
Streaming Kernel PCA AlgorithmWith Small Space
Yichuan Deng1, Jiangxuan Long2, Zhao Song3, Zifan Wang4, Han Zhang5

1University of Science and Technology of China, 2South China University of Technology, 3The
Simons Institute for the Theory of Computing at the University of California, Berkeley,

4Stonybrook University, 5University of Washington.
ethandeng02@gmail.com, lungchianghsuan@gmail.com, magic.linuxkde@gmail.com,

Zifan.wang@stonybrook.edu, micohan@cs.washington.edu

Principal Component Analysis (PCA) is a widely used technique inmachine learn-
ing, data analysis, and signal processing. With the increase in the size and com-
plexity of datasets, it has become essential to develop low-space usage algorithms
for PCA. Streaming PCA has gained significant attention in recent years, as it can
handle large datasets efficiently. The kernel method, commonly used in learning
algorithms such as Support VectorMachines (SVMs), has also been applied in PCA
algorithms.
We propose a streaming algorithm for Kernel PCA problems based on the tradi-
tional scheme by Oja. Our algorithm addresses the challenge of reducing themem-
ory usage of PCA while maintaining its accuracy. We analyze the performance of
our algorithm by studying the conditions under which it succeeds. Specifically, we
show that when the spectral ratio R := λ1/λ2 of the target covariance matrix is
Ω(log n · log d), the streaming PCA can be solved with linear space cost. However,
the standard PCA algorithm usually requires quadratic space due to matrix vector
multiplication.
Our proposed algorithm has several advantages over existing methods. First, it
is a streaming algorithm that can handle large datasets efficiently. Second, it em-
ploys the kernel method, which allows it to capture complex nonlinear relation-
ships among data points. Third, it has a low-space usage, making it suitable for
limited memory applications.

1. Introduction
Principal Component Analysis (PCA) is a technique used to reduce the dimension of data. PCA has
been widely applied in various domains, including web-related applications [1], computer vision
[2], and recommendation systems [3]. It is a linear method that uses orthogonal transformations to
convert a set of correlated variables into a set of less correlated variables called principal components.
In the simplest case, we care about the first principal component.
Kernel principal component analysis (kernel PCA) is an extension (also a generalization) of PCA,
combined with the kernel methods. Kernel PCA has many applications, such as distance-based
algorithm [4], computing principal components in high-dimensional feature spaces [5], face recog-
nition [6, 7], spectral embedding [8], novelty detection [9], de-noising in feature spaces [10], and
fault detection and identification of nonlinear processes [11].
In the simplest setting of PCA, given a datasetX = {x1, x2, . . . , xN} ⊆ Rd, thus the covariance matrix
of the dataset is C := 1

N

∑
i∈[N ] xix

⊤
i . The goal is to find the eigenvector v∗ ∈ Rd corresponding to

the largest eigenvalue λ of C.
To understand the motivation of kernel PCA [10, 12, 13], particularly for clustering, observe that,
while N points cannot, in general, be linearly separated in d < N dimensions, they can almost
always be linearly separated in d ≥ N dimensions. That is, given N points, xi, if we map them to
an N -dimensional space with ϕ(xi), where ϕ : Rd → RN , it is easy to construct a hyperplane that

Second Conference on Parsimony and Learning (CPAL 2025).



divides the points into arbitrary clusters. So Kernel PCA is a widely-used tool to extract nonlinear
features while traditional (linear) PCA can only detect linear features.
Since the dimension might be very high in the kernel space (implied by the kernel function ϕ),
computing the exact products in that space will be too expensive. Thus it is natural and reasonable
to use Mercer kernels [14–16], a function k(x, y) : Rd × Rd → R+ such that, for an input dataset
X = {xi}i∈[N ] ⊆ Rd, it produces a positive matrix K ∈ Rn×n, where each entry of K is given by
Ki,j := k(xi, xj).Bydefining k(x, y) := ϕ(x)⊤ϕ(y), one can use k tomap the data points to the kernel
space without computing the inner product explicitly. Note that, each column Ki of the matrix K
is the product in the kernel space from one point xi to all the N points in X .
Since we don’t work in the feature space explicitly (which might be very expensive due to the di-
mension), the principal components that have been found are for the projected data. For a data
point x, its projection onto the k-th principal component vk is v⊤k ϕ(x) instead of the original v⊤k x in
the linear PCA.
In traditional PCA problem [17–20], one needs to have access to all the data points {xi}i∈[n]. Thus
the space neededmight be very high to store inmemory. Streaming PCA is amethod for performing
PCA on data too large to fit into memory. The traditional PCA algorithm requires that all data is
loaded into memory at once, making it infeasible for very large datasets. Streaming PCA, on the
other hand, allows data to be processed in smaller chunks, reducing memory requirements and
making it possible to analyze very large datasets.
In the streaming setting, we are asked to maintain a data structure such that, it receives the data
points coming in the streamingway, and it can output the estimated principal component at the end
of the streaming. Formally, the data structure receives a stream of xi’s. Thenwith somemaintaining
operation, it can output a vector u such that u ≈ x∗,where x∗ is the top principal component of the
dataset.
With the motivation of kernel PCA algorithm, combining the natural expectation for an algorithm
to run fast/use low space, we ask the question

Can we solve the kernel PCA in a small space?

In this work, we present a positive answer to this problem.

1.1. Related Work

Streaming Algorithms. Over the past decades, a massive number of streaming algorithms have
been designed, since there is a concern that under some circumstances, the data is too large to store
in a single machine. Some streaming algorithms are mainly designed for graph problems [21],
for instances, shortest path and diameter [22, 23], maximal independent set [24, 25], maximum
matching and minimum vertex cover [22, 26, 27], spectral sparsification [28, 29], max-cut [30], ker-
nel method and sketching technique [31–35]. Beyond graphs, streaming algorithms also provide
insights into other fields, like the multi-armed bandit problem [36]. Since many problems are prov-
ably to be intractable with sublinear space of n, where we use n to denote the number of nodes in
the graph, a line of work [22, 37] has been focused on semi-streaming model. In this setting, the
streaming algorithm is allowed to use O(npoly log n) space.
Recently, attention has been focused on the streaming models under the setting ofmulti-pass, where
under this setting, the models are allowed to look at the streaming updates more than once. The
reason is that it can reduce the space needed effectively to let the models take more than one pass of
the updates. For instances, anO(log log n)-pass algorithm for maximal independent set [24, 25, 38],
and O(1)-pass algorithm for approximate matching [26, 27, 39, 40].

Principal Component Analysis. There has been a lot of research looking at Principal Component
Analysis from a statistical point of view, where the performance of different algorithms is stud-
ied under specific conditions. This includes using generative models of the data [17], and making

2



assumptions about the eigenvalue spacing [18] and covariance matrix spectrum [19, 20]. While
these studies do offer guarantees for a finite amount of data, they are not practical for real-world
applications, as they are either limited to only working with a complete dataset or require a lot of
computational resources. An efficient, incremental algorithm is needed for practical use.
Talking about incremental algorithms, the work of Warmuth and Kuzmin [41] provides an analysis
of the worst-case streaming PCA. Previous general-purpose incremental PCA algorithms have not
been analyzed for their performance with a finite amount of samples. [42]. Recently, there have
been efforts to address the issue of lacking finite-sample analysis by relaxing the nonconvex nature
of the problem. [43] or making generative assumptions [44].
As it is an attractive topic (it is natural to ask to extract principal components from a dataset coming
in a streaming fashion), attention has been focused on streaming PCA for years. There are two tradi-
tional algorithms for streaming PCA, one is Oja’s algorithm [45] and the other is a classical scheme
provided by Krasulina [46]. The work of Balsubramani, Dasgupta and Freund [47] analyzes the
rate of convergence of the Krasulina and Oja algorithms. The work by Hardt and Price [48] pro-
vided a robust convergence analysis of the well-known power method for computing the dominant
singular vectors of a matrix that we call the noisy power method. Later work of Allen-Zhu and Li
[49] provides global convergence for Oja’s algorithm with k > 1 top principal components, and
provides a variant of Oja’s algorithm which runs faster. Another line of works [50, 51] shows that
Oja’s algorithm achieves performance nearly matching that of an optimal offline algorithm even for
updates not only rank-1. There are also works focused on the problem of uncertainty quantification
for the estimation error of the leading eigenvector from Oja’s algorithm [52]. A very recent work
[53] gives the correctness guarantee that under some specific conditions for the spectral ratio, Oja’s
algorithm can be used to solve the streaming PCA under a traditional setting.

1.2. Our Result
Here in this section, we present our main result, which is a streaming algorithm for kernel PCA.

Algorithm 1 Our Streaming Kernel PCA Algorithm
1: procedure KernelPCA(n, d,m, ϕ) ▷ Theorem 1.1
2: v0 ∼ N (0, Im) ▷ To store v0 we only need O(m) space.
3: for i = 1→ n do
4: Receive xi

5: ▷ To store xi we need O(d) space, once we move to iteration i+ 1, we can drop the xi.
Thus overall, we only need O(d) space

6: vi ← vi−1 + η · ⟨ϕ(xi), vi−1⟩ · ϕ(xi)
7: ▷ Over the entire algorithm we only need O(m) space to store vi. Once we move to i+ 1,

we don’t need vi−1 anymore
8: end for
9: u← vn
10: return u
11: end procedure

Theorem 1.1 (Informal version of Theorem 3.2). Let ϕ : Rd → Rm. Let Σ = 1
n

∑n
i=1 ϕ(xi)ϕ(xi)

⊤ ∈
Rm×m. We define R := λ1(Σ)/λ2(Σ) where λ1(Σ) is the largest eigenvalue of Σ and λ2(Σ) is the second
largest eigenvalue of Σ. Let x∗ denote the top eigenvector of Σ. Let C > 103 denote a sufficiently large
constant. If R ≥ C · (log n) · (log d), there is a streaming algorithm (Algorithm 1) that only uses O(d+m)
spaces and receives x1, x2, · · · , xn in the online/streaming fashion, and outputs a unit vector u such that

1− ⟨x∗, u⟩2 ≤ (log d)/R

holds with probability at least 1− exp(−Ω(log d)).
By combining the kernel method and the streaming PCA technique, Algorithm 1 provides a way to
solve kernel PCA with linear cost of space when the spectral ratio R = Ω(log n · log d), as we show
in Theorem 1.1.

3



Roadmap. In Section 2, we summarize our technique overview. In Section 3, we analyze the stream-
ing Kernel PCA algorithm and reach a theoretical result. In Section 4, we make a conclusion.

2. Technique Overview
Here in this section, we give an overviewof the techniques used for our algorithmdesign. In general,
our algorithm combines the Oja’s streaming PCA algorithm [45] and a new analysis of applying
kernel functions in it.

2.1. Streaming PCA
Our first technique is based on the Oja’s traditional scheme used for streaming PCA problems. The
algorithm is based on the Hebbian learning rule, which states that the connection strength between
two neurons should be increased if their activity is correlated. In the context of PCA, the algorithm
updates the principal component (PC) vector in the direction of the current data point, but with a
learning rate that decreases over time. The algorithm aims to make the PC vector converge to the
primary eigenvector of the covariance matrix of the data. This eigenvector corresponds to the direc-
tion in which the data displays the most significant variation. By utilizing this method, it becomes
feasible to identify any shifts in the data distribution with time. Formally, when the data structure
receives a stream of data points

x1, . . . , xn ∈ Rd,

it iteratively updates a vector v ∈ Rn (Starting from a random Gaussian vector) such that
vi = vi−1 + η · xix

⊤
i vi−1,

where η ∈ R is the learning rate. Finally, the data structure outputs a vector

vn =

n∏
i=1

(In + ηxix
⊤
i )v0,

where v0 ∼ N (0, In). It is known that, with high probability, this output vector is close to the top
principal component.

2.2. Applying kernel function to stream PCA
Oja’s original streaming algorithm only supports traditional linear PCA questions. We want to gen-
eralize it to supporting kernel function. To do this, we need to overcome several barriers:

• Where to apply the kernel function? As we describe before, we need to “map" the input
data points onto some “kernel” space. But for the streaming setting, how to deal with the
data stream (different from the offline algorithm) becomes a question.

• Can streaming algorithm work with kernel method? As the classic streaming PCA algo-
rithms mostly work for linear PCA problems. It might have several unexpected barriers to
applying the kernel method here.

To overcome these barriers, we present our streaming PCA algorithm which is generalized from
Oja’s algorithm. To be specific, given a kernel function ϕ : Rd → Rm, our algorithm receives a
stream of data points

x1, . . . , xn ∈ Rd.

It first generates a random Gaussian vector v0 ∈ Rm at the beginning of the procedure, then it
iteratively updates a vector

vi = vi−1 + η · ⟨ϕ(xi), vi−1⟩ · ϕ(xi),

4



where η ∈ R is the learning rate. When the algorithm stops, it outputs a vector

vn =

n∏
i=1

(In + η · ϕ(xi)
⊤ϕ(xi)) · v0.

By an analysis of the algorithm, we will show that, with a high probability, this vector vn is close to
the top principal component as desired in Theorem 1.1.

2.3. Eigenvalue Ratio Implies Existence of Algorithm
In the traditional (linear) streaming PCA algorithm, it has been shown that the speed, at which the
maintained vector approaches the dominant eigenvector, is determined by the relationship between
the largest and second largest eigenvalues. To be specific, if λ1 and λ2 are the top-2 eigenvalues of the
covariance matrix, we define R := λ1

λ2
to be the ratio of them. Let ϵ ∈ (0, 0.1) be an error parameter,

one has the guarantee that
1− ⟨vn, v∗⟩2 = sin2(vn, v

∗) ≤ ϵ

after O(logR(
d
ϵ )) iterations.

In our kernel setting, we give the first analysis of this convergence result on the streaming PCA
algorithm. We show that when R ≥ C · log n · log d, modified Oja’s algorithm (added kernel trick
to it) provides an ϵ-solution to the PCA problem. By choosing m to be sufficiently large, we can
increaseR. Intuitively, asm grows, the first dimension capturesmore information, while the second
dimension captures less information.

2.4. Overview of Our Analysis Approach
Our analysis approach can be summarized in the following paragraphs. Our proof outline is mainly
followed from [53], whilewe apply kernel functions in different stages of the algorithmand analysis.
Properties Implied by Update Rule. By the update rule of our algorithm, i.e.,

vi = vi−1 + ηxix
⊤
i vi−1,

we first show themaintained vector has several simple but useful properties holding (See ClaimD.1
for detailed statement and proofs), which provide the foundation for the further analysis. For ex-
ample, we show that the norm of the vector continues to grow in the iterative maintenance, i.e.,

∥vi∥22 ≥ ∥vi−1∥22
for any i ∈ [n], which (described in the next paragraph) is very useful, since the bound of the error
involves an inverse proportional term of the norm of the final vector. The analysis in [53] gives
proof that under a traditional setting (without kernel function), the growth of the norm is lower
bounded. We follow their approach and prove a kernel version, that is, we show

log(∥vb∥22/∥va∥22) ≥ η

b∑
i=a+1

⟨ϕ(xi), v̂i−1⟩2.

These properties are crucial in the correctness proofs, which are described in the later paragraphs.
Never-far-away property. As mentioned before, our algorithm iteratively maintains a vector vi
such that it will converge to the top eigenvector v∗ of the covariance matrix (i.e., the top princi-
pal component). There is a concern about the convergence and robustness of the algorithm that,
when the stream comes in an adversarial way, e.g., it puts several data points in some special direc-
tions, can our algorithm still have the convergence guarantee? Starting from this, [53] provided an
approach showing that, no matter where the maintaining starts from, once the maintained vector
ever gets close to the target v∗, it can never be too far away from it. We give a more detailed analysis,
showing this holds even with the kernel function. Formally, we define

P := I − v∗v∗⊤ ∈ Rd×d,

5



then for any v0 and i, we have the result that,
∥P v̂i∥2 ≤

√
α+ ∥Pv0∥2/∥vi∥2,

for some constant α. Since our data structure has a zero-memory ability that, at some point i, the
future output of it only depends on the current state vi, and has nothing to do with the past vj ’s
(for j < i), it implies the property that, if it ever gets close to the target, it will never get too far
away. We call it “never-far-away” property. This result also implies that the final output will be
better as the growth of the ℓ2 norm of the maintained vector ∥vi∥2. This property is formally stated
in Lemma 2.1.
Bound on Sequence. By Lemma 2.1, we show that if one ever gets close to v∗, it will never move
by more than √α from it. Based on that, we further show that one cannot even move √α without
increasing the norm of v, i.e., we show in Lemma 2.2 that if v0 = v∗, for any two steps 0 ≤ a ≤ b ≤ n,
it holds that

∥P v̂b − P v̂a∥22 ≤ 50 · α · log(∥vb∥2/∥va∥2).

By the above analysis, we have the result that, to make the final output close to the desired target,
one needs to make ∥vi∥2 large. We first notice that, when vi drifts from the desired directions we
want it to be, it can cause the reduction on ∥vi∥2, i.e.,

∥vi∥2 ≥ exp(
∑
j∈[i]

η⟨ϕ(xj), v̂j−1⟩2).

Wewant to make sure that, the influence of each term η⟨ϕ(xj), v̂j−1⟩ on ∥vi∥ is small enough so that,
the final norm of vN is large enough. So we show the following decomposition

⟨ϕ(xj), v̂j−1⟩2 ≥
1− α

2
⟨ϕ(xj), v

∗⟩2 − ⟨ϕ(xj), P v̂j−1⟩2.

Thus, it suffices to show the second term is small enough so that it won’t destroy the growth of the
norm. Formally, we need prove that if v0 = v∗, then for all i ∈ [N ], it holds that

η

n∑
i=1

⟨ϕ(xi), P v̂i−1⟩2 ≤ 100 · α2 · log2 n · log ∥vn∥2.

As the analysis before, this implies that, if the vector maintained ever gets close to the target eigen-
vector, the sum of the products will be bounded, so that the normwill continue to grow. The formal
statement is Lemma 2.3.
Lower Bound. In [53], they provided a lower bound for the norm of the output vector. We gen-
eralize their method by applying the kernel function here. The next step of our poof is to lower
bound the norm of the final output. Our approach is described as follows. We first prove that the
properties in Claim D.1 imply the result of lower bound on ∥vn∥2. We show in Lemma 2.5 that,

∥vn∥2 ≥
√
η · (

∑
i∈[n]

⟨ϕ(xi), vi−1⟩2)1/2.

Combining this together with Lemma 2.3 we show that

log(∥vn∥2) ≥
η
∑

i∈[n]⟨v∗, ϕ(xi)⟩2

8 + 8 · C · α2 log2 n
,

which provides the lower bound for the norm of the output vector. The formal proof can be found
in Lemma 2.4.

2.5. Analysis of Our Kernel PCA Algorithm
In this section, we provide the lemmas that are useful for our kernel PCA algorithm analysis.

6



Lemma 2.1 (Growth implies correctness). For any v0 and all i ∈ [n], we have ∥P v̂i∥2 ≤
√
α +

∥Pv0∥2/∥vi∥2. Further, if v0 = v∗, then we have ∥P v̂i∥2 ≤
√
α.

Proof. See Appendix E.1 for detailed proof.
Lemma 2.2. Suppose v0 = v∗. For any two time steps 0 ≤ a < b ≤ n,

∥P v̂b − P v̂a∥22 ≤ 50 · α log(∥vb∥2/∥va∥2).

Proof. See Appendix E.2 for detailed proof.
Lemma 2.3. If v0 = v∗, then for i ∈ [n], we have

η

n∑
i=1

⟨ϕ(xi), P v̂i−1⟩2 ≤ 100 · α2 · log2 n · log ∥vn∥2.

Proof. See Appendix E.4 for detailed proof.
Lemma 2.4 (The right direction grows.). Let α ∈ (0, 0.1). Let C1 ≥ 200 denote some fixed constant.
Then if v0 = v∗ we have

log(∥vn∥2) ≥
β/8

1 + C1 · α2 log2 n
.

Further, if α ∈ (0, 1/(10C1 log n)), we have
∥vn∥2 ≥ exp(β/20).

Proof. See Appendix E.5 for detailed proof.
Lemma 2.5. We have ∥vn∥2 ≥ √η · (

∑n
i=1⟨ϕ(xi), vi−1⟩2)1/2

Proof. See Appendix E.6 for detailed proof.

3. Our Kernel PCA Result
In this section, we show our results for the kernel PCA algorithm. In Section 3.1, we provide a
guarantee for the final output. In Section 3.2, we formally present the main result of our streaming
algorithm.

3.1. The Guarantee of Final Output
Theorem 3.1. Let C ≥ 103 be a sufficiently large constant. Suppose that α ∈ (0, 1

C logn ) and β ≥ C log d.
Our algorithm outputs a vector v̂n ∈ Rd such that

Pr[∥P v̂n∥2 ≤
√
α+ exp(−β/200)] ≥ 1− exp(−β/200)

Proof. Our algorithm starts with a uniform random direction v̂0, and the sequence of v̂i doesn’t
depend on ∥v0∥2, so we can assume v0 ∼ N (0, Id).
By this assumption, we know that for each i ∈ [d], (v0)i ∼ N (0, 1). Hence, we sum over all the initial
vectors v0 for the sequence of v̂i to get

E[∥v0∥22] =
d∑

i=1

E[∥(v0)i∥22] =
d∑

i=1

1 = d

where the first step follows from our assumption for proof, and the second step follows from the
definition of Gaussian.

7



We define vector v0 ∈ Rd as v0 := a · v∗ + u for u ⊥ v∗ and a ∼ N (0, 1).
We define matrix B ∈ Rd×d

B :=

n∏
i=1

(1 + η · ϕ(xi) · ϕ(xi)
⊤),

so by Definition C.4 (update rule), vn = Bv0.

With probability 1− δ, we get
∥vn∥2 = ∥Bv0∥2 = ∥aBv∗ +Bu∥2 ≥ δ · ∥Bv∗∥2 ≥ δ · exp(β/20) (1)

where the first step follows from vn = Bv0, the second step follows from v0 = av∗ + u, the third
step follows from Claim B.8, and the last step follows from Lemma 2.4.
We can compute expectation,

E[∥u∥22] = E[∥v0∥22 − ∥av∗∥22 − 2⟨av∗, u⟩]
= E[∥v0∥22]− E[∥av∗∥22]− E[2⟨av∗, u⟩]
= d− E[∥av∗∥22]− E[2⟨av∗, u⟩]
= d− 1− E[2⟨av∗, u⟩]
= d− 1

where the first step follows from our definition for proof that v0 := a ·v∗+u, the second step follows
from simple algebra, the third step follows from definition of Gaussian, the fourth step follows from
E[a2] = 1 and ∥v∗∥22 = 1, the last step follows from ⟨u∗, u⟩ = 0.
Then applying Lemma B.6, we will have

Pr[∥u∥22 ≥ d/δ] ≤ E[∥u∥22]/(d/δ) = (d− 1)
δ

d
≤ δ (2)

the last step follows from (d− 1)/d ≤ 1.
The above equation implies

Pr[∥u∥2 ≤
√

d/δ] ≥ 1− δ.

With probability 1− 3δ, we have

∥P v̂n∥2 ≤
√
α+

∥u∥2
∥vn∥2

≤
√
α+

√
d/δ

∥vn∥2

≤
√
α+

√
d/δ

δ · exp(β/20)
≤
√
α+ 8 ·

√
d · exp(−β/30)

≤
√
α+ exp(−β/40)

≤
√
α+ exp(−β/200)

where the first step follows from Lemma 2.1, and the second step follows from Eq.(2), the third step
follows from Eq .(1), and the fourth step follows from choosing δ = exp(−β/200)/4, and the fifth
step follows from β ≥ C log dwith C ≥ 500.

3.2. Main Result
Theorem 3.2 (Formal version of Theorem 1.1). Let ϕ : Rd → Rm. Let Σ = 1

n

∑n
i=1 ϕ(xi)ϕ(xi)

⊤ ∈
Rm×m. We define R := λ1(Σ)/λ2(Σ) where λ1(Σ) is the largest eigenvalue of Σ and λ2(Σ) is the second

8



largest eigenvalue of Σ. Let x∗ denote the top eigenvector of Σ. Let C > 103 denote a sufficiently large
constant. If R ≥ C · (log n) · (log d), there is a streaming algorithm (Algorithm 1) that only uses O(d+m)
spaces and receives x1, x2, · · · , xn in the online/streaming fashion, and outputs a unit vector u such that
1− ⟨x∗, u⟩2 ≤ (log d)/R holds with probability at least 1− exp(−Ω(log d)).

Proof. Let C ≥ 103 be a sufficiently large constant. Suppose that α ∈ (0, 1
C logn ) and β ≥ C log d.

From Theorem 3.1, we have ∥Pu∥2 ≤ ϵwhere ϵ = √α+ exp(−β/200). .
Using Claim B.2, we know that 1− ⟨u, x∗⟩2 ≤ ϵ2. From our assumption for proof, we have

R ≥ C · (log n) · (log d) ≥ 1

4
C · (log n) · (log d) (3)

where the second step follows from C · (log n) · (log d) ≥ 0.
Rewriting Eq. (3), we get 1

4 (log d)/R ≤
1

C logn .

Hence, we can choose

α =
1

4
(log d)/R (4)

by its domain α ∈ (0, 1
C logn ).

Eq. (4) equivalently yields that √α = 1
2

√
(log d)/R.

Since R ≥ 1 by the definition and we choose β ≥ C log(R/(log d)), then

exp(−β/200) ≤ exp(−(C/200) log(R/ log d))

≤ ((log d)/R)2

≤ 1

2

√
(log d)/R.

where the second step follows from C/200 ≥ 4, the last step follows from R ≥ 4 log d.
Thus, we have

ϵ ≤ 1

2

√
(log d)/R+

1

2

√
(log d)/R =

√
(log d)/R,

where the first step follows from ϵ =
√
α+ exp(−β/200).

By taking square on both sides, the above implies that

ϵ2 ≤ (log d)/R.

So, the overall condition, we choose for β is

β ≥ C · (log d+ log(R/ log d)).

From Eq. (4), we knew R has to satisfy that

R ≥ (C/4) log n · log d.

The failure probability is at most

exp(−β/200) ≤ exp(−(C/200) log(d)− log((C/4) log n)) ≤ exp(−Ω(log d)).

Therefore, we conclude that the probability, where the condition 1 − ⟨x∗, u⟩2 ≤ (log d)/R holds, is
at least 1− exp(−Ω(log d)) as expected.

9



4. Conclusion
In conclusion, our study presents a groundbreaking streaming algorithm for kernel Principal Com-
ponent Analysis (PCA), notable for its minimal space requirement of only O(m + d), where m is
the dimension of the kernel space, and d is the dimension of each data point in the dataset. This
marks a significant improvement in efficiency and resource management, particularly in handling
large datasets common in modern data analysis scenarios. Our algorithm, building on the founda-
tion of Oja’s traditional scheme, not only extends its application to kernel PCA but also enhances its
adaptability and effectiveness in a wider range of data structures.
The core of our contribution lies in the detailed conditions we provide for the algorithm’s optimal
performance, particularly concerning the ratio of top eigenvectors. This insight is critical for prac-
titioners and researchers, guiding the effective application of our algorithm in diverse scenarios.
Moreover, this aspect of our work underscores the algorithm’s robustness and reliability, ensuring
its utility in practical, real-world data analysis tasks in fields such as web-related applications and
so on.

References
[1] Md Mehrab Tanjim and Muhammad Abdullah Adnan. ssketch: A scalable sketching tech-

nique for pca in the cloud. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining(WSDM), pages 574–582, 2018.

[2] Ji Ma and Yuyu Yuan. Dimension reduction of image deep feature using pca. Journal of Visual
Communication and Image Representation, 63:102578, 2019.

[3] Moshe Unger, Ariel Bar, Bracha Shapira, and Lior Rokach. Towards latent context-aware
recommendation systems. Knowledge-Based Systems, 104:165–178, 2016.

[4] Bernhard Schölkopf. The kernel trick for distances. Advances in neural information processing
systems, 13, 2000.

[5] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal compo-
nent analysis. In International conference on artificial neural networks, pages 583–588. Springer,
1997.

[6] M-H Yang, Narendra Ahuja, and David Kriegman. Face recognition using kernel eigen-
faces. In Proceedings 2000 International Conference on Image Processing (Cat. No. 00CH37101),
volume 1, pages 37–40. IEEE, 2000.

[7] Chengjun Liu. Gabor-based kernel pca with fractional power polynomial models for face
recognition. IEEE transactions on pattern analysis and machine intelligence, 26(5):572–581, 2004.

[8] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux, Jean-François Paiement, Pascal Vincent,
andMarie Ouimet. Learning eigenfunctions links spectral embedding and kernel pca. Neural
computation, 16(10):2197–2219, 2004.

[9] Heiko Hoffmann. Kernel pca for novelty detection. Pattern recognition, 40(3):863–874, 2007.
[10] SebastianMika, Bernhard Schölkopf, Alex Smola, Klaus-Robert Müller, Matthias Scholz, and

Gunnar Rätsch. Kernel pca and de-noising in feature spaces. Advances in neural information
processing systems, 11, 1998.

[11] Sang Wook Choi, Changkyu Lee, Jong-Min Lee, Jin Hyun Park, and In-Beum Lee. Fault
detection and identification of nonlinear processes based on kernel pca. Chemometrics and
intelligent laboratory systems, 75(1):55–67, 2005.

[12] Wo Jae Lee, Gamini P Mendis, Matthew J Triebe, and John W Sutherland. Monitoring of a
machining process using kernel principal component analysis and kernel density estimation.
Journal of Intelligent Manufacturing, 31(5):1175–1189, 2020.

10



[13] Zhou Xu, Jin Liu, Xiapu Luo, Zijiang Yang, Yifeng Zhang, Peipei Yuan, Yutian Tang, and
Tao Zhang. Software defect prediction based on kernel pca and weighted extreme learning
machine. Information and Software Technology, 106:182–200, 2019.

[14] Mark Girolami. Mercer kernel-based clustering in feature space. IEEE transactions on neural
networks, 13(3):780–784, 2002.

[15] Shangming Zhou and John Q Gan. Mercer kernel, fuzzy c-means algorithm, and prototypes
of clusters. In International Conference on Intelligent Data Engineering and Automated Learning,
pages 613–618. Springer, 2004.

[16] Yuesheng Xu andQi Ye. GeneralizedMercer kernels and reproducing kernel Banach spaces, volume
258:1243. American Mathematical Society, 2019.

[17] T Tony Cai, Zongming Ma, and Yihong Wu. Sparse pca: Optimal rates and adaptive estima-
tion. The Annals of Statistics, 41(6):3074–3110, 2013.

[18] Laurent Zwald and Gilles Blanchard. On the convergence of eigenspaces in kernel principal
component analysis. Advances in neural information processing systems, 18, 2005.

[19] Gilles Blanchard, Olivier Bousquet, and Laurent Zwald. Statistical properties of kernel prin-
cipal component analysis. Machine Learning, 66(2):259–294, 2007.

[20] Vincent Vu and Jing Lei. Minimax rates of estimation for sparse pca in high dimensions. In
Artificial intelligence and statistics, pages 1278–1286. PMLR, 2012.

[21] Maciej Besta, Marc Fischer, Vasiliki Kalavri, Michael Kapralov, and Torsten Hoefler. Practice
of streaming and dynamic graphs: Concepts, models, systems, and parallelism. arXiv, pages
1912–12740, 2020.

[22] Joan Feigenbaum, Sampath Kannan, AndrewMcGregor, Siddharth Suri, and Jian Zhang. On
graph problems in a semi-streaming model. Theoretical Computer Science, 348(2-3):207–216,
2005.

[23] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph distances in the data-stream model. SIAM Journal on Computing, 38(5):1709–1727,
2009.

[24] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (δ+ 1) vertex color-
ing. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
767–786. SIAM, 2019.

[25] Graham Cormode, Jacques Dark, and Christian Konrad. Independent sets in vertex-arrival
streams. arXiv preprint arXiv:1807.08331, 2018.

[26] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms, pages 468–485. SIAM, 2012.

[27] Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of
the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages 1679–1697. SIAM,
2013.

[28] Michael Kapralov, Navid Nouri, Aaron Sidford, and Jakab Tardos. Dynamic streaming spec-
tral sparsification in nearly linear time and space. arXiv preprint arXiv:1903.12150, 2019.

[29] John Kallaugher, Andrew McGregor, Eric Price, and Sofya Vorotnikova. The complexity
of counting cycles in the adjacency list streaming model. In Proceedings of the 38th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 119–133, 2019.

11



[30] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for approx-
imating max-cut. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1263–1282. SIAM, 2014.

[31] Zhao Song, David Woodruff, Zheng Yu, and Lichen Zhang. Fast sketching of polynomial
kernels of polynomial degree. In International Conference on Machine Learning, pages 9812–
9823. PMLR, 2021.

[32] Josh Alman and Zhao Song. Fast attention requires bounded entries. arXiv preprint
arXiv:2302.13214, 2023.

[33] Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for linear
algebra on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 541–552. IEEE, 2020.

[34] John Kallaugher and Eric Price. Separations and equivalences between turnstile streaming
and linear sketching. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pages 1223–1236, 2020.

[35] John Kallaugher, Michael Kapralov, and Eric Price. The sketching complexity of graph and
hypergraph counting. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pages 556–567. IEEE, 2018.

[36] David Liau, Zhao Song, Eric Price, and Ger Yang. Stochastic multi-armed bandits in constant
space. In International Conference on Artificial Intelligence and Statistics, pages 386–394. PMLR,
2018.

[37] Shanmugavelayutham Muthukrishnan et al. Data streams: Algorithms and applications.
Foundations and Trends® in Theoretical Computer Science, 1(2):117–236, 2005.

[38] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and Ronitt Ru-
binfeld. Improved massively parallel computation algorithms for mis, matching, and vertex
cover. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, pages
129–138, 2018.

[39] Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings
via unweighted augmentations. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, pages 491–500, 2019.

[40] Andrew McGregor. Finding graph matchings in data streams. In Approximation, Randomiza-
tion and Combinatorial Optimization. Algorithms and Techniques, pages 170–181. Springer, 2005.

[41] Manfred KK Warmuth and Dima Kuzmin. Randomized pca algorithms with regret bounds
that are logarithmic in the dimension. Advances in neural information processing systems, 19,
2006.

[42] RamanArora, AndrewCotter, Karen Livescu, andNathan Srebro. Stochastic optimization for
pca and pls. In 2012 50th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 861–868. IEEE, 2012.

[43] Raman Arora, Andy Cotter, and Nati Srebro. Stochastic optimization of pca with capped
msg. Advances in Neural Information Processing Systems, 26, 2013.

[44] Ioannis Mitliagkas, Constantine Caramanis, and Prateek Jain. Memory limited, streaming
pca. Advances in neural information processing systems, 26, 2013.

[45] Erkki Oja. Simplified neuronmodel as a principal component analyzer. Journal of mathematical
biology, 15(3):267–273, 1982.

12



[46] Tatiana Pavlovna Krasulina. A method of stochastic approximation for the determination of
the least eigenvalue of a symmetric matrix. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi
Fiziki, 9(6):1383–1387, 1969.

[47] Akshay Balsubramani, Sanjoy Dasgupta, and Yoav Freund. The fast convergence of incre-
mental pca. Advances in neural information processing systems, 26, 2013.

[48] Moritz Hardt and Eric Price. The noisy power method: A meta algorithm with applications.
Advances in neural information processing systems, 27, 2014.

[49] Zeyuan Allen-Zhu and Yuanzhi Li. First efficient convergence for streaming k-pca: a global,
gap-free, and near-optimal rate. In 2017 IEEE 58th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 487–492. IEEE, 2017.

[50] DeHuang, JonathanNiles-Weed, and RachelWard. Streaming k-pca: Efficient guarantees for
oja’s algorithm, beyond rank-one updates. In Conference on Learning Theory, pages 2463–2498.
PMLR, 2021.

[51] De Huang, Jonathan Niles-Weed, Joel A Tropp, and Rachel Ward. Matrix concentration for
products. Foundations of Computational Mathematics, 22(6):1767–1799, 2022.

[52] Robert Lunde, Purnamrita Sarkar, and Rachel Ward. Bootstrapping the error of oja’s algo-
rithm. Advances in Neural Information Processing Systems, 34:6240–6252, 2021.

[53] Nikos Mouzakis and Eric Price. Spectral guarantees for adversarial streaming pca. ., 2022.

[54] JonathanHo, Ajay Jain, andPieterAbbeel. Denoisingdiffusionprobabilisticmodels.Advances
in neural information processing systems, 33:6840–6851, 2020.

[55] Bo Chen, Chengyue Gong, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song,
andMingdaWan. High-ordermatching for one-step shortcut diffusionmodels. arXiv preprint
arXiv:2502.00688, 2025.

[56] Yuefan Cao, Chengyue Gong, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao
Song. Richspace: Enriching text-to-video prompt space via text embedding interpolation.
arXiv preprint arXiv:2501.09982, 2025.

[57] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, andMatthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

[58] Chengyue Gong, Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao
Song. On computational limits of flowar models: Expressivity and efficiency. arXiv preprint
arXiv:2502.16490, 2025.

[59] Yang Cao, Bo Chen, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and
Mingda Wan. Force matching with relativistic constraints: A physics-inspired approach to
stable and efficient generative modeling. arXiv preprint arXiv:2502.08150, 2025.

[60] Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Circuit complexity bounds
for visual autoregressive model. arXiv preprint arXiv:2501.04299, 2025.

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[62] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

13



[63] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186. Association for
Computational Linguistics, 2019.

[64] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
AdamRoberts, Paul Barham, HyungWon Chung, Charles Sutton, Sebastian Gehrmann, et al.
Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[65] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Tim-
othée Lacroix, Baptiste Rozière, NamanGoyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[66] Meta. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models.
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/,
2024. Accessed: 2024-11-21.

[67] OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024. Accessed: May
14.

[68] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[69] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
LuWang, andWeizhu Chen. LoRA: Low-rank adaptation of large language models. In Inter-
national Conference on Learning Representations, 2022.

[70] Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan
Lu, Conghui He, Xiangyu Yue, et al. Llama-adapter v2: Parameter-efficient visual instruction
model. arXiv preprint arXiv:2304.15010, 2023.

[71] Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li,
Peng Gao, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-
init attention. arXiv preprint arXiv:2303.16199, 2023.

[72] Zhenmei Shi, Jiefeng Chen, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, and
Somesh Jha. The trade-off between universality and label efficiency of representations from
contrastive learning. In The Eleventh International Conference on Learning Representations, 2023.

[73] Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, LILI YU, SusanZhang, Gargi Ghosh,Mike Lewis, Luke Zettlemoyer, andOmer
Levy. LIMA: Less is more for alignment. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[74] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use:
Improving few-shot performance of language models. In International Conference on Machine
Learning. PMLR, 2021.

[75] Yiping Wang, Yifang Chen, Wendan Yan, Alex Fang, Wenjing Zhou, Kevin G Jamieson, and
Simon S Du. Cliploss and norm-based data selection methods for multimodal contrastive
learning. Advances in Neural Information Processing Systems, 37:15028–15069, 2025.

[76] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-
shot learners. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021.

14

https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://openai.com/index/hello-gpt-4o/


[77] Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander
Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by
gradient descent. In International Conference on Machine Learning. PMLR, 2023.

[78] Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, and Yingyu Liang. To-
wards few-shot adaptation of foundation models via multitask finetuning. arXiv preprint
arXiv:2402.15017, 2024.

[79] Zhuoyan Xu, Zhenmei Shi, JunyiWei, Yin Li, and Yingyu Liang. Improving foundationmod-
els for few-shot learning via multitask finetuning. In ICLR 2023 Workshop on Mathematical and
Empirical Understanding of Foundation Models, 2023.

[80] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2021.

[81] Yiming Li, Jingwei Sun, Yudong Liu, Yuandong Zhang, Ang Li, Beidi Chen, Holger R Roth,
Daguang Xu, Tingjun Chen, and Yiran Chen. Federated black-box prompt tuning system for
large language models on the edge. In Proceedings of the 30th Annual International Conference
on Mobile Computing and Networking, pages 1775–1777, 2024.

[82] Maxwell Nye, Anders Johan Andreassen, Gur AriGuy, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

[83] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned
language models. arXiv preprint arXiv:2210.11416, 2022.

[84] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

[85] SwaroopMishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task gener-
alization via natural language crowdsourcing instructions. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics, 2022.

[86] Jerry Wei, Le Hou, Andrew Kyle Lampinen, Xiangning Chen, Da Huang, Yi Tay, Xinyun
Chen, Yifeng Lu, Denny Zhou, Tengyu Ma, and Quoc V Le. Symbol tuning improves in-
context learning in language models. In The 2023 Conference on Empirical Methods in Natural
Language Processing, 2023.

[87] Weidi Xu, JingweiWang, Lele Xie, Jianshan He, Hongting Zhou, TaifengWang, Xiaopei Wan,
Jingdong Chen, Chao Qu, andWei Chu. Logicmp: A neuro-symbolic approach for encoding
first-order logic constraints. In The Twelfth International Conference on Learning Representations,
2024.

[88] Jun Xu, Weidi Xu, Mengshu Sun, Taifeng Wang, and Wei Chu. Extracting trigger-sharing
events via an event matrix. In Findings of the Association for Computational Linguistics: EMNLP
2022, pages 1189–1201, 2022.

[89] Tianxiang Sun, Yunfan Shao, HongQian, XuanjingHuang, and XipengQiu. Black-box tuning
for language-model-as-a-service. In International Conference onMachine Learning. PMLR, 2022.

[90] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models
to follow instructionswith human feedback. Advances inNeural Information Processing Systems,
2022.

15



[91] Natalia Zhang, Xinqi Wang, Qiwen Cui, Runlong Zhou, Sham M Kakade, and Simon S Du.
Multi-agent reinforcement learning from human feedback: Data coverage and algorithmic
techniques. arXiv preprint arXiv:2409.00717, 2024.

[92] Omar Khattab, Keshav Santhanam, Xiang Lisa Li, DavidHall, Percy Liang, Christopher Potts,
and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models
for knowledge-intensive nlp. arXiv preprint arXiv:2212.14024, 2022.

[93] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and
Karthik R Narasimhan. Tree of thoughts: Deliberate problem solving with large language
models. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[94] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[95] Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H Chi, Quoc V
Le, and Denny Zhou. Step-back prompting enables reasoning via abstraction in large lan-
guage models. In The Twelfth International Conference on Learning Representations, 2024.

[96] Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix
softmax attention to kronecker computation. InThe Twelfth International Conference on Learning
Representations, 2024.

[97] Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably
efficient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024.

[98] Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limita-
tions of transformers. Advances in Neural Information Processing Systems, 36, 2024.

[99] Yifan Zhang, Yifeng Liu, Huizhuo Yuan, Zhen Qin, Yang Yuan, Quanquan Gu, and Andrew
Chi-Chih Yao. Tensor product attention is all you need. arXiv preprint arXiv:2501.06425, 2025.

[100] Josh Alman and Zhao Song. Fast rope attention: Combining the polynomial method and fast
fourier transform. manuscript, 2024.

[101] Xiaoyu Li, Jiangxuan Long, Zhao Song, and Tianyi Zhou. Fast second-order method for neu-
ral network under small treewidth setting. In 2024 IEEE International Conference on Big Data
(BigData). IEEE, 2024.

[102] Yifang Chen, Jiayan Huo, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Fast gra-
dient computation for rope attention in almost linear time. arXiv preprint arXiv:2412.17316,
2024.

[103] Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Hsr-enhanced sparse
attention acceleration. In Conference on Parsimony and Learning. PMLR, 2025.

[104] Jerry Yao-Chieh Hu, Pei-Hsuan Chang, Haozheng Luo, Hong-Yu Chen, Weijian Li, Wei-Po
Wang, and Han Liu. Outlier-efficient hopfield layers for large transformer-based models. In
Forty-first International Conference on Machine Learning (ICML), 2024.

[105] Jerry Yao-Chieh Hu, Bo-Yu Chen, DennisWu, Feng Ruan, andHan Liu. Nonparametric mod-
ern hopfield models. arXiv preprint arXiv:2404.03900, 2024.

[106] Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of mod-
ern hopfieldmodels: A fine-grained complexity analysis. In Forty-first International Conference
on Machine Learning (ICML), 2024.

16



[107] Jiawei Zhao, Zhuoming Chen, Beidi Chen, Animashree Anandkumar, et al. Mini-sequence
transformers: Optimizing intermediate memory for long sequences training. Advances in
Neural Information Processing Systems, 37:97299–97327, 2025.

[108] Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Sophia Pi, , Zhao Song, and Han Liu. On sta-
tistical rates and provably efficient criteria of latent diffusion transformers (dits). Advances in
Neural Information Processing Systems, 38, 2024.

[109] Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On
sparse modern hopfield model. In Thirty-seventh Conference on Neural Information Processing
Systems (NeurIPS), 2023.

[110] Yekun Ke, Xiaoyu Li, Zhao Song, and Tianyi Zhou. Faster sampling algorithms for polytopes
with small treewidth. In 2024 IEEE International Conference on Big Data (BigData). IEEE, 2024.

[111] Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, and Junze Yin. Conv-basis: A new
paradigm for efficient attention inference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024.

[112] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Junwei Yu. Fast john ellipsoid com-
putation with differential privacy optimization. arXiv preprint arXiv:2408.06395, 2024.

[113] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Fine-grained attention i/o
complexity: Comprehensive analysis for backward passes. arXiv preprint arXiv:2410.09397,
2024.

[114] Cheng Luo, Zefan Cai, Hanshi Sun, Jinqi Xiao, Bo Yuan, Wen Xiao, Junjie Hu, Jiawei Zhao,
Beidi Chen, and Anima Anandkumar. Headinfer: Memory-efficient llm inference by head-
wise offloading. arXiv preprint arXiv:2502.12574, 2025.

[115] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. A tighter complexity analysis of
sparsegpt. arXiv preprint arXiv:2408.12151, 2024.

[116] Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Toward infinite-long prefix in
transformer. arXiv preprint arXiv:2406.14036, 2024.

[117] Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discovering the
gems in early layers: Accelerating long-context llms with 1000x input token reduction. arXiv
preprint arXiv:2409.17422, 2024.

[118] Xuan Shen, Zhao Song, YufaZhou, BoChen, YanyuLi, YifanGong, Kai Zhang, HaoTan, Jason
Kuen, HenghuiDing, Zhihao Shu,WeiNiu, PuZhao, YanzhiWang, and JiuxiangGu. Lazydit:
Lazy learning for the acceleration of diffusion transformers. arXiv preprint arXiv:2412.12444,
2024.

[119] Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Jing Liu, Ruiyi Zhang, Ryan A. Rossi, Hao Tan,
Tong Yu, Xiang Chen, Yufan Zhou, Tong Sun, Pu Zhao, Yanzhi Wang, and Jiuxiang Gu. Nu-
merical pruning for efficient autoregressive models. arXiv preprint arXiv:2412.12441, 2024.

[120] Zhao Song, Lichen Zhang, and Ruizhe Zhang. Trainingmulti-layer over-parametrized neural
network in subquadratic time. In Innovations in Theoretical Computer Science (ITCS), pages
93:1–93:15, 2024.

[121] Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. Uniform memory retrieval
with larger capacity for modern hopfield models. In Forty-first International Conference on
Machine Learning (ICML), 2024.

[122] Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. STanhop: Sparse tan-
dem hopfield model for memory-enhanced time series prediction. In The Twelfth International
Conference on Learning Representations (ICLR), 2024.

17



[123] Chenwei Xu, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani, Hsi-Sheng
Goan, and Han Liu. Bishop: Bi-directional cellular learning for tabular data with general-
ized sparse modern hopfield model. In Forty-first International Conference on Machine Learning
(ICML), 2024.

[124] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Junwei Yu. Fast john ellipsoid compu-
tation with differential privacy optimization. In Conference on Parsimony and Learning. PMLR,
2025.

[125] Chenyang Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. When can we solve the weighted
low rank approximation problem in truly subquadratic time? In International Conference on
Artificial Intelligence and Statistics, 2025.

[126] Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Hsr-enhanced sparse
attention acceleration. In Conference on Parsimony and Learning. PMLR, 2025.

[127] Yuefan Cao, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Jiahao
Zhang. Dissecting submission limit in desk-rejections: A mathematical analysis of fairness
in ai conference policies. arXiv preprint arXiv:2502.00690, 2025.

[128] Bo Chen, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, and Zhao Song. Circuit
complexity bounds for rope-based transformer architecture. arXiv e-prints, pages arXiv–2411,
2024.

[129] Mehmet F Demirel, Shengchao Liu, Siddhant Garg, Zhenmei Shi, and Yingyu Liang. At-
tentive walk-aggregating graph neural networks. Transactions on Machine Learning Research,
2022.

[130] Ya-Ting Chang, Zhibo Hu, Xiaoyu Li, Shuiqiao Yang, Jiaojiao Jiang, and Nan Sun. Dihan: A
novel dynamic hierarchical graph attention network for fake news detection. In Proceedings
of the 33rd ACM International Conference on Information and Knowledge Management, pages 197–
206, 2024.

[131] Yichuan Deng, Zhao Song, Yitan Wang, and Yuanyuan Yang. A nearly optimal size coreset
algorithm with nearly linear time. arXiv preprint arXiv:2210.08361, 2022.

[132] Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regres-
sion. arXiv preprint arXiv:2303.16504, 2023.

[133] Yeqi Gao, Zhao Song, and Shenghao Xie. In-context learning for attention scheme: from
single softmax regression to multiple softmax regression via a tensor trick. arXiv preprint
arXiv:2307.02419, 2023.

[134] Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits in
neural networks and transformers: A case study of modular arithmetic with multiple inputs.
In International Conference on Artificial Intelligence and Statistics, 2025.

[135] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, Wei Wang, and Jiahao Zhang. On the
computational capability of graph neural networks: A circuit complexity bound perspective.
arXiv preprint arXiv:2501.06444, 2025.

[136] Ruizhe Shi, Yifang Chen, Yushi Hu, Alisa Liu, Hanna Hajishirzi, Noah A Smith, and Simon S
Du. Decoding-time language model alignment with multiple objectives. Advances in Neural
Information Processing Systems, 37:48875–48920, 2025.

[137] Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of cross-
attention with provable guarantee. arXiv preprint arXiv:2407.14717, 2024.

[138] Xiaoyu Li, Zhao Song, and Junwei Yu. Quantum speedups for approximating the john ellip-
soid. arXiv preprint arXiv:2408.14018, 2024.

18



[139] Anshumali Shrivastava, Zhao Song, and Zhaozhuo Xu. A theoretical analysis of nearest
neighbor search on approximate near neighbor graph. arXiv preprint arXiv:2303.06210, 2023.

[140] Ritwik Sinha, Zhao Song, and Tianyi Zhou. A mathematical abstraction for balanc-
ing the trade-off between creativity and reality in large language models. arXiv preprint
arXiv:2306.02295, 2023.

[141] Zhao Song and Chiwun Yang. An automatic learning rate schedule algorithm for achieving
faster convergence and steeper descent. arXiv preprint arXiv:2310.11291, 2023.

[142] Xiaoyu Tan, Shaojie Shi, Xihe Qiu, Chao Qu, Zhenting Qi, Yinghui Xu, and Yuan Qi. Self-
criticism: Aligning large language models with their understanding of helpfulness, honesty,
and harmlessness. In Proceedings of the 2023 conference on empirical methods in natural language
processing: industry track, pages 650–662, 2023.

[143] Sicong Xie, Qunwei Li, Weidi Xu, Kaiming Shen, Shaohu Chen, and Wenliang Zhong. De-
noising time cycle modeling for recommendation. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 1950–1955, 2022.

[144] Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional
ability? an investigation into limitations and scalability. In First Conference on Language Mod-
eling, 2024.

[145] Jiahao Zhang. Graph unlearning with efficient partial retraining. In Companion Proceedings of
the ACM on Web Conference 2024, pages 1218–1221, 2024.

[146] Jiahao Zhang, Rui Xue, Wenqi Fan, Xin Xu, Qing Li, Jian Pei, and Xiaorui Liu. Linear-time
graph neural networks for scalable recommendations. In Proceedings of the ACM on Web Con-
ference 2024, pages 3533–3544, 2024.

[147] Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Universal approxima-
tion of visual autoregressive transformers. arXiv preprint arXiv:2502.06167, 2025.

[148] Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Zhen Zhuang.
Neural algorithmic reasoning for hypergraphs with looped transformers. arXiv preprint
arXiv:2501.10688, 2025.

[149] Yekun Ke, Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Curse of attention:
A kernel-based perspective for why transformers fail to generalize on time series forecasting
and beyond. In Conference on Parsimony and Learning. PMLR, 2025.

[150] Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Looped relumlpsmay
be all you need as practical programmable computers. In International Conference on Artificial
Intelligence and Statistics, 2025.

[151] Bo Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Bypassing the exponential
dependency: Looped transformers efficiently learn in-context bymulti-step gradient descent.
In International Conference on Artificial Intelligence and Statistics, 2025.

[152] Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. The computational
limits of state-space models and mamba via the lens of circuit complexity. In Conference on
Parsimony and Learning. PMLR, 2025.

[153] Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating
single layer attention in llm based on tensor and svm trick, and solving it in matrix multipli-
cation time. arXiv preprint arXiv:2309.07418, 2023.

[154] Jerry Yao-Chieh Hu, Weimin Wu, Yi-Chen Lee, Yu-Chao Huang, Minshuo Chen, and Han
Liu. On statistical rates of conditional diffusion transformers: Approximation, estimation
and minimax optimality. arXiv preprint arXiv:2411.17522, 2024.

19



[155] Jerry Yao-Chieh Hu, Wei-Po Wang, Ammar Gilani, Chenyang Li, Zhao Song, and Han Liu.
Fundamental limits of prompt tuning transformers: Universality, capacity and efficiency.
arXiv preprint arXiv:2411.16525, 2024.

[156] Weimin Wu, Maojiang Su, Jerry Yao-Chieh Hu, Zhao Song, and Han Liu. Transformers
are deep optimizers: Provable in-context learning for deep model training. arXiv preprint
arXiv:2411.16549, 2024.

[157] Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. On compu-
tational limits and provably efficient criteria of visual autoregressive models: A fine-grained
complexity analysis. arXiv preprint arXiv:2501.04377, 2025.

[158] Xunyu Zhu, Jian Li, Yong Liu, Can Ma, andWeiping Wang. A survey on model compression
for large language models. arXiv preprint arXiv:2308.07633, 2023.

[159] Gunho Park, Minsub Kim, Sungjae Lee, Jeonghoon Kim, Beomseok Kwon, Se Jung Kwon,
Byeongwook Kim, Youngjoo Lee, Dongsoo Lee, et al. Lut-gemm: Quantized matrix multipli-
cation based on luts for efficient inference in large-scale generative language models. In The
Twelfth International Conference on Learning Representations, 2024.

[160] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models.
In International Conference on Machine Learning, pages 38087–38099. PMLR, 2023.

[161] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael WMahoney, Yakun Sophia
Shao, Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm
inference with kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

[162] Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin
Shi, Sheng Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning
framework. Advances in Neural Information Processing Systems, 34:19637–19651, 2021.

[163] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity
in deep learning: Pruning and growth for efficient inference and training in neural networks.
Journal of Machine Learning Research, 22(241):1–124, 2021.

[164] Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Ac-
celerated sparse neural training: A provable and efficient method to find n: m transposable
masks. Advances in neural information processing systems, 34:21099–21111, 2021.

[165] Tian Jin, Michael Carbin, Dan Roy, Jonathan Frankle, and Gintare Karolina Dziugaite. Prun-
ing’s effect on generalization through the lens of training and regularization. Advances in
Neural Information Processing Systems, 35:37947–37961, 2022.

[166] Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-
training quantization and pruning. Advances inNeural Information Processing Systems, 35:4475–
4488, 2022.

[167] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately
pruned in one-shot. In International Conference on Machine Learning, pages 10323–10337.
PMLR, 2023.

[168] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning ap-
proach for large language models. In The Twelfth International Conference on Learning Represen-
tations, 2024.

[169] Amir Zandieh, Majid Daliri, and Insu Han. Qjl: 1-bit quantized jl transform for kv cache
quantization with zero overhead. arXiv preprint arXiv:2406.03482, 2024.

20



[170] Yuxin Zhang, Lirui Zhao, Mingbao Lin, Sun Yunyun, Yiwu Yao, Xingjia Han, Jared Tanner,
Shiwei Liu, andRongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse
llms. In The Twelfth International Conference on Learning Representations, 2024.

[171] Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li,
Wei Lin, and Shuaiwen Leon Song. Flash-llm: Enabling cost-effective and highly-efficient
large generative model inference with unstructured sparsity. Proceedings of the VLDB Endow-
ment, 17(2):211–224, 2023.

[172] Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and
James Hensman. Slicegpt: Compress large language models by deleting rows and columns.
In The Twelfth International Conference on Learning Representations, 2024.

[173] Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alex Rat-
ner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming
larger language models with less training data and smaller model sizes. In Findings of the
Association for Computational Linguistics: ACL 2023, pages 8003–8017, 2023.

[174] Kumar Shridhar, Alessandro Stolfo, and Mrinmaya Sachan. Distilling reasoning capabilities
into smaller languagemodels. In The 61st Annual Meeting Of The Association For Computational
Linguistics, 2023.

[175] Yuxin Jiang, Chunkit Chan, Mingyang Chen, and Wei Wang. Lion: Adversarial distillation
of proprietary large language models. In The 2023 Conference on Empirical Methods in Natural
Language Processing, 2023.

[176] YizhongWang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated in-
structions. In The 61st Annual Meeting Of The Association For Computational Linguistics, 2023.

[177] Divyansh Pareek, Simon S Du, and Sewoong Oh. Understanding the gains from repeated
self-distillation. arXiv preprint arXiv:2407.04600, 2024.

[178] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one?
Advances in neural information processing systems, 32, 2019.

[179] Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating
language model pre-training via structured pruning. In The Twelfth International Conference on
Learning Representations, 2024.

[180] Eldar Kurtic, Denis Kuznedelev, Elias Frantar, Michael Goin, and Dan Alistarh. Sparse fine-
tuning for inference acceleration of large language models. arXiv preprint arXiv:2310.06927,
2023.

[181] Yang Zhou, Zhuoming Chen, Zhaozhuo Xu, Victoria Lin, and Beidi Chen. Sirius: Contexual
sparisty with correction for efficient llms. Advances in Neural Information Processing Systems,
37:24046–24080, 2025.

[182] Haizhong Zheng, Xiaoyan Bai, Xueshen Liu, Zhuoqing Morley Mao, Beidi Chen, Fan Lai,
and Atul Prakash. Learn to be efficient: Build structured sparsity in large language models.
Advances in Neural Information Processing Systems, 37:101969–101991, 2025.

[183] Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. Beyond linear
approximations: A novel pruning approach for attention matrix. In International Conference
on Learning Representations, 2025.

[184] Ilya Razenshteyn, Zhao Song, and David P Woodruff. Weighted low rank approximations
with provable guarantees. In Proceedings of the forty-eighth annual ACM symposium on Theory
of Computing, pages 250–263, 2016.

21



[185] Yuanzhi Li, Yingyu Liang, and Andrej Risteski. Recovery guarantee of weighted low-rank
approximation via alternating minimization. In International Conference on Machine Learning,
pages 2358–2367. PMLR, 2016.

[186] YuchenZeng andKangwookLee. The expressive power of low-rank adaptation. InThe Twelfth
International Conference on Learning Representations, 2024.

[187] Jerry Yao-ChiehHu,Maojiang Su, En-Jui Kuo, Zhao Song, andHanLiu. Computational limits
of low-rank adaptation (lora) for transformer-based models. arXiv preprint arXiv:2406.03136,
2024.

[188] Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density esti-
mation through density constrained near neighbor search. In 2020 IEEE 61st Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 172–183. IEEE, 2020.

[189] Tianlin Liu and Friedemann Zenke. Finding trainable sparse networks through neural tan-
gent transfer. In International Conference on Machine Learning, pages 6336–6347. PMLR, 2020.

[190] Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating trans-
formers via kernel density estimation. In ICML. arXiv preprint arXiv:2302.02451, 2023.

[191] Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential privacy mechanisms
in neural tangent kernel regression. arXiv preprint arXiv:2407.13621, 2024.

[192] Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponen-
tials andgaussian kernel density estimation. InProceedings of the 37th Computational Complexity
Conference, pages 1–23, 2022.

[193] JoshAlman andZhao Song. The fine-grained complexity of gradient computation for training
large language models. arXiv preprint arXiv:2402.04497, 2024.

[194] Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer trans-
formers gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233,
2024.

[195] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[196] Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms
through structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

[197] Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The hedge-
hog & the porcupine: Expressive linear attentions with softmax mimicry. arXiv preprint
arXiv:2402.04347, 2024.

[198] Jean Mercat, Igor Vasiljevic, Sedrick Keh, Kushal Arora, Achal Dave, Adrien Gaidon, and
Thomas Kollar. Linearizing large language models. arXiv preprint arXiv:2405.06640, 2024.

[199] Jerry Yao-Chieh Hu, Dennis Wu, and Han Liu. Provably optimal memory capacity for mod-
ern hopfield models: Tight analysis for transformer-compatible dense associative memories.
In Advances in Neural Information Processing Systems (NeurIPS), volume 37, 2024.

[200] Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers
via sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

[201] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 35:16344–16359, 2022.

22



[202] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning.
arXiv preprint arXiv:2307.08691, 2023.

[203] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv
preprint arXiv:2407.08608, 2024.

[204] Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep
autoregressive models. Advances in Neural Information Processing Systems, 31, 2018.

[205] Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya
Jia. Longlora: Efficient fine-tuning of long-context large language models. arXiv preprint
arXiv:2309.12307, 2023.

[206] Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context
window extension of large language models. arXiv preprint arXiv:2309.00071, 2023.

[207] Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu,
Fan Yang, andMao Yang. Longrope: Extending llm context window beyond 2million tokens.
arXiv preprint arXiv:2402.13753, 2024.

[208] Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang, Jonathan May,
Luke Zettlemoyer, Omer Levy, and Chunting Zhou. Megalodon: Efficient llm pretraining
and inference with unlimited context length. arXiv preprint arXiv:2404.08801, 2024.

[209] Chenxin An, Fei Huang, Jun Zhang, Shansan Gong, Xipeng Qiu, Chang Zhou, and Ling-
peng Kong. Training-free long-context scaling of large language models. arXiv preprint
arXiv:2402.17463, 2024.

[210] Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan Chang,
Huiyuan Chen, and Xia Hu. Llm maybe longlm: Self-extend llm context window without
tuning. arXiv preprint arXiv:2401.01325, 2024.

[211] Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix chernoff
bound. arXiv preprint arXiv:1906.03593, 2019.

23



Appendix
Roadmap. In Section A, we provide more literature related to our paper. In Section B, we provide
preliminary. In Section Cwe present the statementswhich are useful to prove themain Theorem 1.1.
In Section D, we provide proof of some properties implied by the Update Rule. In Section E, we
provide more proof and analysis of the Kernel PCA Algorithm.

A. More Related Work
Large Scale Optimization. Principal component analysis and its kernel variant can be applied to
large-scale optimization tasks as a dimensionality reduction technique to improve the efficiency of
high-dimensional computations. Diffusion models [54], as well as it’s high order variant [55] are
a class of generative models that iteratively refine data through a diffusion process of noise addi-
tion and removal, effectively performing a large-scale optimization of the data distribution [56].
Flow matching [57] is a technique for training continuous normalizing flow models by aligning
probability flow trajectories, offering an alternative paradigm for large-scale distribution alignment
in generative modeling [58–60]. On the other hand, transformer-based neural networks [61] have
rapidly emerged as the dominant architecture for natural language processing in machine learn-
ing. When expanded to billions of parameters and trained on vast, diverse datasets, these sys-
tems are typically termed large language models (LLMs) or foundation models [62]. Prominent
LLM examples encompass BERT [63], PaLM [64], Llama [65, 66], and GPT4o [67], which dis-
play adaptable competencies [68] across numerous downstream applications. To enhance LLMs
for domain-specific uses, researchers have created multiple adaptation approaches. These in-
clude: adapter modules [69–72]; calibration mechanisms [73–75]; multitask refinement [76–79];
along with prompt engineering [80, 81], scratchpad approaches [82], instruction optimization [83–
85], symbolic adaptation [86–88], black-box adjustments [89], human-aligned reinforcement learn-
ing [90, 91], and structured reasoning techniques [92–95]. Contemporary investigations cover ten-
sor architecture innovations [96–99], efficiency enhancements [100, 101, 101–123], plus ancillary
studies [60, 124–157]. There are also some method devote to use model compression to improve
the efficiency and deployment of LLMs [158] for its effectiveness in reducing computational over-
head while preserving performance. Common compression techniques include quantization [159–
161], pruning [103, 115, 162–172], and knowledge distillation [173–177]. Specifically, pruning
techniques have been developed extensively, such as unstructured pruning, which removes indi-
vidual weights [115, 168], and structured pruning, which eliminates entire components like neu-
rons or attention heads [172, 178, 179]. The attention mechanism has faced criticism due to its
quadratic time complexity with respect to context length [61]. Addressing this criticism, a vari-
ety of approaches are employed, including sparse attention [115, 164, 167, 180–183], low-rank ap-
proximations [69, 125, 184–187], and kernel-based methods [188–191], to reduce computational
overhead and improve scalability. [192] enable the derivation of a low-rank representation of
the attention matrix, which accelerates both the training and inference processes of single atten-
tion layer, tensor attention, and multi-layer transformer, achieving almost linear time complex-
ity [32, 96, 97, 108, 157, 193, 194]. Other approaches like Mamba [195, 196], Linearizing Transform-
ers [197, 198], Hopfield Models [104–106, 109, 121–123, 199], and PolySketchFormer [200] focus on
architectural modifications and implementation optimizations to enhance performance. System-
level optimizations such as FlashAttention [201–203] and block-wise parallel decoding [204] fur-
ther improve efficiency. Collectively, these innovations have significantly augmented transformer
models’ ability to handle longer input sequences, unlocking broader applications across multiple
sectors [78, 113, 116, 117, 205–210].

B. Preliminary
We provide notations in Section B.1. We state some basic algebra and probability tools in Section B.2
and Section B.3 respectively.

24



B.1. Notations
For a matrix A, we use A⊤ to denote its transpose. For a square matrix A, we use tr[A] to denote its
trace. For a vector x ∈ Rn, we use ∥x∥2 to denote its ℓ2 norm, i.e., ∥x∥2 := (

∑n
i=1 x

2
i )

1/2.
We say a square matrix P ∈ Rd×d is a projection matrix if P 2 = P .
For two functions f, g, we use the shorthand f ≲ g (resp. ≳) to indicate that f ≤ Cg (resp. ≥) for
an absolute constant C. We use f ≂ g to mean cf ≤ g ≤ Cf for constants c > 0 and C > 0.
For a function h(j)with its domainX , we use argmaxj∈X h(j) to denote the corresponding index j
for the largest output of function h(j).
We use E[·] to denote the expectation, and Pr[·] to denote the probability.
For a distribution D and a random variable x, we use x ∼ D to denote that we draw a random
variable from the distribution D.
We use N (µ, σ2) to denote a Gaussian distribution with mean µ and variance σ2.
For arbitrary functions f(x) ∈ R and g(x) ∈ R, if ∃M ∈ R+ and x0 ∈ R, such that |f(x)| ≤M · g(x)
for all x > x0. We denote that f(x) = O(g(x)).
For arbitrary functions f(x) ∈ R and g(x) ∈ R, if ∃k ∈ R+ and x1 ∈ R, such that |f(x)| ≥ k · g(x) for
all x > x1. We denote that f(x) = Ω(g(x)).
For arbitrary functions f(x) ∈ R and g(x) ∈ R, if f(x) = O(g(x)) and f(x) = Ω(g(x)), we denote
that f(x) = Θ(g(x)).
Definition B.1. Let ϕ : Rd → Rm denote a kernel function. We define Σ := 1

n

∑n
i=1 ϕ(xi)ϕ(xi)

⊤.

B.2. Basic Algebra Tools
Claim B.2. Let P = (I − v∗(v∗)⊤) where P ∈ Rd×d. Let u ∈ Rd denote any unit vector ∥u∥2 = 1, if
∥Pu∥2 ≤ ϵ, then have

1− ⟨u, v∗⟩2 ≤ ϵ2.

Proof. We have
ϵ2 ≥ ∥Pu∥22

= u⊤PPu

= u⊤Pu

= u⊤u− u⊤v∗(v∗)⊤u

= 1− ⟨u, v∗⟩2

where the first step follows fromour assumption for proof, the second step follows from the property
of norm, the third step follows from the definition of projection matrix P 2 = P , the fourth step
follows from our definition for proof that P = (I − v∗(v∗)⊤), and the last step follows from a⊤b =
⟨a, b⟩.

Fact B.3. For any integer A, and integer k, we define fk := ⌊A/2k⌋ and fk+1 := 2 · ⌊A/2k+1⌋. Then, we
have

|fk − fk+1| ≤ 1

Proof. We can always write A
A = B · 2k+1 + C · 2k +D

where B ≥ 0, C ∈ {0, 1}, and D ∈ [0, 2k − 1].

25



We have
|fk − fk+1| = |(2B + C)− 2B| = C ≤ 1

Thus, we complete the proof.

Claim B.4. Let 0 ≤ a1, a2, ..., an. For each i ∈ {0, 1, · · · , n}, we define

bi := exp(

i∑
j=0

aj)

for i ∈ {0, 1, ..., n}.
Then:

n∑
i=1

aibi−1 ≤ bn.

Proof. This follows from induction on n. n = 0 is trivial, and then for k ∈ {0, 1, ..., n} and k < n, we
have the following case for k + 1 ∈ {0, 1, ..., n}.

k+1∑
i=1

aibi−1 ≤ bk + ak+1bk

= (1 + ak+1)bk

≤ eak+1bk

≤ bk,

where the first step follows from the induction, the second step follows from multiplicative distri-
bution, the third step follows from the Maclaurin Series of the exponential function, and the last
step follows from our definition for proof.
Claim B.5. For any x ∈ R, y ∈ R, we have

(x+ y)2 ≥ 1

2
x2 − y2.

Proof. It’s equivalent to

x2 + 2xy + y2 ≥ 1

2
x2 − y2,

which is equivalent to
1

2
x2 + 2xy + 2y2 ≥ 0,

which is further equivalent to
1

2
(x+ 2y)2 ≥ 0.

Thus, we complete the proof.

B.3. Basic Probability Tools
Lemma B.6 (Markov’s inequality). If X is a non-negative random variable and a > 0, then

Pr[X ≥ a] ≤ E[X]/a.

26



Lemma B.7 (Anti-concentration of Gaussian distribution, see Lemma A.4 in [211] for an example).
Let X ∼ N (0, σ2), that is the probability density function of X is given by

ϕ(x) =
1√
2πσ2

exp(−x2/(2σ2)).

Then
2

3
t/σ ≤ Pr[|X| ≤ t] ≤ 4

5
t/σ.

Claim B.8. Let a ∼ N (0, 1).
For any two vectors u ∈ Rd and v ∈ Rd, then we have

Pr
a∼N (0,1)

[∥au+ v∥2 ≥ δ∥u∥2] ≥ 1− δ.

Proof. We define
x := ∥au+ v∥22.

Case 1. There exists some scalar b ∈ R such that v = b · u.
Then we have

x = (a+ b)2∥u∥22.

Recall that the goal of this lemma is to prove
Pr

a∼N (0,1)
[
√
x ≥ δ∥u∥2] ≥ 1− δ.

It is equivalent to
Pr

a∼N (0,1)
[x ≥ δ2∥u∥22] ≥ 1− δ.

Using the Equation of x = (a+ b)2∥u∥22, the statement is equivalent to
Pr

a∼N (0,1)
[(a+ b)2∥u∥22 ≥ δ2∥u∥22] ≥ 1− δ,

which is equivalent to
Pr

a∼N (0,1)
[(a+ b)2 ≥ δ2] ≥ 1− δ.

By the property of Gaussian, we know that
Pr

a∼N (0,1)
[(a+ b)2 ≥ δ2] ≥ Pr

a∼N (0,1)
[(a+ 0)2 ≥ δ2].

Thus, we just need to show that
Pr

a∼N (0,1)
[a2 ≥ δ2] ≥ 1− δ.

The above equation directly follows from Lemma B.7.
Case 2. There exists some scalar b and vector w such that ⟨u,w⟩ = 0 and

v = b · u+ w.

In this case,
x = ∥(a+ b)u+ w∥22
= (a+ b)2∥u∥22 + ∥w∥22
> (a+ b)2∥u∥22.

The remaining of the proof is identical to case 1, since x is becoming larger now.

27



C. Basic Definitions Properties of Streaming Kernel PCA
Algorithm and Update Rules

In Section C.1, we define sample vectors for Kernel PCA analysis. In Section C.2, we provide an
update rule for our streaming algorithm.

C.1. Definitions of Vectors
We formally define α, η > 0 and v∗ ∈ Rd and β > 0 as follows:
Definition C.1. Let β and α denote two parameters that β ≥ α > 0.
For each i ∈ [n], we use xi ∈ Rd to denote the sample. Let η ∈ (0, 0.1) be the learning rate.
We define vectors v∗ ∈ Rd as follows:

• ∥v∗∥2 = 1,
• η

∑n
i=1⟨v∗, ϕ(xi)⟩2 = β,

• for all vectors w with ∥w∥2 ≤ 1 and ⟨w, v∗⟩ = 0, we have η∑n
i=1⟨w, ϕ(xi)⟩2 ≤ α.

Without loss of generality, we keep ∥v∗∥2 = 1 for the entire algorithm analysis. We define our
projection operator based on v∗.
Definition C.2. We define P = I − v∗(v∗)⊤ to be the projection matrix that removes the v∗ component.

We have the following claim.
Claim C.3. Since P = I − v∗(v∗)⊤ and ∥v∗∥2 = 1, then we have

Pv∗ = 0.

C.2. Update Rule
Definition C.4. Let η denote some parameters. We define an updated rule as follows:

vi := vi−1 + η⟨ϕ(xi), vi−1⟩ϕ(xi).

Then, we can rewrite it as
vi = (I + ηϕ(xi)ϕ(xi)

⊤)vi−1.

For stability, an implementation would only keep track of the normalized vectors v̂i = vi/∥vi∥2. For
analysis purposes, we will often consider the unnormalized vectors vi.
Definition C.5. Let vi denote the unnormalized vectors, for all i ∈ [n]. We define v̂i as follows

v̂i := vi/∥vi∥2.

D. Proof of The Properties Implied by Update Rule
Claim D.1. For any parameter η > 0. By relationship between vi and vi−1 (see Definition C.4), we have

• Property 1.
∥vi∥22 = ∥vi−1∥22 · (1 + (2η + η2∥ϕ(xi)∥22) · ⟨ϕ(xi), v̂i−1⟩2)

• Property 2.
∥vi∥22 ≥ ∥vi−1∥22,∀i ∈ [n]

28



• Property 3. If we additionally assume η ≤ 0.1/maxi∈[n] ∥ϕ(xi)∥22,

log(∥vi∥22/∥vi−1∥22) ≥ η⟨ϕ(xi), v̂i−1⟩2.

• Property 4.

log(∥vb∥22/∥va∥22) ≥
b∑

i=a+1

η⟨ϕ(xi), v̂i−1⟩2

• Property 5. For any integers b > a

vb − va =

b∑
i=a+1

ηϕ(xi)ϕ(xi)
⊤vi−1

Proof. Proof of Property 1.

Recall Definition C.4, we have
vi = vi−1 + η · ⟨ϕ(xi), vi−1⟩ϕ(xi).

Taking the norm square on both sides of the above equation, we have
∥vi∥22 = ∥vi−1∥22 + 2η · ⟨ϕ(xi), vi−1⟩⟨vi−1, ϕ(xi)⟩+ η2 · ⟨ϕ(xi), vi−1⟩2∥ϕ(xi)∥22.

We rewrite it as
∥vi∥2 = ∥vi−1∥22 + 2η⟨ϕ(xi), vi−1⟩⟨vi−1, ϕ(xi)⟩+ η2⟨ϕ(xi), vi−1⟩2∥ϕ(xi)∥22

= ∥vi−1∥22 + 2η⟨ϕ(xi), vi−1⟩2 + η2⟨ϕ(xi), vi−1⟩2∥ϕ(xi)∥22
= ∥vi−1∥22 + 2η⟨ϕ(xi), v̂i−1⟩2 · ∥vi−1∥22 + η2⟨ϕ(xi), v̂i−1⟩2 · ∥vi−1∥22∥ϕ(xi)∥22
= ∥vi−1∥22 · (1 + (2η + η2∥ϕ(xi)∥22) · ⟨ϕ(xi), v̂i−1⟩2)

where the third step follows from Definition C.5 (v̂i−1 = vi−1/∥vi−1∥2).
Proof of Property 2. The proof of this statement is going to use Property 1 in some steps as a black-
box. We first consider the terms (2η + η2∥ϕ(xi)∥22) and ⟨ϕ(xi), v̂i−1⟩2.
For (2η + η2∥ϕ(xi)∥22), we have ∥ϕ(xi)∥22 ≥ 0.
By Definition C.1, we get 2η > 0 and η2 > 0. Hence,

2η + η2∥ϕ(xi)∥22 > 0.

For ⟨ϕ(xi), v̂i−1⟩2, it is obvious that this term is greater than or equal to 0. Thus, we have
⟨ϕ(xi), v̂i−1⟩2 ≥ 0.

Therefore, we conclude that
∥vi∥2 = ∥vi−1∥22 · (1 + (2η + η2∥ϕ(xi)∥22) · ⟨ϕ(xi), v̂i−1⟩2)

≥ ∥vi−1∥22 · (1 + 0)

= ∥vi−1∥22,

where the second step follows from the inequality relationship and i ∈ [n].
Proof of Property 3. From property 1, we have

∥vi∥22
∥vi−1∥22

= 1 + (2η + η2∥ϕ(xi)∥22) · ⟨ϕ(xi), v̂i−1⟩2.

29



Taking the log both sides, we have

log(
∥vi∥22
∥vi−1∥22

) = log(1 + (2η + η2∥ϕ(xi)∥22) · ⟨ϕ(xi), v̂i−1⟩2).

We define u = (2η + η2∥ϕ(xi)∥22) · ⟨ϕ(xi), v̂i−1⟩2. We need to show that u ∈ [0, 1.5].
For the lower bound case, it is obvious that u ≥ 0 since η ≥ 0.
Next, we prove the upper bound case,

u = (2η + η2∥ϕ(xi)∥22) · ⟨ϕ(xi), v̂i−1⟩2

= (2η + η2∥ϕ(xi)∥22) · ∥ϕ(xi)∥22 · ⟨ϕ(xi)/∥ϕ(xi)∥2, v̂i−1⟩2

≤ (2η + η2∥ϕ(xi)∥22) · ∥ϕ(xi)∥22,
≤ 2 · 0.1 + 0.12

≤ 0.3

where the third step follows from ⟨a, b⟩2 ≤ 1 for any ∥a∥2 = ∥b∥2 = 1, the fourth step follows from
η ≤ 0.1/∥ϕ(xi)∥22.
It is not hard to see that for any u ∈ [0, 1.5]

log(1 + u) ≥ 0.25 · u.
Thus,

log(1 + u) ≥ 0.25 · (2η + η2∥ϕ(xi)∥22) · ⟨ϕ(xi), v̂i−1⟩2

≥ 0.5η⟨ϕ(xi), v̂i−1⟩2.

Proof of Property 4. From property 3, we have
log(∥vi∥22/∥vi−1∥22) ≥ η⟨ϕ(xi), v̂i−1⟩2.

∀a, b ∈ [n] and a < b, we have
log(∥vb∥22/∥va∥22)

= log(
∥vb∥22
∥vb−1∥22

· ... · ∥va+1∥22
∥va∥22

)

= log(
∥vb∥22
∥vb−1∥22

) + ...+ log(
∥va+1∥22
∥va∥22

)

≥ η⟨ϕ(xb), v̂b−1⟩2 + ...+ η⟨ϕ(xa+1), v̂a⟩2

=

b∑
i=a+1

η⟨ϕ(xi), v̂i−1⟩2

where the second step follows from log(ab) = log(a) + log(b), and the third step follows from Prop-
erty 3.
Proof of Property 5. By Definition C.4, we have vi = (I + ηϕ(xi)ϕ(xi)

⊤)vi−1.
We rewrite this as

vi − vi−1 = (I + ηϕ(xi)ϕ(xi)
⊤)vi−1 − vi−1

= ηϕ(xi)ϕ(xi)
⊤vi−1, (5)

where the first step follows from Definition. C.4.
Then ∀a, b ∈ [n] and a < b, we have

vb − va = vb − vb−1 + ...+ va+1 + va

= ηϕ(xb)ϕ(xb)
⊤vb−1 + ...+ ηϕ(xa+1)ϕ(xa+1)

⊤va

=

b∑
i=a+1

ηϕ(xi)ϕ(xi)
⊤vi−1

where the second step follows from Eq. (5).

30



E. Analysis of Our Kernel PCA Algorithm
Section E.1, we provide the property, growth implies correctness, of our defined vector.
Section E.2, we provide the projection operator and show the property of increasing the norm of
our defined vector.
In Section E.3, we provide a bound on sequences.
In Section E.4, we provide an upper bound for the summation of the inner product.
In Section E.5, we provide a lower bound on the log of the norm of the final output by our streaming
algorithm.
In Section E.6, we show the lower bound of ℓ2 norms of the final vector generated by our algorithm.

E.1. Growth implies correctness
Lemma E.1 (Restatement of Lemma 2.1). For any v0 and all i ∈ [n], we have

∥P v̂i∥2 ≤
√
α+ ∥Pv0∥2/∥vi∥2.

Further, if v0 = v∗, then we have
∥P v̂i∥2 ≤

√
α.

Proof. We will prove this for the final index i = n.
Without loss of generality, we can assume ∥v0∥2 = 1 over the entire proof. Then for any unit vector
w ⊥ v∗,

⟨vn − v0, w⟩

= η

n∑
i=1

⟨ϕ(xi), vi−1⟩⟨ϕ(xi), w⟩

≤ η(

n∑
i=1

⟨ϕ(xi), vi−1⟩2)1/2 · (
n∑

i=1

⟨ϕ(xi), w⟩2)1/2

≤ ∥vn∥2 ·
√
η · (

n∑
i=1

⟨ϕ(xi), w⟩2)1/2

≤ ∥vn∥2 ·
√
α (6)

where the first step follows from Property 5 of Claim D.1, the second step follows from Cauchy-
Schwartz, the third step follows from Lemma E.7, and the last step follows from Definition C.1.
Hence

⟨v̂n, w⟩ ≤
1

∥v∥2
⟨vn, w⟩

=
1

∥vn∥2
(⟨vn − v0, w⟩+ ⟨v0, w⟩)

≤
√
α+
⟨v0, w⟩
∥vn∥2

. (7)

where the first step follows from the definition of v̂n, the second step follows from subtracting and
adding the same term, and the third step follows from Eq. (6).
Setting w = P v̂n/∥P v̂n∥2, we have

⟨v̂n, w⟩ = ⟨v̂n, P v̂n/∥P v̂n∥2⟩
= ⟨v̂n, P 2v̂n/∥P v̂n∥2⟩

31



= v̂⊤n P
2v̂n/∥P v̂n∥2

= ∥P v̂n∥2 (8)
where the second step follows from P is a projection matrix (which implies P 2 = P ), the third step
follows from the properties of the inner product for Euclidean vector space, and the last step follows
from a⊤B2a = ∥Ba∥22 for any matrix B and vector a.
We also know that

⟨v0, w⟩ = ⟨v0, P v̂n/∥P v̂n∥2⟩
= ⟨Pv0, P v̂n/∥P v̂n∥2⟩
≤ ∥Pv0∥2 · ∥P v̂n∥2/∥P v̂n∥2
≤ ∥Pv0∥2, (9)

where the second step follows from P is a projection matrix (which implies that P 2 = P ), the third
step follows from ⟨a, b⟩ ≤ ∥a∥2 · ∥b∥2.
Now, we can conclude that

∥P v̂n∥2 = ⟨v̂n, w⟩

≤
√
α+
⟨v0, w⟩
∥vn∥2

≤
√
α+ ∥Pv0∥2/∥vn∥2

where the first step follows from Eq. (8), the second step follows from Eq. (7), and the last step
follows from Eq. (9).
For the case v0 = v∗, since Pv∗ = 0, we have ∥P v̂i∥2 ≤

√
α as desired.

Therefore, we complete the proof.

E.2. The Projection Operator
Using Lemma E.1, we show that if we start at v∗, we never move by more than√α from it. We now
show that you can’t even move √α without increasing the norm of v.
Lemma E.2 (Restatement of Lemma 2.2). Suppose v0 = v∗. For any two time steps 0 ≤ a < b ≤ n,

∥P v̂b − P v̂a∥22 ≤ 50 · α log(∥vb∥2/∥va∥2).

Proof. We have
∥P v̂a∥2 ≤

√
α+ ∥Pv0∥2/∥vn∥2

=
√
α+ ∥Pv∗∥2/∥vn∥2

≤
√
α

where the first step follows from Lemma E.1, second step follows from v0 = v∗ and the last step
follows from definition of P (see Definition C.2, which implies Pv∗ = 0, see Claim C.3).
We can show

∥P v̂b − P v̂a∥22 ≤ (∥P v̂b∥2 + ∥P v̂a∥2)2

≤ (2
√
α)2

≤ 4α.

where the second step follows from ∥P v̂b∥2 ≤
√
α and ∥P v̂a∥2 ≤

√
α.

Now, we can consider two cases.
Case 1. if log(∥vb∥2/∥va∥2) ≥ 1, then we already finished the proof.

32



Case 2. if log(∥vb∥2/∥va∥2) < 1. In the next paragraph, we will prove this case.
We define w to be the unit vector in direction P (v̂b − v̂a), i.e.,

w = P (v̂b − v̂a)/∥P (v̂b − v̂a)∥2.

Using Lemma E.1, we can show the following thing,
⟨vb − va, w⟩2

= (

b∑
i=a+1

η⟨ϕ(xi), vi−1⟩⟨ϕ(xi), w⟩)2

≤ (

b∑
i=a+1

η⟨ϕ(xi), vi−1⟩2)(η
b∑

i=a+1

⟨ϕ(xi), w⟩2)

≤ (

b∑
i=a+1

∥vi∥22 · η⟨ϕ(xi), v̂i−1⟩2)(η
n∑

i=1

⟨ϕ(xi), w⟩2)

≤ (∥vb∥22 ·
b∑

i=a+1

η⟨ϕ(xi), v̂i−1⟩2)(η
n∑

i=1

⟨ϕ(xi), w⟩2)

≤ (∥vb∥22 ·
b∑

i=a+1

η⟨ϕ(xi), v̂i−1⟩2) · α

≤ ∥vb∥22 · log(∥vb∥22/∥va∥22) · α. (10)

where the first step follows from Property 5 of Claim D.1, the second step follows from Cauchy-
Shwarz inequality, the third step follows from Definition C.5, the fourth step follows from ∥vi∥2 ≤
∥vb∥2 for all i ≤ b (see Property 2 of Claim D.1), the fifth step follows from the definition of α, and
the last step follows from log(∥vb∥22/∥va∥22) ≥

∑b
i=a+1 η⟨xi, v̂i−1⟩2 for all a < b (see Property 4 of

Claim D.1).
Therefore, we can upper bound ∥P v̂b − P v̂a∥22 in the following sense,

∥P v̂b − P v̂a∥22
= ⟨v̂b − v̂a, w⟩2

= ⟨v̂b −
∥va∥2
∥vb∥2

v̂a +
∥va∥2
∥vb∥2

v̂a − v̂a, w⟩2

≤ 2⟨v̂b −
∥va∥2
∥vb∥2

v̂a, w⟩2 + 2⟨∥va∥2
∥vb∥2

v̂a − v̂a, w⟩2 (11)

where the first step follows from the definition of w, the second step follows from adding a term
and minus the same term, and the last step follows from ⟨a+ b, c⟩2 ≤ 2⟨a, c⟩2 + 2⟨b, c⟩2 (This is just
triangle inequality and applying to each coordinate of the vector.).
For the first term in the above equation Eq. (11) (ignore the constant factor 2), we have

⟨v̂b −
∥va∥2
∥vb∥2

v̂a, w⟩2 = ⟨ vb
∥vb∥2

− ∥va∥2
∥vb∥2

v̂a, w⟩2

= ⟨ vb
∥vb∥2

− va
∥vb∥2

, w⟩2

=
1

∥vb∥22
· ⟨vb − va, w⟩2

≤ α · log(∥vb∥22/∥va∥22)
= 2α · log(∥vb∥2/∥va∥2) (12)

33



where the first step follows from definition of v̂b, the second step follows from definition of v̂a (see
Definition C.5), the fourth step follows from Eq. (10).
For the second term of that equation Eq. (11) (ignore the constant factor 2), we have

⟨∥va∥2
∥vb∥2

v̂a − v̂a, w⟩2 = (
∥va∥2
∥vb∥2

− 1)2 · ⟨v̂a, w⟩2

= (
∥va∥2
∥vb∥2

− 1)2 · ⟨v̂a, P (v̂b − v̂a)⟩2

= (
∥va∥2
∥vb∥2

− 1)2 · ⟨P v̂a, P (v̂b − v̂a)⟩2

≤ (
∥va∥2
∥vb∥2

− 1)2 · 4∥P v̂a∥22

≤ (
∥va∥2
∥vb∥2

− 1)2 · 4α

≤ 4 log(
∥vb∥2
∥va∥2

) · 4α (13)

where the second step follows from definition of w, the third step follows from P = P 2 (then
⟨⟨a, P 2b⟩ = a⊤PPb = ⟨Pa, Pb⟩), the fourth step follows from that both v̂a and v̂b are unit vectors,
the fifth step follows from ∥P v̂a∥2 ≤

√
α, the last step follows from ( 1x −1)2 ≤ 4 log x for all x ∈ [1, 2]

(Note that, here we treat x = ∥vb∥2/∥va∥2. The reason why we can assume x ≥ 1 is due to Property
2 of Claim D.1. The reason why we can assume x ≤ 2 is due to this case we restrict log(x) ≤ 1,
which implies that x ≤ 2.).
Thus,

∥P v̂b − P v̂a∥22

≤ 2⟨v̂b −
∥va∥2
∥vb∥2

v̂a, w⟩2 + 2⟨∥va∥2
∥vb∥2

v̂a − v̂a, w⟩2

≤ 2 · 2α log(∥vb∥2/∥va∥2) + 2 · 16α log(∥vb∥2/∥va∥2)
≤ 50α log(∥vb∥2/∥va∥2).

where the first step follows from Eq. (11), and the second step follows from Eq. (12), and Eq. (13).
Now, we complete the proof.

E.3. Results on Sequences
Claim E.3. Let a ∈ Rn and assume that a1 = 0. For each j ∈ [n] and k ∈ [log n], we define

bj,k := a1+2k·j

Note that, if 1 + 2k · j > n, then we assume that bj,k = 0.
Then, we have

max
j∈[n]

a2j ≤ (log n)

(logn)−1∑
k=0

n∑
j=1

(bj,k − bj−1,k)
2.

Proof. We define j∗ := argmaxj∈[n] a
2
j .

We define jk := 1 + 2k⌊ j
∗−1
2k
⌋.

According to the definition of jk, we have that

j0 = 1 + 20⌊j
∗ − 1

20
⌋ = j∗

34



and

jlogn = 1 + 2logn⌊j
∗ − 1

2logn
⌋ = 1.

Thus,
aj∗ = aj∗ − a1

= aj0 − ajlog n

=

(logn)−1∑
k=0

(ajk − ajk+1
) (14)

where the first step follows from the definition of a1 = 0.
Let jk = 1 + 2ky and jk+1 = 1 + 2k+1z. It is obvious that 2z ≥ y ≥ z. Using Fact B.3, we know that
|2z − y| ≤ 1.
Now, we consider two cases.
Case 1. jk = jk+1. In this case, we have

ajk − ajk+1
= 0.

Case 2. jk ̸= jk+1.
Then we have

ajk − ajk+1
= by,k − b2z,k

= (by,k − by+1,k).

Thus,

a2j∗ = (

(logn)−1∑
k=0

(ajk − ajk+1
))2

≤ (log n) ·
(logn)−1∑

k=0

(ajk − ajk+1
)2

≤ (log n) ·
(logn)−1∑

k=0

·
n∑

j=1

(bj,k − bj−1,k)
2

where the first step follows from Eq. (14), and the second step follows from our definition of jk for
proof.

Lemma E.4. Let A ∈ Rd×n have first column all zero, i.e., for all i ∈ [d], Ai,1 = 0. For each j ∈ [n] and
k ∈ [log n], define bj,k to be column 1 + 2k · j of A. If 1 + 2k · j > n, then we assume bj,k is a zero column.

• Property 1. For each i ∈ [d], we have

max
j∈[n]

A2
i,j ≤ (log n)

logn∑
k=0

n+1∑
j=2

(bj,k − bj−1,k)
2
i

• Property 2. Then:
d∑

i=1

max
j∈[n]

A2
i,j ≤ (log n)

logn∑
k=0

n+1∑
j=2

∥bj,k − bj−1,k∥22

35



Proof. Using Claim E.3, we can prove Property 1.
Applying Claim E.3 for d different rows, we have

d∑
i=1

max
j∈[n]

A2
i,j ≤ (log n)

logn∑
k=0

n+1∑
j=2

∥bj,k − bj−1,k∥22.

Thus, we have proved property 2.

E.4. Upper Bound for the Summation of Inner Product
We return to the streaming PCA setting. The goal of this section is to show that, if v0 = v∗, then
∥vn∥2 is large.
Lemma E.5 (Restatement of Lemma 2.3). If v0 = v∗, then for i ∈ [n], we have

η

n∑
i=1

⟨ϕ(xi), P v̂i−1⟩2 ≤ 100 · α2 · log2 n · log ∥vn∥2.

Proof. For i ∈ [n], we define ui := P v̂i. This also means ∥ui∥2 ≤ 1.
Since ui lies in span of P and by Claim C.3 that Pv∗ = 0, we know that ui ⊥ v∗.
Hence, we have

⟨ui, v
∗⟩ = 0.

For each i ∈ [d], for each j ∈ [n], we define a matrix Ai,j ∈ Rd×n as follows
Ai,j := ⟨ϕ(xi), uj−1⟩.

We can show
d∑

i=1

max
j∈[n]
⟨ϕ(xi), uj⟩2

≤ (log n)

logn∑
k=0

n+1∑
j=2

∥bj,k − bj−1,k∥22

= (log n)

logn∑
k=0

n+1∑
j=2

((bj,k)i − (bj−1,k)i)
2

= (log n)

logn∑
k=0

n+1∑
j=2

d∑
i=1

(⟨ϕ(xi), u2kj⟩ − ⟨ϕ(xi), u2k(j−1)⟩)2. (15)

where the first step follows from Lemma E.4, the second step follows from definition of ℓ2 norm,
the third step follows from (bj,k)i = Ai,1+2k·j = ⟨ϕ(xi), u1+2k·j−1⟩ = ⟨ϕ(xi)u2k·j⟩.
For each (k, j)-term in the above equation, we have

d∑
i=1

(⟨ϕ(xi), u2kj⟩ − ⟨ϕ(xi), u2k(j−1)⟩)2

=

d∑
i=1

(⟨ϕ(xi), u2kj − u2k(j−1)⟩)2

≤ α

η
· ∥u2kj − u2k(j−1)∥22. (16)

36



where the first step follows from simple algebra, the second step follows from ⟨ui, v
∗⟩ = 0 and ∥ui∥2

for all i ∈ [n] and Property 3 of Definition C.1.
Then, for each k ∈ [log n], we have

n+1∑
j=2

∥u2kj − u2k(j−1)∥22 ≤ 50α log
∥vn∥2
∥v0∥2

= 50α log ∥vn∥2 (17)
where the first step follows from summation over j ∈ [2, n + 1] by Lemma E.2 for each j, and the
second step follows from v0 = v∗(see assumption in statement of Lemma E.5) and ∥v∗∥2 = 1.
Thus,

η

d∑
i=1

⟨ϕ(xi), P v̂i−1⟩2

≤ η

d∑
i=1

max
j∈[n]
⟨ϕ(xi), uj⟩2

= η(log n)

logn∑
k=0

n+1∑
j=2

d∑
i=1

(⟨ϕ(xi), u2kj⟩ − ⟨ϕ(xi), u2k(j−1)⟩)2

= α(log n)

logn∑
k=0

n+1∑
j=2

∥u2kj − u2k(j−1)⟩∥22

≤ (log n)

logn∑
k=0

50α2 log ∥vn∥2

≤ 100 · α2 · log2 n · log ∥vn∥2
where the first step follows from our definition for this proof, the second step follows from Eq. (15),
the third step follows from Eq. (16), the fourth step follows from Eq. (17), and the last step follows
from simple algebra.
Therefore, we complete the proof.

E.5. Lower bound on Log of Norm
Lemma E.6 (Restatement of Lemma 2.4). Let α ∈ (0, 0.1). Let C1 ≥ 200 denote some fixed constant.
Then if v0 = v∗ we have

log(∥vn∥2) ≥
β/8

1 + C1 · α2 log2 n
.

Further, if α ∈ (0, 1/(10C1 log n)), we have
∥vn∥2 ≥ exp(β/20).

Proof. We rewrite v̂i = ai · v∗ + ui for ui ⊥ v∗.
Then, we have

⟨ϕ(xi), v̂i−1⟩2

= ⟨ϕ(xi), ai−1 · v∗ + ui−1⟩2

≥
a2i−1

2
⟨ϕ(xi), v

∗⟩2 − ⟨ϕ(xi), ui−1⟩2. (18)

where the second step follows from Claim B.5.

37



Applying Lemma E.1 with v0 = v∗, we have

∥P v̂i∥22 ≤ α. (19)

Note that

∥P v̂i∥22 = ∥P (aiv
∗ + ui)∥22

= ∥Pui∥22
= ∥ui∥22

≥ 1

2
∥v̂i∥22 − ∥aiv∗∥22

=
1

2
− a2i (20)

where the first step follows from our definition of v̂i = ai · v∗ + ui, the second step follows from
Pv∗ = 0 (see Claim C.3), the third step follows from the definition of P , the fourth step follows
from Claim B.5, and the last step follows from simple algebra.
Thus, we have

ai ≥ (
1

2
− α)1/2

≥ 1

2
− α (21)

where the first step follows from combining Eq. (19) and Eq. (20), and the last step follows from
α ∈ (0, 0.1).
Now, summing up over i ∈ [n] , we get

η

n∑
i=1

⟨ϕ(xi), v̂i−1⟩2

≥ η

n∑
i=1

(
a2i−1

2
⟨ϕ(xi), v

∗⟩2 − ⟨ϕ(xi), ui−1⟩2)

≥ 1

4
β − η

n∑
i=1

⟨ϕ(xi), ui−1⟩2.

where the first step follows summing over i ∈ [n] from Eq. (18) for each i, and the second step
follows from Eq. (21).
We can lower bound log(∥vn∥2) as follows:

log ∥vn∥2 ≥
1

2
η

n∑
i=1

⟨ϕ(xi), v̂i−1⟩2

≥ 1

8
β − C1 · α2 log2 n log ∥vn∥2,

where the first step follows fromLemmaE.7, the second step follows fromLemmaE.5withC1 ≥ 200
is a sufficiently large constant.
The above equation implies the following

log ∥vn∥2 ≥
β/8

1 + C1 · α2 log2 n
.

38



E.6. Lower Bound of ∥vn∥2
Lemma E.7 (Restatement of Lemma 2.5). We have

∥vn∥2 ≥
√
η · (

n∑
i=1

⟨ϕ(xi), vi−1⟩2)1/2

Proof. We define
Bi := ∥vi∥22,

We also define

Ai := log
Bi

Bi−1

Then using Property 3 of Claim D.1, it is easy to see that
Ai ≥ η⟨ϕ(xi), v̂i−1⟩2.

Thus,

Ai ·Bi−1 ≥ η⟨ϕ(xi), v̂i−1⟩2 ·Bi−1

≥ η⟨ϕ(xi), v̂i−1⟩2 · ∥vi−1∥22
= η⟨ϕ(xi), vi−1⟩2

where the third step follows from Definition C.5.
Therefore, we can show the following things,

η

n∑
i=1

⟨ϕ(xi), vi−1⟩2 ≤
n∑

i=1

AiBi−1

≤ Bn

= ∥vn∥22
where the first step follows from η⟨ϕ(xi), vi−1⟩2 ≤ AiBi−1, the second step follows from Claim B.4,
and the third step follows from our definition for proof.

39


	.  Introduction
	.  Related Work
	.  Our Result

	.  Technique Overview
	.  Streaming PCA
	.  Applying kernel function to stream PCA
	.  Eigenvalue Ratio Implies Existence of Algorithm
	.  Overview of Our Analysis Approach
	.  Analysis of Our Kernel PCA Algorithm

	.  Our Kernel PCA Result
	.  The Guarantee of Final Output
	.  Main Result

	.  Conclusion
	.  More Related Work
	.  Preliminary
	.  Notations
	.  Basic Algebra Tools
	.  Basic Probability Tools

	.  Basic Definitions Properties of Streaming Kernel PCA Algorithm and Update Rules
	.  Definitions of Vectors
	.  Update Rule

	.  Proof of The Properties Implied by Update Rule
	.  Analysis of Our Kernel PCA Algorithm
	.  Growth implies correctness
	.  The Projection Operator
	.  Results on Sequences
	.  Upper Bound for the Summation of Inner Product
	.  Lower bound on Log of Norm
	.  Lower Bound of 


