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Principal Component Analysis (PCA) is a widely used technique inmachine learn-
ing, data analysis, and signal processing. With the increase in the size and com-
plexity of datasets, it has become essential to develop low-space usage algorithms
for PCA. Streaming PCA has gained significant attention in recent years, as it can
handle large datasets efficiently. The kernel method, commonly used in learning
algorithms such as Support VectorMachines (SVMs), has also been applied in PCA
algorithms.
We propose a streaming algorithm for Kernel PCA problems based on the tradi-
tional scheme by Oja. Our algorithm addresses the challenge of reducing themem-
ory usage of PCA while maintaining its accuracy. We analyze the performance of
our algorithm by studying the conditions under which it succeeds. Specifically, we
show that when the spectral ratio R := λ1/λ2 of the target covariance matrix is
Ω(log n · log d), the streaming PCA can be solved with linear space cost. However,
the standard PCA algorithm usually requires quadratic space due to matrix vector
multiplication.
Our proposed algorithm has several advantages over existing methods. First, it
is a streaming algorithm that can handle large datasets efficiently. Second, it em-
ploys the kernel method, which allows it to capture complex nonlinear relation-
ships among data points. Third, it has a low-space usage, making it suitable for
limited memory applications.

1. Introduction
Principal Component Analysis (PCA) is a technique used to reduce the dimension of data. PCA has
been widely applied in various domains, including web-related applications [1], computer vision
[2], and recommendation systems [3]. It is a linear method that uses orthogonal transformations to
convert a set of correlated variables into a set of less correlated variables called principal components.
In the simplest case, we care about the first principal component.
Kernel principal component analysis (kernel PCA) is an extension (also a generalization) of PCA,
combined with the kernel methods. Kernel PCA has many applications, such as distance-based
algorithm [4], computing principal components in high-dimensional feature spaces [5], face recog-
nition [6, 7], spectral embedding [8], novelty detection [9], de-noising in feature spaces [10], and
fault detection and identification of nonlinear processes [11].
In the simplest setting of PCA, given a datasetX = {x1, x2, . . . , xN} ⊆ Rd, thus the covariance matrix
of the dataset is C := 1

N

∑
i∈[N ] xix

⊤
i . The goal is to find the eigenvector v∗ ∈ Rd corresponding to

the largest eigenvalue λ of C.
To understand the motivation of kernel PCA [10, 12, 13], particularly for clustering, observe that,
while N points cannot, in general, be linearly separated in d < N dimensions, they can almost
always be linearly separated in d ≥ N dimensions. That is, given N points, xi, if we map them to
an N -dimensional space with ϕ(xi), where ϕ : Rd → RN , it is easy to construct a hyperplane that
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divides the points into arbitrary clusters. So Kernel PCA is a widely-used tool to extract nonlinear
features while traditional (linear) PCA can only detect linear features.
Since the dimension might be very high in the kernel space (implied by the kernel function ϕ),
computing the exact products in that space will be too expensive. Thus it is natural and reasonable
to use Mercer kernels [14–16], a function k(x, y) : Rd × Rd → R+ such that, for an input dataset
X = {xi}i∈[N ] ⊆ Rd, it produces a positive matrix K ∈ Rn×n, where each entry of K is given by
Ki,j := k(xi, xj).Bydefining k(x, y) := ϕ(x)⊤ϕ(y), one can use k tomap the data points to the kernel
space without computing the inner product explicitly. Note that, each column Ki of the matrix K
is the product in the kernel space from one point xi to all the N points in X .
Since we don’t work in the feature space explicitly (which might be very expensive due to the di-
mension), the principal components that have been found are for the projected data. For a data
point x, its projection onto the k-th principal component vk is v⊤k ϕ(x) instead of the original v⊤k x in
the linear PCA.
In traditional PCA problem [17–20], one needs to have access to all the data points {xi}i∈[n]. Thus
the space neededmight be very high to store inmemory. Streaming PCA is amethod for performing
PCA on data too large to fit into memory. The traditional PCA algorithm requires that all data is
loaded into memory at once, making it infeasible for very large datasets. Streaming PCA, on the
other hand, allows data to be processed in smaller chunks, reducing memory requirements and
making it possible to analyze very large datasets.
In the streaming setting, we are asked to maintain a data structure such that, it receives the data
points coming in the streamingway, and it can output the estimated principal component at the end
of the streaming. Formally, the data structure receives a stream of xi’s. Thenwith somemaintaining
operation, it can output a vector u such that u ≈ x∗,where x∗ is the top principal component of the
dataset.
With the motivation of kernel PCA algorithm, combining the natural expectation for an algorithm
to run fast/use low space, we ask the question

Can we solve the kernel PCA in a small space?

In this work, we present a positive answer to this problem.

1.1. Related Work

Streaming Algorithms. Over the past decades, a massive number of streaming algorithms have
been designed, since there is a concern that under some circumstances, the data is too large to store
in a single machine. Some streaming algorithms are mainly designed for graph problems [21],
for instances, shortest path and diameter [22, 23], maximal independent set [24, 25], maximum
matching and minimum vertex cover [22, 26, 27], spectral sparsification [28, 29], max-cut [30], ker-
nel method and sketching technique [31–35]. Beyond graphs, streaming algorithms also provide
insights into other fields, like the multi-armed bandit problem [36]. Since many problems are prov-
ably to be intractable with sublinear space of n, where we use n to denote the number of nodes in
the graph, a line of work [22, 37] has been focused on semi-streaming model. In this setting, the
streaming algorithm is allowed to use O(npoly log n) space.
Recently, attention has been focused on the streaming models under the setting ofmulti-pass, where
under this setting, the models are allowed to look at the streaming updates more than once. The
reason is that it can reduce the space needed effectively to let the models take more than one pass of
the updates. For instances, anO(log log n)-pass algorithm for maximal independent set [24, 25, 38],
and O(1)-pass algorithm for approximate matching [26, 27, 39, 40].

Principal Component Analysis. There has been a lot of research looking at Principal Component
Analysis from a statistical point of view, where the performance of different algorithms is stud-
ied under specific conditions. This includes using generative models of the data [17], and making
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assumptions about the eigenvalue spacing [18] and covariance matrix spectrum [19, 20]. While
these studies do offer guarantees for a finite amount of data, they are not practical for real-world
applications, as they are either limited to only working with a complete dataset or require a lot of
computational resources. An efficient, incremental algorithm is needed for practical use.
Talking about incremental algorithms, the work of Warmuth and Kuzmin [41] provides an analysis
of the worst-case streaming PCA. Previous general-purpose incremental PCA algorithms have not
been analyzed for their performance with a finite amount of samples. [42]. Recently, there have
been efforts to address the issue of lacking finite-sample analysis by relaxing the nonconvex nature
of the problem. [43] or making generative assumptions [44].
As it is an attractive topic (it is natural to ask to extract principal components from a dataset coming
in a streaming fashion), attention has been focused on streaming PCA for years. There are two tradi-
tional algorithms for streaming PCA, one is Oja’s algorithm [45] and the other is a classical scheme
provided by Krasulina [46]. The work of Balsubramani, Dasgupta and Freund [47] analyzes the
rate of convergence of the Krasulina and Oja algorithms. The work by Hardt and Price [48] pro-
vided a robust convergence analysis of the well-known power method for computing the dominant
singular vectors of a matrix that we call the noisy power method. Later work of Allen-Zhu and Li
[49] provides global convergence for Oja’s algorithm with k > 1 top principal components, and
provides a variant of Oja’s algorithm which runs faster. Another line of works [50, 51] shows that
Oja’s algorithm achieves performance nearly matching that of an optimal offline algorithm even for
updates not only rank-1. There are also works focused on the problem of uncertainty quantification
for the estimation error of the leading eigenvector from Oja’s algorithm [52]. A very recent work
[53] gives the correctness guarantee that under some specific conditions for the spectral ratio, Oja’s
algorithm can be used to solve the streaming PCA under a traditional setting.

1.2. Our Result
Here in this section, we present our main result, which is a streaming algorithm for kernel PCA.

Algorithm 1 Our Streaming Kernel PCA Algorithm
1: procedure KernelPCA(n, d,m, ϕ) ▷ Theorem 1.1
2: v0 ∼ N (0, Im) ▷ To store v0 we only need O(m) space.
3: for i = 1→ n do
4: Receive xi

5: ▷ To store xi we need O(d) space, once we move to iteration i+ 1, we can drop the xi.
Thus overall, we only need O(d) space

6: vi ← vi−1 + η · ⟨ϕ(xi), vi−1⟩ · ϕ(xi)
7: ▷ Over the entire algorithm we only need O(m) space to store vi. Once we move to i+ 1,

we don’t need vi−1 anymore
8: end for
9: u← vn
10: return u
11: end procedure

Theorem 1.1 (Informal version of Theorem 3.2). Let ϕ : Rd → Rm. Let Σ = 1
n

∑n
i=1 ϕ(xi)ϕ(xi)

⊤ ∈
Rm×m. We define R := λ1(Σ)/λ2(Σ) where λ1(Σ) is the largest eigenvalue of Σ and λ2(Σ) is the second
largest eigenvalue of Σ. Let x∗ denote the top eigenvector of Σ. Let C > 103 denote a sufficiently large
constant. If R ≥ C · (log n) · (log d), there is a streaming algorithm (Algorithm 1) that only uses O(d+m)
spaces and receives x1, x2, · · · , xn in the online/streaming fashion, and outputs a unit vector u such that

1− ⟨x∗, u⟩2 ≤ (log d)/R

holds with probability at least 1− exp(−Ω(log d)).
By combining the kernel method and the streaming PCA technique, Algorithm 1 provides a way to
solve kernel PCA with linear cost of space when the spectral ratio R = Ω(log n · log d), as we show
in Theorem 1.1.
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Roadmap. In Section 2, we summarize our technique overview. In Section 3, we analyze the stream-
ing Kernel PCA algorithm and reach a theoretical result. In Section 4, we make a conclusion.

2. Technique Overview
Here in this section, we give an overviewof the techniques used for our algorithmdesign. In general,
our algorithm combines the Oja’s streaming PCA algorithm [45] and a new analysis of applying
kernel functions in it.

2.1. Streaming PCA
Our first technique is based on the Oja’s traditional scheme used for streaming PCA problems. The
algorithm is based on the Hebbian learning rule, which states that the connection strength between
two neurons should be increased if their activity is correlated. In the context of PCA, the algorithm
updates the principal component (PC) vector in the direction of the current data point, but with a
learning rate that decreases over time. The algorithm aims to make the PC vector converge to the
primary eigenvector of the covariance matrix of the data. This eigenvector corresponds to the direc-
tion in which the data displays the most significant variation. By utilizing this method, it becomes
feasible to identify any shifts in the data distribution with time. Formally, when the data structure
receives a stream of data points

x1, . . . , xn ∈ Rd,

it iteratively updates a vector v ∈ Rn (Starting from a random Gaussian vector) such that
vi = vi−1 + η · xix

⊤
i vi−1,

where η ∈ R is the learning rate. Finally, the data structure outputs a vector

vn =

n∏
i=1

(In + ηxix
⊤
i )v0,

where v0 ∼ N (0, In). It is known that, with high probability, this output vector is close to the top
principal component.

2.2. Applying kernel function to stream PCA
Oja’s original streaming algorithm only supports traditional linear PCA questions. We want to gen-
eralize it to supporting kernel function. To do this, we need to overcome several barriers:

• Where to apply the kernel function? As we describe before, we need to “map" the input
data points onto some “kernel” space. But for the streaming setting, how to deal with the
data stream (different from the offline algorithm) becomes a question.

• Can streaming algorithm work with kernel method? As the classic streaming PCA algo-
rithms mostly work for linear PCA problems. It might have several unexpected barriers to
applying the kernel method here.

To overcome these barriers, we present our streaming PCA algorithm which is generalized from
Oja’s algorithm. To be specific, given a kernel function ϕ : Rd → Rm, our algorithm receives a
stream of data points

x1, . . . , xn ∈ Rd.

It first generates a random Gaussian vector v0 ∈ Rm at the beginning of the procedure, then it
iteratively updates a vector

vi = vi−1 + η · ⟨ϕ(xi), vi−1⟩ · ϕ(xi),
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where η ∈ R is the learning rate. When the algorithm stops, it outputs a vector

vn =

n∏
i=1

(In + η · ϕ(xi)
⊤ϕ(xi)) · v0.

By an analysis of the algorithm, we will show that, with a high probability, this vector vn is close to
the top principal component as desired in Theorem 1.1.

2.3. Eigenvalue Ratio Implies Existence of Algorithm
In the traditional (linear) streaming PCA algorithm, it has been shown that the speed, at which the
maintained vector approaches the dominant eigenvector, is determined by the relationship between
the largest and second largest eigenvalues. To be specific, if λ1 and λ2 are the top-2 eigenvalues of the
covariance matrix, we define R := λ1

λ2
to be the ratio of them. Let ϵ ∈ (0, 0.1) be an error parameter,

one has the guarantee that
1− ⟨vn, v∗⟩2 = sin2(vn, v

∗) ≤ ϵ

after O(logR(
d
ϵ )) iterations.

In our kernel setting, we give the first analysis of this convergence result on the streaming PCA
algorithm. We show that when R ≥ C · log n · log d, modified Oja’s algorithm (added kernel trick
to it) provides an ϵ-solution to the PCA problem. By choosing m to be sufficiently large, we can
increaseR. Intuitively, asm grows, the first dimension capturesmore information, while the second
dimension captures less information.

2.4. Overview of Our Analysis Approach
Our analysis approach can be summarized in the following paragraphs. Our proof outline is mainly
followed from [53], whilewe apply kernel functions in different stages of the algorithmand analysis.
Properties Implied by Update Rule. By the update rule of our algorithm, i.e.,

vi = vi−1 + ηxix
⊤
i vi−1,

we first show themaintained vector has several simple but useful properties holding (See ClaimD.1
for detailed statement and proofs), which provide the foundation for the further analysis. For ex-
ample, we show that the norm of the vector continues to grow in the iterative maintenance, i.e.,

∥vi∥22 ≥ ∥vi−1∥22
for any i ∈ [n], which (described in the next paragraph) is very useful, since the bound of the error
involves an inverse proportional term of the norm of the final vector. The analysis in [53] gives
proof that under a traditional setting (without kernel function), the growth of the norm is lower
bounded. We follow their approach and prove a kernel version, that is, we show

log(∥vb∥22/∥va∥22) ≥ η

b∑
i=a+1

⟨ϕ(xi), v̂i−1⟩2.

These properties are crucial in the correctness proofs, which are described in the later paragraphs.
Never-far-away property. As mentioned before, our algorithm iteratively maintains a vector vi
such that it will converge to the top eigenvector v∗ of the covariance matrix (i.e., the top princi-
pal component). There is a concern about the convergence and robustness of the algorithm that,
when the stream comes in an adversarial way, e.g., it puts several data points in some special direc-
tions, can our algorithm still have the convergence guarantee? Starting from this, [53] provided an
approach showing that, no matter where the maintaining starts from, once the maintained vector
ever gets close to the target v∗, it can never be too far away from it. We give a more detailed analysis,
showing this holds even with the kernel function. Formally, we define

P := I − v∗v∗⊤ ∈ Rd×d,
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then for any v0 and i, we have the result that,
∥P v̂i∥2 ≤

√
α+ ∥Pv0∥2/∥vi∥2,

for some constant α. Since our data structure has a zero-memory ability that, at some point i, the
future output of it only depends on the current state vi, and has nothing to do with the past vj ’s
(for j < i), it implies the property that, if it ever gets close to the target, it will never get too far
away. We call it “never-far-away” property. This result also implies that the final output will be
better as the growth of the ℓ2 norm of the maintained vector ∥vi∥2. This property is formally stated
in Lemma 2.1.
Bound on Sequence. By Lemma 2.1, we show that if one ever gets close to v∗, it will never move
by more than √α from it. Based on that, we further show that one cannot even move √α without
increasing the norm of v, i.e., we show in Lemma 2.2 that if v0 = v∗, for any two steps 0 ≤ a ≤ b ≤ n,
it holds that

∥P v̂b − P v̂a∥22 ≤ 50 · α · log(∥vb∥2/∥va∥2).

By the above analysis, we have the result that, to make the final output close to the desired target,
one needs to make ∥vi∥2 large. We first notice that, when vi drifts from the desired directions we
want it to be, it can cause the reduction on ∥vi∥2, i.e.,

∥vi∥2 ≥ exp(
∑
j∈[i]

η⟨ϕ(xj), v̂j−1⟩2).

Wewant to make sure that, the influence of each term η⟨ϕ(xj), v̂j−1⟩ on ∥vi∥ is small enough so that,
the final norm of vN is large enough. So we show the following decomposition

⟨ϕ(xj), v̂j−1⟩2 ≥
1− α

2
⟨ϕ(xj), v

∗⟩2 − ⟨ϕ(xj), P v̂j−1⟩2.

Thus, it suffices to show the second term is small enough so that it won’t destroy the growth of the
norm. Formally, we need prove that if v0 = v∗, then for all i ∈ [N ], it holds that

η

n∑
i=1

⟨ϕ(xi), P v̂i−1⟩2 ≤ 100 · α2 · log2 n · log ∥vn∥2.

As the analysis before, this implies that, if the vector maintained ever gets close to the target eigen-
vector, the sum of the products will be bounded, so that the normwill continue to grow. The formal
statement is Lemma 2.3.
Lower Bound. In [53], they provided a lower bound for the norm of the output vector. We gen-
eralize their method by applying the kernel function here. The next step of our poof is to lower
bound the norm of the final output. Our approach is described as follows. We first prove that the
properties in Claim D.1 imply the result of lower bound on ∥vn∥2. We show in Lemma 2.5 that,

∥vn∥2 ≥
√
η · (

∑
i∈[n]

⟨ϕ(xi), vi−1⟩2)1/2.

Combining this together with Lemma 2.3 we show that

log(∥vn∥2) ≥
η
∑

i∈[n]⟨v∗, ϕ(xi)⟩2

8 + 8 · C · α2 log2 n
,

which provides the lower bound for the norm of the output vector. The formal proof can be found
in Lemma 2.4.

2.5. Analysis of Our Kernel PCA Algorithm
In this section, we provide the lemmas that are useful for our kernel PCA algorithm analysis.
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Lemma 2.1 (Growth implies correctness). For any v0 and all i ∈ [n], we have ∥P v̂i∥2 ≤
√
α +

∥Pv0∥2/∥vi∥2. Further, if v0 = v∗, then we have ∥P v̂i∥2 ≤
√
α.

Proof. See Appendix E.1 for detailed proof.
Lemma 2.2. Suppose v0 = v∗. For any two time steps 0 ≤ a < b ≤ n,

∥P v̂b − P v̂a∥22 ≤ 50 · α log(∥vb∥2/∥va∥2).

Proof. See Appendix E.2 for detailed proof.
Lemma 2.3. If v0 = v∗, then for i ∈ [n], we have

η

n∑
i=1

⟨ϕ(xi), P v̂i−1⟩2 ≤ 100 · α2 · log2 n · log ∥vn∥2.

Proof. See Appendix E.4 for detailed proof.
Lemma 2.4 (The right direction grows.). Let α ∈ (0, 0.1). Let C1 ≥ 200 denote some fixed constant.
Then if v0 = v∗ we have

log(∥vn∥2) ≥
β/8

1 + C1 · α2 log2 n
.

Further, if α ∈ (0, 1/(10C1 log n)), we have
∥vn∥2 ≥ exp(β/20).

Proof. See Appendix E.5 for detailed proof.
Lemma 2.5. We have ∥vn∥2 ≥ √η · (

∑n
i=1⟨ϕ(xi), vi−1⟩2)1/2

Proof. See Appendix E.6 for detailed proof.

3. Our Kernel PCA Result
In this section, we show our results for the kernel PCA algorithm. In Section 3.1, we provide a
guarantee for the final output. In Section 3.2, we formally present the main result of our streaming
algorithm.

3.1. The Guarantee of Final Output
Theorem 3.1. Let C ≥ 103 be a sufficiently large constant. Suppose that α ∈ (0, 1

C logn ) and β ≥ C log d.
Our algorithm outputs a vector v̂n ∈ Rd such that

Pr[∥P v̂n∥2 ≤
√
α+ exp(−β/200)] ≥ 1− exp(−β/200)

Proof. Our algorithm starts with a uniform random direction v̂0, and the sequence of v̂i doesn’t
depend on ∥v0∥2, so we can assume v0 ∼ N (0, Id).
By this assumption, we know that for each i ∈ [d], (v0)i ∼ N (0, 1). Hence, we sum over all the initial
vectors v0 for the sequence of v̂i to get

E[∥v0∥22] =
d∑

i=1

E[∥(v0)i∥22] =
d∑

i=1

1 = d

where the first step follows from our assumption for proof, and the second step follows from the
definition of Gaussian.
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We define vector v0 ∈ Rd as v0 := a · v∗ + u for u ⊥ v∗ and a ∼ N (0, 1).
We define matrix B ∈ Rd×d

B :=

n∏
i=1

(1 + η · ϕ(xi) · ϕ(xi)
⊤),

so by Definition C.4 (update rule), vn = Bv0.

With probability 1− δ, we get
∥vn∥2 = ∥Bv0∥2 = ∥aBv∗ +Bu∥2 ≥ δ · ∥Bv∗∥2 ≥ δ · exp(β/20) (1)

where the first step follows from vn = Bv0, the second step follows from v0 = av∗ + u, the third
step follows from Claim B.8, and the last step follows from Lemma 2.4.
We can compute expectation,

E[∥u∥22] = E[∥v0∥22 − ∥av∗∥22 − 2⟨av∗, u⟩]
= E[∥v0∥22]− E[∥av∗∥22]− E[2⟨av∗, u⟩]
= d− E[∥av∗∥22]− E[2⟨av∗, u⟩]
= d− 1− E[2⟨av∗, u⟩]
= d− 1

where the first step follows from our definition for proof that v0 := a ·v∗+u, the second step follows
from simple algebra, the third step follows from definition of Gaussian, the fourth step follows from
E[a2] = 1 and ∥v∗∥22 = 1, the last step follows from ⟨u∗, u⟩ = 0.
Then applying Lemma B.6, we will have

Pr[∥u∥22 ≥ d/δ] ≤ E[∥u∥22]/(d/δ) = (d− 1)
δ

d
≤ δ (2)

the last step follows from (d− 1)/d ≤ 1.
The above equation implies

Pr[∥u∥2 ≤
√

d/δ] ≥ 1− δ.

With probability 1− 3δ, we have

∥P v̂n∥2 ≤
√
α+

∥u∥2
∥vn∥2

≤
√
α+

√
d/δ

∥vn∥2

≤
√
α+

√
d/δ

δ · exp(β/20)
≤
√
α+ 8 ·

√
d · exp(−β/30)

≤
√
α+ exp(−β/40)

≤
√
α+ exp(−β/200)

where the first step follows from Lemma 2.1, and the second step follows from Eq.(2), the third step
follows from Eq .(1), and the fourth step follows from choosing δ = exp(−β/200)/4, and the fifth
step follows from β ≥ C log dwith C ≥ 500.

3.2. Main Result
Theorem 3.2 (Formal version of Theorem 1.1). Let ϕ : Rd → Rm. Let Σ = 1

n

∑n
i=1 ϕ(xi)ϕ(xi)

⊤ ∈
Rm×m. We define R := λ1(Σ)/λ2(Σ) where λ1(Σ) is the largest eigenvalue of Σ and λ2(Σ) is the second
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largest eigenvalue of Σ. Let x∗ denote the top eigenvector of Σ. Let C > 103 denote a sufficiently large
constant. If R ≥ C · (log n) · (log d), there is a streaming algorithm (Algorithm 1) that only uses O(d+m)
spaces and receives x1, x2, · · · , xn in the online/streaming fashion, and outputs a unit vector u such that
1− ⟨x∗, u⟩2 ≤ (log d)/R holds with probability at least 1− exp(−Ω(log d)).

Proof. Let C ≥ 103 be a sufficiently large constant. Suppose that α ∈ (0, 1
C logn ) and β ≥ C log d.

From Theorem 3.1, we have ∥Pu∥2 ≤ ϵwhere ϵ = √α+ exp(−β/200). .
Using Claim B.2, we know that 1− ⟨u, x∗⟩2 ≤ ϵ2. From our assumption for proof, we have

R ≥ C · (log n) · (log d) ≥ 1

4
C · (log n) · (log d) (3)

where the second step follows from C · (log n) · (log d) ≥ 0.
Rewriting Eq. (3), we get 1

4 (log d)/R ≤
1

C logn .

Hence, we can choose

α =
1

4
(log d)/R (4)

by its domain α ∈ (0, 1
C logn ).

Eq. (4) equivalently yields that √α = 1
2

√
(log d)/R.

Since R ≥ 1 by the definition and we choose β ≥ C log(R/(log d)), then

exp(−β/200) ≤ exp(−(C/200) log(R/ log d))

≤ ((log d)/R)2

≤ 1

2

√
(log d)/R.

where the second step follows from C/200 ≥ 4, the last step follows from R ≥ 4 log d.
Thus, we have

ϵ ≤ 1

2

√
(log d)/R+

1

2

√
(log d)/R =

√
(log d)/R,

where the first step follows from ϵ =
√
α+ exp(−β/200).

By taking square on both sides, the above implies that

ϵ2 ≤ (log d)/R.

So, the overall condition, we choose for β is

β ≥ C · (log d+ log(R/ log d)).

From Eq. (4), we knew R has to satisfy that

R ≥ (C/4) log n · log d.

The failure probability is at most

exp(−β/200) ≤ exp(−(C/200) log(d)− log((C/4) log n)) ≤ exp(−Ω(log d)).

Therefore, we conclude that the probability, where the condition 1 − ⟨x∗, u⟩2 ≤ (log d)/R holds, is
at least 1− exp(−Ω(log d)) as expected.
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4. Conclusion
In conclusion, our study presents a groundbreaking streaming algorithm for kernel Principal Com-
ponent Analysis (PCA), notable for its minimal space requirement of only O(m + d), where m is
the dimension of the kernel space, and d is the dimension of each data point in the dataset. This
marks a significant improvement in efficiency and resource management, particularly in handling
large datasets common in modern data analysis scenarios. Our algorithm, building on the founda-
tion of Oja’s traditional scheme, not only extends its application to kernel PCA but also enhances its
adaptability and effectiveness in a wider range of data structures.
The core of our contribution lies in the detailed conditions we provide for the algorithm’s optimal
performance, particularly concerning the ratio of top eigenvectors. This insight is critical for prac-
titioners and researchers, guiding the effective application of our algorithm in diverse scenarios.
Moreover, this aspect of our work underscores the algorithm’s robustness and reliability, ensuring
its utility in practical, real-world data analysis tasks in fields such as web-related applications and
so on.
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Appendix
Roadmap. In Section A, we provide more literature related to our paper. In Section B, we provide
preliminary. In Section Cwe present the statementswhich are useful to prove themain Theorem 1.1.
In Section D, we provide proof of some properties implied by the Update Rule. In Section E, we
provide more proof and analysis of the Kernel PCA Algorithm.

A. More Related Work
Large Scale Optimization. Principal component analysis and its kernel variant can be applied to
large-scale optimization tasks as a dimensionality reduction technique to improve the efficiency of
high-dimensional computations. Diffusion models [54], as well as it’s high order variant [55] are
a class of generative models that iteratively refine data through a diffusion process of noise addi-
tion and removal, effectively performing a large-scale optimization of the data distribution [56].
Flow matching [57] is a technique for training continuous normalizing flow models by aligning
probability flow trajectories, offering an alternative paradigm for large-scale distribution alignment
in generative modeling [58–60]. On the other hand, transformer-based neural networks [61] have
rapidly emerged as the dominant architecture for natural language processing in machine learn-
ing. When expanded to billions of parameters and trained on vast, diverse datasets, these sys-
tems are typically termed large language models (LLMs) or foundation models [62]. Prominent
LLM examples encompass BERT [63], PaLM [64], Llama [65, 66], and GPT4o [67], which dis-
play adaptable competencies [68] across numerous downstream applications. To enhance LLMs
for domain-specific uses, researchers have created multiple adaptation approaches. These in-
clude: adapter modules [69–72]; calibration mechanisms [73–75]; multitask refinement [76–79];
along with prompt engineering [80, 81], scratchpad approaches [82], instruction optimization [83–
85], symbolic adaptation [86–88], black-box adjustments [89], human-aligned reinforcement learn-
ing [90, 91], and structured reasoning techniques [92–95]. Contemporary investigations cover ten-
sor architecture innovations [96–99], efficiency enhancements [100, 101, 101–123], plus ancillary
studies [60, 124–157]. There are also some method devote to use model compression to improve
the efficiency and deployment of LLMs [158] for its effectiveness in reducing computational over-
head while preserving performance. Common compression techniques include quantization [159–
161], pruning [103, 115, 162–172], and knowledge distillation [173–177]. Specifically, pruning
techniques have been developed extensively, such as unstructured pruning, which removes indi-
vidual weights [115, 168], and structured pruning, which eliminates entire components like neu-
rons or attention heads [172, 178, 179]. The attention mechanism has faced criticism due to its
quadratic time complexity with respect to context length [61]. Addressing this criticism, a vari-
ety of approaches are employed, including sparse attention [115, 164, 167, 180–183], low-rank ap-
proximations [69, 125, 184–187], and kernel-based methods [188–191], to reduce computational
overhead and improve scalability. [192] enable the derivation of a low-rank representation of
the attention matrix, which accelerates both the training and inference processes of single atten-
tion layer, tensor attention, and multi-layer transformer, achieving almost linear time complex-
ity [32, 96, 97, 108, 157, 193, 194]. Other approaches like Mamba [195, 196], Linearizing Transform-
ers [197, 198], Hopfield Models [104–106, 109, 121–123, 199], and PolySketchFormer [200] focus on
architectural modifications and implementation optimizations to enhance performance. System-
level optimizations such as FlashAttention [201–203] and block-wise parallel decoding [204] fur-
ther improve efficiency. Collectively, these innovations have significantly augmented transformer
models’ ability to handle longer input sequences, unlocking broader applications across multiple
sectors [78, 113, 116, 117, 205–210].

B. Preliminary
We provide notations in Section B.1. We state some basic algebra and probability tools in Section B.2
and Section B.3 respectively.
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B.1. Notations
For a matrix A, we use A⊤ to denote its transpose. For a square matrix A, we use tr[A] to denote its
trace. For a vector x ∈ Rn, we use ∥x∥2 to denote its ℓ2 norm, i.e., ∥x∥2 := (

∑n
i=1 x

2
i )

1/2.
We say a square matrix P ∈ Rd×d is a projection matrix if P 2 = P .
For two functions f, g, we use the shorthand f ≲ g (resp. ≳) to indicate that f ≤ Cg (resp. ≥) for
an absolute constant C. We use f ≂ g to mean cf ≤ g ≤ Cf for constants c > 0 and C > 0.
For a function h(j)with its domainX , we use argmaxj∈X h(j) to denote the corresponding index j
for the largest output of function h(j).
We use E[·] to denote the expectation, and Pr[·] to denote the probability.
For a distribution D and a random variable x, we use x ∼ D to denote that we draw a random
variable from the distribution D.
We use N (µ, σ2) to denote a Gaussian distribution with mean µ and variance σ2.
For arbitrary functions f(x) ∈ R and g(x) ∈ R, if ∃M ∈ R+ and x0 ∈ R, such that |f(x)| ≤M · g(x)
for all x > x0. We denote that f(x) = O(g(x)).
For arbitrary functions f(x) ∈ R and g(x) ∈ R, if ∃k ∈ R+ and x1 ∈ R, such that |f(x)| ≥ k · g(x) for
all x > x1. We denote that f(x) = Ω(g(x)).
For arbitrary functions f(x) ∈ R and g(x) ∈ R, if f(x) = O(g(x)) and f(x) = Ω(g(x)), we denote
that f(x) = Θ(g(x)).
Definition B.1. Let ϕ : Rd → Rm denote a kernel function. We define Σ := 1

n

∑n
i=1 ϕ(xi)ϕ(xi)

⊤.

B.2. Basic Algebra Tools
Claim B.2. Let P = (I − v∗(v∗)⊤) where P ∈ Rd×d. Let u ∈ Rd denote any unit vector ∥u∥2 = 1, if
∥Pu∥2 ≤ ϵ, then have

1− ⟨u, v∗⟩2 ≤ ϵ2.

Proof. We have
ϵ2 ≥ ∥Pu∥22

= u⊤PPu

= u⊤Pu

= u⊤u− u⊤v∗(v∗)⊤u

= 1− ⟨u, v∗⟩2

where the first step follows fromour assumption for proof, the second step follows from the property
of norm, the third step follows from the definition of projection matrix P 2 = P , the fourth step
follows from our definition for proof that P = (I − v∗(v∗)⊤), and the last step follows from a⊤b =
⟨a, b⟩.

Fact B.3. For any integer A, and integer k, we define fk := ⌊A/2k⌋ and fk+1 := 2 · ⌊A/2k+1⌋. Then, we
have

|fk − fk+1| ≤ 1

Proof. We can always write A
A = B · 2k+1 + C · 2k +D

where B ≥ 0, C ∈ {0, 1}, and D ∈ [0, 2k − 1].
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We have
|fk − fk+1| = |(2B + C)− 2B| = C ≤ 1

Thus, we complete the proof.

Claim B.4. Let 0 ≤ a1, a2, ..., an. For each i ∈ {0, 1, · · · , n}, we define

bi := exp(

i∑
j=0

aj)

for i ∈ {0, 1, ..., n}.
Then:

n∑
i=1

aibi−1 ≤ bn.

Proof. This follows from induction on n. n = 0 is trivial, and then for k ∈ {0, 1, ..., n} and k < n, we
have the following case for k + 1 ∈ {0, 1, ..., n}.

k+1∑
i=1

aibi−1 ≤ bk + ak+1bk

= (1 + ak+1)bk

≤ eak+1bk

≤ bk,

where the first step follows from the induction, the second step follows from multiplicative distri-
bution, the third step follows from the Maclaurin Series of the exponential function, and the last
step follows from our definition for proof.
Claim B.5. For any x ∈ R, y ∈ R, we have

(x+ y)2 ≥ 1

2
x2 − y2.

Proof. It’s equivalent to

x2 + 2xy + y2 ≥ 1

2
x2 − y2,

which is equivalent to
1

2
x2 + 2xy + 2y2 ≥ 0,

which is further equivalent to
1

2
(x+ 2y)2 ≥ 0.

Thus, we complete the proof.

B.3. Basic Probability Tools
Lemma B.6 (Markov’s inequality). If X is a non-negative random variable and a > 0, then

Pr[X ≥ a] ≤ E[X]/a.
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Lemma B.7 (Anti-concentration of Gaussian distribution, see Lemma A.4 in [211] for an example).
Let X ∼ N (0, σ2), that is the probability density function of X is given by

ϕ(x) =
1√
2πσ2

exp(−x2/(2σ2)).

Then
2

3
t/σ ≤ Pr[|X| ≤ t] ≤ 4

5
t/σ.

Claim B.8. Let a ∼ N (0, 1).
For any two vectors u ∈ Rd and v ∈ Rd, then we have

Pr
a∼N (0,1)

[∥au+ v∥2 ≥ δ∥u∥2] ≥ 1− δ.

Proof. We define
x := ∥au+ v∥22.

Case 1. There exists some scalar b ∈ R such that v = b · u.
Then we have

x = (a+ b)2∥u∥22.

Recall that the goal of this lemma is to prove
Pr

a∼N (0,1)
[
√
x ≥ δ∥u∥2] ≥ 1− δ.

It is equivalent to
Pr

a∼N (0,1)
[x ≥ δ2∥u∥22] ≥ 1− δ.

Using the Equation of x = (a+ b)2∥u∥22, the statement is equivalent to
Pr

a∼N (0,1)
[(a+ b)2∥u∥22 ≥ δ2∥u∥22] ≥ 1− δ,

which is equivalent to
Pr

a∼N (0,1)
[(a+ b)2 ≥ δ2] ≥ 1− δ.

By the property of Gaussian, we know that
Pr

a∼N (0,1)
[(a+ b)2 ≥ δ2] ≥ Pr

a∼N (0,1)
[(a+ 0)2 ≥ δ2].

Thus, we just need to show that
Pr

a∼N (0,1)
[a2 ≥ δ2] ≥ 1− δ.

The above equation directly follows from Lemma B.7.
Case 2. There exists some scalar b and vector w such that ⟨u,w⟩ = 0 and

v = b · u+ w.

In this case,
x = ∥(a+ b)u+ w∥22
= (a+ b)2∥u∥22 + ∥w∥22
> (a+ b)2∥u∥22.

The remaining of the proof is identical to case 1, since x is becoming larger now.
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C. Basic Definitions Properties of Streaming Kernel PCA
Algorithm and Update Rules

In Section C.1, we define sample vectors for Kernel PCA analysis. In Section C.2, we provide an
update rule for our streaming algorithm.

C.1. Definitions of Vectors
We formally define α, η > 0 and v∗ ∈ Rd and β > 0 as follows:
Definition C.1. Let β and α denote two parameters that β ≥ α > 0.
For each i ∈ [n], we use xi ∈ Rd to denote the sample. Let η ∈ (0, 0.1) be the learning rate.
We define vectors v∗ ∈ Rd as follows:

• ∥v∗∥2 = 1,
• η

∑n
i=1⟨v∗, ϕ(xi)⟩2 = β,

• for all vectors w with ∥w∥2 ≤ 1 and ⟨w, v∗⟩ = 0, we have η∑n
i=1⟨w, ϕ(xi)⟩2 ≤ α.

Without loss of generality, we keep ∥v∗∥2 = 1 for the entire algorithm analysis. We define our
projection operator based on v∗.
Definition C.2. We define P = I − v∗(v∗)⊤ to be the projection matrix that removes the v∗ component.

We have the following claim.
Claim C.3. Since P = I − v∗(v∗)⊤ and ∥v∗∥2 = 1, then we have

Pv∗ = 0.

C.2. Update Rule
Definition C.4. Let η denote some parameters. We define an updated rule as follows:

vi := vi−1 + η⟨ϕ(xi), vi−1⟩ϕ(xi).

Then, we can rewrite it as
vi = (I + ηϕ(xi)ϕ(xi)

⊤)vi−1.

For stability, an implementation would only keep track of the normalized vectors v̂i = vi/∥vi∥2. For
analysis purposes, we will often consider the unnormalized vectors vi.
Definition C.5. Let vi denote the unnormalized vectors, for all i ∈ [n]. We define v̂i as follows

v̂i := vi/∥vi∥2.

D. Proof of The Properties Implied by Update Rule
Claim D.1. For any parameter η > 0. By relationship between vi and vi−1 (see Definition C.4), we have

• Property 1.
∥vi∥22 = ∥vi−1∥22 · (1 + (2η + η2∥ϕ(xi)∥22) · ⟨ϕ(xi), v̂i−1⟩2)

• Property 2.
∥vi∥22 ≥ ∥vi−1∥22,∀i ∈ [n]
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• Property 3. If we additionally assume η ≤ 0.1/maxi∈[n] ∥ϕ(xi)∥22,

log(∥vi∥22/∥vi−1∥22) ≥ η⟨ϕ(xi), v̂i−1⟩2.

• Property 4.

log(∥vb∥22/∥va∥22) ≥
b∑

i=a+1

η⟨ϕ(xi), v̂i−1⟩2

• Property 5. For any integers b > a

vb − va =

b∑
i=a+1

ηϕ(xi)ϕ(xi)
⊤vi−1

Proof. Proof of Property 1.

Recall Definition C.4, we have
vi = vi−1 + η · ⟨ϕ(xi), vi−1⟩ϕ(xi).

Taking the norm square on both sides of the above equation, we have
∥vi∥22 = ∥vi−1∥22 + 2η · ⟨ϕ(xi), vi−1⟩⟨vi−1, ϕ(xi)⟩+ η2 · ⟨ϕ(xi), vi−1⟩2∥ϕ(xi)∥22.

We rewrite it as
∥vi∥2 = ∥vi−1∥22 + 2η⟨ϕ(xi), vi−1⟩⟨vi−1, ϕ(xi)⟩+ η2⟨ϕ(xi), vi−1⟩2∥ϕ(xi)∥22

= ∥vi−1∥22 + 2η⟨ϕ(xi), vi−1⟩2 + η2⟨ϕ(xi), vi−1⟩2∥ϕ(xi)∥22
= ∥vi−1∥22 + 2η⟨ϕ(xi), v̂i−1⟩2 · ∥vi−1∥22 + η2⟨ϕ(xi), v̂i−1⟩2 · ∥vi−1∥22∥ϕ(xi)∥22
= ∥vi−1∥22 · (1 + (2η + η2∥ϕ(xi)∥22) · ⟨ϕ(xi), v̂i−1⟩2)

where the third step follows from Definition C.5 (v̂i−1 = vi−1/∥vi−1∥2).
Proof of Property 2. The proof of this statement is going to use Property 1 in some steps as a black-
box. We first consider the terms (2η + η2∥ϕ(xi)∥22) and ⟨ϕ(xi), v̂i−1⟩2.
For (2η + η2∥ϕ(xi)∥22), we have ∥ϕ(xi)∥22 ≥ 0.
By Definition C.1, we get 2η > 0 and η2 > 0. Hence,

2η + η2∥ϕ(xi)∥22 > 0.

For ⟨ϕ(xi), v̂i−1⟩2, it is obvious that this term is greater than or equal to 0. Thus, we have
⟨ϕ(xi), v̂i−1⟩2 ≥ 0.

Therefore, we conclude that
∥vi∥2 = ∥vi−1∥22 · (1 + (2η + η2∥ϕ(xi)∥22) · ⟨ϕ(xi), v̂i−1⟩2)

≥ ∥vi−1∥22 · (1 + 0)

= ∥vi−1∥22,

where the second step follows from the inequality relationship and i ∈ [n].
Proof of Property 3. From property 1, we have

∥vi∥22
∥vi−1∥22

= 1 + (2η + η2∥ϕ(xi)∥22) · ⟨ϕ(xi), v̂i−1⟩2.
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Taking the log both sides, we have

log(
∥vi∥22
∥vi−1∥22

) = log(1 + (2η + η2∥ϕ(xi)∥22) · ⟨ϕ(xi), v̂i−1⟩2).

We define u = (2η + η2∥ϕ(xi)∥22) · ⟨ϕ(xi), v̂i−1⟩2. We need to show that u ∈ [0, 1.5].
For the lower bound case, it is obvious that u ≥ 0 since η ≥ 0.
Next, we prove the upper bound case,

u = (2η + η2∥ϕ(xi)∥22) · ⟨ϕ(xi), v̂i−1⟩2

= (2η + η2∥ϕ(xi)∥22) · ∥ϕ(xi)∥22 · ⟨ϕ(xi)/∥ϕ(xi)∥2, v̂i−1⟩2

≤ (2η + η2∥ϕ(xi)∥22) · ∥ϕ(xi)∥22,
≤ 2 · 0.1 + 0.12

≤ 0.3

where the third step follows from ⟨a, b⟩2 ≤ 1 for any ∥a∥2 = ∥b∥2 = 1, the fourth step follows from
η ≤ 0.1/∥ϕ(xi)∥22.
It is not hard to see that for any u ∈ [0, 1.5]

log(1 + u) ≥ 0.25 · u.
Thus,

log(1 + u) ≥ 0.25 · (2η + η2∥ϕ(xi)∥22) · ⟨ϕ(xi), v̂i−1⟩2

≥ 0.5η⟨ϕ(xi), v̂i−1⟩2.

Proof of Property 4. From property 3, we have
log(∥vi∥22/∥vi−1∥22) ≥ η⟨ϕ(xi), v̂i−1⟩2.

∀a, b ∈ [n] and a < b, we have
log(∥vb∥22/∥va∥22)

= log(
∥vb∥22
∥vb−1∥22

· ... · ∥va+1∥22
∥va∥22

)

= log(
∥vb∥22
∥vb−1∥22

) + ...+ log(
∥va+1∥22
∥va∥22

)

≥ η⟨ϕ(xb), v̂b−1⟩2 + ...+ η⟨ϕ(xa+1), v̂a⟩2

=

b∑
i=a+1

η⟨ϕ(xi), v̂i−1⟩2

where the second step follows from log(ab) = log(a) + log(b), and the third step follows from Prop-
erty 3.
Proof of Property 5. By Definition C.4, we have vi = (I + ηϕ(xi)ϕ(xi)

⊤)vi−1.
We rewrite this as

vi − vi−1 = (I + ηϕ(xi)ϕ(xi)
⊤)vi−1 − vi−1

= ηϕ(xi)ϕ(xi)
⊤vi−1, (5)

where the first step follows from Definition. C.4.
Then ∀a, b ∈ [n] and a < b, we have

vb − va = vb − vb−1 + ...+ va+1 + va

= ηϕ(xb)ϕ(xb)
⊤vb−1 + ...+ ηϕ(xa+1)ϕ(xa+1)

⊤va

=

b∑
i=a+1

ηϕ(xi)ϕ(xi)
⊤vi−1

where the second step follows from Eq. (5).
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E. Analysis of Our Kernel PCA Algorithm
Section E.1, we provide the property, growth implies correctness, of our defined vector.
Section E.2, we provide the projection operator and show the property of increasing the norm of
our defined vector.
In Section E.3, we provide a bound on sequences.
In Section E.4, we provide an upper bound for the summation of the inner product.
In Section E.5, we provide a lower bound on the log of the norm of the final output by our streaming
algorithm.
In Section E.6, we show the lower bound of ℓ2 norms of the final vector generated by our algorithm.

E.1. Growth implies correctness
Lemma E.1 (Restatement of Lemma 2.1). For any v0 and all i ∈ [n], we have

∥P v̂i∥2 ≤
√
α+ ∥Pv0∥2/∥vi∥2.

Further, if v0 = v∗, then we have
∥P v̂i∥2 ≤

√
α.

Proof. We will prove this for the final index i = n.
Without loss of generality, we can assume ∥v0∥2 = 1 over the entire proof. Then for any unit vector
w ⊥ v∗,

⟨vn − v0, w⟩

= η

n∑
i=1

⟨ϕ(xi), vi−1⟩⟨ϕ(xi), w⟩

≤ η(

n∑
i=1

⟨ϕ(xi), vi−1⟩2)1/2 · (
n∑

i=1

⟨ϕ(xi), w⟩2)1/2

≤ ∥vn∥2 ·
√
η · (

n∑
i=1

⟨ϕ(xi), w⟩2)1/2

≤ ∥vn∥2 ·
√
α (6)

where the first step follows from Property 5 of Claim D.1, the second step follows from Cauchy-
Schwartz, the third step follows from Lemma E.7, and the last step follows from Definition C.1.
Hence

⟨v̂n, w⟩ ≤
1

∥v∥2
⟨vn, w⟩

=
1

∥vn∥2
(⟨vn − v0, w⟩+ ⟨v0, w⟩)

≤
√
α+
⟨v0, w⟩
∥vn∥2

. (7)

where the first step follows from the definition of v̂n, the second step follows from subtracting and
adding the same term, and the third step follows from Eq. (6).
Setting w = P v̂n/∥P v̂n∥2, we have

⟨v̂n, w⟩ = ⟨v̂n, P v̂n/∥P v̂n∥2⟩
= ⟨v̂n, P 2v̂n/∥P v̂n∥2⟩
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= v̂⊤n P
2v̂n/∥P v̂n∥2

= ∥P v̂n∥2 (8)
where the second step follows from P is a projection matrix (which implies P 2 = P ), the third step
follows from the properties of the inner product for Euclidean vector space, and the last step follows
from a⊤B2a = ∥Ba∥22 for any matrix B and vector a.
We also know that

⟨v0, w⟩ = ⟨v0, P v̂n/∥P v̂n∥2⟩
= ⟨Pv0, P v̂n/∥P v̂n∥2⟩
≤ ∥Pv0∥2 · ∥P v̂n∥2/∥P v̂n∥2
≤ ∥Pv0∥2, (9)

where the second step follows from P is a projection matrix (which implies that P 2 = P ), the third
step follows from ⟨a, b⟩ ≤ ∥a∥2 · ∥b∥2.
Now, we can conclude that

∥P v̂n∥2 = ⟨v̂n, w⟩

≤
√
α+
⟨v0, w⟩
∥vn∥2

≤
√
α+ ∥Pv0∥2/∥vn∥2

where the first step follows from Eq. (8), the second step follows from Eq. (7), and the last step
follows from Eq. (9).
For the case v0 = v∗, since Pv∗ = 0, we have ∥P v̂i∥2 ≤

√
α as desired.

Therefore, we complete the proof.

E.2. The Projection Operator
Using Lemma E.1, we show that if we start at v∗, we never move by more than√α from it. We now
show that you can’t even move √α without increasing the norm of v.
Lemma E.2 (Restatement of Lemma 2.2). Suppose v0 = v∗. For any two time steps 0 ≤ a < b ≤ n,

∥P v̂b − P v̂a∥22 ≤ 50 · α log(∥vb∥2/∥va∥2).

Proof. We have
∥P v̂a∥2 ≤

√
α+ ∥Pv0∥2/∥vn∥2

=
√
α+ ∥Pv∗∥2/∥vn∥2

≤
√
α

where the first step follows from Lemma E.1, second step follows from v0 = v∗ and the last step
follows from definition of P (see Definition C.2, which implies Pv∗ = 0, see Claim C.3).
We can show

∥P v̂b − P v̂a∥22 ≤ (∥P v̂b∥2 + ∥P v̂a∥2)2

≤ (2
√
α)2

≤ 4α.

where the second step follows from ∥P v̂b∥2 ≤
√
α and ∥P v̂a∥2 ≤

√
α.

Now, we can consider two cases.
Case 1. if log(∥vb∥2/∥va∥2) ≥ 1, then we already finished the proof.
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Case 2. if log(∥vb∥2/∥va∥2) < 1. In the next paragraph, we will prove this case.
We define w to be the unit vector in direction P (v̂b − v̂a), i.e.,

w = P (v̂b − v̂a)/∥P (v̂b − v̂a)∥2.

Using Lemma E.1, we can show the following thing,
⟨vb − va, w⟩2

= (

b∑
i=a+1

η⟨ϕ(xi), vi−1⟩⟨ϕ(xi), w⟩)2

≤ (

b∑
i=a+1

η⟨ϕ(xi), vi−1⟩2)(η
b∑

i=a+1

⟨ϕ(xi), w⟩2)

≤ (

b∑
i=a+1

∥vi∥22 · η⟨ϕ(xi), v̂i−1⟩2)(η
n∑

i=1

⟨ϕ(xi), w⟩2)

≤ (∥vb∥22 ·
b∑

i=a+1

η⟨ϕ(xi), v̂i−1⟩2)(η
n∑

i=1

⟨ϕ(xi), w⟩2)

≤ (∥vb∥22 ·
b∑

i=a+1

η⟨ϕ(xi), v̂i−1⟩2) · α

≤ ∥vb∥22 · log(∥vb∥22/∥va∥22) · α. (10)

where the first step follows from Property 5 of Claim D.1, the second step follows from Cauchy-
Shwarz inequality, the third step follows from Definition C.5, the fourth step follows from ∥vi∥2 ≤
∥vb∥2 for all i ≤ b (see Property 2 of Claim D.1), the fifth step follows from the definition of α, and
the last step follows from log(∥vb∥22/∥va∥22) ≥

∑b
i=a+1 η⟨xi, v̂i−1⟩2 for all a < b (see Property 4 of

Claim D.1).
Therefore, we can upper bound ∥P v̂b − P v̂a∥22 in the following sense,

∥P v̂b − P v̂a∥22
= ⟨v̂b − v̂a, w⟩2

= ⟨v̂b −
∥va∥2
∥vb∥2

v̂a +
∥va∥2
∥vb∥2

v̂a − v̂a, w⟩2

≤ 2⟨v̂b −
∥va∥2
∥vb∥2

v̂a, w⟩2 + 2⟨∥va∥2
∥vb∥2

v̂a − v̂a, w⟩2 (11)

where the first step follows from the definition of w, the second step follows from adding a term
and minus the same term, and the last step follows from ⟨a+ b, c⟩2 ≤ 2⟨a, c⟩2 + 2⟨b, c⟩2 (This is just
triangle inequality and applying to each coordinate of the vector.).
For the first term in the above equation Eq. (11) (ignore the constant factor 2), we have

⟨v̂b −
∥va∥2
∥vb∥2

v̂a, w⟩2 = ⟨ vb
∥vb∥2

− ∥va∥2
∥vb∥2

v̂a, w⟩2

= ⟨ vb
∥vb∥2

− va
∥vb∥2

, w⟩2

=
1

∥vb∥22
· ⟨vb − va, w⟩2

≤ α · log(∥vb∥22/∥va∥22)
= 2α · log(∥vb∥2/∥va∥2) (12)
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where the first step follows from definition of v̂b, the second step follows from definition of v̂a (see
Definition C.5), the fourth step follows from Eq. (10).
For the second term of that equation Eq. (11) (ignore the constant factor 2), we have

⟨∥va∥2
∥vb∥2

v̂a − v̂a, w⟩2 = (
∥va∥2
∥vb∥2

− 1)2 · ⟨v̂a, w⟩2

= (
∥va∥2
∥vb∥2

− 1)2 · ⟨v̂a, P (v̂b − v̂a)⟩2

= (
∥va∥2
∥vb∥2

− 1)2 · ⟨P v̂a, P (v̂b − v̂a)⟩2

≤ (
∥va∥2
∥vb∥2

− 1)2 · 4∥P v̂a∥22

≤ (
∥va∥2
∥vb∥2

− 1)2 · 4α

≤ 4 log(
∥vb∥2
∥va∥2

) · 4α (13)

where the second step follows from definition of w, the third step follows from P = P 2 (then
⟨⟨a, P 2b⟩ = a⊤PPb = ⟨Pa, Pb⟩), the fourth step follows from that both v̂a and v̂b are unit vectors,
the fifth step follows from ∥P v̂a∥2 ≤

√
α, the last step follows from ( 1x −1)2 ≤ 4 log x for all x ∈ [1, 2]

(Note that, here we treat x = ∥vb∥2/∥va∥2. The reason why we can assume x ≥ 1 is due to Property
2 of Claim D.1. The reason why we can assume x ≤ 2 is due to this case we restrict log(x) ≤ 1,
which implies that x ≤ 2.).
Thus,

∥P v̂b − P v̂a∥22

≤ 2⟨v̂b −
∥va∥2
∥vb∥2

v̂a, w⟩2 + 2⟨∥va∥2
∥vb∥2

v̂a − v̂a, w⟩2

≤ 2 · 2α log(∥vb∥2/∥va∥2) + 2 · 16α log(∥vb∥2/∥va∥2)
≤ 50α log(∥vb∥2/∥va∥2).

where the first step follows from Eq. (11), and the second step follows from Eq. (12), and Eq. (13).
Now, we complete the proof.

E.3. Results on Sequences
Claim E.3. Let a ∈ Rn and assume that a1 = 0. For each j ∈ [n] and k ∈ [log n], we define

bj,k := a1+2k·j

Note that, if 1 + 2k · j > n, then we assume that bj,k = 0.
Then, we have

max
j∈[n]

a2j ≤ (log n)

(logn)−1∑
k=0

n∑
j=1

(bj,k − bj−1,k)
2.

Proof. We define j∗ := argmaxj∈[n] a
2
j .

We define jk := 1 + 2k⌊ j
∗−1
2k
⌋.

According to the definition of jk, we have that

j0 = 1 + 20⌊j
∗ − 1

20
⌋ = j∗
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and

jlogn = 1 + 2logn⌊j
∗ − 1

2logn
⌋ = 1.

Thus,
aj∗ = aj∗ − a1

= aj0 − ajlog n

=

(logn)−1∑
k=0

(ajk − ajk+1
) (14)

where the first step follows from the definition of a1 = 0.
Let jk = 1 + 2ky and jk+1 = 1 + 2k+1z. It is obvious that 2z ≥ y ≥ z. Using Fact B.3, we know that
|2z − y| ≤ 1.
Now, we consider two cases.
Case 1. jk = jk+1. In this case, we have

ajk − ajk+1
= 0.

Case 2. jk ̸= jk+1.
Then we have

ajk − ajk+1
= by,k − b2z,k

= (by,k − by+1,k).

Thus,

a2j∗ = (

(logn)−1∑
k=0

(ajk − ajk+1
))2

≤ (log n) ·
(logn)−1∑

k=0

(ajk − ajk+1
)2

≤ (log n) ·
(logn)−1∑

k=0

·
n∑

j=1

(bj,k − bj−1,k)
2

where the first step follows from Eq. (14), and the second step follows from our definition of jk for
proof.

Lemma E.4. Let A ∈ Rd×n have first column all zero, i.e., for all i ∈ [d], Ai,1 = 0. For each j ∈ [n] and
k ∈ [log n], define bj,k to be column 1 + 2k · j of A. If 1 + 2k · j > n, then we assume bj,k is a zero column.

• Property 1. For each i ∈ [d], we have

max
j∈[n]

A2
i,j ≤ (log n)

logn∑
k=0

n+1∑
j=2

(bj,k − bj−1,k)
2
i

• Property 2. Then:
d∑

i=1

max
j∈[n]

A2
i,j ≤ (log n)

logn∑
k=0

n+1∑
j=2

∥bj,k − bj−1,k∥22

35



Proof. Using Claim E.3, we can prove Property 1.
Applying Claim E.3 for d different rows, we have

d∑
i=1

max
j∈[n]

A2
i,j ≤ (log n)

logn∑
k=0

n+1∑
j=2

∥bj,k − bj−1,k∥22.

Thus, we have proved property 2.

E.4. Upper Bound for the Summation of Inner Product
We return to the streaming PCA setting. The goal of this section is to show that, if v0 = v∗, then
∥vn∥2 is large.
Lemma E.5 (Restatement of Lemma 2.3). If v0 = v∗, then for i ∈ [n], we have

η

n∑
i=1

⟨ϕ(xi), P v̂i−1⟩2 ≤ 100 · α2 · log2 n · log ∥vn∥2.

Proof. For i ∈ [n], we define ui := P v̂i. This also means ∥ui∥2 ≤ 1.
Since ui lies in span of P and by Claim C.3 that Pv∗ = 0, we know that ui ⊥ v∗.
Hence, we have

⟨ui, v
∗⟩ = 0.

For each i ∈ [d], for each j ∈ [n], we define a matrix Ai,j ∈ Rd×n as follows
Ai,j := ⟨ϕ(xi), uj−1⟩.

We can show
d∑

i=1

max
j∈[n]
⟨ϕ(xi), uj⟩2

≤ (log n)

logn∑
k=0

n+1∑
j=2

∥bj,k − bj−1,k∥22

= (log n)

logn∑
k=0

n+1∑
j=2

((bj,k)i − (bj−1,k)i)
2

= (log n)

logn∑
k=0

n+1∑
j=2

d∑
i=1

(⟨ϕ(xi), u2kj⟩ − ⟨ϕ(xi), u2k(j−1)⟩)2. (15)

where the first step follows from Lemma E.4, the second step follows from definition of ℓ2 norm,
the third step follows from (bj,k)i = Ai,1+2k·j = ⟨ϕ(xi), u1+2k·j−1⟩ = ⟨ϕ(xi)u2k·j⟩.
For each (k, j)-term in the above equation, we have

d∑
i=1

(⟨ϕ(xi), u2kj⟩ − ⟨ϕ(xi), u2k(j−1)⟩)2

=

d∑
i=1

(⟨ϕ(xi), u2kj − u2k(j−1)⟩)2

≤ α

η
· ∥u2kj − u2k(j−1)∥22. (16)
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where the first step follows from simple algebra, the second step follows from ⟨ui, v
∗⟩ = 0 and ∥ui∥2

for all i ∈ [n] and Property 3 of Definition C.1.
Then, for each k ∈ [log n], we have

n+1∑
j=2

∥u2kj − u2k(j−1)∥22 ≤ 50α log
∥vn∥2
∥v0∥2

= 50α log ∥vn∥2 (17)
where the first step follows from summation over j ∈ [2, n + 1] by Lemma E.2 for each j, and the
second step follows from v0 = v∗(see assumption in statement of Lemma E.5) and ∥v∗∥2 = 1.
Thus,

η

d∑
i=1

⟨ϕ(xi), P v̂i−1⟩2

≤ η

d∑
i=1

max
j∈[n]
⟨ϕ(xi), uj⟩2

= η(log n)

logn∑
k=0

n+1∑
j=2

d∑
i=1

(⟨ϕ(xi), u2kj⟩ − ⟨ϕ(xi), u2k(j−1)⟩)2

= α(log n)

logn∑
k=0

n+1∑
j=2

∥u2kj − u2k(j−1)⟩∥22

≤ (log n)

logn∑
k=0

50α2 log ∥vn∥2

≤ 100 · α2 · log2 n · log ∥vn∥2
where the first step follows from our definition for this proof, the second step follows from Eq. (15),
the third step follows from Eq. (16), the fourth step follows from Eq. (17), and the last step follows
from simple algebra.
Therefore, we complete the proof.

E.5. Lower bound on Log of Norm
Lemma E.6 (Restatement of Lemma 2.4). Let α ∈ (0, 0.1). Let C1 ≥ 200 denote some fixed constant.
Then if v0 = v∗ we have

log(∥vn∥2) ≥
β/8

1 + C1 · α2 log2 n
.

Further, if α ∈ (0, 1/(10C1 log n)), we have
∥vn∥2 ≥ exp(β/20).

Proof. We rewrite v̂i = ai · v∗ + ui for ui ⊥ v∗.
Then, we have

⟨ϕ(xi), v̂i−1⟩2

= ⟨ϕ(xi), ai−1 · v∗ + ui−1⟩2

≥
a2i−1

2
⟨ϕ(xi), v

∗⟩2 − ⟨ϕ(xi), ui−1⟩2. (18)

where the second step follows from Claim B.5.
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Applying Lemma E.1 with v0 = v∗, we have

∥P v̂i∥22 ≤ α. (19)

Note that

∥P v̂i∥22 = ∥P (aiv
∗ + ui)∥22

= ∥Pui∥22
= ∥ui∥22

≥ 1

2
∥v̂i∥22 − ∥aiv∗∥22

=
1

2
− a2i (20)

where the first step follows from our definition of v̂i = ai · v∗ + ui, the second step follows from
Pv∗ = 0 (see Claim C.3), the third step follows from the definition of P , the fourth step follows
from Claim B.5, and the last step follows from simple algebra.
Thus, we have

ai ≥ (
1

2
− α)1/2

≥ 1

2
− α (21)

where the first step follows from combining Eq. (19) and Eq. (20), and the last step follows from
α ∈ (0, 0.1).
Now, summing up over i ∈ [n] , we get

η

n∑
i=1

⟨ϕ(xi), v̂i−1⟩2

≥ η

n∑
i=1

(
a2i−1

2
⟨ϕ(xi), v

∗⟩2 − ⟨ϕ(xi), ui−1⟩2)

≥ 1

4
β − η

n∑
i=1

⟨ϕ(xi), ui−1⟩2.

where the first step follows summing over i ∈ [n] from Eq. (18) for each i, and the second step
follows from Eq. (21).
We can lower bound log(∥vn∥2) as follows:

log ∥vn∥2 ≥
1

2
η

n∑
i=1

⟨ϕ(xi), v̂i−1⟩2

≥ 1

8
β − C1 · α2 log2 n log ∥vn∥2,

where the first step follows fromLemmaE.7, the second step follows fromLemmaE.5withC1 ≥ 200
is a sufficiently large constant.
The above equation implies the following

log ∥vn∥2 ≥
β/8

1 + C1 · α2 log2 n
.
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E.6. Lower Bound of ∥vn∥2
Lemma E.7 (Restatement of Lemma 2.5). We have

∥vn∥2 ≥
√
η · (

n∑
i=1

⟨ϕ(xi), vi−1⟩2)1/2

Proof. We define
Bi := ∥vi∥22,

We also define

Ai := log
Bi

Bi−1

Then using Property 3 of Claim D.1, it is easy to see that
Ai ≥ η⟨ϕ(xi), v̂i−1⟩2.

Thus,

Ai ·Bi−1 ≥ η⟨ϕ(xi), v̂i−1⟩2 ·Bi−1

≥ η⟨ϕ(xi), v̂i−1⟩2 · ∥vi−1∥22
= η⟨ϕ(xi), vi−1⟩2

where the third step follows from Definition C.5.
Therefore, we can show the following things,

η

n∑
i=1

⟨ϕ(xi), vi−1⟩2 ≤
n∑

i=1

AiBi−1

≤ Bn

= ∥vn∥22
where the first step follows from η⟨ϕ(xi), vi−1⟩2 ≤ AiBi−1, the second step follows from Claim B.4,
and the third step follows from our definition for proof.
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