
Under review as a conference paper at ICLR 2023

ON INCREMENTAL LEARNING WITH LONG SHORT
TERM STRATEGY

Anonymous authors
Paper under double-blind review

ABSTRACT

Incremental learning aims at mitigating the forgetting during the sequential learn-
ing of deep neural networks. In the process, a procedure (including distillation, re-
playing, etc.) is usually adopted to help model accumulate knowledge. However,
we discover the tuning of such procedure could face the “long short term dilemma”
that the optimal procedure of short term learning is not necessarily equivalent to
that of long term learning due to their need of different plasticity/stability bal-
ances. The existing methods have to take the trade-off to achieve better overall
performance along the incremental tasks. In this paper, we propose a novel Long-
ShortTerm strategy that circumvents limitations of widely-used pipeline with sin-
gle branch and brings model capability in both short and long term into full play.
To further control the plasticity/stability balance in LongShortTerm strategy, we
discover that for ViT backbone, magnitude of memory augmentation is critical to
retention of model and propose Margin-based Data Augmentation to meet differ-
ent balances in long short term learning. Extensive experiments on two complex
CIL benchmarks: ImageNet-100 and ImageNet-1K demonstrate the effectiveness
of our LongShortTerm strategy with improvements of 0.59%-3.10% over state-of-
the-art solution.

1 INTRODUCTION

Human being is capable of learning from the environment and accumulating knowledge gradually.
Given a group of datasets, common artificial intelligence systems could fit each individual dataset
well. However, when learning incrementally, models will suffer from catastrophic forgetting Mc-
Closkey & Cohen (1989); French (1999); Robins (1995) and fail to handle ever-changing environ-
ments. To mitigate forgetting, efforts Li & Hoiem (2017); Hou et al. (2019); Castro et al. (2018);
Douillard et al. (2020); Simon et al. (2021) have been made to help networks maintain the memory.

However, on one side, attempts to preserve preceding knowledge potentially brings adverse effects
to accumulating new learnt knowledge more or less. And as the result, the best on accuracy of new
and old classes could hardly be achieved simultaneously in single model due to stability-plasticity
dilemma Parisi et al. (2019). On the other side, accuracy of each task is actually a continuous
metric with growing number of incremental steps. In later task, accuracy of old tasks will take
more percentage in the overall accuracy. To meet the tendency of the growing weight of preceding
performance metric, the training procedure should encourage model to be more retentive with certain
sacrifice of newly learnt knowledge. In contrast, model is more likely to be more plastic on current
task. Fig. 1 Upper Left demonstrates such phenomenon, where the stable “Long Term Learner”
and the plastic “Short Term Learner” are trained with different incremental learning methods and
yield advanced performance in different stage of training. Based on this, we claim that the optimal
procedure on the current task could not necessarily produce the best result in later tasks. They need
different balance between learning and reviewing. Or in other words, the optimal solution of short
term learning is not equivalent to that of long term learning.

To ameliorate such “Long Short Term Dilemma”, existing methods with single branch (visualized
in Fig. 1 Lower) have to balance the present and future performance. The limitation mainly comes
from the fact that each model plays the roles for inference on current task and initializing model on
later task and this contradiction is visualized in Fig. 1 Upper Right. To further circumvent the trade-
off and break limitation of single branch pipeline, we propose the novel LongShortTerm strategy
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Figure 1: Upper Left: Performance bar of “Long Term Learner” and “Short Term Learner” on
ImageNet100-B50-C10 task, where the initial base task contains 50 classes and 10 classes for each
incremental task. “Long Term Learner” and “Short Term Learner” are trained with different meth-
ods. Stable “Long Term Learner” here casts no augmentation on memory and in contrast, plastic
“Short Term Learner” casts heavy augmentation on memory. They have different advantage periods
in the whole incremental process and its analysis will be clarified in Sec. 3.3. Upper Right: Contra-
diction in single branch pipeline between better long term and short term learning. Lower: Pipeline
of widely-recognized single branch incremental learning.

to achieve optimal results in both short term and long term learning. In each incremental task, the
training process consists of two individual branches. One branch is shortsighted and will greedily
tune the model for the best performance in current stage. The other branch will be dedicated to
obtain the art results in the future. The shortsighted model takes responsibility for evaluation and
the foresighted model acts as the initialization of future tasks.

For the sake of tuning the balance between learning and reviewing, we delve into data augmentation
and discover that magnitude of memory augmentation acts as the key factor for incremental learning
of Vision Transformer Dosovitskiy et al. (2021). Empirically, lighter augmentation allows learners
to be more retentive and more friendly to later tasks, heavier augmentation enables learners to be
more plastic for the current tasks. Thus, we combine the discovery and LongShortTerm strategy to
propose a novel incremental pipeline with dual branches and break the “Long Short Term Dilemma”.

In summary, our contribution are in four aspects: i) We discover “Long Short Term Dilemma” that
the best solutions for short term and long term learning may not overlap due to the different optimal
balance between learning and reviewing. ii) To tackle the dilemma, we break the limitation of
pipeline with single branch and propose the LongShortTerm strategy to split the training process into
two branches with their long term and short term targets. iii) We discover that magnitude of memory
augmentation poses significant effects to the balance between plasticity and retention of incremental
model and further affect the trade-off between long term and short term learning. Together with
LongShortTerm strategy, we boost the short term performance and keep the long term endurance
simultaneously. iv) We conduct experiments on incremental benchmarks including ImageNet-100
and ImageNet-1K. The performance gain over both previous CNN and ViT state-of-the-art methods
is 0.59%-3.10%.

2 RELATED WORK

2.1 INCREMENTAL LEARNING

Incremental learning Thrun (1998) (IL) is proposed to tackle the catastrophic forgetting French
(1999); Robins (1995) and allow neural networks to accumulate knowledge from a sequence of
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tasks. To alleviate forgetting, methods based on parameters regularization Kirkpatrick et al. (2017);
Aljundi et al. (2018) constrained parameters that were important to preceding tasks. Parameter-
isolation based methods Mallya et al. (2018); Kanakis et al. (2020); Abati et al. (2020); Yan et al.
(2021) expanded the capacity of neural networks with extra or dedicated parameters to mitigate
interference between new and existing knowledge. Among all IL algorithms, the mainstream are
based on distillation. LwF Li & Hoiem (2017) first regarded the pre-trained model as a teacher to
transfer knowledge. Dhar et al. Dhar et al. (2019) proposed to penalize the change of attention map.
Moreover, in order to distill more knowledge from preceding data, iCaRL Rebuffi et al. (2017) and its
improved variants Hou et al. (2018); Castro et al. (2018) introduced rehearsal mechanism, where few
(meta-)data are pre-stored and replayed to review knowledge in later steps. Following up on this, Wu
et al. Wu et al. (2019) and Hou et al. Hou et al. (2019) discovered and reduce the bias in classifiers.
PODNet Douillard et al. (2020) transfered more spatial information from intermediate attentions.
GeoDL Simon et al. (2021) constrained the geodesic flow in lower dimensions. TOPIC Tao et al.
(2020b) and TPCIL Tao et al. (2020a) dedicated to preserve topology of pre-stored memory during
the feature drifting.

2.2 VISION TRANSFORMER

Transformer Vaswani et al. (2017) was first proposed to process natural language processing (NLP)
tasks. It introduced self-attention architecture to model the relationship between words in sentences.
In order to bring such mechanism into computer vision, Dosovitskiy et al. introduced ViT Doso-
vitskiy et al. (2021) by splitting the image and taking patches as tokens. Later, DeiT Touvron et al.
(2021a), DeepViT Touvron et al. (2021b), CrossViT Chen et al. (2021), SwinTransformer Liu et al.
(2021) and a line of other transformer variants are proposed, bringing attractive improvements on
self attention. In addition to classification, transformer also empowers many other vision tasks, such
as object detection Zhu et al. (2020), semantic segmentation Zheng et al. (2021), self supervision He
et al. (2022), object ReID He et al. (2021) and image compression Qian et al. (2022). ViTIL Yu et al.
(2021) and DyTox Douillard et al. (2022) first replaced CNN with ViT as the backbone in incremen-
tal learning and demonstrated the promising capabilities in addressing catastrophic forgetting.

3 PROPOSED METHOD

3.1 BACKGROUND

Class incremental learning aims to classify growing number of classes after learning sequentially
from an initial task {T0 : D0} and T incremental tasks {T1 : D1, T2 : D2, ..., TT : DT }, where
Di is dataset of task Ti. The label set Yi of Di is exclusive each other, i.e., Yi ∩ Yj = Ø, i ̸= j.
During the learning process of Ti, the model Mi is trained on the basis of Mi−1 to i). incrementally
predict data from Di and ii). remain its capacity on all previously seen classes Y0:i−1 with memory
DM

0:i−1 = ∪i−1
k=0DM

k , where superscript M denotes Memory and DM
k is a subset sampled from Dk

for replaying. After the training, the expert model Mi and rebuilt memory DM
0:i = DM

0:i−1 ∪ DM
i

will be left for the next incremental step. The challenge here mainly comes from how to accumulate
knowledge with incremental data Di and very limited memory DM

0:i−1.

Metrics: After the i-th incremental step, the model will be tested on all seen learnt task T0:i and
yield the corresponding accuracy A0:i as written below:

A0:i =αA0:i−1 + βAi = αAOld + βANew,

α =
|Y0:i−1|
|Y0:i|

, β =
|Yi|
|Y0:i|

,
(1)

where AOld and ANew denote the average accuracy on memory classes and new learnt classes. And
it is critical to balance AOld and ANew with their weights for better overall accuracy. To evaluate the
whole learning process, all accuracy over incremental steps is averaged and reported as Inc Acc =

1
T+1

∑T
i=0 A0:i.
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Figure 2: Pipeline of LongShortTerm Strategy. During the whole incremental journey, the long
term learners are trained iteratively to approach a better ML

T . Simultaneously, in order to achieve
the best performance in each intermediate stage Ti, another branch is built to greedily train a short
term learner MS

i on the basis of latest long term learner MT
i−1 in each incremental step. The life of

each short term learner lasts only one step and will not affect the optimal long term learning.

3.2 LONGSHORTTERM STRATEGY

In the i-th incremental step, given an incremental task sequence {Ti : Di, Ti+1 : Di+1, · · · , TT :
DT }, our goal is to train a sequence of models to perform well along the whole learning proce-
dure. To achieve this goal, on Ti, the well-recognized pipeline trains the model Mi with procedure
P(Mi−1) and takes it as initialization for next task.

However, we discover that tuning of procedure P could be contradictory between achieving better
performance on current task and acting as a good initialization for future tasks. On one hand,
supposing the procedure is greedy, it is capable to produce the best Mi on current task Ti. Because
Ti is a task of short term, we name such procedure PS and the model MS

i . On the other hand,
supposing the procedure is visionary, it is competent to obtain better MI on a certain later task
TI . Because TI is a task of long term, we name such procedure PL and corresponding model ML

I .
Due to the different training procedure, ML

i , which is the prefix model of ML
I , will not necessarily

overlap with MS
i and perform no better than MS

i on Ti.
With regard to how to induce such divergence, in this paper, we take the increasing nature of memory
classes for an easy example. In an uniform incremental setting, with the increasing number of tasks,
memory classes takes more percentage of all seen classes. This indicates the greater α in Equ. 1.
As the result, the accuracy of memory classes tends to be more and more important in later tasks.
And this leads to a more stable training procedure for long term learning and relatively more plastic
procedure for short term learning. The detailed comparison is illustrated in Fig. 1 Upper Left.

In pipeline with single branch, since the current model Mi will be applied on evaluation and to
initialize the model in following-up long term learning, it will be trapped in the trade-off between
long term target and short term target, which is a “Long Short Term Dilemma”, as demonstrated
in Fig. 1 Upper Right. To resolve this dilemma, we propose LongShortTerm strategy to avoid the
trade-off by assigning targets to two individual learning branches and achieve the best in both short
term and long term. In practice, given the latest model Mi−1, the incremental model Mi will
initialize its parameters with Mi−1 and be trained incrementally twice in long term and short term
branches as illustrated in Fig. 2:

Greedy Short Term Branch: PS encourages the model to focus only on all seen classes and
perform well as much as possible. The short term model MS

i will be used for evaluation.

Visionary Long Term Branch: PL encourages the model to act as the prefix of a better model
in later steps. The long term model ML

i will serve as initialization of possible future incremental
steps.

Theoretically, the strategy could maintain the performance in both long short terms with two
branches, taking different balance between learning and reviewing.
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Figure 3: Pipeline of Margin-based Data Augmentation (MDA). The raw image is augmented
with a pool of augmenters. MDA adopts augmentation as strong as possible until the augmented
image hits the boundary, which is close enough to the other centroid with the margin m.

Figure 4: Performance bar of models with different augmentation magnitude after 1-st (Left) and
5-th (Right) incremental task on ImageNet100-B50-C10 task, where the initial base task contains
50 classes and 10 classes for each incremental task.

3.3 PITFALL OF MEMORY AUGMENTATION

In Sec. 3.2, we claim that the model could benefit from our LongShortTerm strategy by controlling
the balance between plasticity and stability. In this section, we will further introduce our discovery
of memory augmentation for ViT and adopt it as the key factor in tuning such balance.

Margin-based Data Augmentation. As visualized in Fig. 1 (Upper Left), heavier data augmenta-
tion helps to achieve better accuracy in the earlier steps over light augmentation. But such advantage
will not last until the end. In order to dive deeper into the issue on magnitude of augmentations, we
propose to control magnitude of multiple data augmentation with margin. As demonstrated in Fig. 3,
given an input image (xi, yi) and a pool of augmenters A = {a1, a2, · · · }, the image xi is processed
by augmenters sequentially and produces xA = {x0

i } ∪ {xk
i = ak(x

k−1
i )}, where x0

i = xi. To
ensure the diversity of xA, we shuffle the augmenters before augmentation. We measure the aug-
mentation magnitude of xk

i with the similarity between its class centroid wyi
. And the similarity

margin with any other centroids will be used to constrain the magnitude. The formulation is written
below:

a(xi;m) = argmin
xk
i ∈xA

cos(M(xk
i ), wyi)

s.t. cos(M(xk
i ), wyi

) ≥ cos(M(xk
i ), wj) +m, ∀j ̸= yi,

(2)

where M(xk
i ) denotes the feature of image xk

i extracted by model M and we take the corresponding
weight vector in classifier as the class centroid. With Margin-based Data Augmentation (MDA), the
magnitude of augmentation could be tuned with a margin m and a smaller m will lead to heavier
data augmentation. Note that augmentation pool A excludes mixing methods, i.e., CutMix Yun et al.
(2019) and MixUp Zhang et al. (2018), and more details could be found in Sec. 4.4.
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Analysis. For fair comparison, in Fig. 4 Left, all models are initialized with the same pre-trained
model on T0. After the short term learning on T1, model with heavier memory augmentation yields
worse AOld, better ANew and better A0:1. When it comes to the long term learning (T5 here in
Fig. 4 Right), training procedure with heavier augmentation still suffers from more forgetting and
achieves better ANew. However, since memory takes more percentage of all learnt knowledge in
later steps, α in Equ. 1 is an increasing metric when calculating the overall performance. Thus,
despite better ANew, heavier augmentation fails to maintain its advantage to the end of the marathon
incremental journey.

To conclude, magnitude of memory augmentation could affect the trade-off between learning new
knowledge and reviewing memory. It will further pose impacts to the endurance of model, i.e., long
term or short term, due to the increasing importance of reviewing memory.

3.4 LONGSHORTTERM WITH PROPER AUGMENTATION

As aforementioned, LongShortTerm strategy in Sec. 3.2 could allow model to bring its capability in
both short and long term into full play with different plasticity/stability balance. And with MDA in
Sec. 3.3, such balance could be finely tuned. Combining them, the overall pipeline is concluded in
Fig. 2 and Alg. 1, training loss in each procedure is summarized below:

Training Losses. To simplify the training procedure of each step, the overall loss only contains
cross entropy loss Lce and distillation loss Ldis:

Lce(x, y) =

|Y|∑
i=1

−yi log pi,

Ldis(x) = 1− cos(Mi−1(x),Mi(x)),

L(x, y) =Lce(x, y) + λLdis(x),

(3)

where λ is the weight of distillation loss, Mi(x) and Mi−1(x) are the class tokens output by the
last attention layers in Mi and Mi−1.

Algorithm 1 LongShortTerm strategy (i-th task)
Input: Incremental data Di and memory DM

0:i−1.
Input: Previous long short term models ML

i−1 and MS
i−1.

Output: Long short term models ML
i and MS

i .
Output: Memory DM

0:i.

Inference on T0:i−1 with MS
i−1.

Training on Ti:
1: Initialize the long short term models ML

i and MS
i with ML

i−1.
2: Train the long term model ML

i = PL(ML
i−1;m

L) with margin mL.
3: Train the short term model MS

i = PS(ML
i−1;m

S) with margin mS , where mS < mL.
4: Rehearse Di with ML

i and update memory DM
0:i = DM

0:i−1 ∪ DM
i .

Inference on T0:i with MS
i .

4 EXPERIMENTS

4.1 DATASETS AND PROTOCOLS

Following prior works Douillard et al. (2020); Hou et al. (2019); Rebuffi et al. (2017), we conduct
experiments on two datasets: 1). ImageNet-1K Deng et al. (2009) is a dataset of large scale. It
consists of 1,000 classes, with more than 1.2 million images in total. 2). ImageNet-100 Deng et al.
(2009) is a subset of ImageNet, which has randomly sampled 100 classes. The base task T0 starts an
incremental scenario with M classes, followed by several incremental tasks with N classes for each
task. We denote such scenario as B[M]-C[N]. The scenario is evaluated with the metrics mentioned
in Sec 3.1.
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Methods ImageNet-100 ImageNet-1K
B50-C10 B50-C5 B10-C10 B500-C100 B500-C50 B100-C100

CNN-based
ResNet18 Joint 81.18 69.65

iCaRL Rebuffi et al. (2017) 65.04 59.53 61.60 51.36 46.72 55.95
BiC Wu et al. (2019) 70.07 64.96 64.35 62.65 58.72 57.60

UCIR Hou et al. (2019) 70.84 68.32 55.33 64.34 61.28 57.14
Mnemonics Liu et al. (2020) 72.58 71.37 - 64.54 63.01 -

PODNet Douillard et al. (2020) 75.54 74.33 - 66.95 64.13 -
TPCIL Tao et al. (2020a) 76.27 74.81 - 64.89 62.88 -

DDE Hu et al. (2021) 76.71 75.41 - 66.42 64.71 -
ViT-based

ViT-ti Joint 85.62 76.59
ViTIL Yu et al. (2021) 79.43 76.92 69.68 69.20 - 65.13

Ours 80.82 78.61 70.27 72.30 68.85 67.08

Table 1: Comparison with other methods on ImageNet-100 (B50-C10, B50-C5 and B10-C10 set-
tings) and ImageNet-1K (B500-C100, B500-C50 and B100-C100 settings). We compare with CNN-
based methods (Upper part) and ViT-based methods (Lower part). And “ResNet18/ViT-ti Joint”
denote the results of jointly trained models, which are trained with all samples of all classes.

4.2 IMPLEMENTATION DETAILS

To reduce the model parameters, ViT-tiny Dosovitskiy et al. (2021) (5M paras.) is adopted as the
backbone network across all tasks. For ImageNet-100 and ImageNet-1K, all images are resized to
224×224. The pre-training on initial classes takes 800 epochs with all augmentations adopted. For
each incremental steps, training will last 200 epochs. All training process is launched with learning
rate of 5e-4 and batch-size of 512. Following ViTIL Yu et al. (2021), we replace PatchEmbedding
with ConvStem Xiao et al. (2021) and train the classifier with larger learning rate. Fine-tune trick
in Hou et al. (2019); Douillard et al. (2020); Hu et al. (2021) is also employed. When fine-tuning
with balanced data, data augmentation is all applied. But note that whether using CutMix Yun et al.
(2019)/MixUp Zhang et al. (2018) in fine-tuning depends on whether CutMix/MixUp is adopted in
training stage, e.g. in fine-tuning stage of “m=1.0 CM” setting, CutMix/MixUp is on and in fine-
tuning stage of “No Aug” setting, CutMix/MixUp is off. About hyper-parameters margin mL and
mS for long term and short term branches will be discussed in Sec. 4.4.

4.3 COMPARISON WITH OTHER METHODS

We report our performances in Tab. 1. On ImageNet-100, our method achieves performance of
80.82%, 78.61% and 70.27% on all typical settings. On B50-C10, B50-C5 settings, the initial task
have half of total classes and initial model have more general embedding capability. Our method
outperforms CNN-based SOTA DDE Hu et al. (2021) with margins of 4.11% and 3.2% and boosts
ViT-based method ViTIL Yu et al. (2021) by 1.39% and 1.69%. On B10-C10 setting, with much less
knowledge in initial task, our method still yields consistent improvements over CNN-based SOTA
BiC Wu et al. (2019) and ViTIL with 5.92% and 0.59%. This demonstrates that our advantage could
cover all scenarios and not limited on some specific settings, since settings starts with more initial
classes, e.g. B50, lays more emphasis on anti-forgetting property of methods and in contrast, settings
starts with less initial classes, e.g. B10, underlines learning property of methods. On ImageNet-1K,
our method obtains performance of 72.30%, 68.85% on all B500 settings, surpassing the CNN-
based best models PODNet Douillard et al. (2020) and DDE Hu et al. (2021) 5.35+% and 4.14+%.
Similarly, 3.1% performance gain over ViTIL could also be observed. On B100-C100 setting, the
advantage of 9.48% and 1.95% over BiC and ViTIL validates the effectiveness of our method.

4.4 ABLATION STUDIES AND PARAMETER ANALYSIS

Effectiveness of Tuning Memory Augmentation. To demonstrate the impact of memory augmen-
tation, we tuned the margin in MDA in Equ. 2. As a reminder, greater m will filter out more aug-
mentation and smaller m will allow more augmentation cast on images. Specifically, when m = 1,
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ImageNet-100

Term Aug Settings
Task 0 Task 1 Task 2 Task 3 Task 4 Task 5

Inc AccOverall Overall Overall Overall Overall Overall
Old New Old New Old New Old New Old New

LongTerm Full Aug: m=-1.0 w/ CM 87.7 85.0 81.4 77.9 74.4 71.6 79.784.9 85.4 80.9 84.2 76.9 85.4 73.3 82.8 70.4 82.0

LongTerm m=0.0 w/ CM 87.7 84.8 81.6 79.0 75.7 72.6 80.285.5 81.6 81.7 81.0 78.5 82.8 75.5 77.8 72.0 78.4

LongTerm m=0.2 w/ CM 87.7 84.6 81.4 79.1 75.4 73.5 80.386.2 76.6 82.5 74.8 79.5 76.6 76.1 69.8 73.8 71.0

LongTerm m=1.0 w/ CM 87.7 84.6 81.9 78.6 75.2 73.1 80.286.4 75.8 83.0 75.4 79.4 73.4 76.1 67.8 73.7 67.8

LongTerm No Aug: m=1.0 w/o CM 87.7 83.8 80.7 78.1 75.6 73.2 79.986.0 72.8 82.5 70.0 79.6 67.6 76.8 66.0 74.2 64.0

ShortTerm m=1.0 w/ CM 87.7 85.0 81.5 79.1 76.5 74.4 80.784.9 85.4 83.2 70.8 79.8 73.8 77.5 68.4 75.0 68.6

ShortTerm m=0.2 w/ CM 87.7 85.0 81.5 79.5 76.5 74.1 80.784.9 85.4 83.0 73.0 80.1 75.2 77.3 69.8 74.8 68.2

ShortTerm m=0.0 w/ CM 87.7 85.0 81.5 79.1 76.5 74.4 80.984.9 85.4 82.7 78.4 79.5 79.4 76.5 74.2 74.2 76.8

ShortTerm Full Aug: m=-1.0 w/ CM 87.7 85.0 81.9 79.6 76.3 74.2 80.984.9 85.4 82.2 80.0 79.2 82.4 75.9 79.6 73.4 81.0

Table 2: Ablation studies and parameter analysis. In Upper part (starting with “Long Term”), we
discuss the impact of augmentation magnitude of memory in long term branch. In Lower part
(starting with “Short Term”), we discuss that in short term branch. For fair comparison, all short
term branches here derive from the same long term branch with “No Aug: m=1.0 w/o CM”. It is
noteworthy that “CM” denotes CutMix/MixUp of memory.

no operations in augmentation pool are applied and when m = −1, all operations are casts on the
input image sequentially. Results are listed in Table. 2 Upper part. Comparison between “ m =
-1.0/0.0/0.2/1.0 w/ CM ” and “ m=1.0 w/o CM ” indicates that model could benefits from heavier
augmentation with more capability to learn from the new task, especially “Full Aug” achieves the
best 85.0% overall acc on T1. However, “Full Aug” fails to perform well with the worst old acc of
70.4% and overall acc of 71.6% on T5. On contrast, learners with lighter augmentation gradually
gain their advantage on later tasks, i.e., T3, T4 and T5 with higher yet more important old acc and
achieve 73.0+% overall acc, 1.5+% higher than “Full Aug”. Especially, when CutMix/MixUp is
disabled, “ m=1.0 w/o CM ” produces the best 74.2% old acc on T5. In general, improvements of
0.6% Inc Acc is observed between “m=0.2 w/ CM” and ”Full Aug”. This suggests that proper mag-
nitude of memory augmentation should be set with our MDA to balance the forgetting and learning
for better Inc Acc even in a single branch pipeline.

Effectiveness of Long Short Term Strategy. To investigate the contribution and property of Long-
ShortTerm strategy, we select “No Aug: m=1.0 w/o CM” as the fixed long term branch and let it
fork to build short term branches with different augmentation settings, which are shown in Table. 2
Lower part. To draw a clear parallel with single branch long term pipeline, we take “ShortTerm-Full
Aug” as examples. On all incremental tasks, in despite of certain loss of old acc, “ShortTerm-Full
Aug” still outperforms “LongTerm-No Aug” in a consistent manner due the huge advantage of
new acc, especially on T5 (17.0% over 64.0%). When compared with “LongTerm-Full Aug”, since
“ShortTerm-Full Aug” derives from “LongTerm-No Aug”, forgetting is significantly mitigated and
old acc is boosted by 1.3% in all tasks. Similar phenomena could be observed in other settings and
make all long short term models surpass all single branch long term models by 0.4+% Inc Acc. In
a nutshell, models trained with our long short term strategy tend to inherit higher old acc from long
term branch and act well in new acc with greedy training. This demonstrates the limitation of single
branch pipeline and validates the effectiveness of LongShortTerm strategy.

4.5 MORE ABOUT MEMORY AUGMENTATION

Typically, heavy memory augmentation pushes domain of each class away from each other and in-
duces larger domain gap between incremental domain and memory domain. The large domain gap
reduces the rick of mis-classification and boost the overall accuracy, since which, heavy augmenta-
tion gains its short-term advantage.

However, the cost of producing large domain gap is more feature drifting of memory. In Fig. 5, we
take the initial class “y = 0” as example and plot t-SNEs of its memory, training samples (note that
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Figure 5: Visualization of initial class y = 0 in ImageNet-100 B50-C10 setting. We plot the t-
SNE Van der Maaten & Hinton (2008) of 6 incremental steps in 6 columns. T-SNEs embedded by
models trained with Full Aug and No Aug are shown in first and second row. Memory, training
samples and validation samples are denoted by green dots, red dots and blue dots. We additionally
highlight the domain of memory with green circles. Best viewed in colors.

MMD Train vs Val Train vs Memo Val vs Memo
No Aug 0.163 0.490 0.805

m=1.0 w/ CM 0.149 0.518 0.810
m=0.2 w/ CM 0.156 0.668 1.002
m=0.0 w/ CM 0.154 0.726 1.058

Full Aug 0.154 0.736 1.072

Table 3: MMDs between Memory, Training samples and Validation samples. MMD is calculated
between features of two domains. We average and report MMDs of all initial classes Y0 with
the ultimate model MT in ImageNet-100 B50-C10 setting. Note that greater MMD means larger
domain gap.

the training samples here are sampled from the original training set and exclusive with memory) and
validation samples. At the very beginning in first column, domain of memory completely overlaps
with that of val samples. After the first incremental task, “Full Aug” suffers from more overfit on the
limited memory than “No Aug”. The domain of memory drifts away from that of val (blue dots) and
training samples (red dots). If we take val samples and training samples as real distribution of class,
the domain of memory detaches from its real distribution gradually. In Tab. 3, domain of training
and val samples are always in a good match, but more augmentation will induce larger domain gap
in both “Train vs Memo” and “Val vs Memo”. This verifies that stronger augmentation will lead to
much more serious “detach problem”. Ansince the memory will be used to estimate the distribution
of the corresponding class. The huge domain gap misleads the classifier and makes it fail to play the
role of class centroid. As the result, the accuracy of preceding classes drops dramatically and hurt
the overall performance in the later steps.

5 CONCLUSION

In this paper, we discover the “Long Short Term Dilemma” that the optimal solution of short term
learning could not necessarily equivalent to that of long term learning. And basic pipeline with one
branch could either select one of them or take the trade-off. To break such limitation, we proposed
LongShortTerm strategy to assign goals of long term and short term learning to two branches and
achieve the attractive on both sides. In addition, although how to generally induce better long term
models still needs more investigation, we discover that magnitude of memory augmentation could
determine the model’s endurance that whether model is capable to performer well in the long term or
the short term. With proposed MDA mechanism, we precisely tuned the memory augmentation. And
together with LongShortTerm strategy, we boosted model performance over single branch pipeline
in almost all individual tasks in ImageNet-100 and ImageNet-1K incremental benchmarks.
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