
Comparative Analysis of Language Model choices in a
Video Search Pipeline: Evaluating Cross-lingual and

Native Language Approaches
Keshav Bhupathy Vignesh Jayaprakasama;*, Karthikkumar Va;**, Aju John Thomasa;***, Aditya

Vipul Pradhana;**** and Srishti Upadhyaya;*****

aIndian Institute of Science, Bengaluru
ORCiD ID: Keshav Bhupathy Vignesh Jayaprakasam https://orcid.org/0009-0006-3607-5372,

Karthikkumar V https://orcid.org/0009-0004-7113-7060, Aju John Thomas https://orcid.org/0009-0005-3945-2893,
Aditya Vipul Pradhan https://orcid.org/0000-0002-8212-3084,

Srishti Upadhyay https://orcid.org/0009-0009-7431-9325

Abstract. This project presents a comparative study of different
model performance in Retrieval-Augmented Generation (RAG) for
Indic language video content. We evaluate models from providers
like Sarvam, Google, OpenAI and relevant open models across rele-
vant components in multiple RAG strategies. We implement a RAG
Pipeline that processes Indic language videos, has speech-to-text
transcription, implements various embedding approaches, and en-
ables multilingual querying via Text or Audio inputs. We also aim
to implement advanced Audio/Video Summarization & Search tech-
niques wherever possible. Through systematic evaluation of retrieval
accuracy, response quality, and language preservation, this study
aims to determine the optimal model and pipeline configuration for
Indic video RAG applications, providing insights into the trade-offs
between specialized language models and established global alterna-
tives in multilingual video search scenarios. For the purposes of this
limited duration study, we will restrict the language choices to Tamil,
Malayalam and Hindi.

1 Introduction

In recent years, the consumption and production of Indic language
video content have grown exponentially, driven by the increasing ac-
cessibility of digital platforms and the diverse linguistic landscape
of India. This surge has created a rich repository of videos in Indian
languages such as Tamil, Malayalam, and Hindi. The data also indi-
cates that most of the users in India use Indic Languages to search,
access and engage with this content [15]. This exponential growth
in Indic video content consumption necessitates the development of
technologies that can effectively process and analyze such data.

Indic languages, each with their distinct grammar, phonetics, di-
alects and cultural nuances, pose unique challenges for AI systems.
These languages demand not only accurate transcription but also
meaningful retrieval and summarization that respect linguistic in-

∗ Corresponding Author. Email: keshavj@iisc.ac.in
∗∗ Corresponding Author. Email: karthikkuma1@iisc.ac.in
∗∗∗ Corresponding Author. Email: ajuthomas@iisc.ac.in
∗∗∗∗ Corresponding Author. Email: adityavp@iisc.ac.in
∗∗∗∗∗ Corresponding Author. Email: srishtiu@iisc.ac.in

tegrity and context. Addressing these challenges requires innovation
in both language-specific models and methods to adapt global AI ad-
vancements to regional needs. Large Multimodal Models today have
the capability to accept and produce content in several languages. But
due to the disparity of publicly available internet data (a large portion
of the data until recent years was in English), these models may not
always work very well for Indian Language Interactions because of
the above reasons. There are several active threads in India today
from teams such as AI4Bharat[2], Bhashini[3] and SarvamAI[31]
that are tackling this problem of making AI and digital services ac-
cessible to Indian citizens in their own language.

In this project, we propose and implement an Indic Video Search
Pipeline based on Retrieval Augmented Generation techniques. We
package this pipeline in a Streamlit application. Users will have the
option to search for relevant videos by text or voice in their native
language. Such pipelines can help simplify the search and access for
Indic Video Content in their native language. The following sections
of the paper detail the architecture and key components, alternatives
compared for each component and final choices, evaluation method-
ology and conclusions.

2 Architecture

The key idea in our approach to solve this problem was to convert In-
dic Language videos to English text summaries and vectorize them.
Similarly, user inputs in Indic languages (via voice or text) need to
be converted to English text. Then a RAG pipeline can be defined on
this English corpus with English queries. Once the answer is gener-
ated, it can be converted back to the User’s chosen language in their
preferred medium. The key components of this version of the app are
listed below. This flow is also depicted in Figure 1.

• Video Chunking & Summarization - Videos in Indic languages
must be segmented into smaller chunks. Each of these chunks
should then be converted into detailed text summaries that can
capture the diverse info available in the video image and audio

• Indic Language Speech-to-text (STT) & Text-to-Speech(TTS) -
These components play an important role in ensuring that the user

https://orcid.org/0009-0006-3607-5372
https://orcid.org/0009-0004-7113-7060
https://orcid.org/0009-0005-3945-2893
https://orcid.org/0000-0002-8212-3084
https://orcid.org/0009-0009-7431-9325

Figure 1. Simplified Component Architecture of the App

interactions with the system work reliably. These modules must
capture the query from the user correctly & convey a response
without loss of information

• Indexing, Vectorization & Embedding - The text summaries must
be indexed, stored and vectorized as per the search technique re-
quirements. Choices of the right embedding model & indexing
approaches are important here

• Search & Retrieval Techniques - Identification of a search tech-
nique that can reliably retrieve relevant pieces of information from
the knowledge corpus is a crucial part of the overall RAG system.
This module ensures that the question is always answered with the
most relevant information

• Context Aware Chat & Query Transformations - This module will
keep track of user’s intent, understand topic shifts and formulate
meaningful queries from the user’s chat context for searching.
This will add to the frictionless interaction experience for the user

3 Comparative Analysis of Key Components

This section briefly summarizes the analysis, findings, and choices
for the key components listed above. More details, whenever appli-
cable, are described in the Appendix.

3.1 Speech-to-Text Model

A detailed evaluation of Speech-to-Text (STT) systems was carried
out using multilingual audio data recorded by the author in English,
Hindi, and Malayalam. Among the models evaluated—Sarvam AI,
Gemini, AI4Bharat, and OpenAI Whisper—Sarvam AI demon-
strated the most consistent performance across all languages. It
achieved low Word Error Rate (WER) and Character Error Rate

(CER) in both English and Indian languages. Gemini showed com-
mendable speed and responsiveness but struggled with WER in
Malayalam. AI4Bharat had slightly better accuracy in English but
suffered from slower processing times. OpenAI Whisper could not
be evaluated due to persistent API errors, and was excluded from the
final analysis.

Given the overall accuracy, Sarvam AI was selected as the pre-
ferred STT model. Its 30-second native audio input limitation can po-
tentially be bypassed using its batch processing mode. Further eval-
uation results are presented in Appendix C

3.2 Text-to-Speech Model

For the Text-to-Speech (TTS) evaluation, intelligibility was assessed
by transcribing the synthesized audio using Google Cloud STT and
computing the resulting WER and CER. Among Sarvam AI, Gemini,
and AI4Bharat, Sarvam AI emerged as the most natural-sounding
and intelligible voice generator across all three languages. It out-
performed the others in Malayalam and showed competitive perfor-
mance in English and Hindi. AI4Bharat’s outputs, although accept-
able, had higher WER and CER values and sounded relatively less
natural. But it should be noted that AI4Bharat was translating all
the audio to pure native language and that was the reason for higher
WER scores.

Based on these evaluations, Sarvam AI was chosen as the final
TTS engine. Detailed performance comparisons are provided in Ap-
pendix C.

3.3 Video Summarization

We had compared Gemini 2.5 Pro, Gemini 2.5 Pro and GPT-4o using
the evaluation methodology described in Appendix E for video sum-
marization. Gemini 2.5 Pro was selected on the basis of the results.
Additionally, its ability to process entire video chunks, including ani-
mations, and provide a comprehensive and accurate summary makes
it the preferred model. Its support for direct MP4 video summariza-
tion and effective integration of audio analysis further enhance its
suitability for this task. While GPT-4o offers valuable context cre-
ation from frame information, its limitations in handling direct video
files and potential clarity issues make Gemini 2.5 Pro the more robust
option for video summarization.

3.4 Embedding Model

The video summarization finally outputs document chunks with a
maximum sequence length of 256. Since this output is in English,
the Sentence Transformer MiniLM-L6-v2 encoder model was used
to generate 384 dim vectors in this implementation. Embedding mod-
els that are fine-tuned or pre-trained for Indic languages specifically
were also explored. IndicSBERT [6] was found to perform the best
when we pitted it against other similar openly-available indic mul-
tiligual pre-trained language models. We bench marked the models
in supervised fashion, upon multilingual queries and corpus which is
explained in detail in Appendix:F.

3.5 Indexing, Searching and Retrieval

A custom query dataset based on select Indic Videos was created and
an objective analysis was carried out to determine the best Search
& Retrieval Approach. Precision@5, Recall@5, F1 Score, MRR
and nDCG@5 scores were calculated based on the ground truth

in this dataset. The goal was to ensure that relevant chunks to the
user’s query were present in the top 5 retrieved documents from
the database, and ideally the most relevant chunk should be the first
document out of the 5. Cosine Similarity, Max Marginal Relevance
(MMR), Hybrid Search 1 (Cosine + MMR) & Hybrid Search 2 (Key-
word Search using BM25+ MMR) with Reciprocal Rank Fusion
(RRF) were considered for this analysis. It was found that a hybrid
search - BM25 + MMR - with RRF often gave the best results as
the original corpus becomes large and contains documents that are di-
verse and unrelated in nature. For every query, 10 document chunks
were retrieved using this search and a final reranking using MiniLM
L6 V2 Crosscoder for MS Marco was added to select the top 5
most relevant document chunks. Details about the dataset creation,
comparisons and scores can be found in Appendix: D

3.6 Context Aware Chat and Query Transformations

To support coherent multi-turn interactions in a multilingual video
retrieval setting, we evaluated four query transformation strate-
gies: Query Decomposition, Hypothetical Document Embeddings
(HyDE), Multi-Query Expansion, and RAG-Fusion. Each method
was assessed using the same metrics as the Search & Retrieval
Strategy evaluations - Precision@5, Recall@5, nDCG@5, MRR &
F1-Score While HyDE produced semantically rich outputs, it in-
curred higher latency due to hypothetical answer synthesis. There-
fore, HyDE is notably less efficient than all other methods, despite
having the fastest search time. While Query Expansion provides
marginally better retrieval quality, RAG fusion achieves nearly
identical effectiveness with approximately 12% better time ef-
ficiency. The effectiveness differences are in the third decimal place,
while the efficiency advantage of RAG fusion is more substantial.
Therefore, based on our limited custom dataset evaluation, RAG fu-
sion would likely be the preferred choice due to its better balance
of effectiveness and efficiency. More details about the Analysis can
be found in Appendix G

4 Conclusion and Future Work
As the growth of Indic Language Users & digital Content increases,
solutions tailored to such users will gain prominence. The solutions
that handle the variety of dialects and cultural nuances effectively
would appeal to more users. LMMs would also continue to evolve
and incorporate a significant amount of this data in their training and
become more capable at handling such nuances. But today, pipelines
that integrate the best model for a narrow capability are still relevant.
We have implemented an end-to-end RAG based chat app for Indic
Language Videos. The user can interact with the chat app in an Indic
Language of Choice. We primarily tested the app with Tamil, Malay-
alam, and Hindi Language queries and videos. While this app per-
formed reasonably on the small data corpus we tested it with, several
improvements such as advanced Indexing, Search & Retrieval tech-
niques, more nuanced Video Summarization approaches and natively
multimodal pipelines that don’t rely on text conversions can be ex-
plored to further improve performance. Streamlit was only used as
a prototype UI and more robust solutions need to be implemented.
The app would also need to incorporate guardrails and distributed
computing techniques to truly scale to a larger audience.

Acknowledgements
We would like to thank Prof. Deepak Subramani and the DA225o
course team for introducing us to this topic and related concepts in

class, which inspired and enabled us to pursue this project.

References
[1] Tech that Works Aditya Kumar. Maximal marginal relevance to re-rank

results in unsupervised keyphrase extraction, 2019. https://medium.c
om/tech-that-works/maximal-marginal-relevance-to-rerank-results-i
n-unsupervised-keyphrase-extraction-22d95015c7c5.

[2] AI4Bharat. Ai4bharat, a research lab at iit madras, is dedicated to ad-
vancing ai technology for indian languages through open-source con-
tributions, 2025. https://ai4bharat.iitm.ac.in/.

[3] Bhashini. Bhashini is an ai powered language translation platform,
bridging literacy, language, and digital divides, 2025. https://bhashi
ni.gov.in/about-bhashini.

[4] Hyung Won Chung, Thibault Fevry, Henry Tsai, Melvin Johnson, and
Sebastian Ruder, ‘Rethinking embedding coupling in pre-trained lan-
guage models’, arXiv preprint arXiv:2010.12821, (2020).

[5] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav
Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave,
Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov, ‘Unsuper-
vised cross-lingual representation learning at scale’, arXiv preprint
arXiv:1911.02116, (2019).

[6] Samruddhi Deode, Janhavi Gadre, Aditi Kajale, Ananya Joshi, and
Raviraj Joshi, ‘L3cube-indicsbert: A simple approach for learning
cross-lingual sentence representations using multilingual bert’, in Pro-
ceedings of the 37th Pacific Asia Conference on Language, Information
and Computation, pp. 154–163, (2023).

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova,
‘Bert: Pre-training of deep bidirectional transformers for language un-
derstanding’, in Proceedings of the 2019 conference of the North Amer-
ican chapter of the association for computational linguistics: human
language technologies, volume 1 (long and short papers), pp. 4171–
4186, (2019).

[8] Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan,
and Wei Wang, ‘Language-agnostic bert sentence embedding’, arXiv
preprint arXiv:2007.01852, (2020).

[9] Luyu Gao, Zhenzhong Lu, Zhuyun Dai, Jamie Callan, and Jimmy Lin,
‘Hyde: Hypothetical document embeddings for zero-shot document
ranking’, arXiv preprint arXiv:2204.05032, (2022).

[10] Google. Google developers. https://developers.google.com/, 2025.
Accessed: June 20, 2025.

[11] Google AI. Ai studio: Generate speech. https://aistudio.google.com/ge
nerate-speech, 2025. Accessed: June 20, 2025.

[12] Google AI. Gemini api: Audio. https://ai.google.dev/gemini-api/docs/
audio, 2025. Accessed: June 20, 2025.

[13] Google Gemini. Google gemini cookbook. https://github.com/googl
e-gemini/cookbook/, 2025. Accessed: June 20, 2025.

[14] Zellig S Harris, ‘Distributional structure’, Word, 10(2-3), 146–162,
(1954).

[15] India Digital Summit. Led by surge in indic language adoption internet
users in india set to cross 900 million, 2025. Press Release https://ww
w.indiadigitalsummit.in/wp-content/uploads/2025/01/Led-by-Surge-i
n-Indic-Language-Adoption.pdf.

[16] Gautier Izacard, Seyed Mehran Hosseini, Timo Schick, Divyan-
shu Dwivedi-Yu, Fabio Petroni, and Patrick Lewis, ‘Few-shot learn-
ing with retrieval augmented language models’, arXiv preprint
arXiv:2208.03299, (2022).

[17] Sparsh Jain, Ashwin Sankar, Devilal Choudhary, Dhairya Suman,
Nikhil Narasimhan, Mohammed Safi Ur Rahman Khan, Anoop
Kunchukuttan, Mitesh M Khapra, and Raj Dabre. Bhasaanuvaad: A
speech translation dataset for 13 indian languages, 2024.

[18] Divyanshu Kakwani, Anoop Kunchukuttan, Satish Golla, Gokul NC,
Avik Bhattacharyya, Mitesh M Khapra, and Pratyush Kumar, ‘Indic-
nlpsuite: Monolingual corpora, evaluation benchmarks and pre-trained
multilingual language models for indian languages’, in Findings of the
association for computational linguistics: EMNLP 2020, pp. 4948–
4961, (2020).

[19] Simran Khanuja, Diksha Bansal, Sarvesh Mehtani, Savya Khosla,
Atreyee Dey, Balaji Gopalan, Dilip Kumar Margam, Pooja Aggarwal,
Rajiv Teja Nagipogu, Shachi Dave, et al., ‘Muril: Multilingual rep-
resentations for indian languages’, arXiv preprint arXiv:2103.10730,
(2021).

[20] Sankalp KJ, Ashutosh Kumar, Laxmaan Balaji, Nikunj Kotecha, Vinija
Jain, Aman Chadha, and Sreyoshi Bhaduri, ‘Indicmmlu-pro: Bench-

https://medium.com/tech-that-works/maximal-marginal-relevance-to-rerank-results-in-unsupervised-keyphrase-extraction-22d95015c7c5
https://medium.com/tech-that-works/maximal-marginal-relevance-to-rerank-results-in-unsupervised-keyphrase-extraction-22d95015c7c5
https://medium.com/tech-that-works/maximal-marginal-relevance-to-rerank-results-in-unsupervised-keyphrase-extraction-22d95015c7c5
https://ai4bharat.iitm.ac.in/
https://bhashini.gov.in/about-bhashini
https://bhashini.gov.in/about-bhashini
https://developers.google.com/
https://aistudio.google.com/generate-speech
https://aistudio.google.com/generate-speech
https://ai.google.dev/gemini-api/docs/audio
https://ai.google.dev/gemini-api/docs/audio
https://github.com/google-gemini/cookbook/
https://github.com/google-gemini/cookbook/
https://www.indiadigitalsummit.in/wp-content/uploads/2025/01/Led-by-Surge-in-Indic-Language-Adoption.pdf
https://www.indiadigitalsummit.in/wp-content/uploads/2025/01/Led-by-Surge-in-Indic-Language-Adoption.pdf
https://www.indiadigitalsummit.in/wp-content/uploads/2025/01/Led-by-Surge-in-Indic-Language-Adoption.pdf

marking indic large language models on multi-task language under-
standing’, arXiv preprint arXiv:2501.15747, (2025).

[21] Krutrim Team. Bharat bench: A benchmark for indic language models.
Krutrim Tech Blog, Feb 2024.

[22] Yimeng Liu, Zhecheng Wu, Menglin Ren, Zhizheng Zhang, Thomas H.
Li, Satwik Meena, Wenhu Ding, and Zhou Yu. Agentic keyframe search
for video question answering, 2024.

[23] Mourad Mars, ‘From word embeddings to pre-trained language mod-
els: A state-of-the-art walkthrough’, Applied Sciences, 12(17), 8805,
(2022).

[24] Gurucharan MK. Unlocking the power of cosine similarity: the heart
of text understanding, 2025. https://medium.com/@charan4u/unlocki
ng-the-power-of-cosine-similarity-the-heart-of-text-understanding-e
ed427df745a.

[25] OpenAI. Gpt-4 technical report, 2024.
[26] OpenAI. Openai platform: Overview. https://platform.openai.com/do

cs/overview, 2025. Accessed: June 20, 2025.
[27] OpenAI. Openai platform: Rate limits. https://platform.openai.com/do

cs/guides/rate-limits, 2025. Accessed: June 20, 2025.
[28] Zackary Rackauckas, ‘Rag–fusion: A new take on retrieval-augmented

generation’, arXiv preprint arXiv:2402.03367, (2024).
[29] Raghavan Rajkumar, Abhigyan Kumar, Gurunath Parameshwara, Di-

vyanshu Agnivesh, and Srikanth Madikeri. Enhancing whisper’s ac-
curacy and speed for indian languages through prompt-tuning and tok-
enization, 2023.

[30] Adrian H. Raudaschl. Forget rag, the future is rag–fusion. https://towa
rdsdatascience.com/forget-rag-the-future-is-rag-fusion-1147298d8ad
1, 2023.

[31] Sarvam. At sarvam, we’re on a mission to make generative ai real for
bharat, 2025. https://www.sarvam.ai/about-us.

[32] Sarvam AI. Sarvam ai documentation. https://docs.sarvam.ai/, 2025.
Accessed: June 20, 2025.

[33] Deval Shah. Reciprocal rank fusion (rrf) explained, 2024. https://medi
um.com/@devalshah1619/mathematical-intuition-behind-reciprocal-r
ank-fusion-rrf-explained-in-2-mins-002df0cc5e2a.

[34] Sanket Shah, Kavya Ranjan Saxena, Kancharana Manideep Bharad-
waj, Sharath Adavanne, and Nagaraj Adiga, ‘Indicst: Indian multilin-
gual translation corpus for evaluating speech large language models’,
in 2025 IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing Workshops (ICASSPW), pp. 1–5. IEEE, (2025).

[35] Aatman Vaidya, Tarunima Prabhakar, Denny George, and Swair Shah,
‘Analysis of indic language capabilities in llms’, arXiv preprint
arXiv:2501.13912, (2025).

[36] Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Ma-
jumder, and Furu Wei, ‘Multilingual e5 text embeddings: A technical
report’, arXiv preprint arXiv:2402.05672, (2024).

[37] Wikipedia. Okapi bm25, 2025. https://en.wikipedia.org/wiki/Okapi_
BM25.

[38] Xueguang Zhu, Yue Yang, Luyu Gao, and Jimmy Lin. Multiview
prompting for generating query variants. https://arxiv.org/abs/2304
.10149, 2023.

A Contributions
• Keshav Bhupathy Vignesh J - High Level Architecture, Base

End-to-end App setup and GitHub maintenance, Searching & Re-
trieval Strategies Comparison, Team Guidance

• V Karthikkumar - Speech to Text, Text to Speech Implemen-
tations for Indic Languages, Model alternatives identification &
performance comparisons

• Aju John Thomas - Video Processing Pipeline (Input Video
Chunking and Summarization), Model alternatives identification
& performance comparisons

• Aditya Vipul Pradhan - Embedding Model Alternatives Identifi-
cation, Performance Comparison, App Deployment

• Srishti Upadhyay - Context Aware Chat & Query Transformation
techniques comparison and Implementation

B Full Code & Live App
More information, screenshots and complete source code for the final
app with the chosen alternatives can be found in our GitHub Repos-
itory: https://github.com/jkeshav-bvignesh/IndicVideoSearch. App
Screenshots are also added at the end of this document. The live app
will be made available here: https://indicvideosearchapp.streamlit.ap
p/ for a limited time for review. Please note that app will take approx-
imately 3-5 minutes to fully load due to constrained cloud resources.

C Text-to-Speech and Speech-to-Text Model
Comparisons

This section details the evaluation methodology, comparative per-
formance analysis, and final selection of Speech-to-Text (STT) and
Text-to-Speech (TTS) models for the project. The goal was to iden-
tify the most suitable models based on accuracy, Indian language
support, and operational characteristics within the project’s scope.
The evaluation of models, particularly for Indic languages, draws
upon the broader context of ongoing research in understanding and
enhancing these capabilities in Large Language Models (LLMs)
[35, 34].

C.1 Evaluation Framework

A systematic approach was taken to evaluate the models across mul-
tiple languages using a custom dataset.

C.1.1 Models Evaluated

The following models were considered for evaluation:

• Sarvam AI model [32]
• Google’s GEMINI model [12, 13]
• AI4BHARAT Indic Speech model [17]
• OpenAI’s Whisper model [26]

C.1.2 Language Scope

The models were tested for their performance in three languages:

• English
• Hindi
• Malayalam

The challenges and nuances of working with Indic languages like
Hindi and Malayalam are an active area of research, with efforts
focused on creating comprehensive datasets and evaluation bench-
marks [17, 34].

https://medium.com/@charan4u/unlocking-the-power-of-cosine-similarity-the-heart-of-text-understanding-eed427df745a
https://medium.com/@charan4u/unlocking-the-power-of-cosine-similarity-the-heart-of-text-understanding-eed427df745a
https://medium.com/@charan4u/unlocking-the-power-of-cosine-similarity-the-heart-of-text-understanding-eed427df745a
https://platform.openai.com/docs/overview
https://platform.openai.com/docs/overview
https://platform.openai.com/docs/guides/rate-limits
https://platform.openai.com/docs/guides/rate-limits
https://towardsdatascience.com/forget-rag-the-future-is-rag-fusion-1147298d8ad1
https://towardsdatascience.com/forget-rag-the-future-is-rag-fusion-1147298d8ad1
https://towardsdatascience.com/forget-rag-the-future-is-rag-fusion-1147298d8ad1
https://www.sarvam.ai/about-us
https://docs.sarvam.ai/
https://medium.com/@devalshah1619/mathematical-intuition-behind-reciprocal-rank-fusion-rrf-explained-in-2-mins-002df0cc5e2a
https://medium.com/@devalshah1619/mathematical-intuition-behind-reciprocal-rank-fusion-rrf-explained-in-2-mins-002df0cc5e2a
https://medium.com/@devalshah1619/mathematical-intuition-behind-reciprocal-rank-fusion-rrf-explained-in-2-mins-002df0cc5e2a
https://en.wikipedia.org/wiki/Okapi_BM25
https://en.wikipedia.org/wiki/Okapi_BM25
https://arxiv.org/abs/2304.10149
https://arxiv.org/abs/2304.10149
https://github.com/jkeshav-bvignesh/IndicVideoSearch
https://indicvideosearchapp.streamlit.app/
https://indicvideosearchapp.streamlit.app/

C.1.3 Evaluation Dataset

The dataset used for evaluation consisted of audio recordings and
corresponding transcriptions/translations created by the author. This
custom dataset was designed to reflect the specific use cases and
linguistic differences, covering all three target languages (English,
Hindi, and Malayalam).

C.1.4 Metrics for Performance Assessment

The primary metrics chosen for evaluating both STT and TTS model
performance were Word Error Rate (WER) and Character Error Rate
(CER).

Word Error Rate (WER) is a standard metric for Automatic
Speech Recognition (ASR) that measures the number of errors (sub-
stitutions, insertions, deletions) at the word level, normalized by the
total number of words in the reference transcript. It provides an intu-
itive measure of the overall accuracy of the transcription.

Character Error Rate (CER) operates similarly to WER but at
the character level. This metric is particularly useful for languages
with complex morphology or where word segmentation can be am-
biguous. It complements WER by capturing finer-grained errors,
such as misspellings within correctly identified words.

These metrics were chosen due to their widespread adoption, ease
of interpretation, and direct relevance to the perceived quality of STT
and TTS outputs. While jiwer and other libraries support metrics like
Match Error Rate (MER), Word Information Lost (WIL), etc., they
often build upon similar principles to WER and CER.

C.1.5 Text-to-Speech (TTS) Evaluation Judge

For evaluating the intelligibility of the synthesized speech from the
TTS models, Google Cloud TTS was employed as an automated
"judge" [10]. The audio output from each candidate TTS model was
fed into Google Cloud’s STT service, and the resulting transcript was
compared against the original text to calculate WER and CER. This
provided an objective measure of how well the synthesized speech
could be understood by a high-quality ASR system.

C.2 Speech-to-Text (STT) Model Evaluation

The STT capabilities of the selected models were rigorously tested.

C.2.1 Individual Model Performance Notes

• Sarvam AI: This model [32] demonstrated excellent performance
in terms of Word Error Rate (WER). A notable limitation is its
native support for audio segments up to 30 seconds. While this can
be overcome using a batch processing model, further exploration
would be required for longer audio inputs. For the current project
scope, the 30-second limit was deemed acceptable.

• GEMINI: GEMINI [12, 13] was observed to be fast and respon-
sive across all test cases. However, its STT accuracy, particularly
WER, was slightly lower for Indian languages like Hindi and
Malayalam compared to other models or its English performance.
The general capabilities of LLMs in Indic languages remain an
area of active study [35].

• AI4BHARAT: The AI4BHARAT model, part of a broader initia-
tive to enhance Indian language technology [17], showed promis-
ing results but generally lagged behind in overall WER. A sig-
nificant issue observed was its tendency to translate words into
the target language during transcription tasks, which incorrectly

inflated its WER for STT evaluation. Additionally, unlike other
models, AI4BHARAT did not consistently handle punctuations
such as full stops and commas in its output. The model was also
noted to be relatively slow in processing.

• OpenAI Whisper: Attempts to use OpenAI’s Whisper API [26]
were consistently met with an insufficient_quota error,
despite verifying that sufficient quota was available. This issue
aligns with potential challenges related to API rate limits [27].
Due to time constraints and persistent debugging challenges, eval-
uation of the Whisper API model had to be abandoned for this
project.

C.2.2 STT Comparative Results

The following tables summarize the WER and CER for the STT
models across the tested languages.

Table 1. STT Word Error Rate (WER) Summary

Language ai4bharat gemini sarvam

English 0.1321 0.1698 0.1698
Hindi 0.1379 0.1207 0.1552
Malayalam 0.5714 0.4671 0.4571

Table 2. STT Character Error Rate (CER) Summary

Language ai4bharat gemini sarvam

English 0.0383 0.0437 0.0437
Hindi 0.0719 0.0437 0.0469
Malayalam 0.1230 0.0518 0.0508

Visual comparisons of these metrics are provided in Figure 2.

Figure 2. STT Performance: WER (left) and CER (right) Comparisons
Across Models.

C.3 Text-to-Speech (TTS) Model Evaluation

The TTS capabilities were evaluated for intelligibility using an ASR
judge.

C.3.1 Individual Model Performance Notes

• Sarvam AI: This model [32] produced good and natural-sounding
audio. Its performance in terms of intelligibility (WER as judged
by Google Cloud ASR) was also excellent. The 30-second audio
generation limit per request is a known constraint but acceptable
for this project.

• GEMINI: While generally performing well, GEMINI was found
to not officially support TTS for the Malayalam language at the
time of evaluation, but it performed reasonable in audio genera-
tion. [11].

• AI4BHARAT: The AI4BHARAT TTS model showed promis-
ing results in some cases, but its overall intelligibility scores
(WER/CER) varied across languages. Evaluating TTS for diverse
Indic languages is an ongoing challenge [34].

C.3.2 TTS Comparative Results

The intelligibility of the TTS outputs, as judged by Google Cloud
ASR, is summarized in the tables below.

Table 3. TTS Intelligibility WER Summary (Judged by ASR)

Language ai4bharat gemini sarvam

English 0.6415 0.1698 0.5283
Hindi 0.1034 0.0517 0.0862
Malayalam 0.8286 0.6571 0.4857

Table 4. TTS Intelligibility CER Summary (Judged by ASR)

Language ai4bharat gemini sarvam

English 0.3716 0.0683 0.5683
Hindi 0.0469 0.0281 0.0344
Malayalam 0.7219 0.2995 0.1364

Visual comparisons of these metrics are provided in Figure 3.

Figure 3. TTS Intelligibility Performance: WER (left) and CER (right)
Comparisons Across Models (Judged by ASR).

C.4 Final Model Selection and Justification

Based on the comprehensive evaluation encompassing STT accuracy,
TTS intelligibility, language support, and operational characteristics,
Sarvam AI [32] was chosen as the primary model for both Speech-
to-Text and Text-to-Speech tasks in this project.

The decision was driven by the following key factors:

• Strong STT Performance: Sarvam AI demonstrated competitive
Word Error Rates for STT across the tested languages, particularly
for English and Malayalam (tying with Gemini). While its Hindi
STT WER was slightly higher than Gemini’s in this specific test,
its overall STT profile was robust.

• Effective TTS Performance: Sarvam AI also yielded good results
for TTS intelligibility, especially notable in Malayalam where it
significantly outperformed other models. The synthesized audio
quality was perceived as natural.

• Balanced Capabilities: Considering both STT and TTS, Sarvam
AI offered a strong, balanced performance across the required lan-
guages.

• Acceptable Limitations: The 30-second audio processing limit
for Sarvam AI’s native API was deemed acceptable for the scope
of this project. The potential to overcome this with batch process-
ing offers a path for future scalability if needed.

While GEMINI [12, 11] showed excellent speed and strong per-
formance in English STT and Hindi STT/TTS, its lack of more In-
dian language TTS support and slightly lower STT accuracy in In-
dian languages were drawbacks. AI4BHARAT [17], despite show-
ing promise, faced challenges with STT accuracy (partially due to
translation behavior and punctuation handling) and processing speed,
making it less suitable as the primary choice. The issues encountered
with OpenAI’s Whisper API [26, 27] precluded its full evaluation.

Therefore, Sarvam AI emerged as the most well-rounded and ef-
fective solution for the project’s requirements.

D Search and Retrieval Strategies Comparison
Search & Retrieval strategies are an important component for a good
RAG system. This section describes the various approaches that were
tried along with comparisons. Here’s a brief overview of the relevant
techniques:

D.1 Cosine Similarity

Cosine similarity works by calculating the angle between two vec-
tors in an n-dimensional space. In RAG, Cosine similarity is applied
to calculate the similarity score between the query vector and each
document vector. The top-k documents that are closest to the query
vector are retrieved in this approach. More information about cosine
similarity based search implementations can be found here: [24]. Co-
sine Similarity is often the simplest approach for such searches but
does work reasonably for small data corpuses.

D.2 Maximum Marginal Relevance (MMR)

While cosine similarity works, it also always fetches the closest vec-
tors. But what if the answer to the question requires a more com-
prehensive picture? For example: consider this simple scenario: We
are retrieving features regarding a new product from a catalog. The
output may look something like this: [Good Product, Great Prod-
uct, Nice Product, Excellent Product, Easy Install, Nice UI, Light
weight]. The first 4 phrases are ranked higher but all 4 are talking
about the same aspect of the product. If we restrict our search to top-
5 chunks, we would miss critical information such as "light weight"
& "Easy Install". This is the problem MMR tries to solve. Aditya Ku-
mar’s Tech that works blog article[1] gives a good quick overview
of the problem and the algorithm. MMR introduces a diversity hy-
perparameter on top of Similarity search to retrieve more relevant
documents. In our app, MMR has been implemented with a diversity
value of 0.3

D.3 BM25 & Hybrid Search

BM25 is a bag-of-words retrieval function that ranks a set of doc-
uments based on the query terms appearing in each document, re-
gardless of their proximity within the document [37]. It works by
calculating a score based on the Term Frequency-Inverse Document
Frequency (TF-IDF) between the query and document corpus. Based
on these scores, the top-k relevant document chunks can be retrieved
from the corpus. This algorithm has a high chance of finding doc-
ument chunks that have the same key terms present in the user
query. These key-terms may not necessarily have any semantic mean-
ing (e.g., Document ID, UID, Names, Nouns etc.) A pure semantic
search may therefore miss these documents. The trade-off with this
approach is that semantic meaning is completely lost. Also, if the

Table 5. A snippet from the Video Search Evaluation Dataset that shows how one query is mapped to multiple chunks in a video
Dataset ID Query ID Query Video Name Chunk

activation_functions 1 What are the three types of activation
functions explained in the video?

Hindi_Activation Function Part-1l Linear, Hevi-
side Step, Sigmoid Functions Explained In
Hindi.mp4

1

activation_functions 1 What are the three types of activation
functions explained in the video?

Hindi_Activation Function Part-1l Linear, Hevi-
side Step, Sigmoid Functions Explained In
Hindi.mp4

2

activation_functions 1 What are the three types of activation
functions explained in the video?

Hindi_Activation Function Part-1l Linear, Hevi-
side Step, Sigmoid Functions Explained In
Hindi.mp4

10

data corpus is very huge, initialization will take a long time as the
index has to be calculated. If a new video is processed, the entire in-
dex has to be recalculatated which is an additional overhead. In this
implementation the NLTK (https://www.nltk.org/) and RankBM25
(https://pypi.org/project/rank-bm25/) Python libraries were used.
The best way to use BM25 is to combine it with a semantic search
approach and merge the results using an algorithm such as RRF.

D.4 Reciprocal Rank Fusion (RRF)

When a hybrid search approach is implemented, results from multi-
ple search algorithms are obtained. RRF is an algorithm that can be
used to merge these results efficiently and calculate a unified score
(more details here: [33]). In our app, we use a hybrid search approach
that combines BM25 & Similarity Search or MMR. The results ob-
tained from both the search approaches are merged together using
RRF to get a unified result. Since we retrieve top-k from each ap-
proach, we finally get upto 2k chunks (there may be duplicates).
Since this ranking is purely statistical, it doesn’t take much additional
computation

D.5 Reranking

The results from Hybrid Search + RRF was found to contain the
most relevant chunks in most cases but sometimes, the most relevant
document ends up lower in the list of top-2k chunks. An additional
reranker that ranks every result with the query can help to re-sort the
list and bring the most relevant chunks to the top. Post this step, the
top-k chunks are finally filtered and returned to an LLM to generate
a response. In this implementation this model - https://huggingface.
co/cross-encoder/ms-marco-MiniLM-L6-v2 - was used to rerank
the results.

D.6 Custom Dataset Creation

While retrieval Benchmark datasets such as BeIR dataset (https:
//github.com/beir-cellar/beir) exist, no dataset specific to Indic Lan-
guage content was identified. BeIR is a heterogeneous benchmark
containing diverse IR tasks. While this is not a video-RAG specific
dataset, the information retrieval capability alone can be tested using
this. But given that the goal was to test how Retrieval would work for
the summaries that were generated a custom dataset was created.

The dataset consists of Queries and multiple relevant answer
chunks that could answer that query. This was needed because unlike
the BEIR datasets such as Scidoc & HotpotQA, the information in a
video is continuous and could be spread out over multiple chunks. To
factor this into account, a dataset as shown in Table 5 was created.
This enabled the effective calculation on Precision@5, Recall@5, F1
Score, MRR & nDCG@5

D.7 Metrics Explained

Precision@5: The proportion of retrieved video chunks in the top-5
results that are relevant to the query:

Precision@5 =
no. of relevant chunks in top-5

total no. of retrieved chunks
(1)

Recall@5: The proportion of all relevant video chunks that appear
in the top-5 results:

Recall@5 =
no. of relevant chunks in top-5

total no. of relevant chunks for the query
(2)

F1 Score: The harmonic mean of precision and recall, balancing
both metrics:

F1 =
2× Precision@5 × Recall@5

Precision@5 + Recall@5
(3)

MRR (Mean Reciprocal Rank): MRR measures how early the
first relevant chunk appears in the results:

MRR =
1

rank of first relevant chunk
(4)

Higher values (closer to 1) indicate that relevant chunks appear ear-
lier in results.

nDCG@5 (Normalized Discounted Cumulative Gain): Evalu-
ates the ranking quality of the top-5 results:

nDCG@5 =
DCG@5
IDCG@5

(5)

where:

DCG@5 =

5∑
i=1

reli
log2(i+ 1)

(6)

reli = 1 if chunk at position i is relevant, 0 otherwise.
IDCG@5 is the ideal DCG value if all relevant chunks were ranked

first. Higher values (closer to 1) indicate better ranking of relevant
chunks.

In this video search context, these metrics help evaluate how well
the system retrieves relevant video chunks for a query. For example,
if a query about "activation functions" has 3 relevant chunks (chunks
1, 2, and 10) as shown in the dataset snippet, and the implemented
system returns chunks [1, 3, 10, 5, 7]: Precision@5 = 2/5 = 0.40 (2
relevant chunks in 5 results) Recall@5 = 2/3 = 0.67 (2 of the 3 rele-
vant chunks were found) MRR = 1/1 = 1.00 (first result is relevant)
nDCG@5 would be high since relevant chunks appear at positions 1
and 3

D.8 Final Results

The above metric scores were calculated for the small custom dataset
(118 queries-relevant chunk pairs) that was created for the purposes

https://www.nltk.org/
https://pypi.org/project/rank-bm25/
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2
https://github.com/beir-cellar/beir
https://github.com/beir-cellar/beir

Table 6. Precision, Recall, and F1 Score for Different Search Methods
Method Precision@5 Recall@5 F1 Score
similarity 0.35 0.73 0.46
mmr 0.28 0.78 0.40
hybrid (Cosine+MMR) 0.29 0.85 0.41
BM25+MMR 0.30 0.88 0.42

Table 7. Ranking Quality Metrics for Different Search Methods
Method MRR nDCG@5
similarity 0.68 0.66
mmr 0.72 0.69
hybrid (Cosine + MMR) 0.72 0.71
BM25+MMR 0.76 0.74

of this project. The results of all approaches were re-ranked before
evaluation. While this is a limited analysis, the results still show a
very clear difference. We can see that:

• Similarity has the highest precision (0.35) and F1 score (0.46),
meaning it returns the most relevant results with less noise, but
misses some relevant items.

• BM25+MMR performs best in:

– Recall@5 (0.88): finds the most relevant items

– MRR (0.76): ranks the first relevant result higher

– nDCG@5 (0.74): best overall ranking quality considering both
relevance and position

Hybrid approach performs well in recall but is generally outper-
formed by BM25+MMR

• MMR has the lowest precision but improved recall compared to
similarity.

Therefore it is concluded that BM25+MMR is the better search ap-
proach overall because it:

• Finds significantly more relevant results (highest recall)
• Places relevant results higher in the ranking (highest MRR)
• Produces the best overall ranking quality (highest nDCG)
• Has reasonable precision despite prioritizing recall

For a video search system, BM25+MMR+Reranking would pro-
vide users with the most comprehensive results while ensuring the
most relevant videos appear at the top of search results. Since we run
2 searches, there is a marginal increase in total search time.

D.9 Future Work

While the above approach achieves the best overall performance, sev-
eral more advanced embedding and search approaches could further
enhance the video retrieval system such as:

• Splade (Sparse Lexical and Dense Expansion): Combines
sparse and dense representations for more nuanced semantic un-
derstanding

• Knowledge Graphs: Could capture relationships between con-
cepts across videos, enabling more contextual searches and reveal-
ing connections between related educational content

• Previous Chunk-Next Chunk Retrieval: Would improve tem-
poral continuity by considering adjacent chunks when retrieving
video segments, providing more coherent results

These approaches were not explored in the current project due to
time limitations, and the complexity of implementation. Future itera-
tions could incorporate these techniques to potentially achieve higher

precision while maintaining the strong recall performance observed
in our current best model.

E Video Summarization strategies Comparisons
Video summarization involves understanding the video content, an-
alyzing the audio, and examining the interrelation between video
and audio. We have stored various types of Indic language videos,
including Hindi, Malayalam, and Tamil to use as information con-
text to answer user queries. Video summarization is done through
a comparative study between Gemini AI - Gemini 2.5-pro-preview-
06-05 and OpenAI - GPT-4o models. The video is segmented into
multiple 30-second intervals. While GPT-4o does not support direct
MP4 video summarization, Gemini 2.5 Pro does. GPT-4o utilizes a
keyframe model for video summarization, with audio translated via
the Sarvam AI model. This translated audio is then incorporated into
the context for complete chunk summarization. Both models are pro-
vided with structured prompts to ensure similar outputs for compre-
hensive analysis. The output is then stored in a directory for subse-
quent processes, such as video embeddings.

E.1 Video Analysis

The video is ingested using OpenCV to extract essential video in-
formation like frame count, FPS, frame width, and height. For GPT-
4o [25], the focus is on extracting keyframes from video and au-
dio from another model like Sarvam or Whisper. Keyframe selec-
tion is the paramount focus in this analysis where Uniform sampling
or VideoTree using CLIP can be performed to find keyframes [22].
VideoTree computes image features and K-means clustering to detect
frame-to-frame differences, thereby identifying visual changes. Uni-
form sampling, on the other hand, implements time-based sampling
with respect to the number of frames captured. Base64 is used as a
bridge between binary image data and text formats. One of the chal-
lenges faced is the token limitation with encoded frames and associ-
ated cost during comparative analysis. To address this, we have re-
duced the size and image quality of frames to meet the token require-
ments. For the Gemini model, we have shared chunk-wise clips with
the model to generate video summarization as per the prompt. For
audio analysis, Sarvam AI is used for audio translation, and in Gem-
ini computation, the audio is sent along with the video. Although
OpenAI Whisper-M model also can be used for audio translation, its
baseline PT model has a high Word Error Rate (WER) percentage
(104%) for the Indic audio translation [29].

E.2 Gemini 2.5 Pro vs Gemini 1.5 Pro

Gemini 2.5 Pro and Gemini 1.5 Pro both accept video and are good
fits for video model comparison. Gemini 2.5 Pro has a slight edge
over the old model in capturing minute details. For instance, while
checking for video key events, Gemini 2.5 Pro has inferred extra fea-
tures of the video and given a well-detailed event summary. For in-
stance, in the Transformer related video, the author is giving input
’GPT-3 as an autoregressive language model’. Here, Gemini 2.5 Pro
has captured the details of autoregressive whereas Gemini 1.5 Pro has
just given the idea that ’GPT-3’s ability to generate human-like text’.
In another video, transition of slides with the addition of formula in
the same context was identified by Gemini 2.5 Pro whereas Gemini
1.5 Pro was only explaining the formula instance while checking key
frame inputs. As per Google reports, Gemini 2.5 Pro has TextVQA
score of 74.6% and 73.5% on image understanding.

Figure 4. KeyFrame Evaluation

E.3 Evaluation

In this comparative study, we conducted frame-by-frame analysis
comparing GPT-4o key frames summary with Gemini 2.5 Pro sum-
mary output. We found that Gemini 2.5 Pro is capable of understand-
ing the entire video, including any animations, as it accepts the full
video file. This allows Gemini to provide a more comprehensive and
accurate summary of the video content. On the other hand, GPT-
4o can extract frame information, but may miss small animations
and some details due to low image quality. However, GPT-4o is still
able to create context from extracted frames, which contributes to its
summarization capabilities. The summaries generated by both mod-
els included visual descriptions of scenes, people, objects, and text.
Audio content analysis was also performed to provide a summarized
view, rather than a word-for-word translation. Future improvements
could include smarter chunk selection for scene detection, combining
frame-based and chunk-based methods for optimal results, enhanced
keyframe extraction techniques, and adaptive token management.

F Embedding Model Comparisons
Word embeddings are dense vector-based feature representations of
words in a given dimensional space [14]. Pre-trained language mod-
els (PLM) are one variation of them, they provide state-of-the-art
performance in numerous Natural Language Processing tasks like
summarisation, information retrieval, text classification, etc. [4] [23]

We shortlisted some top openly available PLM’s for our study
which included general multilingual models which included indic
languages(XLM-RoBERTa[5], mBERT[7], LaBSE[8], Multilingual-
E5[36]), models specifically pre-trained for indic languages
(IndicSBERT[6], IndicBERT[18], MuRIL[19], Vyakyarth[21]) and

monolingual model MiniLM which is designed only for English. For
testing the models, we created a multilingual corpus (English, Hindi,
Malayalam and Tamil) of 50 documents with significant overlap and
20 challenging queries to test for deeper semantic understanding.
The queries ranged from cross-lingual information retrieval, intent
based questions and negative constraints. For MiniLM we translated
all queries and documents to English while for other models they
were preserved in their native languages and then converted to dense
vector embeddings. For searching we used Cosine similarity to gen-
erate a list raked by the most semantically relevant documents at the
top. The evaluation was performed in a supervised manner with a
pre-defined mapping from the query to the correct document. For
evaluation we used two scoring metrics, recall and Mean Reciprocal
Ranks (MRR). Recall indicates if the correct document appears in
the top five results, while MRR is the average of the reciprocal rank
at which the correct document was found. It rewards the model for
placing the correct document higher in the list.

Table 8. Performance Table (Model vs. Query)
model Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
IndicBERT 0.00 0.33 1.00 0.00 1.00 0.33 0.20 1.00 0.00 0.50 1.00 0.00 1.00 0.00 0.20 0.10 0.10 0.10 0.33 0.20
L3Cube-IndicsBERT 1.00 1.00 0.33 0.20 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.10 0.10 0.10 0.10 1.00 1.00
LaBSE 1.00 0.00 0.00 0.50 1.00 0.20 1.00 1.00 0.00 0.33 1.00 1.00 1.00 1.00 0.25 0.10 0.10 0.10 0.50 0.33
MiniLM (Translated) 0.50 1.00 0.00 0.20 0.50 0.60 1.00 1.00 1.00 0.50 1.00 1.00 1.00 0.00 1.00 0.10 0.10 0.10 0.50 1.00
MuRIL 0.50 1.00 0.33 0.00 1.00 0.33 0.50 1.00 0.20 1.00 1.00 0.00 1.00 1.00 1.00 0.10 0.10 0.10 0.25 1.00
Multilingual-E5 1.00 1.00 0.00 0.00 0.50 0.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.10 0.10 0.10 0.20 1.00
XLM-RoBERTa 0.33 0.00 0.20 0.00 0.00 0.33 0.50 0.00 0.00 1.00 1.00 0.00 0.33 0.20 0.10 0.10 0.10 0.00 0.00 0.00
mBERT 1.00 0.25 0.25 0.00 0.50 0.00 0.33 1.00 0.00 1.00 1.00 0.00 1.00 1.00 1.00 0.10 0.10 0.10 0.20 0.50

Table 2 shows a detailed breakdown of each model’s performance
over twenty distinct enquiries. Table 3 presents an overview of this
performance ordered by Mean Reciprocal Rank (MRR). From the
above comparison study we found that L3Cube-IndicSBERT which
is based on MuRIL[6] performed the best with a MRR score of
0.7417 and perfect recall score. Figure 2. demonstrates a superior
grasp by the IndicSBERT model in underlying semantic structures
in the word analogy tests. Its shows that it creates a well-organized
vector space that preserves linguistic relationships. As the model also
performs much better than the MiniLM model we can also conclude
that it is better to store the embeddings in the the native language
than translating it to another language and using a monolingual em-
bedding, as it could lead to a loss in the semantic nuance during trans-
lation.

Table 9. Overall Performance (Sorted by MRR)

model MRR Average_Recall_at_5

L3Cube-IndicsBERT 0.7417 1.0000
Multilingual-E5 0.6500 0.8500
MiniLM (Translated) 0.5750 0.8500
MuRIL 0.5708 0.9000
LaBSE 0.5208 0.8500
mBERT 0.4667 0.8000
IndicBERT 0.3700 0.7500
XLM-RoBERTa 0.2600 0.6000

To ensure reproducibility and control, the scope of this study was
purposely limited to publicly available models. Future studies might
benefit from using commercial embedding APIs, such as those from
OpenAI, to benchmark their performance on these difficult multi-
lingual tasks and gain a more comprehensive understanding of the
SOTA environment, similar to the IndicMMLU-Pro benchmarking
study.[20]

Figure 5. Visual Representation of Word Analogy Results

G Context Aware Chat and Query Transformation
Comparisons

Query transformation is a core component of Retrieval-Augmented
Generation (RAG) systems, especially in conversational, multi-turn
settings where the system must interpret the current query in light
of previous dialogue. This appendix examines four transformation
strategies—Query Decomposition, HyDE, Multi-Query Expansion,
and RAG-Fusion—as applied to educational or exploratory video
search. Each method is assessed on Context Retention, Reformula-
tion Diversity, Precision@5, Latency, and overall Efficiency.

G.1 Query Decomposition

Query Decomposition splits a complex query into several sub-
queries, each targeting a distinct aspect of user intent. This enhances
recall and interpretability but introduces overhead and latency, as
separate retrieval calls are needed. Moreover, unless explicitly in-
cluded, conversational context may be lost. Its limitations in multi-
turn settings have been noted in recent RAG pipeline studies [16].

G.2 Hypothetical Document Embeddings (HyDE)

HyDE first “hallucinates” a plausible answer using an LLM and re-
trieves documents similar to that generated text [9]. This can boost
precision—especially for vague queries—but adds computational
cost and may introduce hallucinated context. It also doesn’t auto-
matically utilize dialogue history unless specifically prompted.

G.3 Multi-Query Expansion

Multi-Query Expansion generates multiple paraphrases of the user’s
query and aggregates the results [38]. While effective for increasing
recall, it often leads to redundancy and lacks sensitivity to conversa-
tional context, which is critical in chained query scenarios.

G.4 RAG-Fusion with Context-Aware Summarization

RAG-Fusion extends query expansion by leveraging both recent di-
alogue context and lightweight summarization of earlier turns. The
system maintains a rolling memory window: when the dialogue
length exceeds a threshold, it summarizes older prompts. It then con-
structs a prompt that produces multiple semantically distinct refor-
mulations (e.g., focusing on definitions, examples, methods, or pit-
falls). These reformulations are cleaned, deduplicated, then executed
through a hybrid retriever and fused using Reciprocal Rank Fusion
(RRF) [28, 30]. This approach preserves conversational continuity

and yields diverse, relevant search results in real-time. The use of
RRF specifically enhances result quality in hybrid retrieval scenarios
[33].

G.5 Comparative Summary

To compare these methods fairly, we use the same evaluation
methodology as the RAG method evaluations and calculate Preci-
sion@5, Recall@5, nDCG@5, MRR & F1 Score. We keep the
search method constant (BM25 + MMR + Reranking as that was
concluded as the best option) and only change the query transforma-
tion approaches for our custom dataset. The results are as follows:

Table 10. Effectiveness Metrics
Method Precision@5 Recall@5 F1 Score MRR nDCG@5
rag_fusion 0.3178 0.9795 0.4608 0.7643 0.7428
hyde 0.2922 0.8961 0.4229 0.7349 0.7276
decomposition 0.3096 0.9669 0.4509 0.5220 0.4820
expansion 0.3178 0.9886 0.4619 0.7665 0.7460

Additionally, we also calculate some Efficiency metrics as de-
scribed below:

• Transform Time: Average time required to transform the original
query using a particular method.

• Search Time: Average time taken to perform the actual search
after query transformation

• Total Time: Transform Time + Search Time
• Efficiency Score: Ratio of F1 score to total processing time, mea-

suring quality of results per unit time.

Table 11. Efficiency Metrics
Method Transform Time Search Time Total Time Eff. Score
rag_fusion 0.997 sec 0.129 sec 1.126 sec 0.40902
hyde 2.498 sec 0.040 sec 2.538 sec 0.16663
decomposition 1.032 sec 0.097 sec 1.130 sec 0.39915
expansion 1.158 sec 0.126 sec 1.284 sec 0.35969

• Expansion slightly outperforms RAG fusion across all effec-
tiveness metrics, though the differences are marginal:
– Same precision (0.3178), Better recall (0.9886 vs 0.9795),

Slightly better F1 score (0.4619 vs 0.4608)

– Slightly better MRR (0.7665 vs 0.7643) and Slightly better
nDCG@5 (0.7460 vs 0.7428)

• Both methods significantly outperform HyDE and decomposi-
tion, particularly in ranking quality (MRR and nDCG).

• RAG Fusion is more efficient than expansion:

– Lower transformation time (0.997 vs 1.158 seconds) and Simi-
lar search time. This implies overall Lower total time (1.126 vs
1.284 seconds)

– Higher efficiency score (0.40902 vs 0.35969)

• HyDE is notably less efficient than all other methods, despite
having the fastest search time.

While expansion provides marginally better retrieval quality, RAG
fusion achieves nearly identical effectiveness with approximately
12% better time efficiency. The effectiveness differences are in the
third decimal place, while the efficiency advantage of RAG fusion
is more substantial. Therefore, based on our limited custom dataset
evaluation, RAG fusion would likely be the preferred choice due
to its better balance of effectiveness and efficiency.

Figure 6. Chat App UI with Text input and Text +Voice output

Figure 7. Chat App UI when Voice Input is given

Figure 8. Chat App UI with Indic+English Code-mixed Input and Text +Voice output

Figure 9. Companion App for Embedding Model Comparison

	Introduction
	Architecture
	Comparative Analysis of Key Components
	Speech-to-Text Model
	Text-to-Speech Model
	Video Summarization
	Embedding Model
	Indexing, Searching and Retrieval
	Context Aware Chat and Query Transformations

	Conclusion and Future Work
	Contributions
	Full Code & Live App
	Text-to-Speech and Speech-to-Text Model Comparisons
	Evaluation Framework
	Models Evaluated
	Language Scope
	Evaluation Dataset
	Metrics for Performance Assessment
	Text-to-Speech (TTS) Evaluation Judge

	Speech-to-Text (STT) Model Evaluation
	Individual Model Performance Notes
	STT Comparative Results

	Text-to-Speech (TTS) Model Evaluation
	Individual Model Performance Notes
	TTS Comparative Results

	Final Model Selection and Justification

	Search and Retrieval Strategies Comparison
	Cosine Similarity
	Maximum Marginal Relevance (MMR)
	BM25 & Hybrid Search
	Reciprocal Rank Fusion (RRF)
	Reranking
	Custom Dataset Creation
	Metrics Explained
	Final Results
	Future Work

	Video Summarization strategies Comparisons
	Video Analysis
	Gemini 2.5 Pro vs Gemini 1.5 Pro
	Evaluation

	Embedding Model Comparisons
	Context Aware Chat and Query Transformation Comparisons
	Query Decomposition
	Hypothetical Document Embeddings (HyDE)
	Multi-Query Expansion
	RAG-Fusion with Context-Aware Summarization
	Comparative Summary

