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ABSTRACT

Image generation abilities of text-to-image diffusion models have significantly ad-
vanced, yielding highly photo-realistic images from descriptive text and increasing
the viability of leveraging synthetic images to train computer vision models. To
serve as effective training data, generated images must be highly realistic while
also sufficiently diverse within the support of the target data distribution. Yet, state-
of-the-art conditional image generation models have been primarily optimized
for creative applications, prioritizing image realism and prompt adherence over
conditional diversity. In this paper, we investigate how to improve the diversity of
generated images with the goal of increasing their effectiveness to train downstream
image classification models, without finetuning the image generation model. We
find that conditioning the generation process on an augmented real image and text
prompt produces generations that serve as effective synthetic datasets for down-
stream training. Conditioning on real training images contextualizes the generation
process to produce images that are in-domain with the real image distribution,
while data augmentations introduce visual diversity that improves the performance
of the downstream classifier. We validate augmentation-conditioning on a total
of five established long-tail and few-shot image classification benchmarks and
show that leveraging augmentations to condition the generation process results in
consistent improvements over the state-of-the-art on the long-tailed benchmark and
remarkable gains in extreme few-shot regimes of the remaining four benchmarks.
These results constitute an important step towards effectively leveraging synthetic
data for downstream training.

Figure 1: Example images from (a) real training data, (b) a pretrained diffusion model using the
class label as conditioning, (c) the best performing augmentation-conditioned method. Augmentation
conditioning generates visually diverse, realistic images that enhance downstream classification
accuracy when used as training data.

∗AZ and ARS acted in an advisory role. All experiments were run on UT Austin’s infrastructure.
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1 INTRODUCTION

Advances in modern deep learning greatly rely on massive datasets. With the advent of large-scale
pretraining and foundation models, massive amounts of diverse data are an integral part of AI.
State-of-the-art datasets have only increased in size with time; from ImageNet-1k’s Deng et al.
(2009) consisting of 1.3 million images to the current LAION dataset’s Schuhmann et al. (2022) 5
billion image-caption pairs. Particularly in computer vision, high-quality images that are diverse
and in-domain are crucial to classification performance. However, collecting real images is often
expensive or difficult; especially in specialized tasks where examples of classes are rare or hard to
photograph. This leads to long-tail, imbalanced classification settings where most classes have very
few training examples (Liu et al., 2019; Ren et al., 2020; Kang et al., 2020).

Recently, diffusion text-to-image models have achieved unprecedented standards for image generation
quality (Podell et al., 2023; Ramesh et al., 2022; Saharia et al., 2022). An obvious application
for these models is synthetic training image generation Sariyildiz et al. (2023); Azizi et al. (2023).
However, diffusion models are primarily used to generate imaginative images from creative prompts
rather than realistic depictions of real-world objects and often optimized for creativity purposes with
human preference as a metric. This leads to synthetic images being less effective than real images
when used as training data, as synthetic images often depict spurious qualities and have style bias
from their training dataset (He et al., 2023; Sariyildiz et al., 2023). Many existing methods for training
image generation remedy these issues by finetuning the diffusion model using real training data Azizi
et al. (2023); Trabucco et al. (2023); Shin et al. (2023). However, finetuning of diffusion models
is computationally expensive, especially the diffusion model must learn many new visual concepts.

In this paper, we analyze the use of classical vision data augmentation methods (e.g. CutMix Yun
et al. (2019), MixUp Zhang et al. (2018)) as conditioning information for image generation, and
find that certain data augmentations yield visually diverse training images that enhance downstream
classification. We use augmentation-conditioning and a frozen, pretrained diffusion model to generate
effective training images, avoiding the computational cost of diffusion model finetuning required
by previous work. In particular, augmentation-conditioning leverages vision data augmentations
of real images alongside a text prompt as conditioning information in the image generation process.
Conditioning on real training images provides in-domain context to the generation and the data
augmentations encourage visual diversity, altogether increasing the performance of downstream
classification while requiring the same computational cost as off-the-shelf image generation with
a pretrained diffusion model. We evaluate various augmentation methods on five ubiquitous long-tail
and few-shot classification tasks, and show that in both training from scratch and finetuning settings,
augmentation-conditioned synthetic datasets improve classification performance over existing work.

We find that augmentation-conditioned synthetic datasets outperform prior work on ImageNet
Long-Tailed, while training on 135k less synthetic images. Augmentation conditioning also enables
surpassing state-of-the-art classification accuracy on four standard few-shot benchmarks and exhibits
remarkable gains in extreme few-shot regimes, even when compared to methods that require diffusion
model training or finetuning. These results highlight the potential of augmentation-conditioned
techniques to generate training data, without requiring any generative model finetuning, and constitute
an important step towards effectively leveraging synthetic data for downstream model training.

2 RELATED WORK

Synthetic Training Data from Generative Models. Previous works using diffusion models has
found that only using text class labels for image generation results in synthetic training datasets
that cannot match the performance of real image datasets, mainly due to domain gap between real
and synthetic images (He et al., 2023; Sariyildiz et al., 2023). The domain gap issue is somewhat
remedied by finetuning the diffusion model on real images (Azizi et al., 2023), but finetuning
diffusion models is computationally expensive or infeasible in classification settings where real
images of class concepts are rare. Promising classification results have been shown by methods using
diffusion models to edit or augment real images rather than fully generate synthetic images. These
methods use diffusion models to introduce visual diversity to real images but still require finetuning
of the diffusion model (Trabucco et al., 2023). Inspired by these diffusion augmentation methods,
we experiment with conditioning diffusion on augmented real images, rather than using diffusion
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Figure 2: Our augmentation-conditioned generation conditions the reverse diffusion process on the
class label and an augmented real image, introducing visual diversity that improves the performance
of the downstream classifier.

to augment images. This avoids the expensive finetuning of the diffusion model but still introduces
visual diversity through classical vision augmentations.

Synthetic Images for Long-Tail Classification. Long-tail classification involves datasets with
numerous classes, each having limited examples and imbalanced training data, while maintaining a
balanced test set. This scenario is common in the real world when class concepts are rare or difficult
to photograph (Horn et al., 2018; Liu et al., 2019). Existing work for long-tail classification focus on
loss functions and representation learning approaches, without relying on synthetic data generation
(Kang et al., 2020; Ren et al., 2020; Liu et al., 2019). To our knowledge, only two other works have
applied diffusion-based image generation to long-tail classification benchmarks. Shin et al. (2023)
employs textual inversion Gal et al. (2022) to train the diffusion model on visual concepts from real
training images, before generating images to balance examples per-class. Hemmat et al. (2023) also
balances the number of training images per-class with synthetic images; their generation method uses
classification signal from a separate classifier in the diffusion guidance term as well as conditions
on the text class label and a real training image. We apply augmentation-conditioned generations to
long-tail classification, to explore their efficacy as training data when training classifiers from scratch.

3 AUGMENTATION-CONDITIONED GENERATIONS

Generations must be in-domain and realistic to facilitate effective classifier learning, to enforce
this we condition the diffusion process on real training images. Visually diverse training data adds
robustness to classification, and we leverage data augmentations in the conditioning information
of the diffusion process to make our generations more diverse. We apply and ablate over various
classical vision data augmentations to explore which are most effective in various training settings.
Figure 2 shows an overview of the augmentation-conditioned generation process.

Figure 3: Failed generations: Semantic Errors (a),(b) where generations using only the class label
result in images depicting a totally different object; Visual Domain Shift (c),(d) where generations
using only the class label produce the correct visual concept but in a distinctly different visual style.
Both these failure cases reduce efficacy of synthetic training images and are remedied by generating
images conditioned on the class label and real training images.
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Figure 4: Sample generated images using all of the augmentation conditioning methods. (a) shows
generations conditioned on just the image and generations conditioned on Dropout applied to the
image (b) shows generations conditioned on the combination of 2 images produced by the specified
augmentation method. Augmentation-conditioned generations show more visual diversity in the
coloration, pose, and angle of the hamster. Generations from Embed-CutMix-Dropout, which yields
the highest accuracy on ImageNet-LT, have distinct background diversity with hamsters depicted
in various realistic terrains.

3.1 ENSURING GENERATIONS ARE IN-DOMAIN WITH CONDITIONING

Generating images using only the text class labels and no finetuning of the diffusion model is known
to result in images with semantic issues that lessen their effectiveness as training data (Sariyildiz
et al., 2023; Hemmat et al., 2023; He et al., 2023). Additionally, using learned or manual prompt
engineering based on class names is unable to yield classification performance on par with real
images (Sariyildiz et al., 2023; He et al., 2023). We identify specific failure cases where using only
class names for generations results in synthetic images out of the domain of real classification data:
1) Semantic Errors, where synonyms and homonyms in class labels lead to images of objects that do
not exist in the real training set; 2) Visual Domain Shift, where style bias from the diffusion model’s
training data results in generations of a distinctly different visual style. Training classifiers on data
exhibiting these failure cases are greatly detrimental to classification performance. To remedy these
issues, we follow Hemmat et al. (2023) and condition image generation on both the text class label
and a real training image of the corresponding class. As seen in Figure 3, this alleviates failure cases.
However, introducing image conditioning reduces visual diversity of generations, which we address
in the next section

3.2 ADDING VISUAL DIVERSITY TO IN-DOMAIN GENERATIONS

Inspired by traditional vision, we use image augmentation methods to introduce diversity into
our generations. Augmentations are applied to real images, in both pixel and embedding space,
then diffusion is conditioned on the augmented data and the text class label. The latent diffusion
model we use, LDM-v2.1-unCLIP (HuggingFace, 2023), encodes the conditioning image into
the CLIP (Radford et al., 2021) embedding space before conditioning, enabling us to perform
augmentations in CLIP embedding and pixel space. We leverage the well-known CutMix (Yun
et al., 2019) and Mixup (Zhang et al., 2018) augmentations on 2 randomly selected training examples
of the same class x1, x2. If the augmentation is done in pixel space then x1, x2 are images and the
resulting augmented combination x̃ is encoded into a CLIP image embedding; if the augmentation
is done in embedding space then x1, x2 are CLIP image embeddings of the corresponding images
and x̃ is a combined embedding. We also use Dropout (Srivastava et al., 2014) with p = 0.4, on
the CLIP image embedding as a stochastic augmentation method that removes random parts of the
image conditioning information.1 As seen in Figure 6, we observe that the Dropout probability acts
as an hyperparameter controlling the conditioning strength of the text and image information.

1This is equivalent to using a Dropout layer on the last layer of the CLIP image encoder.
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Table 1: Top-1 classification accuracy and FID Score between synthetic datasets and evaluation set
for a 90-class-subset of ImageNet-LT. Random Image is a baseline generation conditioned on the
class label and a randomly selected training image of that class.

Conditioning Method Overall Many Median Few FID Score

Random Image (Baseline) 63.0 72.4 61.4 55.3 20.181
Dropout 66.2 70.9 64.7 63.0 21.843
Mixup 63.6 69.5 63.3 58.0 24.115
Mixup-Dropout 65.6 69.2 65.2 62.4 22.306
Embed-Mixup 63.5 71.3 62.4 56.8 22.930
Embed-Mixup-Dropout 66.2 72.2 63.7 62.7 24.558
CutMix 63.8 69.5 63.0 59.0 26.623
CutMix-Dropout 65.2 69.2 63.1 63.2 24.453
Embed-CutMix 62.6 73.1 61.9 53.0 20.285
Embed-CutMix-Dropout 66.9 72.0 65.2 63.5 20.433

A total of 9 augmentation-conditioned methods result from combinations of the aforementioned aug-
mentation methods: Dropout, CutMix, CutMix-Dropout, Embedding-CutMix, Embedding-CutMix-
Dropout, Mixup, Mixup-Dropout, Embedding-Mixup, and Embedding-Mixup-Dropout. For the
combination methods, we perform CutMix or Mixup in the specified pixel or embedding space
then apply Dropout to the augmented embedding. Let x̃ be the image embedding produced by an
augmentation method; to condition the image generation process on the augmentation, the diffusion
denoising UNet (Ronneberger et al., 2015) concatenates x̃ onto its time step embedding. Sample
generations for all conditioning methods are shown in Figure 4.

4 EXPERIMENTS

We generate synthetic training datasets with each augmentation-conditioning method in Section 3.2
and evaluate the efficacy of each method by training downstream classifiers on their generated images
in two settings: (1) training from scratch in a large scale, long-tail setting with class-imbalanced
classification and (2) finetuning a pre-trained classifier on various few-shot classification tasks.

4.1 LARGE-SCALE IMBALANCED CLASSIFICATION

Pre-Training on a Long-tail Dataset. Augmentation-conditioned generations are naturally
applicable to long-tailed data settings, where examples per class are imbalanced and most classes
have scarce examples. We use augmentation-conditioned generations balance the number of
examples across classes, then train a a ResNext50 (Xie et al., 2016) classifier from scratch on the
combined set of synthetic and real images and evaluate on the real image test set. We use the largest
and most ubiquitous long-tail benchmark dataset: ImageNet-LT (Liu et al., 2019). Classes are
categorized based on their number of training examples: many-shot for 100+, medium-shot for
20-100, and few-shot for 5-20. We generate synthetic images so that each class has 1,280 training
images, resulting in a total of approximately 1.16 million synthetic images. For full details on image
generation and training hyperparameters see Appendix D.

4.1.1 CONDITIONING METHOD PERFORMANCE

To initially compare the performance of our nine augmentation-conditioned generation methods
under compute constraints, we ran smaller scale evaluations on 90 randomly selected classes of
ImageNet-LT (includes 30 classes of each of the few, median, and many categories) with a ResNet18
classifier. Overall and class category accuracies are reported in Table 1.

The conditioning method using CutMix and Dropout in the CLIP embedding space performs best,
enabling about +4% overall accuracy over conditioning on an un-augmented random training image
and a remarkable +8% accuracy on the hardest category of few-shot classes. Dropout done in
addition to any of the image augmentation methods increases accuracy; indicating that Dropout
as a data augmentation yields effective conditioning information for synthetic training image
generation. We calculate Fréchet Inception Distance (FID) Score (Chong & Forsyth, 2019), a
measure of both image quality and diversity, between the evaluation set of real images and each
set of augmentation-conditioned generated images. The best augmentation-conditioning method
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Table 2: Top-1 classification accuracy on ImageNet-LT. The best augmentation-conditioning method
outperforms SOTA accuracy of methods using no synthetic data and methods utilizing similar
amounts of synthetic data. Fill-Up (uses more than 2x the amount of synthetic training images and
fine-tunes the model on real images after pre-training) only outperforms us by less than 4%.

Method Synthetic Data Count ImageNet-LT

Overall Many Medium Few

Decouple-LWS (Kang et al., 2020) 0 47.7 57.1 45.2 29.3
Balanced Softmax (Ren et al., 2020) 0 51.0 60.9 48.8 32.1
Mix-Up GLMC (Du et al., 2023) 0 57.21 64.76 55.67 42.19

Fill-Up (Shin et al., 2023) 2.6M 63.7 69.0 62.3 54.6
LDM (txt) (Hemmat et al., 2023) 1.3M 57.9 64.8 54.6 50.3
LDM (txt and img) (Hemmat et al., 2023) 1.3M 58.9 56.8 64.5 51.1
Dropout (Ours) 1.16M 57.3 65.8 54.3 44.0
Mixup-Dropout (Ours) 1.16M 57.4 65.8 53.9 46.3
Embed-Mixup-Dropout (Ours) 1.16M 56.0 65.3 52.4 42.2
Embed-CutMix-Dropout (Ours) 1.16M 59.6 66.3 56.6 51.1

has one of the lowest FID scores, supporting our claim that augmentation-conditioned generations
increase in-distribution diversity and lead to better classification performance.

4.1.2 IMAGENET-LT BASELINES

We run Section 4.1.1’s best four conditioning methods with optimal classifier free guidance (CFG)
scale (CFG experiments in Appendix B) on full-scale ImageNet-LT, with results in Table 2. The
augmentation-conditioning method using embedding-space CutMix and Dropout outperforms SOTA
ImageNet-LT baselines that use no diffusion-generated images. It also outperforms (Hemmat et al.,
2023) while using over 135k less synthetic images. These accuracy gains show that CutMix and
Dropout augmentations in the CLIP embedding space provides valuable conditioning information
that results in effective synthetic training data. Note that Hemmat et al. (2023) proposes additional
methods that use classification signals of a separate classifier in the diffusion process, which can
improve upon our results but also incurs additional computation cost. Fill-Up (Shin et al., 2023)
trains the classifier on over 2x the amount of synthetic training images we use and additionally fine
tunes the classifier on real images after pre-training; but even with this additional training Fill-Up
only achieves +4% accuracy over the best augmentation-conditioned method. Previous work (Fan
et al., 2023) has found that classification accuracy increases with the amount of synthetic images,
so we expect the accuracy gap to be closed if we generated and trained on more synthetic images;
due to compute constraints, we were unable to run these experiments.

4.2 FEW-SHOT CLASSIFICATION

Few-Shot finetuning on Vision Datasets. In line with previous diffusion-augmentation work, we
benchmark augmentation-conditioned generations on four computer vision datasets: Caltech101
(Fei-Fei et al., 2004), Flowers102 (Nilsback & Zisserman, 2008), COCO (Lin et al., 2014) (2017
version), and Pascal VOC (Everingham et al., 2010) (2012 version). We fine-tune the last layer of a
ResNet50, with hyperparmeters and more dataset details in Appendix D. Following (Trabucco et al.,
2023), we report the highest validation accuracy across epochs and fine-tune with 1, 2, 4, 8, and 16
examples per class over the same number of trials. The baselines we compare to are taken directly
from DA-Fusion Trabucco et al. (2023). Note that DA-Fusion requires training the diffusion model
for each generated image, and augmented-conditioned generations require no training.

4.2.1 FEW-SHOT BASELINES

Figure 5 shows that augmentation-conditioned generations improve accuracy across all datasets; 2

demonstrating that augmentation-conditioning is effective at producing synthetic training images

2The augmentation-conditioned method with the highest few-shot accuracy per-dataset is shown (performance
of more conditioning methods are in Appendix Figure 7), run with optimal CFG scale (CFG experiments in
Appendix C).
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Figure 5: Few-shot classification performance of the best-performing conditioning method compared
to existing work on 4 datasets. Augmentation-conditioned generations match or improve accuracy up
to +25% over the best-performing existing method, with no training of the diffusion model.

useful for both fine-grained (e.g. flower species for Flowers102) and common object (e.g. animals in
Pascal VOC) classification. Augmentation-conditioned generations match or yield up to +25% accu-
racy over the best existing method DA-Fusion (Trabucco et al., 2023), which requires training of the
diffusion model whereas augmentation-conditioning requires no training. For Pascal VOC and Flow-
ers102, augmentation-conditioned augmentations outperforms all existing methods for all examples
per class values, with approximately 10% higher accuracy for Pascal VOC and 3% for Flowers102.

5 CONCLUSION

We analyzed the efficacy of leveraging existing data augmentations as conditioning information in
the diffusion process via thorough experimentation, finding augmentation-conditioned generation
capable of producing effective synthetic training datasets for various classification tasks. Training on
augmentation-conditioned generations achieves up to +10% accuracy across a variety of few-shot
classification settings, over diffusion-based data augmentation methods that require finetuning the
diffusion model. Utilizing augmentation-conditioned generations as training data also improves
over state-of-the-art results on a long-tail, imbalanced classification task. Augmentation-conditioned
generations do not require diffusion model finetuning and offer a computationally efficient approach
to synthetic training image generation.
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A DROPOUT PROBABILITY’S EFFECT ON IMAGE DIVERSITY

Figure 6: Example generations conditioned on Dropout with various probabilities applied to a real
image. p = 0.0 is equivalent to conditioning on the original image, resulting in homogeneous images
all similar to the conditioning image. p = 1.0 is equivalent to only conditioning on the text class label,
results in images exhibiting failure cases discussed in Section 3.1. Thus, an intermediate Dropout
ratio results in diverse but in-domain images.

10



Published as a conference paper at ICLR 2025 SynthData Workshop

B CLASSIFIER FREE GUIDANCE SCALE FOR LARGE-SCALE IMBALANCED
CLASSIFICATION (SECTION 4.1)

The classifier free guidance (CFG) scale parameter of diffusion models controls the trade-off between
prompt adherence and diversity of generations (Ho & Salimans, 2022). Previous work on synthetic
training image generation found that the CFG scale greatly affects downstream classification accuracy,
with lower values leading to better performance empirically (Fan et al., 2023; Tian et al., 2023; Sariy-
ildiz et al., 2023). To explore CFG scale’s effect on augmentation-conditioned generations, we run the
best-performing conditioned generation method Embed-CutMix-Dropout with CFG scales: [2.0, 4.0,
7.0, 10.0] and report maximum validation accuracy over all epochs on the 90-class-subset in Table 3.

Table 3: Classifier Free Guidance (CFG) scale’s effect on top-1 classification validation accuracy
on ImageNet-LT 90-class-subset. The lowest CFG scale of 2.0 results in highest overall accuracy.

CFG Scale Overall Many Median Few

2.0 73.3 75.5 72.0 72.3
4.0 72.9 75.3 72.2 71.2
7.0 70.5 74.5 68.5 68.5
10.0 66.9 72.0 65.2 63.5

The lowest CFG scale of 2.0 achieves the highest accuracy overall, with a notable almost +10%
accuracy on the most difficult few-shot classes when compared to the Hugging-Face default CFG
scale of 10.0. This result aligns with previous work which finds that a low CFG scale leads to the
best downstream accuracy for ImageNet-scale synthetic training data, as it increases diversity across
the numerous generations that use the same class text labels (Fan et al., 2023).
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C CLASSIFIER FREE GUIDANCE SCALE FOR FEW-SHOT CLASSIFICATION
(SECTION 4.2)

Figure 7: Classifier free guidance scale’s effect on few-shot classification performance. Across all
datasets, finetuning on images generated with 10.0 CFG scale yields better performance.

As discussed and seen in the results of Appendix B, the Classifier Free Guidance (CFG) scale
parameter of image generation has notable effect on the synthetic images and downstream accuracy.
We explore if CFG scale still has an effect when finetuning on a relatively small amount of synthetic
data by running the same finetuning experiments on images generated with a CFG scale of 2.0 (the
optimal CFG scale for ImageNet-LT) and 10.0 (the default CFG scale for our diffusion model), with
results in Figure 7. We use the conditioning methods with the top 3 accuracies from the experiments
in Section 4.1.1, and more detailed individual plots are in Appendix E.

Interestingly, for all datasets the optimal CFG scale for finetuning is not the optimal CFG scale for
large-scale training from scratch. The same conditioning methods used with the 10.0 CFG scale
yield higher few-shot accuracies than when used with the 2.0 CFG scale across all four datasets. We
believe this is because the few-shot setting uses very few synthetic images compared to large-scale
training, so strong prompt adherence and high image quality is more important to the classifier’s
learning than visual diversity.
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D HYPERPARAMETERS AND TRAINING DETAILS

The full set of hyperparameters for image generation and classifier training are given in Table 4.

All experiments were run on A100, A40, and A5500 GPUs on university compute clusters.

Hyperparameter Name Value

Image Generation
LDM-v2.1-unCLIP Checkpoint stabilityai/stable-diffusion-2-1-unclip
Diffusion Denoising Steps 30
Diffusion Noise Scheduler PNDM Scheduler Liu et al. (2022) (default in Hugging-Face)

Section 4.1 Classifier
Architecture ResNext50
Loss Balanced Softmax Ren et al. (2020)
Optimizer SGD with cosine annealing Loshchilov & Hutter (2016)
Learning Rate 0.2
Momentum 0.9
Weight Decay 0.0005
Batch Size 512
Training Epochs 150

Section 4.2 Classifier
Architecture ResNext50
Loss CrossEntropy
Optimizer Adam
Learning Rate 0.0001
Batch Size 32
finetuning Epochs 50

Table 4: Hyperparameters and training configuration details

During training (in both Section 4.1 and Section 4.2) each minibatch contains 50% real and 50%
synthetic images, as this balancing of real and synthetic images is known to improve training stability
Hemmat et al. (2023); Trabucco et al. (2023); He et al. (2023).

For Section 4.2, Pascal VOC and COCO are originally object detection datasets, but we adapt them
into classification datasets by using the class label of the object with the largest pixel mask as the
image label, as is done in another baseline work (Trabucco et al., 2023). By this labelling method,
COCO has 80 classes and Pascal VOC has 20 classes. Caltech101 and Flowers102 each have 102
classes. Caltech101, Pascal VOC, and COCO have common classes (e.g. "car", "cat") and Flowers102
has only niche, fine-grained classes which are flower species (e.g. "alpine sea holly").

Results from Sections 4.1.1 and B use the downsized ResNet18 (with the training configuration of
Section 4.1) and a 90-class-subset of all 1K ImageNet classes. See code files for names of classes in
the 90-class-subset.
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E INDIVIDUAL FEW-SHOT CLASSIFIER FREE GUIDANCE PLOTS

Figure 8: Classifier free guidance scale’s affect on few-shot classification performance

F LIMITATIONS & FUTURE WORK DISCUSSION

Using our conditioned generations as synthetic training data enables strong performance improve-
ments, however there are limitations. The pre-trained diffusion model we use for image generation
may include examples from common vision benchmark datasets, such as ImageNet Deng et al. (2009)
and COCO Lin et al. (2014), as it is trained on billion-scale Internet data. Previous work has shown
that pre-trained diffusion models can memorize training examples, leading to training data leakage
Carlini et al. (2023). As future work, we would like to investigate the effect of potential data leakage
on the downstream model performance.
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