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Abstract

Conformal prediction is a distribution-free uncertainty quantification method that
has gained popularity in the machine learning community due to its finite-sample
guarantees and ease of use. Its most common variant, dubbed split conformal
prediction, is also computationally efficient as it boils down to collecting statis-
tics of the model predictions on some calibration data not yet seen by the model.
Nonetheless, these guarantees only hold if the calibration and test data are ex-
changeable, a condition that is difficult to verify and often violated in practice due
to so-called distribution shifts. The literature is rife with methods to mitigate the
loss in coverage in this non-exchangeable setting, but these methods require some
prior information on the type of distribution shift to be expected at test time. In
this work, we study this problem via a new perspective, through the lens of optimal
transport, and show that it is possible to estimate the loss in coverage and mitigate
arbitrary distribution shifts, offering a principled and broadly applicable solution.

1 Introduction

Conformal prediction [45] (CP) works under the assumption that calibration and test data are
exchangeable. Exchangeability is a weaker requirement than the more common i.i.d. assumption but
still implies that samples are identically distributed, which is hard to verify and ensure in practical
applications. Therefore, it is important to develop conformal methods capable of adapting to potential
distribution shifts or, at least, quantifying the gap in coverage caused by such shifts. In this paper, we
study the effect of distribution shifts in conformal prediction through the lens of optimal transport,
which proved instrumental in not only quantifying coverage gaps, but also alleviating them via a
reweighting of the calibration data.

We start by introducing the notion of toral coverage gap: the expected coverage gap over all possible
target coverage rates in [0, 1]. This metric captures the aggregate effect of distribution shift on
conformal prediction and motivates the subsequent contributions, which build on this concept to
provide theoretical bounds and practical strategies for mitigating the gap.

1. We derive two new upper bounds to the total coverage gap, formulated in terms of optimal
transport distances between the distributions of calibration and test nonconformity scores.

2. We show that one of our upper bounds, which requires only unlabeled samples from the
test distribution, can be used to learn weights w = {w; }?"_; for the calibration data. These
weights can then be used in CP to reduce the gap in coverage during test time.
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3. We evaluate our methods on a (toy) regression task and on the ImageNet-C and iWildCam
datasets. For the classification tasks we also consider the more challenging setting which
includes covariate and label shift.

The paper is structured as follows. Section [2] provides the necessary background for our main
theoretical results. Section [3| presents our two new upper bounds on the total coverage gap, and
Section 4] demonstrates their application to reduce the coverage gap. Finally, we review related work
in Section 5] report experimental results in Section[6} and conclude in Section[7]

2 Background

In this section, we lay out the background necessary for our main results. We start with a brief
introduction to conformal prediction followed by an overview of optimal transport.

2.1 Conformal Prediction

Conformal prediction [45]] is a framework to extract prediction sets from predictive models that
satisfy finite-sample coverage guarantees under specific assumptionsﬂ More precisely, consider the
calibration set (X1,Y7),...,(X,,Y,) drawn from an unknown distribution P on X x ), formally
(X1,Y1,..., X, Ys) ~ P™. Given this set, conformal prediction constructs prediction sets C(X;)
for new points X; ~ P such that the marginal coverage property holds for any « € [0, 1]:

PY, €C(Xy)) 21—« ey

where the probability is taken over the randomness of {(X;,Y;)}™ , and (X;,Y;). The prediction
set C(X) is constructed using (non)conformity scores, which quantify how well a sample fits within
other samples in a set. One of the most common conformal prediction methods is that of split-
conformal prediction (SCP) [29]. In SCP, a score s(X;, Y;) is obtained for each point in a calibration
set {(X;,Y;)}™ ,, and at test time C(X,) is constructed as

C(X0) = {y € ¥ s(Xiy) < Qu ({s(X: YD} |
with Q,, the 1 — « quantile of the empirical distribution defined by the set of scores {s(X;, Y;)}" ;.

The main assumption for the marginal coverage guarantee to hold is that of exchangeability; the
new point (X¢, Y;) needs to be exchangeable with the points in the calibration set {(X;,Y;)}™ ,, i.e.,
it should follow the same distribution P(X,Y"). Unfortunately, violations of the exchangeability
assumption are all too common [24] and the naive application of standard SCP when (X, Y;) comes
from another distribution Q(X,Y’) could produce misleading prediction sets that do not achieve the
desired coverage rate [2 142} 45]]. Proper usage of conformal prediction in these settings requires
methods to (i) quantify the coverage gap caused by the distribution shift, and (ii) mitigate the effect
of the shift on the CP procedure itself to get as close as possible to the target coverage rate.

We refer the reader to [1} 138]] for more thorough introductions to conformal prediction.

2.2 Optimal Transport: Couplings and Wasserstein Distance

Consider a complete and separable metric space (Z,¢), where ¢ : Z x Z — R is a metric. Let
P,(Z) be the set of all probability measures P on (Z, ¢) with finite moments of order p > 1, i.e.,
J= ¢(z0, 2)PdP(z) < oo for some z € Z. The p-Wasserstein distance is a metric on P,(Z) that is
defined for any measures P and Q in P, (Z) as

Tel'(P,Q)

1/p
W, (P,Q) = ( inf /z Zc(z,z')pdﬂ'(z,z’)> )

where T'(P, Q) denotes the collection of all measures on £ x Z with marginals P and Q. We
refer to any probability measure in I'( P, Q) as a coupling of P and @) and use 7*(P, Q)) to denote
p-Wasserstein optimal couplings, i.e., any coupling that attains the infimum in (2)).

Conformal prediction is often described as an uncertainty quantification method, but it may be more
accurately viewed as an uncertainty representation technique: it conveys uncertainty through the size of
prediction sets rather than assigning a numerical value to uncertainty.



Importantly, Wasserstein distances are also defined for discrete measures, and empirical measures
in particular. Let P, and (), denote the empirical distributions of samples {z;}?_;,z; ~ P and

{2;}jL1, 2} ~ @, which induce empirical measures b, = > 6., and Q= Z;”zl d.;. In that
case, a coupling can be captured by a matrix I', with I'; ; the mass to be transported from z; to z;
p

2z — 2"

Similarly, for empirical measures the cost function c induces a cost matrix with C; ; = g

such that the transportation problem is given by

m

i T bject t I, =1 : , ST, =1/n Vi e [n].
mFmZC’,J i subject to Z g =1/m Vj e [m] Z g =1/n Vie[n]
irj

i=1 j=1

In this work, we will be concerned with the distribution over nonconformity scores, which are
typically one-dimensional. In this case, the p-Wasserstein simplifies to

1/p
W, (P,Q) = ( / 7@ Fa(q)H”dq> , ©)

where I 1 (resp. Fé 1) is the quantile function, i.e., the inverse of the cumulative distribution
function (CDF) Fp (resp. Fg) under measure P (resp. ()). For p = 1, we can also express the
Wasserstein distance in terms of the respective CDFs

Wi(P,Q) = / |Fp(z) — Fo(2)| d. 4

In this paper, we focus on the 1-Wasserstein distance. Our main results rely solely on the definitions
and properties outlined here, plus basic properties like the triangle inequality. Nevertheless, the
interested reader will be well served by the excellent introductions to optimal transport in [31} 43]].

3 Theoretical Results

In this section, we define the notion of total coverage gap and introduce our main theoretical results
that allow us to upper bound it. For the sake of conciseness we defer the proofs to Appendix [A]

We start by laying out the necessary notation. Let X € X and Y € Y be input and output variables
and s : X X Y — R be a (non)conformity score function. Regardless of the type of distribution shift
(e.g., covariate or label shifts) its effect on the conformal prediction guarantees will manifest itself in
the distribution over calibration and test scores. Therefore, in this paper we will directly manipulate
the distribution of scores S = s(X,Y), and to that end we use s3 P and s4( to denote the calibration
and test distributions over the scores, i.e., sy P = s, (P) is the pushforward measure of P by s. When
sy P is absolutely continuous with respect to the Lebesgue measure on R, we write its density as
ps, p- We also use subscripts to distinguish between scores observed during calibration S, and at
test time .S;. As usual, we will use uppercase letters for random variables and lowercase letters for
their realizations, e.g., St = s;. We reserve calligraphic letters for sets, e.g., S. = {s(X;, Y;)}; is
the set of calibration scores obtained from a sample of size n drawn from P", and C(X}) denotes a
prediction set for test variable X.

3.1 Total Variation Distance Bound

With this notation, we write the coverage under P and () as
P(Y; €C(Xy)) = P(S; < Qa(Se)) = Es, s, p [Eswsﬁpn [1(8 < QQ(SC))}}
QYi € C(X1)) = Q81 < QulSe)) = Esymsy@ [Esoms, (1 (S < QulS0)]]

with Q,, (S.) the 1—« quantile of the empirical distribution defined by a set of calibration scores S..

In general, one cannot guarantee valid coverage under arbitrary test distributions @), i.e., we cannot
ensure Q(Yiest € C(Xtest)) > 1 — a. Therefore, it is important to quantify the gap in coverage



induced by the change in distribution from P to Q. To that end, let A(«) denote the coverage gap for
a specific o value

Apg(a) = [P(S; < Qa(S.) — Q(S: < Qu(S.))]
:‘EStNSuP |:ESC~8nPn {1 (S < QQ(SC))H— Es,~s,Q [ESCNSﬁP" [1 (S < Qa(&:))H

)

where 1 (-) is the indicator function. It is easy to show the coverage gap is upper bounded by the total
variation distance. We first restate the following well-known result for the total variation between
two distributions P and () (see e.g. Farinhas et al. [[10]):

Dry(P,Q) > [Ep[g] — Eqlg]l,

for some function g such that |g| < 1. It suffices to take g as g(z) = Es s, pn[1 (2 < Qa(Se))],
which is clearly bounded with |g(z)| < 1 for all z, to get Ap g(a) < Dry (P, Q). Unfortunately,
estimating the total variation distance between P and @) without access to their respective densities is
impractical. Instead, in the following we will propose two different ways to get around this difficulty
and effectively quantify the coverage gap. In both cases, we leverage optimal transport, which defines
valid distances even for empirical measures, i.e., when we only have access to P and () via samples.

3.2 Upper Bound on the Total Coverage Gap

We begin by defining the total coverage gap as follows.

Definition 3.1 (Total coverage gap). The expected coverage gap across all possible values v € [0, 1]
given by

1
Apg = /0 Apq(a)da =Ey ) [A(a)],
with p(«) being the uniform distribution in [0, 1].

The following result establishes that the total coverage gap between P and () is upper bounded by a
weighted CDF distance and the 1-Wasserstein distance between them, W, (P, Q).

Theorem 3.2. Let P and ) be probability measures on X x ) with sy P and sy() their respective
pushforward measures by a score function s : X x Y — R. Assume sy P is absolutely continuous
with respect to the Lebesgue measure with density ps, p(sc). Then the total coverage gap can be
upper bounded as follows

AP,Q S /psuP(Sc) E@uP(Sc)*EGuQ(Sc) dsc (5)
R
< (sup psnP(Sc))Wl(SﬁpasﬁQ)- (6)
s.ER

Naturally, the upper bound of Theorem [3.2]is tight if there is no distribution shift, in which case
Wi (s4P, 54Q) evaluates to zero and the coverage gap is also zero by definition. Both and @
are valid upper bounds to the total coverage gap that are easy to compute in practice. It suffices to
estimate the density of calibration scores—e.g., via kernel density estimation (KDE)—and compute
the 1-Wasserstein distance in (6) or the difference of CDFs in (3)), all of which are easily computable
from samples, especially since nonconformity scores are typically unidimensional.

3.3 Upper Bound on the Total Coverage Gap without Labels

While the above bounds are informative, they come with one crucial drawback; they require labeled
samples from (), which might be hard to obtain in practice. To overcome the need for labels, we
present another upper bound to the total coverage gap that can be computed with unlabeled data
from the test distribution ). The main insight is that, although we may not have access to the score
of the ground truth label, in the classification setting, we generally know the scores of all possible
labels. This gives us meaningful information on the distribution of scores under the shifted test
distribution (), which we use to construct auxiliary distributions sﬁQ¢ and suQT, whose CDFs satisfy
F,qr(t) < Fs,q(t) < Fy,qu(t) forall € R. This sandwiching of the CDF of Fj,(t) corresponds

to a stochastic dominance relationship, denoted s;Q" = s;Q = s3@Q*, and allows us to construct
bounds in the form of (EI) and @ even without access to the unknown s;Q).



Theorem 3.3. Let P and Q) be two probability measures on X x Y with sy P and syQ) their respective
pushforward measures by the score function s : X x Y — R. Assume sy P is absolutely continuous

with respect to the Lebesgue measure with density ps, p(s.). Further let sﬁQ¢ and sﬁQT be such that
sﬁQT = 51Q = sﬁQi. Then, we have that

1
Ara <y [pare)( |Purlon) - Fuor(so)

+ ‘anP(sc) - anQ¢(SC)

+ F‘SuQi (SC) - FSnQT (Sc)) dsc (7)

IN

1
3 (510 pep(s0)) (WP 52Q7) 4 M52 5:Q) + B8] - B8] ®

Theorem [3.3]tells us that we can upper bound the total coverage gap between the calibration distri-
bution P and an unknown test distribution @), if we can somehow find two auxiliary distributions
over the test scores s3(), such that sﬁQT = 550Q = sﬁQl. Fortunately, in the classification setting, we
typically evaluate the scores of all possible classes (e.g., by computing the probability of all classes
with a softmax activation). Thus, although the true score s(z, y) is not observed, we know it must be
contained in the set s(x) = {s(z,y’) : ¥’ € Y}. We can then use a set of m unlabeled samples from
@ and their corresponding scores {s(x;)}™, to construct empirical distributions sﬁQL and sﬁéin

with the required stochastic dominance relation to the unknown SﬁQm. A natural solution is to take
the minimum and maximum scores of each instance x; to get the following empirical distributions

m m
SO = S ey SO = D et ©)
i=1 i=1
with 1 (+) the indicatoAr function a}nd 0y t[le delta function at a value z. It is easy to see the empirical
distributions obey sy Q™ = 53Q = spQy,™" as needed.
In the common setting where predictions come from a classifier f that outputs class probabilities, a

practical alternative we found effective is to construct the auxiliary distributions Sﬁ@% and squn as

) 1 m . 1 m
$4Qm = D sy Ui Y UY)  siQhi= D sy i~ Qe(Ylw),  (10)
i=1 i=1

where we take the score of a random label j sampled either from a uniform distribution U (Y") or from
Q7 (Y|X), the conditional distribution given by model f. The motivation here is that sﬁQU captures

m
the scenario where the model is uninformative of the correct label, while anfn reflects the scenario
in which the model perfectly captures the true distribution Q(Y | X). Although we cannot guarantee

sﬂQ,({L = sﬁQ = sﬁan, we empirically observe this relation to hold in most cases (see Fig. .

Naturally, the tightness of the upper bounds in Theorem depend heavily on how close s;Q* and
sﬁQ'r are to the unknown s;Q). In the absence of prior knowledge about the nature of the distribution
shift, the best we can do is rely on the general auxiliary distributions described above, which may

yield relatively loose bounds. Nevertheless, the bounds constructed using (sy A%in, SﬁQﬁaX) or

(sﬁQf , anU ) serve as effective optimization objectives for reducing the coverage gap in practice,
through a reweighting of the calibration samples, as we explain in the following section.

Before proceeding, we note that upper bounds on the coverage gap can also be derived for restricted
ranges of the miscoverage rate «. In Appendix we present a bound for « ranging between oo~ and
a™, with 0 < o~ < ot < 1. Additionally, Appendixprovides a bound for a fixed miscoverage
rate o, denoted A p (o). While these bounds are less effective as optimization objectives, they offer
useful theoretical insights and are detailed in Appendix [A]

4 Learning

In the conformal prediction literature, it is common to address non-exchangeability by reweighing
the calibration points [2}42]. In practice, this implies that the quantile of the scores is computed on a
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Figure 1: Empirical CDFs of nonconformity Figure 2: Total coverage gap in ImageNet-C
scores in ImageNet-C Gaussian noise under Fog with weights learned via likelihood ra-

the calibration sﬁp, test sﬁQ, and auxiliary dis- tio gstimatiop (orange), optimal transport with
tributions. We can visually verify s;Q™a = (53Q@™", s4Q™**) in green, and (5:Q7, s:QY)
SuQ = SﬁQmin and SﬁQU = Sﬁ@ = SﬁQf. 1n gray.

weighted empirical distribution of the calibration scores sy P’ with the following empirical CDF

n
$iPY = wiby(a, ), (11)
=1

w; > 0 are properly normalized weights associated with calibration samples (z;,y;). In the case
of covariate shifts, Tibshirani et al. [42] show that we can recover proper coverage by setting the
weights in proportionally to the likelihood ratio, i.e., w; x 4Q(z:)/dP(z;). Barber et al. [2] also
rely on a weighted empirical distribution in the form of but assume the weights to be fixed based
on some prior knowledge of the likely deviations from exchangeability.

Motivated by these ideas, we propose instead to learn the distribution sy P3¢ directly by minimizing
the upper bounds of Theorem [3.3| with respect to its weights w. We replace the Wasserstein and CDF
distances in these bounds with their empirical counterparts (see Appendix [A.3|for details), enabling
optimization from samples. Specifically, we assume access to n labeled samples {(x;,y;)}"
from P and m unlabeled samples {z;}{"", from the test distribution Q. These are used to
construct sﬁQi and sﬁQT. As discussed in Section two alternatives we consider are to take the pair
(sﬁQmi“, sﬁQmax) as in (@) or (squ, sﬂQU) as in . However, other constructions, potentially
leveraging prior information about the distribution shift or the application domain, are possible,

as long as sﬁQT = sﬁQ = sﬁQi. We note that, although using unlabeled samples from the test
distribution is uncommon in CP, in many cases it is easy to collect such samples in practice.

Evaluating the bound of Theorem [3.3]admits an efficient exact solution for empirical distributions:
it suffices to sort the samples (n from P and m from Q) to compute the difference between the
empirical CDFs. Crucially, when computing weighted empirical CDFs as in (T1), the weights w
only come into play after the score values are sorted, and thus the operation is trivially differentiable
with respect to w, with no relaxation needed. Finally, we estimate the density of ps, p by fitting a
Gaussian kernel density estimator (KDE) to the calibration scores. It is easy to fit Gaussian KDEs to
weighted samples, and the estimated density is also differentiable with respect to the weights.

Having established how to evaluate the bounds efficiently and differentiate through the weighting, we
now turn to how these weights are parameterized. We consider two strategies:

* Free-form weights. We directly optimize a set of unnormalized weights {w; }?_;, each one
tied to a specific calibration point (z;, y;). After optimization, these weights are normalized
to form the weighted empirical distribution in (TT)). This method is simple and effective,
offering maximum flexibility for a fixed calibration set, but it remains restricted to that set.

* Learnable weight function. Alternatively, we learn a parametric function wg : R — R>q
with ; = wy (s(xi, yz)) where 6 are the function parameters (e.g., a small neural network).



Algorithm 1 Learning Weights for Non-exchangeable Conformal Prediction via Optimal Transport
Input:
n labeled samples {(z;,y;)}1~ from P
m unlabeled samples {x;}72" | from Q
score function s
Initialize unnormalized weights w = {w; }_; or weight function wy
Compute calibration scores {s(z;, y;) }7
Compute test score vectors {s(z;) ;LL’Z?H // includes all candidate labels s(x) = {s(z,y) : y € V}
repeat
Construct Q% and Q" from {s(z;)} // e.g., (min, max) or (f,U)
Compute normalized weights: w = softmax(w)
Fit KDE to {s(x;, y;)}, with weights w
Update w or wy to minimize (/) or // weighted-CDF or 1-Wasserstein bound
until convergence

Unlike the free-form approach, this formulation allows computing weights for additional
calibration points or test candidates, thereby recovering the standard weighted split-CP
setting and aligning with the importance-weighting principle of Tibshirani et al. [42].

Both parametrizations involve trade-offs. We focus most of our analysis on free-form weights
because they align naturally with our bounds-based objectives, require only simple differentiable
operations, and avoid extra modeling assumptions. This makes them stable and data-efficient in
the small-sample regime, which is our primary concern. Nonetheless, these weights are tied to the
specific calibration samples used during training, so the same set must be retained for calibration.
This introduces dependencies among calibration points and breaks exchangeability with the test set.
Under distribution shift, exchangeability is already compromised, so this violation is less critical.
In this setting, the focus naturally shifts from preserving exchangeability to mitigating its effects,
which is exactly what we achieve by optimizing calibration weights directly. Weight functions, by
contrast, offer a more general solution: by mapping scores to weights through a parametric model,
they can assign weights to unseen calibration points and recover the standard weighted split-CP
setting. This flexibility comes at a cost: training the model requires additional labeled samples from
P and careful specification of its architecture. Despite these differences, both approaches achieve
comparable empirical performance (see experiments in Section [ and Appendix [C).

See Algorithm|I] for a sketch of how we optimize the total coverage gap from Theorem[3.3] A more
complete algorithm, including how this optimization fits into split CP is given in Algorithm 2] in
Appendix |C| In practice, during optimization unnormalized weights {w; } are mapped to normalized
weights via a softmax, regardless of whether w; come from a learnable vector or a weight function
wy. This normalization ensures differentiability and proper scaling before computing the empirical
distribution used to evaluate the 1-Wasserstein or weighted-CDF bounds and fit the KDE. The
computational cost remains the same in both cases: evaluating the 1-Wasserstein distance requires
O((m + n)log(m + n)) for sorting, while fitting a Gaussian KDE on n calibration samples costs
O(k - n), where k is the number of evaluation points.

Regression setting In principle, our upper bound to the total coverage gap in Theorem [3.3] is
directly applicable to regression tasks. The only caveat is that the true score s(X,Y;) might no
longer be restricted to a finite set of known values, as in the classification setting, and designing
sﬁQ¢ and sﬁQT is more challenging. One can always construct these auxiliary distributions based on
some prior information about the task or the underlying distribution shift, but more generally it is
possible to leverage the regression-as-classification framework [[16], and again use (sﬁQmi“, sﬁQmaX)

or (s;Qf, 5,QUV), as we do successfully in the experiment described in Section

5 Related Work

Several works have studied conformal prediction in the non-exchangeable setting, especially in the
context of time series, where the exchangeability assumption is violated by the very autoregressive
nature of these problems [6, [13} 14, 18} 28] 46, 47, 150]. Closer to our work, Tibshirani et al. [42]]



and Barber et al. [2] have also proposed to mitigate the coverage gap by reweighing the calibration
samples. However, in [42] their weights only address covariate shifts and correspond to the unknown
likelihood ratio 4Q(=)/ap(x), which is hard to estimate in practice, especially under severe distribution
shifts and the density chasm problem [34]. In our experiments, our methods compare favorably to
learned likelihood ratios as proposed in [42], attesting to the difficulty of learning accurate ratios.

To our knowledge, our methods and the reweighing scheme of [2] are the only capable of tackling ar-
bitrary distribution shifts in split conformal prediction. Still, their approach involves data-independent
weights that must be designed a priori using some prior knowledge about the underlying distribution
shift, whereas we learn appropriate weights directly from a few unlabeled samples from the test
distribution. With the exception of the work of [32], where label shift is also tackled via likelihood
ratios in a similar fashion to [42], most other works focus on covariate shift [19, 21, 25]. Among
these, [[15 123 133 49] are notable for tackling covariate shifts by approximating conditional coverage
guarantees, i.e., by approximately satisfying P(Y; € C(X;)|X;) > 1 — a. These achieve impressive
results but are computationally expensive or limited to specific types of covariate shifts.

Of special note is the work of [15]], which proposes to adapt the conformal threshold for each
test point, providing conditional coverage guarantees if the distribution shift comes from a known
function class. In our experiments, where it is not clear how to define such function class, their
method—implemented in its most general form via radial basis function (RBF) kernels—produced
larger prediction sets than our methods at a much larger computational cost at test time. We also
compare against entropy scaled conformal prediction or ECP [21]. ECP consists in dividing the
threshold, i.e., Q. (S.), by the (1—«) quantile of the entropy over class predictions for the test points,
with the intuition that high entropy (indicating high uncertainty) will decrease the threshold, leading
to larger prediction sets. While this heuristic proved effective for covariate shift, the improvements
in coverage were modest in the context of label shift. In contrast, our methods demonstrate greater
robustness to different types of shift (see Table [6)).

Finally, our methods are closely related to the concurrent work of [48]], which also explores the
relationship between the coverage gap and the W5 (P, ). However, their results are derived through
a different approach and bound Ap o («) for any «. Unfortunately, their bound does not depend
on «, and is thus loose for most target coverage rates. Moreover, in practice, their methods are
only applicable to distribution shifts where the test distribution is a mixture of different calibration
distributions. In contrast, our bound from Theorem [3.3]can be applied to any type distribution shift.

6 Experiments

In this section, we describe and analyze a set of experiments designed to evaluate and validate our
methods. In each of them, we have two sets of samples, Dp distributed according to some calibration
distribution P and D¢ according to some test distribution @), with P differing from () via some form

of distribution shift. We divide D¢, into two, with Dl) reserved for fitting a density ratio estimator or

learning the weights in our method as in Algorithm , and Dg ) used for testing. When no pretrained

model is available, we also split Dp, using Dg) for training a model and Dg)

CP. Main experiments use 300 samples for Dg) and D(Ql ), with Dg) extended to 600 for weight
functions (split evenly for fitting and calibration). Sample size effects are analyzed in Appendix [C|

for calibration in split

For regression tasks, we optimize the 1-Wasserstein variant of our bounds (8), while for image
classification tasks, we adopt the weighted-CDF formulation (7). These choices reflect empirical
findings; each variant performs best in its respective domain, as discussed in Appendix [C.5] In all
cases, we define nonconformity scores as one minus the probabilities assigned by the model.

6.1 Regression setting with synthetic data

We start with the synthetic data experiment proposed in [49], where the ground truth likelihood ratios
are known. We use the regression-as-classification method of Guha et al. [16]], splitting the output
space into 50 equally spaced bins. In Figure[3] our methods significantly enhance coverage in most
cases, with no notable difference between the two variants. In this low-dimensional setting, learning
the likelihood ratios also proved effective, albeit with a slight tendency to under-cover. In contrast,
our method exhibited a mild bias toward over-coverage. See Appendix [C|for experimental details.
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Figure 3: Distribution of coverage and prediction set sizes for the synthetic regression task across
500 simulations and target coverage rate of 90% (blue vertical line). For ease of visualization, we
plot the density estimated with a KDE fit to the 500 observations.

6.2 Image classification

Imagenet-C  We use the established ImageNet-C [17]] dataset to test our methods under the covariate
and label shift settings. ImageNet-C contains a total of 15 covariate shifts at different severity levels,
from 1 (least severe) to 5 (most severe), but no label shift. Since our methods apply to any type of
distribution shift, we also simulate label shift in ImageNet-C. The details can be found in Appendix[C|
In Table([T] (and its extended version in Appendix [C)) we observe a drastic drop in coverage for the
uncorrected scores; from the target coverage of 90%, we drop to an average of ~ 80% for severity
level 1, and to an average of ~ 30% for severity level 5. By introducing weighting to the calibration
set, our OT methods improves coverage across the board, achieving similar coverage with and without
label shift. In contrast, learned likelihood ratios provided modest improvements in coverage and
the ECP method of [21] only produced competitive results in the absence of label shift. Finally, the
method of [15]] produced good results in terms of coverage in ImageNet-C but at the cost of excessive
large prediction sets (see Section [6.3]for a discussion on prediction set sizes).

iWildCam We further use iWildCam [3]] as one more dataset that contains natural distribution
shifts. We can see in Table[I] that the distribution shift incurs roughly a 10% drop in coverage when
not correcting the scores. While likelihood ratio weighting produce only modest improvements over
the uncorrected scores, both of our OT settings improve coverage. The (min, max) setting increased
coverage by more than 7% on average, while the (f, U) setting improved coverage by almost 10%.
Finally, the ECP method [21]] got almost perfect coverage, even under label shift. Interestingly, the
method of [15] actually hurt coverage. This could be either because the distribution shift in iWildCam
is not well captured by the class of shifts considered in their method (given by RBF kernels in this
experiment) or due to severe class imbalance in iWildCam, which might hamper the optimization.

Notably, the results were consistent across parametrization choices, with both the free-form and
weight-function variants yielding very similar performance overall. The only meaningful differences
emerged under relatively mild distribution shifts: the weight-function approach performed better on
iWildCam, while the free-form variant showed stronger results on ImageNet-C at severity level one.

6.3 Discussion

Prediction set sizes. Our methods, like most other approaches to non-exchangeable CP, including
the likelihood ratios proposed by Tibshirani et al. [42], and the weights introduced by Barber et al.
[2]], do not alter the observed test scores, thereby preserving the ranking of classes under the shifted
distribution. Consequently, similar to these other works, our analysis focuses on coverage. The
underlying CP algorithm (split CP) remains unchanged, and the variance in prediction set sizes
is attributed to miscoverage. The best achievable performance mirrors what would be obtained if
labeled samples from () were available; undercoverage results in smaller-than-optimal prediction
sets, while overcoverage leads to larger-than-optimal sets. The only exception to this is the method
of |Gibbs et al., which aims for conditional coverage and thus changes the conformal threshold for
each test point. This decouples coverage and prediction set size, but in our experiments their methods
produced larger prediction sets than other methods despite getting close to the target coverage.



Table 1: Average coverage and prediction set size on image classification tasks, with and without
label shift. Results for uncorrected distributions, calibrating and testing on () (Oracle), likelihood
ratios (LR), the methods of Kasa et al. [21]] and Gibbs et al. [15], and our methods with weighted-CDF
objective (7), including (min, max) and (f,U) variants, and free-form (FF) and weight function
(WF) parametrizations. The target coverage is set to 90%. Extended version in Table[6]

iWildCam ImageNet-C Sev. 1 ImageNet-C Sev. 3 ImageNet-C Sev. 5
Cov. Size Cov. Size Cov. Size Cov. Size
Uncorrected 78.2+3.0 221444 787160 2.T+o0.7 58.7+14.3 3.341.2 29.8+18.9 33415
Oracle 89.7414 505453  89.8116 10.717.2 899117 80.1i71.4  89.7119  338.61190.9
& LR 79.0426  23.31a8 84.1ia9 52438 7131119 1234131 4744202 27.7T+37.0
% |Kasaetal. 95.2+1.2 79.7490 96.611.1 4241192 93.7432 11934654 86.14s4  282.04150.1
E Gibbs et al. 67.7+6.0 109.616.3 88.9+28 54854367 85.6136 635.7+e6.3 84.9456  7H4.41102.7
<
o FF (min, max) 85.2441  37.5+100 914439 151497 882477 6391413 T1.3117.0  128.5493.0
= WF (min, max) 89.8429 51.7411.1 94.6416.3 34.7T+20.6 87.0414.1 69.7+46.6 T71.5417.1 130.5494.1
FF (f,U) 88.2434  46.2411.9 93.0x30 1923114 903459 79.8448.9 7951121  205.71164.4
WEF (f,U) 88.91+46  49.71141  95.7122  36.61201  90.1ie2 7974501 7871131 200.4i164.2
Uncorrected 79.247.1 209454  79.2182 2.7+0.8 59.2415.7 3.241.2 29.8420.1 3.3+1.5
_ Oracle 90.2443  43.T1207 90.3145  15.01199 902435  88.1isra  90.5140  349.04220.0
Z LR 81.5457  24.6144 845171 6.1:55 7254129 1434158 4731212 27.7T1335
2 |Kasaetal. 88.6+6.3 35.9+17.1 79.248.1 2.7+0.8 59.7+15.2 34414 31.2419.9 41403
_QI; Gibbs et al. 38-0i15.6 44-9i23.5 88»613_8 552-3i46.0 85.514_6 638.6170.2 84.815.8 753~5i100.4
é FF (min, max) 83-1i5.8 22-1i12.6 91~0i5.7 14.3i10,2 88.4i8,5 62-6i41_4 72~0118.8 127.9i94,4
2 WF (min,max) 913143 5221152 93.7493 331215 8731128 6944473 7041192 12921963
FF (f,U) 88.2447  33.51129 93.5136 20.71146 903165 7894517 79.8+13.9 206.01168.3
WF (f,U) 91.0+38  49.8+109 951171  36.31218  90.4i70  80.04s14  79.24146 2013411686

Bound variants. In Theorems [3.2]and [3.3] we have two flavors of upper bounds: one expressed in
the terms of a weighted distance of CDFs, and another using the 1-Wasserstein distance. The former is
always tighter and, likely for this reason, has shown superior performance in image classification tasks.
Conversely, the 1-Wasserstein bounds, while generally looser, establish a more natural connection to
optimal transport theory and has shown better empirical performance in regression tasks. This may
be due to the weighting by p,, p(s.) in (5) and , which might complicate optimization.

Number of samples. Our methods are effective across varying numbers of labeled samples from P
and unlabeled samples from ). As shown in Appendix [C.4.3] coverage improves with more samples
as expected, but meaningful gains are observed even with as few as 30 samples from each distribution.

Limitations. The tightness of the unlabeled upper bounds in Theorem [3.3|depends on the auxiliary
distributions suQ¢ and suQT. When these closely approximate s;(), the resulting bounds are tight, and
optimizing either (7) or (§) is predictably highly effective in reducing the coverage gap. However, in
the practically interesting setting of a general and unknown distribution shift we consider, the available
choices for sﬁQ¢ and s3Q" are likely less informative and yield a necessarily looser bound. Having
said that, the bounds computed with (sﬁQmi“, sﬁQmaX) and (sﬁQf , sﬁQU) still perform surprisingly
well in reducing the coverage gap when used for reweighing the calibration data, demonstrating their
practical value and broad applicability. Nevertheless, care must be taken: in cases of minimal or
no distribution shift, s; ” may already offer better coverage than the solution to our objective. It
is therefore advisable to first assess the presence of a distribution shift, potentially using unlabeled
samples from @, before applying our methods. We explore this issue further in Appendix [C]

7 Conclusion

In this work, we employ optimal transport theory to study the effect of distribution shifts on conformal
prediction. Specifically, we derive upper bounds on the total coverage gap induced by a shift from
the calibration distribution P to the test distribution @), expressed in terms of (weighted) CDF and
Wasserstein distances. Recognizing that labeled examples from () are often unavailable in practice, we
extend our analysis by leveraging the structure inherent in the nonconformity scores of the unlabeled
test data. To this end, we construct auxiliary distributions sﬁQAi and sﬁQT, which enable label-free
bounds of the coverage gap. Furthermore, we utilize these bounds as optimization objectives to learn
importance weights over the calibration data. Empirically, our approach significantly reduces the
coverage gap across a range of distribution shift settings.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our theoretical results are all proved in the supplementary material, and our
experiments support the claim that our methods are effective at mitigating the coverage gap
in conformal prediction under a variety of distribution shift settings.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We elaborate on the limitations of our method in Section [6.3]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All theoretical results are accompanied by the necessary assumptions and
thorough derivations. The complete proofs are all in the supplementary material.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our experimental settings in details in the supplementary material.
We also intend to make the source code available, subject to company approval and applicable
policies.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used in this paper are already open source and readily available.
We intend to make the source code available, subject to company approval and applicable
policies.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All relevant details for all experiments are described in the supplementary
material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeat all experiments across different random seeds. For the image
classification tasks, we use 10 random seeds and report the mean and standard deviation
of these results. For the synthetic regression task, we use 500 random seeds and plot the
distribution of empirical coverage and prediction set sizes.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were run in a single commercial GPU, as mentioned in the
supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We conform with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: All paper is primarily theoretical in nature and of limited direct societal impacts.
Yet, we do discuss its broader impact in the supplementary material.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All resources used in the paper are appropriately cited and referenced.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce any new assets at the moment. We intend to make the
source code available, subject to company approval and applicable policies. That would
come with the proper documentation for reproducing the experiments.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:|[NA|
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core methods of this research do not relate to LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Broader Impact

This work introduces new methods to enhance the coverage of conformal prediction under distribution
shifts, which frequently occur in real-world applications. We believe our contributions will have
a positive impact, encouraging practitioners to adopt uncertainty quantification techniques like
conformal prediction, provided the underlying guarantees are well understood.

A Proofs and Additional Theoretical Results

In this section, we provide detailed proofs of our new upper bounds to the coverage gap as well as
extra theoretical results. We start by providing the proofs of Theorems[3.2]and[3.3]

A.1 Bound to the Total Coverage Gap

Theorem@ Let P and @) be probability measures on X x Y with sy P and sy() their respective
pushforward measures by a score function s : X x Y — R. Assume sy P is absolutely continuous
with respect to the Lebesgue measure with density ps,p(s.). Then the total coverage gap can be
upper bounded as follows

AP,Q S /RpsnP(Sc) FSnP(SC)_FSﬁQ(SC) dsc @
< (sup po, p(s50) ) Wi (s P, Q). ®
sc.ER

Proof.

1
Apg = /
0

ESCNSuP" |:ESt~suP[1 (St S Qa(Sc))]:|

~ sy pr [Esimsll (Si < Qa(S.))]]|da (12)
1
- /O Es. sy | Fiyp(Qa(5.)) — Fry(Qa(S2) ‘ do (13)
1
< /O Es, e, pn UFsﬁp(Qa(sc)) - Eg,j@(@a(sc))” do (14)
= Esinspr |~ ’Egﬁp(sgn)_zqw(scz))‘ (15)
=1
- ESCNSuP" l: anP(Sc)_FsuQ(Sc) :| (16)
:/RpsuP(sc) FsuP(Sc)_FsuQ(sc) dsc (17)
< [Sup psuP(Sc) / FsuP(Sc)_FsuQ(Sc) ds. (18)
s.ER R
= [Sté%psup(sc)] Wi(syP, 5:Q). (19)

where the first inequality in is due to Jensen’s inequality and holds because the empirical

quantile Q, (S.) must evaluate to one of the n values in S, = {sgl), cey s }, each of which takes +
of the [0, 1] range. In (15), we have the expectation of the sample mean, which equals the expectation
of the population as in (16). Lastly, (18) holds because p;, p(s.) is a density and thus non-negative
everywhere, and follows directly from the definition of the 1-Wasserstein distance, as in @). O
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Remark A.1 (On the expectation under a weighted measure). The bound in Theorem 3.2 extends to
any weighted calibration measure P, with density p(s)ps, p(s), where p : R — [0, oo) satisfies

[ ooIpen(s)ds =1.
R

In this case, the total coverage gap is upper bounded by
Ar,Q S/p( s, (5) [Foyr, (5) = Foy(s)] ds < (50 p(s)pgp () I (5P 55Q).
R

The proof follows identically by replacing ps, p with p(s)ps, p(s) in the argument.
Remark A.2 (On practical weighting). In experiments (Section 4), weights are applied at the sample
level, forming a weighted empirical measure rather than a continuous density. These weights are
not globally normalized; instead, normalization is enforced through a softmax or similar constraint
during optimization. Our theoretical result assumes a normalized weighting function p, ensuring P,
is a probability measure. This is a stronger condition than what is used in practice, but the empirical
approach approximates this normalization. Moreover, the bound holds for the empirical distribution
defined by a calibration dataset as shown in Proposition[A.3] below.
Proposition A.3 (Empirical weighted bound). Let s;P¥ = 27 w; d ) be the weighted empirical
measure over calibration scores {s(i) ™ 1, with weights w; > 0 and 2?21 w; = 1. Let F, s, P and
F,q denote the CDFs of sﬁff’,‘;’ and an arbitrary test distribution over scores s3(@, respectively. Define
the weighted quantile function Q¥ («) := F:}Dw (c) and the empirical weighted coverage gap

’ﬁ n

N 1
Auw,q = /
0

Then

Eg gy [Esimeep [1 (St S Q¥(0)) ] = Esnsyo[1 (S < Q2 () ]] \ do

I M:
e
v
iR
QIJ
\D/
’;:11
2
—~
¥2)
°=
=

Proof. By definition and the tower property,

/ ’E NSnP“’[ Sng(Qw( a)) — F,q(Qy( ‘da

Applying Jensen’s inequality (absolute value is convex),

vaQ S ]ESCNSuP#’

1B @20) - Rl |da].

Since s3 P is a discrete distribution with atoms {sg)}le and masses {w; }7_,, its quantile map
a — Q¥(«a) takes the value sgl) on an interval of length exactly w;. Therefore, for any fixed
realization of S,

/ |F§“Pw Qw )7 Q“Q |da_zw’ |F€ Pw ,. ESuQ(Sci)”'

Taking expectation with respect to S, ~ suP“’ does not change the right-hand side, which is
deterministic given Pﬁ“ , and the claim follows. O

A.2 Unlabeled Bound to the Total Coverage Gap

Before proving Theorem[3.3] we begin by recalling the concept of stochastic dominance, which plays
a key role in the argument. Specifically, if A and B are two probability distributions on R, we say A
dominates B, denoted A = B, if Fa(t) < Fp(t) for all ¢ € R. This notion is especially useful in our
context, as will be made clear in the derivations. In particular, stochastic dominance also simplifies
the computation of the 1-Wasserstein distance, as captured by the following well-known result.
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Lemma A.4 (De Angelis & Gray [8]]). Let A and B be two probability distributions on R, with
A = B, then

Wi(A, B) = Ea[X] — Ep[X]
Theorem@ Let P and Q) be two probability measures on X x ) with sy P and s4(Q) their respective
pushforward measures by the score function s : X x Y — R. Assume sy P is absolutely continuous
with respect to the Lebesgue measure with density ps, p(s.). Further let 54Q%, and s; Q) be such
that sﬁQL = 51Q = sﬁQ#. Then, we have that

1
Apg < 2/]95“13(8@)( +

FsuP(sc) — FSﬁQIn, (SC)

FsuP(Sc) - FSqu (Sc)

m

g8 (50) Py () Jdse @

IA

1
- [sue%psﬁp(sc)] (Wl(sﬁp, 53Q1) + Wi (sy P, s3Q%,) + E,qnlS1—E, o [S]) :
@

Proof of (7). We start from (5) and apply the triangle inequality twice to get

Apg < /PsﬁP(Sc) (
Apg < /psnP(Sc) (

Since all values in these inequalities are non-negative, we can add them up to get

Apg < ;/psnP(sc>(
= ;/psuP(sc)<
;/psnP(sc)<

FsuP(sc) — F QIn, (SC)

St

+

FSuQ(SC) - anQ% (s¢)

> ds.
) dse

FSﬁP(SC) —F an(SC)

St +

Fyq(se) — FSqun (sc)

+

FSﬁP(SC) — FSnQIn (Sc)

anP(sc) - Fsqun (sc)

- +

Fy,q(se) — FsuQIn(SC) Fyq(se) — angfn (sc)

) ds.

+ anQ(Sc) — FSuQIn (SC) + FSqun (SC) — FSuQ(Sc)>dSC

FsuP(Sc) - FsuQT (Sc)

m

+

FsuP<Sc) - FsﬁQin (SC)

+

FSnP(SC) — FSﬁan (Sc)

FsgP(Sc) - Fsqun (sc)

+ FSﬁQ%(sC) - FSﬁQIn(SC)>dSC7

where the first equality holds because of the stochastic dominance relationship, which tells us that
F_ o1 () < Fyo(t) and Fy, (1) < Flat (t) forall t € R. O

St

Proof of (8). The result follows from (m) by taking the maximum of s4 P out of the integral as in the
proof of Theorem 3.2} Alternatively, we can also prove (8] directly from (6)) in Theorem 3.2} For that,
it suffices to show W1 (sy P, s4Q) is upper bounded by the term in parentheses in (8)) and the proof
immediately follows from Theorem [3.2] We start by applying the triangle inequality twice to get

Wi (sy P, 54Q) < Wi(sy P, s:Q1,) + Wi(s:Q, 5:Q1)
Wi (sy P, 54Q) < Wi (sy P, s:Q5,) + Wi(s:Q, 5:Q%,).

Since all terms are non-negative, we can sum both inequalities, which gives us

2W1 (s P, 53Q) < Wi(syP, s4QL) + Wi (sy P, s:Q%,) + Wi(s:Q, :Q1) + Wi(s:Q, s:Q5,).
(20)
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Using s;Q}, = s:Q = 53Q},, we have from Lemmathat
Wi(:Q. 5,Qh) = E, o1 [S] ~ EvyolS] and  Wi(5,Q, :Q%) = EuylS] — E, o [5],
and by summing both equalities, the unknown expectations E,, o[S] cancel out, giving us
Wi(s4Q, 5:Q1) + Wi(s:Q, 5:Q) = E, o1 [S] —E, 5. [S]. 21)
Finally, it suffices to plug eq. 21]into eq.[20]and the proof follows directly from Theorem[3.2] [

Remark A.S. Tt is interesting to note that, if sﬁQT sy P = suQm, the upper bound simplifies to
APvQ < /psnP(Sc) (FSﬁQ'nL( C) FSﬁQm( °)> dSC.

A.3 Estimating the Upper Bounds to the Total Coverage Gap from Samples

In practice, we often do not have direct access to the distributions themselves and have to rely
only on samples. Next, we show how to estimate our bounds from samples by leveraging the
Dvoretzky—Kiefer—Wolfowitz (DKW) inequality [9] to get finite-sample guarantees. We now proceed
to show how the upper bounds from Theorem [3.2]can be estimated from samples.

Theorem A.6. Let P and Q) be two probability measures on X x Y with sy P and s3Q) their respective

pushforward measures by the score function s : X x) — R. Let sﬁlf’n and SﬁQ denote their empirical
distributions constructed from n and m samples, respectively. Then, we have with probability at least

1 — 2d that
ds \/logéi/d) . \/log@/d)

2m

80 < [ pur(s0) [Fyp, (s0) = Fgls)

< (wp ps,p(s ))Wl(SﬁPn,SuQ) \/logf/d) + \/log(Z/d).

sc€ER n 2m

Proof. We start by applying the triangle inequality twice to get

AP,Q < /psnP(Sc) anP(Sc) - anQ(SC) ds. + /psnP(Sc) FsuQ(sc) - anQ(SC) ds.
< [ pear(s0) B, (50) = gl .
b [ peapls0) [ (o) = Foyp (ool dse [ bt |[Frsalso) = F g0 .

From here, we get the weighted CDF version of the bound by applying the DKW inequality to the
last two terms. This gives us that, with probability at least 1 — 2d

Apg < / Pesr(s0) [, o, (50) = Fo(50)

[log(2/d) log(2/d
psuP sc g / —=—=ds +/p5ﬁP gQ( / )dsc
m
F

= /psuP(Sc) sy Py, (se) — FSuQ(SC) ds. + \/10g(2/d) + \/10g(2/d) )

2n 2m
The last equality holds since the DKW correction can be pulled outside of the integral and the
integrals then sum to one due to ps, p(s.) being a probability density. Finally, once more we can use
the fact that ps, p(s.) is non-negative everywhere to get

/psuP(sc)

which gives us the bound expressed in terms of the 1-Wasserstein distance. O

ds.

Fsﬁﬁn (SC) — anQ(sC)

dsc < ( SU%PsﬁP(ScD Wl(sﬁpna Sﬁ@)v
Ssc€
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Remark A.7 (Extension to unlabeled bound). The upper bounds in Theorem [3.3]can also be estimated
from samples in a similar manner. In fact, to get the unlabeled version of Theorem[A.6] it suffices to

construct two auxiliary empirical distributions such that sﬁQIn = sﬁQ = sﬁQ# and follow the same
arguments used to derive Theorem [3.3]from Theorem[3.2]

Remark A.8. The DKW inequality only applies to i.i.d. samples. Therefore, to compute the bound
after having optimized the weights in suls,;" , we first resample n,, samples from this weighted
distribution, where n,, = /5" w? is the effective sample size of sﬁfjﬁ”. We then evaluate the bound in
Theorem [A.6|using these new n,,, samples and replacing n with 7.

A.4 Restricted Total Coverage Gap

Thus far, we have discussed the total coverage gap, A p ¢, which considers miscoverage rates over the
full range [0, 1] and underpins the main results of this paper, as well as the coverage gap for specific
miscoverage rates, A p g (), introduced in Appendix

In some scenarios, interest may lie in a restricted range of miscoverage rates rather than the entire
interval [0,1]. To accommodate this, the definition can be extended to a range [, ™| with
0 < a~ < at <1 such that

" Apgla)

Apgla™,at) = /_ e da (22)

For the restricted coverage above, we have the following result.

Proposition A.9 (Restricted total coverage gap). Let P and () be probability measures on X' x ),
and let s : X x J — R be a measurable score function with pushforward measures s P and 54 Q).
Assume sy P is absolutely continuous with respect to the Lebesgue measure on R with density ps, p

and CDF F, p. For 0 < o~ < at <1, define

+
1 (0%
AP7Q(a_,a+) = m/7 AP,Q(@)da,

Then Apg(a~, o) is upper bounded by

1
o —a— /RPS#P(SC)

Proof. The proof is close to that of Theorem [3.2] following similar steps. By definition and the
Jensen’s inequality, we know that

Fy,p(sc) = Fsyo(se)

1 {s e [Fs;lp(a—), lep(aﬂ]} ds.. (23)

Apqla) =

Es, s, pr {FSﬁP(Qa (Se)) — Fng(Qa(Sc))} ’

anP(Qa(SC)) - FSnQ(Q(x(SC))

< ESCNSuP"’

Averaging over « € [@~, a™] and applying Fubini to swap the order of integration,

1 «
-+
Apg(a™,a”) <Es,ws,p lm /OF

Fuyp(Qa(50) = Fepg(@a(S2)| da]

Now fix S, = {sgl), cey 52")} sorted increasingly. Over the full range [0, 1], each calibration score
occupies an interval of length 1/n in the quantile map. Restricting to [a™, «™] simply zeroes out
scores whose CDF lies outside this range. Thus

+

/aa [P p(Qu(S.)) = Fiy(@a(S0))| da =

3

1 7 — i %
S1(Fyp(?) o™ at]) |Fup(s) = Fuyo(s)]
=1
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Note that this is the same argument of (I3]) in the proof of Theorem[3.2] but here we take extra care
to restrict the range to [a~, o). Plugging back we have

n

1 .
- at il (4 - at
ARQ(Oé , ) < ESCNS#P n Z 1 (FS#P(S(: ) € [a ) & ])

j=1

Foup(s9) = Fyuq(s)

Since the calibration data point is identically distributed, the expectation of the sample mean equals
the population mean:

with A(s) = 1 (Fg#P(Sg)) [~ ,aﬂ)

FS#p(sg)) FS#Q(SE )) ‘ Therefore,

1
Apgla,at) < ——— /ps#P(S)
R

at —a

Foyp(s) = Foyq(s)| 1 (Fayp(s?) € [a7,a1]) ds,
which is the desired bound. O

Remark A.10 (On Wasserstein relaxations). It is also possible to connect the result of Proposition[A.9]
to the 1-Wasserstein distance. Since 1 (-) < 1, a loose relaxation of (23] . gives

AP,Q(a77a+) < at — a- ( Sup psuP / ’FS#P - S#Q )| ds
1
- m(i%%ps“’@) Wilsy P 54Q).

which may be overly conservative in practice.

While one could optimize the upper bound in Proposition[A.9]directly, preliminary experiments show
that this approach yields only marginal improvements in coverage. We see two likely reasons for this.
First, optimizing a bound restricted to a specific coverage range may be inherently more challenging;
for instance, the pointwise bound for a fixed v in Appendix [A.5]also failed to deliver better empirical
performance. Second, the total coverage gap already provides a strong and well-behaved objective,
leaving little room for alternative formulations to offer significant gains. Nevertheless, these more
targeted objectives remain an interesting direction for future work, particularly in applications where
coverage guarantees over a narrow range of « are critical.

A.5 Upper Bound to the Coverage Gap for a Specific Target Miscoverage Rate

As discussed in the main paper, similar techniques can also be employed to derive an upper bound on
Ap (), the coverage gap corresponding to a given miscoverage rate c. This result is formalized in
Theorem[A.TT] which also outlines how it can be estimated from samples using the DKW inequality.
Theorem A.11. Let P and () be two probability measures on X x Y with sy P and sy() their
respective pushforward measures by the score function s : X x ) — R. Let sﬁlsn and sﬁQm denote
their empirical distributions constructed from n and m samples, respectively. Further, let SﬁQA:knl and
sﬁQT be such that sﬁQT sﬁQm = suQAfn. Then, we have with probability at least 1 — 2d that

1
Apga) < §ESCNSuP" [

Fup, (@a(S2) - g (Qa(S.)

oy, (Qa52)) = P, (@alS0)] +

F, o0 (Qal(S0) = F, g1 (Qu(S.)) }

log(2/d) log(2/d)
+\/ 2n +\/ 2m
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Proof. Per definition the coverage gap for a specific target miscoverage rate « is given by

AP,Q(O‘) = ’P(St < Qa(sc)) - Q(St < Qa(sc))|
= ESt'\/SﬁP |:]E8c~snP" |:1 (St S Qa(sc))i”

—Es,~s,0 []Eswsupn {1 (S < Qa(Sc))H '7

(B [Fop(@a() ~ Fuso(@a(S)

S ]ESCNSuP”

FsuP(QOt(SC)) - FSﬂQ(QO‘(SC))H

where the last inequality follows from Jensen’s inequality. At this point we introduce the empirical
distributions sy P, and s4@Q,, by applying the triangle inequality twice.

Apg(a) <Es.vs,pn [

F, 5, (Qu(S) — Fuya(Qa <sc>>]

+

B (@a(S) = Py, (@u(S.)|

< Bsimasr | Foyp, (@alS0) = Py, (Qa(S0)

+

Fur(Qa(S0) = P 7, (QulS0)] +

Fu(@u(S)) - Fiyq,, (@u(S)|

We then apply the DKW inequality to get with probability 1 — 2d

log(2/d) \/bg(?/d)

Ap (@) < Esmspr { F, 5 (Qa(S:)) = F,0, (Qa(Sc))H + \/ o 2m

Finally, we introduce the two auxiliary distributions s;Q, = s:Q = s;Q}, by once more applying
the triangle inequality twice and summing the inequalities to get the final result. O

Unfortunately, preliminary experiments indicate that the bound presented in Theorem [ATT]is loose
and of limited practical utility, unless the auxiliary distributions are close to the true score distribution
under Q. Further research is required to derive meaningful bounds for specific values of « in the
absence of labeled data. Nevertheless, if the goal is to enhance coverage for a particular «, one can
directly optimize the bound in Theorem@ Following prior work [4} (7} 39], this can be achieved
by introducing differentiable relaxations in the computation of quantiles and empirical CDFs, thereby
enabling gradient-based optimization with respect to the weights in sﬁf?fb" . However, this approach
has proven less effective than optimizing upper bounds on the total coverage gap.
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B Applicability, Limitations, and Extensions

Prior-Knowledge-Based Sandwiching Design. Our bounds in Theorem [3.3] rely on auxiliary
distributions (s3Q, s§@+) that stochastically dominate the unknown test score distribution s4(). In
the absence of prior knowledge, we use uninformed constructions such as (min, max) or (f,U),
which work well empirically but may yield loose bounds. A natural extension is to exploit domain-
specific or structural prior information to design tighter sandwiching distributions.

For example, if labels are organized in a hierarchy (e.g., ImageNet superclasses), side information can
constrain the feasible set of candidate labels for each test point. This allows constructing s4(); and
54Q)+ by selecting the most plausible and least plausible labels within that subset, leading to provably
tighter bounds. Similarly, if the distribution shift is known to be bounded (e.g., perturbations within
an /., ball), optimization procedures can identify feasible score ranges that respect these constraints.
The smaller the feasible set, the closer the auxiliary distributions approximate s4(), improving both
theoretical guarantees and empirical performance.

Exploring these strategies (hierarchical constraints, perturbation models, or other structured priors)
represents a promising direction for future work, as it bridges the gap between general-purpose
bounds and application-specific robustness.

Robustness to Misspecification. Our bounds in Theorem 3.3 assume that the auxiliary distributions
(s4Qy, s4Q+) satisfy the stochastic dominance relationship syQ1 > s3@Q > s¢@,. This condition
is guaranteed for the (min, max) construction and was observed to hold in many experiments for
(f,U), which uses scores derived from the model’s predicted distribution Q¢(Y'|X') and from a
uniform distribution over labels. However, (f, U) does not always satisfy this assumption.

Coverage improvements in these cases can be explained by the fact that the optimization objective
remains effective whenever the auxiliary distributions help move the calibration score distribution
closer to the test score distribution. This alignment, even if imperfect, can still reduce the coverage
gap. However, this is an important caveat: if the auxiliary distributions fail to capture the nature of the
shift, optimization may bias the calibration distribution in the wrong direction and worsen coverage.
Handling this risk requires care.

Future work should systematically study these failure modes and develop safeguards. Promising
directions include diagnostics to detect dominance violations, adaptive refinement of auxiliary
distributions based on empirical checks, and regularization strategies to prevent extreme deviations
when auxiliary distributions are poorly aligned with the test distribution.

Ambiguous Ground Truth. Ambiguous ground truth arises in settings where each instance may
correspond to multiple plausible labels with associated probabilities, such as in fine-grained classi-
fication or scenarios with inherent uncertainty. This problem has recently attracted attention in the
conformal prediction literature [5} 40].

Our method operates directly on nonconformity scores, which are typically unidimensional, without
imposing any assumptions on how the scores are constructed. This property makes it naturally
compatible with most CP techniques, including scenarios involving ambiguous ground truth. For
example, following Stutz et al. [40], one can define a score function as a weighted average of
class-specific scores under a plausibility vector A € Ak, i.e.,

K
s'(2,0) == A s, i)
k=1

Once such a score is defined, our approach can learn weights over the calibration data and compute a
threshold that adapts under distribution shift, just as in the standard setting.

The main challenge lies in constructing auxiliary distributions for ambiguous ground truth. Instead
of working with a discrete set of labels, we must consider distributions over the simplex, which
complicates the design of (4@, s4@Q+). While a min—max construction remains possible, it may be
overly conservative, as the resulting auxiliary distributions could be too far apart to yield tight bounds.
Future work could explore more informative strategies for building auxiliary distributions in this
setting, potentially leveraging prior knowledge or structural constraints on the plausibility vectors.
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C Extra experimental details and results

In this section, we present additional details about our experimental setup and supplementary results.
We begin by outlining how our methods fit within the split conformal prediction framework in
Section [C.T]and specifically in Algorithm[2] Next, we detail the baseline methods in Section[C.3}
followed by a description of the datasets used in Section|[C.4] Finally, in Section [C.5] we discuss key
design choices and ablation studies that may offer valuable insights for future research.

Before proceeding, we comment on a few technical details. We note that the code was implemented
in Python 3 using PyTorch [30] and all experiments were conducted on a single commercial NVIDIA
GPU with 12 GB of memory.

Algorithm 2 End-to-end Non-exchangeable CP with Optimal Transport (Split CP)
Input:
n labeled samples {(x;,y;)}_; from P
m unlabeled samples {z; };‘;ﬁl from Q
target miscoverage o € (0, 1)
score function s
Initialize unnormalized weights w = {w; }_; or weight function wy
Compute scores {s(x;, y;) "

Compute score vectors {s(z;) ;‘::ll /1 s(z) = {s(z,y) : y € V}
repeat
Construct s;Q* and s; Q" from {s(z;)}72" | /l e.g., (min, max) or (f,U)
Fit KDE to {s(z;,v;)}", with weights w
Update w or wy to minimize either (7)) or // weighted-CDF or 1-Wasserstein bound

until convergence or max steps

Weighted normalization: Compute normalized weights w /I accounting for weight of test point
Weighted threshold: ¢; ., < Q¥ ({s(z;, y:)}1,)

Prediction sets: for each x;, set C'(z;) < {y €Y : s(z,¥) < qi—a }

Output: {C(z4)}L_; (if {z;} provided) and learned weights w

C.1 Split Conformal Prediction Procedure

We follow a standard split conformal prediction framework, with the main difference being that we
introduce weights over the calibration nonconformity scores to better align their empirical distribution
with that of test scores. Concretely, we construct prediction sets by thresholding on the nonconformity
scores given by one minus the model-assigned probabilities. However, our methods are agnostic to
the choice of score function and could be applied to other approaches like APS [35]. We outline the
complete split CP algorithm we use, including weight optimization with our bounds, in Algorithm 2]

C.1.1 Weighting of Test Samples

In standard split conformal prediction, a test data point is implicitly assigned a weight of 1/n+1,
preserving symmetry with the calibration set. Extensions to non-exchangeable settings like [2,42]
also address this issue explicitly. Tibshirani et al. [42] propose assigning the test point a weight
proportional to its likelihood ratio under the shifted distribution (see details in Section[C.3.2)), while
Barber et al. [2] fix the unnormalized weight of the test point to 1, reflecting the fact that it already
comes from the target distribution.

Free-form weights We adopt a similar convention of [2] for free-form weights, assigning test
points the unnormalized weight w,,.; = 1. Intuitively, importance weights are meant to correct for
distribution mismatch, and the test point is already drawn from the target distribution, which justifies
unit weights. In that case, we have the following weighted empirical distribution s P’

n

N W;
PY = iOs(x; u; ith normalized weight =
sy Py ;wl s(as,ys) With normalized weights  w; = 7 n 2?21 u7j
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Weight Function When using a weight function, we adopt a similar strategy to that of Tibshirani
et al. [42]. Unlike their setting, where the weight function maps inputs = to weights, our function
maps nonconformity scores to weights. Consequently, for each candidate label y € )/, we obtain a
distinct test weight wg (s(z,+1,y)). Computing all these weights can be expensive when || is large.
To mitigate this cost, we approximate the test weight by taking the maximum over the score range
[Smin, Smax] t0 get a conservative upper bound for the conformal threshold:

Wpt1 = max  wp(s).
SE€[Smin,Smax
In our classification experiments, we define nonconformity scores as one minus the probabilities
assigned by the model, with [Smin, Smax] = [0, 1]. For calibration points, we compute unnormal-
ized weights directly as w; = wg(s(x;,y;)) fori € {0,...,n}. Finally, the weighted empirical
distribution sy P’ is given by

n
A . . . w;
54 P = E W;ilg(z, ) Withnormalized weights w; = T&
=1 Zj:l wj

C.2 Other Implementation Details

In all experiments, free-form weights are randomly initialized from a uniform distribution in [0, 1]
but mapped to log space for stability. When learning a weight function, we implement it as a small
multi-layer perceptron (MLP) applied directly to scalars representing nonconformity scores. In all
cases, the architecture is a simple MLP with shape 1 — 256 — 16 — 8 — 1 and ReL.U activations
followed a tempered tanh output to bound log-weights in [—20, 20]. Optimization follows the exact
same procedure for both parametrizations. In particular, for the image classification tasks, we use
Adam with learning rate 10~ for all datasets, varying the number of steps from 1000 to 5000 steps
depending on shift severity; see Section [C.4]for exact details.

C.3 Baselines
C.3.1 “Oracle”

We use the term “oracle” to describe the marginal coverage and expected prediction set size achieved
when both calibration and testing are performed on samples from (). This setup guarantees the
desired coverage and, in our context where the test scores remain fixed, represents the best possible
outcome. We only show these results as a reference for what we would get if we knew the true
s4@, highlighting that the prediction set sizes are considerably larger only because the model is less
accurate, as it was trained on samples from P and not .

C.3.2 Likelihood Ratios

Tibshirani et al. [42] also proposed to reweight calibration points from P and apply split CP using
a weighted distribution of calibration scores supfl" = % S Wilg(x, y:)- Since they only address
covariate shifts, it is easy to show the optimal unnormalized weights are given by likelihood ratios of
the form dQ(=i)/qpP(z;). Unfortunately, learning accurate likelihood ratios is known to be challenging,
especially when the two distributions are far apart. In our experiments, we applied the telescopic
density ratio estimation approach of [34], which we found useful in the context of more severe shifts.
In all cases, learning likelihood ratios directly on the input space X proved challenging and we found
more success when operating on the space of scores, i.e., fitting the density ratio estimator to map
vector of scores s(x;) to (approximate) ratios w; & dQ(«i)/dP(x;). The weights w; are then recovered
by normalizing the likelihood ratios over the calibration set and the test point in question. That is,
at test time, we must first evaluate the density ratio estimator to get Wy, +1 ~ 4Q@n+1)/dP(z,1,) and
then compute normalized weights as

w;
n+1l ~ °
Zj:l wj

For the large datasets, ImageNet-C and iWildcam, our density ratio estimator was given by a neural
network with two hidden layers and ten bridges. In this context, each bridge predicts the density

w; =
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ratio between two intermediary distributions defined by a mixture of samples from P and Q. In our
experiments, we constructed the intermediary distributions via linear combinations as detailed in [34].
We train the density ratio estimator for ten epochs with a learning rate of 1e~2 and weight decay of
le~3 to avoid overfitting. In the regression task, we also used an MLP with two hidden layers and
the same learning rate of 1e 3 but forewent the telescopic approach (no bridges) as it did not prove
useful. Regarding the architectures, we used ReLLU activations and kept the hidden size constant and
equal to the input size, i.e., 1000 for ImageNet-C, 182 for iWildCam, and 4 for the regression task.

C.3.3 Entropy scaled Conformal Prediction

We also compare our methods to Entropy scaled Conformal Prediction (ECP) proposed by [21]],
which constructs prediction sets as

upe = Qa ({h(F(X:)}H)

CKasa(Xt) = {y € y : S(Xtay) . max(l,upg)) < Qa (SC)} )

where f(X;) = {f(X:,y) : v/ € Y} is the set of probabilities assigned to each class by the
underlying predictor f, and h(f(X;)) = —>_, cy f(Xi,y) log(f(X;,y)) is the entropy of this set
of probabilities. Their method is designed to work with test-time adaption methods [26} 41]], which
adapt the model f in a stream of test samples. However, it can also be applied to our setting where

the model is kept fixed and a set of test samples Dg ) is observed all at once, as formulated above.

C.3.4 Conformal Prediction With Conditional Guarantees

Gibbs et al. [15] proposed a method that, under a prespecified function class of covariate shifts,
guarantees conditional coverage, i.e., ensuring the prediction set contains the true label for every test
point X,

Their approach essentially changes the conformal threshold for each new test point by learning a
function gy (x, ) as follows

1

mga(g(Xt)a S)

1 n
§s = arg min —— lo(9(X5),S;) +
g = argin 3 4010, S)

Cams(X0) = {y € ¥ s(X0,9) < G,y (X0} 4

where F is the function class of distribution shifts of interest, ¢, is the pinball loss with target quantile
level o, and S € R refers to the unknown nonconformity score of X;. By computing a new threshold
per test point and providing conditional guarantees, their method is inherently more powerful than
ours. However, this extra power comes with extra limitations:

* Function class F is typically unknown. Conditional guarantees are impossible in the most
general case of an arbitrary infinite dimensional class [11}144]. Therefore, we must constrain
ourselves to a prespecified class of functions, which requires precise knowledge about the
types of distribution shift we expect in practice. In experiments with large datasets like
ImageNet-C or iWildCam, it is not clear how to define F effectively.

* Computational cost at test time. Gibbs et al. [[15] propose an efficient algorithm to optimize
(24) that leverages the monotonicity of quantile regression to avoid evaluating each possible
test score for X;. Yet, this procedure still significantly increases latency at test time, and in
our hardware, it took 1.5 seconds per test point when using 300 calibration points, and 30
seconds when using 1000 calibration points. Due to this extra computational cost, we only
used 300 calibration points when applying the method of [[15].

* Prediction set size. In practice, we observed that prediction sets produced by the method of
[L5] to be significantly larger than optimal. This is in part due to the stronger conditional
guarantee but might reduce the usefulness of the prediction sets in practice.

In our experiments, we used the official implementation available at|github.com/jjcherian/conditional-
conformal., Similarly to the likelihood ratio baseline described above, we applied their method
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to the vector of scores instead of the input space. Since the function class corresponding to the
type of distribution shifts observed in ImageNet-C and iWildCam are hard to define in practice, we
applied the most general approach using radial basis function (RBF) kernels with hyperparameters
v = 12.5 and A = 0.005 (see the official implementation for details) for ImageNet-C and iWildCam
experiments, since we found this to work best in preliminary experiments.

C.4 Datasets

C.4.1 Regression - Synthetic Data

For the toy regression task we adopt a setting similar to the one proposed in [49], where we have
a regression problem with 4-dimensional input variable X ~ AN(0, I), and target variable given
by YV = 210 + 27.4X; + 13.7X, + 13.7X3 + 13.7X, + ¢, with € ~ N(0,1). We will refer to
this distribution on X x ) as the unshifted distribution P. We then induce a covariate shift to
get a new distribution () via exponential tilting by resampling the data with weights wyy(x) =
exp(—1x; 4+ 0.5x2 — 0.25x3 — 0.124). This automatically gives us ground-truth likelihood ratios,
since wyy (z) = 4Q(=)/apP(z) by design. Note that these tilting weights should still be normalized over
the calibration set to define a proper empirical distribution we can apply conformal prediction over.

For the experiment depicted in Figure[3] we repeat 500 simulations, each time sampling new datasets
Dg), Dg), D(Ql ), and Dg ), each with 1000 samples. We use the regression-as-classification method
of Guha et al. [16], splitting the output space into 50 equally spaced bins. For the predictor, we
train a multilayer perceptron (MLP) with a single hidden layer of 256 units and ReLLU activations.
For the density ratio estimator, we use an MLP with one hidden layer with 32 neurons, which
we train to distinguish samples from ’Dg) and DS ) by minimizing the logistic loss as common in
density estimation tasks. For our methods, we only considered the free-form parametrization for this
experiment. We repeat the optimization process in Algorithm [I]for 10 steps, each time updating all
the weights using Adam [22] with a learning rate of 0.1.

C.4.2 ImageNet-C

In all cases, the underlying classifier is the pretrained ResNet-50 from torchvision [27]. To simulate
label shift, as in previous work [12]], we do so by resampling data points (without replacement)
according to a new label marginal Q(Y) ~ Dir(c) where the concentration parameters ¢ are given
by ¢, = P(Y = k) % 7. The parameter -y controls the intensity of the label shift, with lower values
of v producing more skewed label marginals. However, since we sample without replacement, low
values of ~y lead to small sample sizes (< 50) and, consequently, noisy results. For that reason, we set
~ = 10 which yields a significant label shift while producing sample sizes of around 300 samples.

ImageNet-C [17] comprises 15 different types of corruption applied on top of the original validation
dataset of ImageNet [36], which contains 50K samples. We repeat each experiment with 10 random

seeds. As explained in Section each time we randomly split the corrupted data D, into two: DS )

used to learn the weights or density ratio model, and Dg ) for testing. Since we use a pretrained model

as classifier, we do not need to reserve a subset of the clean data Dp (the original validation dataset)
for training the model. However, one thing to note is that in ImageNet-C Dy, is constructed using the

same images in Dp. Thus, we have to ensure the calibration dataset, which we denote Dg) to be

consistent with Section does not contain any of the images in either Dg ) or Dg ). This will affect
the sizes of each of these sets, as described in the following sections. In all ImageNet-C experiments,
unless explicitly stated otherwise, we construct calibration and test sets with the following sizes:

calibration sets with \Dg)| = 300 and |Dé?1 )| = 300, and test sets with |Dé?2 )| = 30000.

The underlying classifier was a pretrained ResNet-50 available in Torchvision package [27], which
was kept fixed in all experiments. We only learn weighting scheme for the calibration data points,
and the model as well as the nonconformity score function remain unchanged in all cases. In each
optimization step and for both parametrizations, we backprop through all weights (no batching) using
Adam with a learning rate of le—3 and 8 = (0.9,0.999). These hyperparameters were the same
across all runs, with only the number of optimization steps varying: 1000 steps for distribution shifts
of severity 1, 3000 steps for severity 3, and 5000 steps for severity 5. We observed our methods to be
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fairly robust to these hyperparameters. One should only keep in mind that the more severe the shift,
the longer the optimization or the larger the learning rate should be, as demonstrated in our approach.

In Table[6] we present the empirical coverage obtained for each method and corruption in ImageNet-C,
giving a more complete picture of the ImageNet-C results reported in Table[I]

C4.3 iWwildCam

iWildCam involves images of animals from different camera traps that aim to monitor biodiversity
loss. The distribution shift arises from the differences in the characteristics of the environment of
each camera trap (e.g., changes in illumination, camera angle, background, etc.). We use different
subsets of camera traps for training, validation and testing, which induces a distribution shift. For the
classifier, we train a ResNet-50 model from scratch on the training set. As for ImageNet-C, we repeat
each experiment with 10 random seeds.

We experiment with two different settings of distribution shift: the natural one (i.e., differences in
camera-traps between validation and testing) that already exists in the data, and a combination of
the natural shift with a label shift induced by changing the marginal over the labels via a Dirichlet
distribution in the same way as for the ImageNet-C dataset, also with v = 10. For this experiment,
we also used Adam with a learning rate of le—3 and 5 = (0.9, 0.999), running optimization for 1000
steps. As for the ImageNet-C dataset, we use calibration sets with |Dg)\ = 300 and |DE?1 )| = 300
for the experiments reported in the main paper, with the test set composed of 10000 samples, i.e.,

|D£22 )| = 10000. However, we also use the iWildCam dataset to study the effect of variations in
sample sizes in our methods, as explained in the next section.

C.5 Further Discussion

In this section, we examine key design choices, including the impact of sample size and the perfor-
mance differences arising from the selection of bound and auxiliary distributions. For clarity, the
empirical results presented in this section focus exclusively on the free-form parametrization, i.e., we
directly optimize the weights over the calibration scores.

C.5.1 Influence of the number of samples from calibration and test distributions

In Tablesand we illustrate how the final total coverage gap A p ¢ varies with |D§32) |, the number of

calibration samples from P, and \DS ) , the number of unlabeled samples from (). As anticipated, the
method’s performance improves with an increase in the number of available samples. Interestingly,
the number of calibration samples from P appears to be more crucial for performance. This is
encouraging, as it suggests that collecting or waiting for a large number of unlabeled samples from
the test distribution is unnecessary, with no significant gains observed beyond 1000 samples.

We observed a significant reduction in the total coverage gap in all cases where the number of
calibration samples from P was 100 or more. For smaller calibration samples, the observed change

in coverage was minimal or even slightly detrimental, as in the case of (sﬁQmi“ sﬁQﬁ;aX) with

m

|D§32)| = 30 and |D§91 )| = 100. This is likely because we do not have enough samples from P to

represent s3() well enough via a weighted empirical distribution of the form sy P”. More broadly, this
underscores one of the limitations of our approach. The possibility of our method hurting coverage in
some cases is not surprising, since we tackle the most general distribution shift case, with no prior
information about the shift mechanics. In that setting, there is always a risk that optimizing our
methods could negatively impact coverage. However, the results show a positive trend, indicating
that these risks tend to diminish as the number of available samples increases.

C.5.2 Choice of Bound

Before applying our methods, two key decisions must be made. The first is whether to use the
weighted CDF formulation in or the 1-Wasserstein distance formulation in (8). The second
involves selecting the appropriate pair of auxiliary distributions. To guide these choices, we evaluate
the total coverage gap achieved after optimization under each configuration. The results for the image
classification datasets are summarized in Table
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Table 2: Total coverage gap on iWildCam with ResNet-50 for varying number of calibration samples
from P (|D§;2) |) and @ (|DS) ) for our method with (s;Q™", s,Q™?*). We highlight in blue, the
cases where total coverage improved by more than one standard deviation. We report mean and
standard deviation across 10 random seeds. Lower is better.

Number of unlabeled samples from @)

DY I=30 [P =100 DY) =300 [DS’|=1000 [D’|= 3000

# samples from P | Uncorrected

D] =30 011950046 | 011750045 012240044 011520035 011810030 011910045
|D§32)| =100 0.14340.002 | 0.107409.019 0.10240.017 0.099+0.015 0.096+0.016 0.101+9.018
|D§>2)| =300 0.14510.014 | 0.09140.017  0.08540.000  0.084+0.010 0.083+0.010 0.085+0.010
|D§:2)| = 1000 0.13940.010 | 0.08540.015  0.07810.006  0.07210.005 0.072-£0.004 0.073+0.006
IDEE)I = 3000 0.13940.005 | 0.082+0.015 0.075+0.008  0.070+0.007 0.069+0.005 0.07040.006

Table 3: Total coverage gap on iWildCam with ResNet-50 for varying number of calibration samples

from P (\’Dg) |) and Q (|D8) |) for our method with (s;Q, s;QY). We report mean and standard
deviation across 10 random seeds. Lower is better.

Number of unlabeled samples from @

#samples from P | Uncorrected | [DY’| =30 [DY| =100 |DY’| =300 [D’|=1000 |DY’| = 3000

|D§:2)| =30 0.11940.046 | 0-11240.044  0.11740.042  0.109+0.033 0.112.40.037 0.113+0.044
|Dg)| =100 0.14310.022 | 0.09740.021  0.09410.018  0.09010.014  0.086+0.014 0.091+0.018
IDY| = 300 0.14540.014 | 0.08310.01s  0.07610010  0.073:10.000  0.073x0010  0.07310.011
|D§32)| = 1000 0.139+0.010 | 0.07240.018  0.067+£0.008  0.061+0.006 0.05940.004 0.060+0.005
DY =3000 | 0.13940.005 | 00720007 0.064:0.000  0.058:0007  0.05710001  0.058:0.005

Weighted CDF or 1-Wasserstein

It is clear from the theoretical results that the weighted CDF version of the bound is provably tighter
than the 1-Wasserstein distance. Therefore, one should expect (7)) to produce better results, and this
seems to be the case for most image classification datasets, with the exception of ImageNet-C with
severity level 1. In contrast, for regression tasks, we observed the opposite trend: the 1-Wasserstein
distance outperformed the weighted CDF bound. As shown in Figure[d the weighted CDF bound
led to overcoverage when paired with (sﬁQAfn, sﬁQrUn) and produced less consistent results when used
with (sy ) min, anﬁa"). We conjecture that this discrepancy arises from the increased complexity
of optimizing the weighted CDF bound, which may account for the divergent empirical outcomes.
Indeed, the task of finding the density of scores needed for the weighted CDF distance is more
intricate and precision-sensitive than simply identifying its maximum. As a result, in certain cases,
the weighted CDF bound may underperform relative to its 1-Wasserstein counterpart.

Choice of auxiliary distributions

The tightness and practical utility of our bounds are influenced by the choice of auxiliary distributions
(5:Q%, 5;QT): the closer these are to the true distribution s;(, the tighter the resulting bounds.
However, our bounds have proven effective for learning the weights of s; P* even when using
uninformed and widely applicable auxiliary pairs such as (s;Q™™, s;Q™*) and (s;Q7, s;QY),
which in general do not bound sy tightly.

The performance of the two auxiliary distribution pairs was comparable in most cases, with
(sﬁQf , sﬁQU ) generally achieving better coverage, albeit with a tendency to overcover. As mentioned
in the main paper, (s;@Q7, s;QY) is motivated by the observation that s; QY tends to produce noncon-
formity scores higher than those from the true distribution s3(Q)—it corresponds to an uninformative
model in which the correct label is independent of the model output—while sﬁQf tends to yield
lower nonconformity scores, reflecting a perfect model where the true class is sampled according to
the model-assigned probabilities.

Beyond this theoretical motivation, there is also a practical reason for the better performance of
f U . . . -
(s4Q7, s4Q"), which relates to the specific form of the nonconformity scores used—namely, one
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Table 4: Total coverage gap on iWildcam and ImageNet-C with severity levels 1, 3 and 5 com-
paring optimization via the welghted -CDF ({7) and the 1-Wasserstein (§) bounds w1th free-form
parametrization. The classifier is given by a ResNet 50 and we consider both pairs (suQm“‘ 51Q™)

and (sﬁQf , sﬁQU). For ImageNet-C we report the average across all 15 corruptions. Lower is better.
iWildCam ImageNet-C Sev. |  ImageNet-C Sev. 3  ImageNet-C Sev. 5

Uncorrected  0.1324¢9.016 0.141+0.048 0.267+0.081 0.388+0.076

weighted (min, max)  0.084.+0.010 0.098+0.033 0.171+0.060 0.28110.076
CDF (f,U) 0.07340.009 0.059+0.023 0.10210.036 0.173+0.071

: . (min,max)  0.12540.005 0.069+0.023 0.196+0.062 0.337+0.093
I-Wasserstein (f,0) 0.125+0.005 0.044+0.020 0.139+0.066 0.3104+0.108

minus the model-assigned probability for each class. Under this scoring scheme, the main difference
between the two pairs arises from the contrast between squ and s3Q™'"™. Since most classes tend

to receive relatively high nonconformity scores, suQU and sy Q™" are typically quite similar. On
the other hand, unless the model is highly confident, squ and suQmi“ can differ substantially. This
explains why sﬁQf may be more effective in practice. In particular, if we expect the model to have
low accuracy under @, ssQ™'" becomes overly conservative and diverges significantly from the true
s4Q, a pattern clearly illustrated in Figure Therefore, we can improve performance by biasing sﬁQ¢
towards lower values, for instance, by sampling from the model, potentially with a high temperature.

Computing the Bounds

We compute the 1-Wasserstein version of the bound by estimating max;, eg ps, p(s.) with a Gaussian

KDE and computing W1 (suf)n, San) analytically. However, for the weighted CDF version of the
bound we have a couple of options. The first is to treat the bound as a expectation under sy P, which
can be approximated via the n samples (X, Yz) _, we have from P

AP,Q S /psnP(Sc) Fsﬁpn (Sc) - FSuQm (Sc) = ESCNSuP |:‘F5ﬁ13’n (Sc) - FSuQm (Sc)

} (25)

NZ ‘F s(X;,Y7)) — Fén@nl(S(Xivm)"

This gives tight estimates and is computationally cheap but did not prove useful as an optimization
objective for learning a weighting scheme. Alternatively, we could compute the upper bound by
numerical integration, which works well for unidimensional data. Since our nonconformity scores
are bounded in [0, 1], we use a grid of equally spaced K points s, to get the following estimate
Psy P(Sk
zzui‘p (sk) = F,,o. (s1)] . 26)

AP,Q S /pSﬁP(Sc)
k=1

In this case, we have to estimate the probability sy P(sy) for each of the points in the grid. We do
that with a Gaussian KDE, using reflection [20] to deal with the boundaries in [0, 1]. This proved a
better optimization objective, facilitating the learning of the weighted distribution sﬁf’,’f . Thus, when
computing the weighted-CDF version of the bound we use the numerical integration method as in
(26) for both training and evaluation; see Table 5] for an analysis of the tlghtness of the bound (26)) in
ImageNet-C with severity 5. Note that in all cases, we can replace sy P, with s; P

sﬁﬁ’n (SC) - FSan (SC)

In terms of complexity, the bounds require computing either weighted CDF or 1-Wasserstein distances,
which are tractable for unidimensional variables like nonconformity scores. In both cases, we
need to compute the difference between the empirical CDFs, which has overall time complexity
O((m + n)log(m + n)). The complexity here is dominated by the sorting operation needed to
compute the difference between the empirical CDFs, but fortunately this operation is applied only to
the score values and not to the weights, and thus we need to compute it only once during optimization.
Finally, with the exception of the bound in , we also need to estimate the density ps, p. We do so
via a Gaussian KDE defined on the n samples from sy P, which has cost O(k - n), where k is the
number of points the KDE is evaluated on, e.g. the grid size in (26). We set the KDE bandwidth using
Scott’s rule [37]] but scale it by a factor of 0.1 in classification tasks to improve resolution in the tails.
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Figure 4: Distribution of coverage for the synthetic regression task across 500 simulations and target
coverage rate of 90% (blue vertical line). Results with the 1-Wasserstein distance formulation on the
left and with the weighted CDF formulation on the right. The baselines remain the same in both plots.
For ease of visualization, we plot the density estimated with a KDE fit to the 500 observations.

C.5.3 Tightness of the Bounds

Our upper bounds to the total coverage gap include terms that depend only on the auxiliary distri-
butions, such as [, Fi,qi(sc) — Fy,qt (sc)dsc in (7) and Eg, 1 [S] — E, i [S] in . Therefore,
we cannot hope to have tight bounds, unless s;Q" and s;Q* are close to each other and sandwich
3@, i.e., satisfy the stochastic dominance relation s;Q" = s4Q = s;Q*. To illustrate this point, we
evaluate our upper bounds on ImageNet-C with severity level 5 in Table [5] where we can see the
upper bounds constructed with the auxiliary distributions are relatively loose, as expected.

As discussed throughout the paper and demonstrated in the experiments, these bounds, although not
tight, are still effective in mitigating the coverage gap by serving as a practical optimization objective
for learning s3 P*. Nevertheless, we conjecture that there is still room to improve the tightness of
these bounds. We leave further improvements for future work, but one promising direction is to learn
a transformation of the scores under () jointly with the weights of s3 P*. Although this approach
would still require auxiliary distributions to evaluate our bounds, it could yield tighter estimates, for
instance, by reducing the gap between s;Q™™ and s; Q™.

Table 5: Upper bounds to the total coverage gap for ImageNet-C with severity level 5. For each pair
of auxiliary distributions we consider, we have the total coverage gap Apw ¢ after optimization,
and the weighted-CDF upper bound computed with unlabeled samples and no DKW correction. We
report mean and standard deviation across 10 random seeds. Lower is better.

Corruption ‘ Apw g (53Q™In ) 55 QM) ‘ Apw g (53Q7,5:,QY)

Gauss 0-377i0.026 O~445i0.014 0.264104033 O~291i0.019
Shot 0.378+0.024 0.441 19017 0.29119.028 0.31940.015
Impul 0.378:|:0_026 0.450;‘;0.013 0.274;‘;0.027 0.306;‘;0.012

Defoc 0.258i0,030 0.328i0.()22 0~094j:0.013 0~113j:0.018
Glass 0.316:|:0_030 0.389:‘:0.019 0.167:‘:0.032 0.208:‘:0.021
Motion 0-291i0.028 0~354j:0.019 0.168i0‘023 0~209j:0.013
Zoom 0.252:|:0_027 0.306:‘:0.024 0.153:‘:0,027 0.190:‘:0.030
Snow 0-289i0.026 0~333i0.027 0201104026 0.226io_025
Frost 0.25410.026 0.29810.025 0.16210.023 0.18910.021
Fog 0.24610.028 0.29640.025 0.16640.020  0.20210.028

Bright 0.095+0.009 0.098+0.011 0.056+£0.0090  0.060+0.009
Contr 0-327i0.034 O~413i0.015 0-114i04034 O~134i0.016
Elastic 0.298:&0,025 0~354:t0.026 0.232:‘:0‘023 0.275:‘:0.024
Pixel 0.257:|:0_027 0.314:‘:0.022 0.147:‘:0.021 0.184:‘:0.009
Jpeg 0.19610.023 0.230+0.030 0.106+0.013  0.11910.017
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