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ABSTRACT

Transformer-based language models have shown promise in genomics but face
challenges unique to DNA, such as sequence lengths spanning hundreds of mil-
lions of base pairs and subtle long-range dependencies. Although next-token pre-
diction remains the predominant pre-training objective (inherited from NLP), re-
cent research suggests that multi-objective frameworks can better capture com-
plex structure. In this work, we explore whether the Birdie framework, a rein-
forcement learning-based, mixture-of-objectives pre-training strategy, can simi-
larly benefit genomic foundation models. We compare a slightly modified Birdie
approach with a purely autoregressive, next token prediction baseline on standard
Nucleotide Transformer benchmarks. Our results show performance gains in the
DNA domain, indicating that mixture-of-objectives training could be a promis-
ing alternative to next token prediction only pre-training for genomic sequence
modeling.

1 INTRODUCTION

Genomic sequences encode the fundamental blueprint of life, guiding complex regulatory processes
and influencing phenotypic traits. Unlike most natural language processing (NLP) tasks that gen-
erally span from a few hundred to several hundred thousands of tokens, genomic sequences can
extend over hundreds of millions of nucleotides, each of which are often tokenized alone (Poli et al.,
2023). These immense lengths, combined with the subtlety of genomic signals, pose significant
computational and representational challenges.

Transformer-based architectures have pushed the boundaries of sequence modeling in NLP. Unfor-
tunately, their quadratic complexity with regards to the sequence length can hinder direct applica-
tion to genomic data. Recent works (Nguyen et al., 2024; 2023; Poli et al., 2023) propose novel
state-space and kernel-based models or hybrid architectures that can handle longer sequences ef-
ficiently. However, beyond particular architecture innovations, training objectives themselves can
significantly influence the learned representations of the model.

Recently, the Birdie framework (Blouir et al., 2024) introduced a mixture-of-objectives pre-training
strategy driven by reinforcement learning, combining classic and new objectives, including infilling
and prefix language modeling Raffel et al. (2020); Tay et al. (2023b). A reward model was used to
learn associations between objective sampling ratios and per-objective delta losses after a period of
training steps. Random per-objective sampling ratios, called actions, were then fed to the reward
model to estimate which sampling ratios should be used for the next amount of training steps. This
approach significantly improved long-range retrieval and text comprehension for NLP models on
tasks like SQuAD-v2, story causality comprehension, and multi-phone number retrieval.

In this work, we adopt and slightly adapt the Birdie framework for genomic sequences. Our exper-
iments show that mixing multiple objectives consistently outperforms single-objective next-token
prediction baselines, especially under data-scarce conditions.
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The key contributions from our paper are:

• Adapting the Birdie mixture-of-objectives framework for the genomic domain.
• Evaluating performance on standard Nucleotide Transformer tasks, demonstrating im-

provement over the Next Token Prediction baseline.
• A discussion of challenges when translating methods between the NLP and Genome do-

mains.

2 RELATED WORK

2.1 GENOMIC SEQUENCE MODELING

Early methods in genomics often relied on handcrafted features or simpler neural networks lim-
ited to short sequences. Recent deep learning efforts transitioned to CNNs and RNNs (Alipanahi
et al., 2015; Zhou and Troyanskaya, 2015), then to Transformers (Ji et al., 2021), and more re-
cently to advanced state-space and kernel-based architectures (Gu et al., 2021; Nguyen et al., 2023).
Despite architectural innovation, long context length and relevant, diverse tasks and objectives for
pre-training continue to be obstacles for large genome models.

2.2 MIXTURE-OF-OBJECTIVES TRAINING

Training on Next Token Prediction can lead to reduced performance on downstream tasks compared
to training with a diverse mixture of objectives Tay et al. (2023a); Lewis et al. (2019); Blouir et al.
(2024). Training with a mixture of objectives can help the model learn abstract versions of relevant
skills and prime them for downstream tasks. This can be particularly useful for situations where a
downstream task does not have many training samples.

3 METHODOLOGY

3.1 BIRDIE MIXTURE-OF-OBJECTIVES

The Birdie framework trains models on multiple training objectives and tasks simultaneously (Blouir
et al., 2024). Originally designed for NLP tasks, we adjust and simplify the objectives for our DNA
sequences, following several pilot runs. First, we remove Next Token Prediction entirely. We find
that our small Transformers suffered from reducced overall performance with the presence of this
objective. Second, we use two aggressive infilling configurations from UL2R used in U-PaLM (Tay
et al., 2022), specifically using only 50% token corruption with an average span width of 3 tokens,
or, an average of 15% token corruption with an average span width of 32 tokens. We keep all other
objectives in the original Birdie framework. We describe all objectives below:

• Infilling: Randomly mask spans of the input and train the model to generate them. This
task can help the model capture context-sensitive dependencies from across the sequence,
as well as handle partially corrupted input data. We use the aforementioned settings: an
average span width of 3 tokens with 50% of input tokens masked out, or we mask out 15%
of the tokens with an average span width of 32.

• Next Token Prediction: Generate the next token from left to right, in a causal manner.
This approach is the standard autoregressive language modeling and helps the model learn
sequential dependencies.

• Deshuffling: Randomly shuffle the order of subsequences within the input, and train the
model to restore the original sequence. This objective ensures the model recognizes struc-
tural coherence and ordering. We shuffle 50% of the input sequence.

• Prefix Language Modeling: Provide a partial prefix of the input and train the model to
predict the remaining content. By learning to continue truncated sequences, the model
handles arbitrary contexts and completes them coherently. Following UL2 and Birdie, we
set the bidirectioal prefix area to be 75% of the input sequence. Therefore, the model
generates the last 25% of the sequence with no loss calculated on the prefix.
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• Autoencoding: This objective is similar to infilling, where spans of tokens have been
replaced with a mask token Lewis et al. (2019). We reconstruct the entire input. This
entails copying the unmasked spans from the original sequence. We replace 30% of the
input tokens with several spans. The model re-produces the original input sequence. We
also shuffle an average of 50% of the non-masked input spans, creating a very similar setup
to the best objective found in BART Lewis et al. (2019).

• Copying: Generate the exact input. Although simple, this objective ensures the model is
capable of producing lossless reconstructions, serving as a baseline or supplementary task.

• Selective Copying: The model is given the prefix and suffix of a string to retrieve from the
context. This trains the model to be able to locate and selectively copy spans of text. We
use 15% of the input text as spans. This can be seen as a structured shuffling of unshuffled
input data.

3.2 PRETRAINING

We pre-train two four layer Transformers. We place further model details and specifics in appendix
subsection 8.1.

3.2.1 TRAINING DATA: T2T-CHM13

We pre-train on the T2T-CHM13 human genome assembly (Nurk et al., 2022), which is roughly 3.1
billion nucleotides in length. This is one of the newest versions of the human genome.

3.3 EVALUATION DATASETS AND TASKS

We use the latest Nucleotide Transformer benchmarks (Dalla-Torre et al., 2023). We provide de-
scriptions in section 8.

4 EXPERIMENTS

4.1 SETUP AND BASELINE

We compare:

• NTP-Only Baseline: A model trained exclusively on next-token prediction.

• BirdieDNA (Mixture-of-Objectives): Our approach sampling masked, infilling, prefix,
deshuffling, selective copying, and other tasks from Birdie. We have slightly modified
them, as described in subsection 3.1.

Each downstream task was trained on directly for 8,192 steps with a batch size of 32. We used a
fixed learning rate of 5e-5 with no weight decay. We collect the evaluation performance every 256
steps.

4.2 RESULTS

We find that the Birdie-trained model reached higher accuracies significantly faster than the Next
Token Prediction-trained model. Our experimental setup used a total of 262,144 samples per run,
from 8,192 finetuning steps and a batch size of 32. The majority of these tasks have 30,000 training
samples, so this represents at least 8.7 epochs. These F1 and Accuracies may be evidence that Birdie
is less necessary should the downstream task allow for a specialized set of model weights, These
results diverge from the original Birdie paper, where certain models were ”stuck” in local minima
following Blouir et al. (2024)

Following similar work Poli et al. (2023); Dalla-Torre et al. (2023), we do not report overall av-
erages. We report F1 and Accuracy for each benchmark from the latest version of the Nucleotide
Transformer’s benchmark collection Dalla-Torre et al. (2023).
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Task Name Model F1 (%) Accuracy (%)

Promoter All Birdie 83.31 83.93
NTP 83.38 83.79

Promoter No Tata Birdie 84.74 84.85
NTP 84.63 84.77

Promoter Tata Birdie 92.44 91.67
NTP 87.80 86.11

Splice Sites Donors Birdie 84.75 83.38
NTP 86.11 84.52

Enhancers Birdie 70.40 68.07
NTP 71.02 68.14

H2Afz Birdie 72.03 67.67
NTP 71.97 67.37

H3K27Ac Birdie 70.58 65.75
NTP 70.20 65.25

H3K27Me3 Birdie 75.47 71.90
NTP 75.51 71.80

H3K36Me3 Birdie 77.00 73.20
NTP 77.43 73.60

H3K4Me1 Birdie 71.29 65.97
NTP 71.21 65.63

H3K4Me2 Birdie 72.83 69.58
NTP 73.53 69.50

H3K4Me3 Birdie 75.36 75.75
NTP 75.95 76.25

H3K9Ac Birdie 72.69 68.25
NTP 73.77 69.50

H3K9Me3 Birdie 68.00 57.75
NTP 65.20 58.75

Table 1: Performance metrics for each task (F1 and Accuracy). We compare our Birdie-trained
Transformer with a Next Token Prediction-only trained Transformer. These results come from the
latest version of the Nucleotide Transformer benchmarks Dalla-Torre et al. (2023); Poli et al. (2023)
and are not directly comparable to older literature.
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4.3 DISCUSSION

Our findings show a slight, but present, improvement on model performance from our mixture-based
training. Pre-training on self-supervised, abstract versions of these tasks can show up as improved
performance on downstream tasks, and these results align with previous literature (Tay et al., 2023b;
Raffel et al., 2020; Blouir et al., 2024) showing multi-task or mixture-based pre-training can result
in more robust and flexible models.

5 CONCLUSION

We present BirdieDNA, a mixture-of-objectives training strategy for genomic sequence modeling.
By sampling multiple reconstruction and prediction tasks, our method produces robust representa-
tions that transfer well to key downstream genomics tasks. Experimental results suggest consis-
tent improvements across enhancer detection, promoter classification, splice-site prediction, histone
mark classification, and variant effect prediction. In future work, we envision integrating additional
objectives (e.g., evolutionary or structural constraints) and exploring larger-scale multi-species train-
ing corpora. Mixture-of-objectives training represents a straightforward yet powerful route to tack-
ling the immense complexity of genomic sequences.

6 LIMITATIONS

The results are relatively speaking, close. We believe is a limitation of the datasets and procedures
for these common DNA downstream tasks, as compared to NLP. After we ablated many hyperpa-
rameters to get the best result for each pre-training framework, the settings that led to the best results
for each task may not have been compatible with simply training on collections of these tasks, as is
common with transfer learning in NLP Longpre et al. (2023).

7 FAILURES

We also attempt to perform a second-stage pretraining of Llama 3.2 1B to handle DNA sequences.
Whether or not we used a mixture-of-denoisers approach or standard next-token prediction objec-
tive, the model was unable to out-perform a smaller freshly initialized model on these tasks. We
hypothesize that this may be due to an excessive model size for the size and ”grokkability” of the
datasets used.
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8 APPENDIX

demo coding vs intergenomic seqs: Distinguish coding sequences (i.e., from protein-coding
genes) from non-coding intergenic regions. The dataset combines two sources:

• intergenomic seqs 50k.csv – 50,000 sequences (200 bp) from non-coding re-
gions.

• random transcripts.csv – 50,000 sequences (200 bp) from coding regions.

demo human or worm: Classify sequences as either human or C. elegans, using 50,000 200 bp
segments from each organism. The goal is to detect species-specific sequence patterns.

dummy mouse enhancers ensembl: Discriminate between mouse enhancer sequences and ran-
dom genomic background. Each 200 bp sequence is labeled as an enhancer or non-enhancer.

human enhancers cohn: Identify human enhancer regions vs. non-enhancer background se-
quences. Like the mouse enhancer task, each sequence is 200 bp and labeled for enhancer activity.

human enhancers ensembl: Similar to the previous human enhancer dataset but curated from En-
sembl annotations. The task again is enhancer identification within human DNA.

human ensembl regulatory: Classify human DNA segments into specific regulatory categories,
including enhancer regions, open chromatin regions (OCRs), and promoter regions.

human nontata promoters: Distinguish promoter sequences (that lack a canonical TATA box)
from non-promoter regions. Each input is a 200 bp stretch of DNA annotated for its regulatory
function.

human ocr ensembl: Determine whether a given 200 bp human sequence maps to an open chro-
matin region (OCR) or a random genomic background location.

8.1 PRETRAINING AND MODEL CONFIGURATION

We pretrain all models on the T2T dataset for 16,384 steps. We use a batch size of 128, and a cosine
LR decay from 1e-3 to 1e-5. We use a hidden size of 512, 8 heads of 64 dimensions each, and rotary
position encodings with a decay rate of 500,000, as popularized by Gemma 2 Team et al. (2024). We
use a standard Transformer++ setup: pre-norm Attention layers followed by SwiGLU MLPsShazeer
(2020); Gu and Dao (2023).
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