize these scores with respect to the scores of the random policy and the optimal policy.

The random policy uniformly sample actions to take, while the optimal policy always moves directly
towards the middle block in the grid map and stay there to wait for the other player and the monster.
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Hanabi Board Hunt

Model text-only multimodal CoT text-only multimodal CoT text-only multimodal CoT

Optimal 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
gemini-2.5-flash 42.0 37.0 N/A 23.5 23.2 N/A 16.5 32.0 N/A
o4-mini 53.8 58.2 N/A 27.5 26.8 N/A 18.0 36.2 N/A
doubao-1-5-thinking-pro 34.5 32.8 N/A 23.5 19.8 N/A 13.2 19.2 N/A
claude-3-7-sonnet 45.0 39.0 N/A 25.0 24.2 N/A 20.5 26.2 N/A
qvg-max 41.0 32.2 N/A 27.5 21.8 N/A 19.2 16.2 N/A
gemini-2.5 w/o thinking 24.5 21.5 24.0 20.5 14.8 21.5 12.5 23.0 13.5
gpt-4.1 40.0 23.0 49.8 20.5 22.5 27.5 228 30.0 37.8
qwen-vl-max 17.0 26.5 20.0 19.0 19.5 17.2  17.0 23.5 22.5
claude-3-7 w/o thinking 19.2 9.8 32.8 19.2 18.0 19.0 31.2 25.8 25.8
grok-2-vision 23.8 12.8 22.5 14.0 10.8 18.2 12.0 22.0 28.2
doubao-1-5-vision-pro 19.5 15.0 25,2  17.2 15.8 16.8 13.8 32.2 26.2
Qwen2.5-VL-72B-Ins. 18.5 26.8 22.2  19.2 23.8 16.5 17.0 25.0 21.2
InternVL3-78B 26.8 25.2 20.5 17.5 14.0 16.0 23.5 23.2 23.2
Llama-3.2-90B-Vision-Ins. 26.8 20.0 14.8 6.5 11.8 14.0 18.2 23.5 19.5
Random 8.8 8.8 8.8 4.2 4.2 4.2 20.0 20.0 20.0

Table 5: All normalized results for Strategic reasoning.

E.9 Battle of the Colors.
In Battle of the Colors, the players receive rewards on different game events:

1. both players on red block: red player +2 points, blue player +1 point;
2. both players on blue block: blue player +2 points, red player +1 point;
3. players on different blocks: both players +0 point;

We evaluate each VLM through 10 episodes of self-play, where the red and blue players are controlled
by the same type of model, and report the addition of two players’ scores as the main metric. We
further normalize these scores with respect to the scores of the random policy and the optimal policy.
The random policy uniformly sample actions to take, while the optimal policy always moves directly
towards closest color block to the two players.

Back to evaluation results of [decision-making

F Additional experiment results

F.1 Multimodal input results

Table [5] provides all normalized data for strategic reasoning. Specifically, we record the data obtained
using multimodal input, text-only input, and CoT prompting. Table[6|provides all normalized data
for decision making. Since reasoning models do not require CoT prompting, the corresponding entry
is filled with N/A.

Back toanalysis on multimodal input}

F.2 Social behaviors results

The chat models demonstrate different behavior pattern compared to the reasoning models. For
Coin Dilemma, as depicted in Figure [T2a] the chat models shows inferior performance in collecting
coins, resulting in less number of both cooperation and defections. The best performing chat model,
GPT-4.1 achieves more number of cooperation over defections, indicating a behavior pattern that
favor common welfare over self interest. The open source model InternVL3-78B, as depicted
in Figure show a similar bahavior pattern to GPT-4.1. For Monster Hunt, as depicted in
Figure the chat models fails to defeat the monster as often as the reasoning models overall.
Among these chat models, only GPT-4.1 demonstrates a preference to collecting many apples,
indicating self-interest-centered behavior, similar to many of the reasoning models. On the other hand,
none of the open source models in Figure [I2h] exhibits this behavior pattern. For Battle of the Color,
only gemini-2.5-flash is able to achieve considerable numbers of game events, demonstrating
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Model Hanabi Board Hunt
text-only  multimodal CoT text-only  multimodal CoT text-only multimodal CoT
Optimal 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
gemini-2.5-flash 40.8421.9 27.1436.0 N/A 30.0484.5 20.0451.5 N/A 3.4+12.8 26.2458 N/A
04-mini 37.1426.1 42.9430.5 N/A 30.0494.0 30.0494.0 N/A 2.848.4 2494802 N/A
doubao-1-5-thinking-pro 37.5432.9 56.74+22.8 N/A 15.0474.0 10.0442.0 N/A 13.547.3 17.2411.3 N/A
claude-3-7-sonnet 33.8435.8 6.74+21.1 N/A 45.04+100.0 20.0479.5 N/A 11.8415.7 19.943 5 N/A
qvq-max 0.040.0 0.0+0.0 N/A 5.0431.5 5.0+31.5 N/A 94482 0.7445 N/A
gemini-2.5 w/o thinking 0.040.0 0.0+0.0 3.3+10.5 0.0+0.0 0.040.0 20.0479.5 4.1+g6 0.7439 6.31938
gpt-4.1 0.040.0 0.0+p.0 0.0t0.0 0.0t0.0 0.040.0 10.0te3.0 1841156 11.2456 18.5110.9
qwen—vl—max 0.0io‘o 1,2i2_0 O.(]io_(} 5.0i31‘5 O.(]io_(} 0.0ivo 10.7i14‘7 13.2i20_2 70-6i8.3
claude-3-7 w/o thinking 0.0400.0 0.040.0 0.040.0 5.04315 5.0431.5 10.0463.0 3.546.9 0.2482 1244356
grok-2-vision 0.040.0 0.040.0 0.040.0 0.0+0.0 0.04+0.0 0.040.0 09481 —0.4458 3.0439
doubao-1-5-vision-pro 0.0+0.0 0.040.0 5.0+50 10.0442.0 0.0+0.0 5.0+31.5 7.8+s.38 7.848.2 16.24150
Qwen2.5-VL-72B-Ins. 6.246.6 0.841.8 2.946.2 0.0+0.0 0.0+0.0 0.040.0 914146 19.6425.7 23.3422.9
InternVL3-78B 0.040.0 0.01p.0 1.7152 0.010.0 0.0t0.0 0.0t0.0 5.6+46 —1.8192 821756
Llama-3.2-90B-Vision-Ins. 0.019.0 0.040.0 0.040.0 0.040.0 0.040.0 0.040.0 —4.3162 3.6449 3.018.8
Random 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 6: All normalized results for Decision making.

superior reasoning and planing ability. From Figure[I2f] gemini-2.5-flash demonstrates a strong
willingness to cooperate with the other player, even if this means more points for the other player.

Back tolanalysis on social behaviors|

G Failure case examples

G.1 Strategic reasoning

We present three illustrative failure cases in strategic reasoning from different game environments as
reference.

G.1.1 Failure elixample in Hanabi

In Hanabi, each vision—language model (VLM) observes only the opponent’s hand, creating a distinct
information asymmetry. When predicting the opponent’s next move, the VLM often immediately
identifies which visible card could yield points and assumes the opponent will play it. This prediction,
however, overlooks a critical consideration: from the opponent’s perspective, their information about
that card is incomplete, so they would not risk losing a life token by playing it prematurely. Instead,
they would await more definitive clues before making that play. Detailed state information and the
VLM’s response are shown in Figure[T3]

G.1.2 Failure example in Overcooked

In Overcooked, accurately predicting the next action of the other player requires robust visual
perception capabilities and a thorough comprehension of image information. Figure[T4]illustrates a
representative failure case stemming from shortcomings in these areas. In this instance, the VLM
predicts the blue chef’s action from the green chef’s perspective. Despite correctly identifying from
historical frames that the soup was cooked, the VLM’s visual perception is inadequate; it fails to
recognize that the blue chef was already holding the soup, plated in a dish. Simultaneously, the VLM
overlooks a critical game rule, mistakenly believing that soup could be collected from the pot before
a dish was acquired. As a result of these combined deficiencies in visual understanding and rule
application, the VLM predicts the erroneous action <INTERACT>.

VLM Response in this instance:
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Figure 12: Behaviors of all models in mixed-motive social dilemma games. Dimensions are agents’
behaviors described in Sec. [2.4]

Actually, let me look more carefully at what chef_O is doing. In frames 23,
24, and 25, chef_0 is standing in the same position and hasn't moved. In
frame 26, the pot shows a black strip, indicating the soup is fully cooked.
According to the rules, after the soup is cooked for 5 timesteps, the next
step is to plate it using a dish. Since chef_0 is directly in front of the
pot, the most likely action would be <INTERACT> to take the soup from the
pot.

However, this would require chef_O to have a dish already. Since I don't
clearly see chef_O holding a dish, they would first need to get one.

Given this analysis, I believe chef_0 will most likely choose <INTERACT> to
interact with the pot. 33
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Figure 13: Detailed information and VLM response for the Hanabi failure example.
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- ...

Frame 3 Frame 4

Figure 14: Failure example of reasoning in Overcooked.

a8 G.1.3 Failure example in Monster Hunt

949 In Monster Hunt, in order to predict the next action of the other player, it is important to track
950 the positions and movements of all game elements, rather than focusing on only part of the game
951 mechanics and make short-sighted predictions. A representative failure example is depicted in
o952 Figure[I5] where the VLM notice the apple just one step above the red player, but does not pay
953 attention to the monster on top of the apple. The VLM predicts the red player to go up to collect the
954 apple, while the red player actually goes down to flee from the monster.
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The Visualization of Failure State: VLM Response:
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Figure 15: Detailed information and VLM response for the Monster Hunt failure example.

The Visualization of Failure State: VLM Response:
i B B N
Now, considering optimal play, White
7 . ‘ . ‘ would want to advance their pieces
towards Black's side, possibly
creating threats or blocking Black's
6 ‘ . ‘ ‘ . moves. The b4 piece is already
advanced. Moving it to c5 (b4ch)
5 . . . . would bring it closer to the center
and maybe set up a capture or block.
a ‘ n . . . Looking at the starting row pieces
(d1 to hl), moving them straight
forward (like d1d2, ele2, f1f2,
3 glg2, hlh2) or diagonally. Straight
moves are safe but maybe less
2 8 . . . . aggressive. Diagonal moves could
potentially set up captures later.
L
a c d e f g h

Figure 16: Detailed information and VLM response for the Breakthrough failure example.

G.2 Decision-making

We further present three illustrative failure cases in decision-making from different game environments
as reference too.

G.2.1 Failure example in Breakthrough

In Breakthrough, a strong strategy must excel at both offense and defense. However, VLMs occa-
sionally overlook situations in which the opponent’s pieces are on the verge of victory and require
immediate defensive intervention. Instead, they persistently advance their most distant piece by one
step, thereby neglecting the critical balance between attack and defense.

G.2.2 Failure example in Overcooked

In Overcooked, to correctly prepare a soup that needs three onion, the VLM agent needs to accurately
manage the number of onions. A common failure mode of VLMs is that they often neglect these pre-
cise quantity requirements. As illustrated in Figure[I7] the green chef initiates cooking by performing
an <INTERACT> operation after adding only the second onion for this recipe. Concurrently, the
blue chef prematurely begins to retrieve a plate. Consequently, the dish, even when served, fails to
earn objective-based points because the ingredient count requirement was not met.

G.2.3 Failure example in Pong

In Pong, in order to successfully intercept the ball, the VLM agent needs to accurately predict the
landing point of the ball. A common failure mode of the VLMs is that they may over-adjust their
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Frame 1 Frame 2

Frame 3 Frame 4

Figure 17: Failure example of decision-making in Overcooked.

Frame 1 Frame 2 Frame 3 Frame 4
Figure 18: Failure example of decision-making in Pong.

o73  paddle. As illustrated in Figure[T8] the VLM on the right detects that the ball is moving downward
974 and then move the paddle down, but misses the landing point due to over-aggressive adjustment.

ors H Limitations

976 Player number: In real-world multi-agent scenarios, games often involve more than two participants.
977 Although our current evaluation simplifies to two agents for tractability, some of our environments
978 support more players (e.g., Hanabi support up to five players). Furthermore, our framework can be
979 easily extended to other multi-player games.

9s0 Human baseline: At present, we compare VLMs only against random and optimal policies, lacking
981 any human performance reference. A future improvement is to include human experiments with
982 participants of varying expertise to establish a meaningful human baseline and clarify which level of
983 human expertise the model approximates.

984 Strategic reasoning evaluation: Measuring strategic reasoning solely by prediction accuracy can
985 overestimate performance when a model repeatedly selects the same action. Introducing metrics
986 such as per-action precision, recall, and F} score will more comprehensively capture the model’s
987 reasoning ability.
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Decision-making: evaluation Evaluating decision-making against a single opponent strategy does
not test the VLM’s full adaptability. Incorporating diverse baseline agents across all game scenarios
will provide a more thorough assessment of their decision-making generalization and adaptability.

I Broader impact

Positive research and societal value. VS-Bench targets a core capability that future Al systems
will increasingly need: making strategic, multi-step decisions while perceiving the world through
vision and language. By standardising how this ability is measured, the benchmark can accelerate
reproducible research on safer, more reliable multimodal agents. Concretely, it enables (1) principled
comparisons across models, and (2) diagnostic analyses that pinpoint specific failure modes such
as myopic play or poor opponent modelling, and (3) a shared testbed for developing methods that
foster cooperation, fairness, or robustness in complex interactive settings. Beyond academic progress,
stronger decision-making agents could benefit applications like assistive household robotics, disaster-
response swarms, automated traffic control, and large-scale scientific simulations where coordination
and strategic planning are essential.

Risk of misuse and dual-use considerations. At the same time, more capable agents that reason
strategically can be repurposed for adversarial or deceptive objectives — for example, collusive
price-setting, automated disinformation campaigns, or the coordination of autonomous weapons
systems. VS-Bench lowers the barrier to evaluating such capabilities, potentially making it easier
to select or fine-tune models for harmful ends. To mitigate this, we (1) release only simulated
environments that do not directly embody real-world attack surfaces, (2) distribute the benchmark
and evaluation code under licenses that forbid the use of our assets in weaponised or surveillance
applications, and (3) encourage follow-up work on safety safeguards (e.g., opponent-aware alignment
checks) by providing explicit hooks for auditing model rationales and behaviours.

Privacy and data ethics. All VS-Bench environments are synthetic with no personally identifiable
information or copyrighted third-party imagery that is not permissively licensed. Replays, logs, and
intermediate states are derived entirely from simulation and are released under an open licence to
avoids common privacy pitfalls in dataset creation and facilitates unrestricted academic use.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction accurately reflect the paper’s
contribution and scope supported by the remaining sections.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitation is discussed in Appendix [H]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the information to reproduce the results is disclosed in Section [3| Ap-
pendix D] and Appendix
Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The open access to data and code can be found at
https://sites.google.com/view/vs-bench-nips, https://anonymous .
4open.science/r/VS-Bench-0515, and https://kaggle.com/datasets/

1adb7686abdd9cb20d9b6£51d66fcce8195af96ce9adb62b86a23d497ddd84ec.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and test details necessary to understand the results are specified in
Section 3] Appendix D] and Appendix [E]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Results in Section [3.2]and Appendix [Freport both mean and std.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The computer resources are described in Appendix [D]and Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The broader impact is discussed in Appendix [}
Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original paper that produced the code package or dataset.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide a README document with our proposed benchmark
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We provide a detailed description of our usage of VLMs in Section [3] and
Appendix [C]
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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