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ABSTRACT

Large reasoning models have shown remarkable capabilities, but their internal
knowledge is limited, restricting their ability to solve complex tasks. An attrac-
tive solution is to integrate external tools—such as Python for math reasoning or
search engines for knowledge-intensive queries. Yet, teaching models to use tools
effectively remains a significant challenge. Existing approaches often depend on
reinforcement learning (RL) with accuracy-based verifiable rewards or cold-start
pipelines that perform supervised fine-tuning (SFT) followed by an RL stage. These
methods are shown to be notoriously unstable, prone to entropy collapse or conver-
gence to suboptimal behaviors. The problem is compounded in real-world tool-use
scenarios where accuracy signals are either unavailable or unverifiable. To address
this, we propose SR-Loop, a general training framework that alternates between
SFT and RL phases without relying on accuracy-based rewards in the RL stage.
The SFT phase preserves output structure and constrains harmful exploration by
imitating expert demonstrations, while the RL phase encourages discovery of new
behaviors and improvements beyond the initial policy. By repeatedly cycling be-
tween these phases, SR-Loop achieves stable learning and progressively enhances
tool-use capabilities using only structural and execution-based rewards. Experi-
ments show that SR-Loop not only prevents training collapse but also delivers
competitive performance on complex tool-use reasoning tasks—without requiring
explicit accuracy supervision during RL. Moreover, the framework generalizes
beyond tool use, proving effective for training general reasoning models even in
settings without external tools.

1 INTRODUCTION

Figure 1: (Top) Pure RL with tool learning
template and reward. (Bottom) Cold-start
with SFT followed by RL. Both eventually
lead to performance decline.

Large reasoning models (LRMs) (Guo et al., 2025;
Yang et al., 2025; Seed et al., 2025; Team et al., 2025)
have demonstrated strong capabilities in handling com-
plex reasoning tasks (Wang et al., 2024a; Hsiao et al.,
2025; Shi et al., 2025; Qu et al., 2025). Despite their
impressive performance, these models are inherently
constrained by the static nature of their internal knowl-
edge acquired during training (Gao et al., 2023; Zhu
et al., 2025; Wang et al., 2024b; Cheng et al., 2024;
Matarazzo & Torlone, 2025). To address this limi-
tation and further enhance their capabilities, recent
research has focused on integrating external tools into
the reasoning process. For instance, LRMs can be
trained to generate and execute Python code for mathe-
matical problem-solving, to query web search engines
to retrieve real-time, domain-specific, up-to-date infor-
mation, or to call a “worker” LLM with a dedicated
role (Guo et al., 2024; Team et al., 2025; Li et al.,
2025b; Jin et al., 2025; Feng et al., 2025).

The dominant training paradigms for LRMs either rely on reinforcement learning (RL) with verifiable
rewards or adopt a cold-start strategy that combines supervised fine-tuning (SFT) with an RL phase.

1
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Figure 2: Conceptual illustration of our method. (Left) Pure RL fails to learn tool use; SFT + RL
leads to suboptimal initialization. (Right) Epoch 1⃝: SFT first instills partial tool-use capability. RL,
operating without accuracy-based rewards, then explores and improves both tool use and accuracy, as
shown by the green dashed projection of its trajectory onto the bottom surface. Epoch 2⃝: RL without
accuracy rewards explores suboptimal behaviors, which leads to a decline in model performance.
Epoch 3⃝: SFT corrects the model, guiding it back to the correct track and recovering accuracy. RL
continues from this corrected state and further enhances the model’s capability.

However, prior studies have shown that both approaches suffer from significant instability (Li et al.,
2025a; Wu et al., 2025b; Li et al., 2025b). Figure 1 illustrates two central challenges in training
LRMs for tool use: (i) Pure RL (top): Training with a tool-calling template and a reward signal that
encourages tool invocation fails to elicit effective tool usage, resulting in a low tool-call ratio. (ii)
SFT + RL (bottom): A cold-start pipeline first teaches tool usage through SFT, then refines it via
RL. While this introduces the basic capability, the SFT initialization may be suboptimal, limiting
RL effectiveness and making training vulnerable to early collapse. A further limitation of these
methods is their dependence on ground-truth or verifiable accuracy signals. Yet, many real-world
tasks—such as question answering (Li et al., 2025b), scientific report generation (Du et al., 2025), and
summarization (Zhang et al., 2024)—lack such supervision. To mitigate this, some studies explore
alternatives, including LLM-as-Judge (Gu et al., 2024; Zhou et al.) or training auxiliary reward
models to approximate human preferences (Ouyang et al., 2022). However, these approaches face
limited generalizability and impose substantial computational and resource costs.

In this work, we introduce a novel training framework, SFT-RL-Loop (SR-Loop), which leverages
the complementary strengths of SFT and RL to train tool use in LRMs without requiring ground-truth
supervision during RL—thereby reducing the need for supervised data. As shown in Figure 2,
SR-Loop organizes training into iterative cycles with two stages: (1) SFT, which stabilizes learning
by preserving output structure and constraining harmful exploration, and (2) RL, which encourages
exploration and enables improvements beyond the fine-tuned policy. In the SFT stage, the model is
trained on tool-calling data generated by a stronger off-policy model, allowing it to acquire proper
tool-use templates. This stage also acts as a corrective mechanism, continually guiding the model
back to the “right track” and preventing collapse. In the RL stage, we use Group Relative Policy
Optimization (GRPO) (Shao et al., 2024) with rewards for correct output formatting and effective
tool-use behavior, which does not need any ground truth supervision. This allows the model to
autonomously explore and discover improved strategies while maintaining valid and structured
outputs. By alternating between SFT and RL, SR-Loop maintains a balance between stability and
exploration, enabling continuous progress without the need for explicit accuracy signals during RL.

We conduct comprehensive experiments to evaluate the performance of SR-Loop across a range
of models and tasks, and observe consistent improvements in math reasoning when Python code is
used as a reasoning tool. Although SR-Loop relies only on auxiliary reward signals such as output
formatting, tool invocation behavior, and the balance between reasoning and tool usage, it achieves
substantial accuracy gains over strong baselines. For instance, it improves Skywork OR1-Math
7B (He et al., 2025) by more than 3 points, and yields gains of 3.7 and 5.9 points on Qwen2.5-7B-
SimpleRL and Qwen2.5-1.5B-SimpleRL (Zeng et al., 2025), respectively, all without using explicit
accuracy supervision during RL training. These results demonstrate that the alternating SFT and RL
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structure of SR-Loop enables stable and effective training for tool-augmented reasoning, even in the
absence of ground-truth rewards during RL training. Furthermore, we evaluate SR-Loop in a tool
free setting by applying it to text-only math reasoning tasks. Even without accuracy based rewards
during RL and using only a format based reward signal, SR-Loop achieves strong performance on
in domain math benchmarks and generalizes well to out of distribution reasoning tasks.

2 SFT-RL LOOP

In this section, we introduce our SR-Loop approach, which iteratively alternates between SFT
(Section 2.1) and RL (Section 2.2) phases to train LRMs for tool use without relying on ground-truth
supervision during RL training (Section 2.3).

2.1 COLD-START

We begin with SFT to help the model acquire tool-calling patterns. Given a dataset of complex
tasks X = {x1, x2, · · · , xn}, we leverage a stronger off-policy model, denoted as πoff, to generate
tool-based solutions. To promote consistent tool usage, the generation is conditioned on a predefined
Tool Prompt, which is specifically designed to trigger tool-calling behavior. This yields the SFT
training dataset:

DSFT =
{
(xi, yi)

∣∣∣yi = LLMoff(ci,Tool Prompt), ∀xi ∈ X
}
, (1)

where LLMoff(xi,Tool Prompt) denotes the tool-augmented response generated by the off-policy
model. Additionally, the dataset is verified for correctness through expert human review. Furthermore,
we train our model πθ on DSFT using the standard SFT objective:

Lcold start := −E(x,y)∼DSFT log πθ(y|x), (2)

where πθ(·) denotes the reasoning model’s likelihood function (or generation policy).

While the cold-start stage enables πθ to acquire the syntactic ability to produce tool-based solutions
by imitating demonstrations from πoff, it suffers from a key limitation: distributional shift (Ross et al.,
2011; Quiñonero-Candela et al., 2022). Specifically, the model is trained on the static dataset DSFT,
which consists of trajectories sampled from πoff, whereas at inference it generates outputs under its
own policy. This discrepancy is especially problematic in sequential decision-making, where each
output recursively shapes future inputs – even a small early error can push the model into unseen
or low-probability states under πoff, increasing the likelihood of further mistakes. This results in
compounding errors, with the total error scaling as O(T 2ϵ) for trajectory length T and per-step
imitation loss ϵ (Ross et al., 2011). Since πθ is never exposed to its own decision-induced states
during SFT, it cannot recover from errors or adapt in off-distribution regions. Thus, while SFT offers
a strong initialization for tool use, it does not guarantee robustness or generalization in long-horizon
complex tasks.

2.2 REINFORCEMENT LEARNING

To mitigate distributional shift, we incorporate RL to expose the model to its own trajectories,
allowing it to learn corrective behaviors in off-distribution states by optimizing for task-level success
rather than simply imitating expert demonstrations. To further encourage tool-calling, we design
a tailored reward function R(·) that provides signals aligned with effective tool use. This reward
function consists of three main components:

• Format reward: Encourages the model to structure its output according to predefined formatting
rules. For instance, the final answer must be enclosed within <answer> and </answer>, while
tool outputs (e.g., Python execution results) must be enclosed within <interpreter> and
</interpreter>.

• Tool use reward: Provides feedback on the model’s tool usage proficiency. The reward is
positive when the model (i) attempts to invoke tools, (ii) executes tool calls successfully, and (iii)
meaningfully incorporates tool outputs into its final response.

3
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Algorithm 1 SR-Loop: SFT-RL Iterative Training Framework

Input: Complex task datasetX , off-policy model πoff, Tool Prompt, initial model πθ, reward function
R(·), number of iterations T , RL training dataset DRL

Output: Trained model πθ

1: // Generate SFT data

2: DSFT ←
{
πoff(xi,Tool Prompt) | xi ∈ X

}
3: // Partition datasets into T subsets
4: Split DSFT into {D(1)

SFT, · · · ,D
(T )
SFT}

5: Split DRL into {D(1)
RL , · · · ,D

(T )
RL }

6: for i = 1 to T do
7: // Step 1: Supervised Fine-Tuning
8: πθ ← Train(πθ,D(i)

SFT,Lcold start)
9: // Step 2: Reinforcement Learning (GRPO)

10: for q ∈ D(i)
RL do

11: πθold ← πθ

12: Sample N trajectories {τ1, · · · , τN} ∼ πθold

13: Compute rewards R(τi) using format, tool-calling and balance criteria
14: Compute normalized advantages Ai and importance weights ri,t(θ)
15: Update πθ using GRPO loss LGRPO
16: end for
17: end for

• Reasoning-tool balance reward: Promotes a balanced integration of reasoning and tool-calling be-
havior by countering the model’s tendency to overuse tools without proper reasoning, as influenced
by the previous two rewards.

Based on these components, the final reward is computed as:

Reward = 0.2× Format Reward + 0.5× Tool Use Reward + 0.3× Balance Reward (3)

With the proposed reward design in Equation 3, we adopt GRPO (Shao et al., 2024) to train πθ on the
RL dataset DRL = {q1, q2, · · · , qn} Specifically, for q ∈ DRL, we use the old policy from previous
step πθold to sample a group of N individual responses τi. Then, the RL loss is defined as:

LGRPO(θ) = Eτi∼πθold (q),q∼DRL

1∑N
i=1 |τi|

N∑
i=1

|τi|∑
t=1

CLIP(ri,t(θ), Ai, ϵ)− β · DKL[πθ∥πref]. (4)

where

Ai =
R(τi)−mean({R(τi) | τi ∼ πθold(τ), i = 1, 2, . . . , N})

std({R(τi) | τi ∼ πθold(τ), i = 1, 2, . . . , N})
, (5)

and ri,t(θ) = πθ(τi,t|q, τi,<t)/πθold(τi,t|q, τi,<t). While RL mitigates distributional shift by training
on trajectories sampled from the model’s own policy, it introduces a new challenge: entropy col-
lapse (Cui et al., 2025): As the model is optimized to maximize expected reward, the policy may
collapse to a narrow set of high-reward actions, reducing exploration.

2.3 SFT-RL LOOP (SR-LOOP)

To effectively combine the complementary strengths of SFT and RL, we propose an iterative training
framework called SR-Loop. This framework alternates between SFT and RL stages, progressively
enhancing the model’s tool-use capabilities while preserving structural consistency and training
stability. To support iterative learning, we partition both the SFT and RL datasets, DSFT and DRL,
into T subsets, denoted as {D(1)

SFT, · · · ,D
(T )
SFT} and {D(1)

RL , · · · ,D
(T )
RL }, respectively. Here, T is a

hyperparameter that specifies the total number of training iterations in the SR-Loop cycle.

At each iteration i, the model first undergoes SFT using the loss defined in Equation 2 on D(i)
SFT. This

step reinforces correct tool-calling patterns and stabilizes model behavior, particularly by restoring

4
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structured outputs after potential deviations during RL exploration. Subsequently, the model enters
the RL stage, where it is optimized on dataset D(i)

RL using the GRPO objective defined in Equation 4,
guided by the reward function R(·) introduced earlier. This stage encourages exploration beyond the
expert’s distribution, allowing the model to discover more effective tool-use strategies and improve
task-level performance.

By alternating between these two stages, SR-Loop enables the model to iteratively refine its
reasoning and tool-use behaviors. In the SFT stage, the model not only learns tool-calling syntax and
formatting from off-policy demonstrations but also benefits from periodic correction, which mitigates
drift caused by RL and realigns the model with high-quality exemplars. In the RL stage, the model
is trained on its own sampled trajectories using weak yet informative rewards focused on output
structure, tool-use proficiency, and reasoning-tool balance. Importantly, no explicit accuracy reward
is required; instead, the model learns to improve task performance implicitly through exploration
and structured feedback. An overview of the complete training loop is provided in Algorithm 1. We
propose a detailed analysis about convergence properties of SR-Loop in Appendix A.1.

3 EXPERIMENT

3.1 SETUP

Training Datasets: We primarily utilize the Retool-SFT dataset (Feng et al., 2025) during the
SFT stage, which is generated using the tool-use template by Deepseek-R1 (Guo et al., 2025) and
double-checked by human experts. For the RL stage, we employ the DeepScaleR dataset (Luo et al.,
2025), which consists of 40,000 mathematics problems compiled from AIME and AMC competitions
held before 2023, as well as from Omni-MATH (Gao et al., 2024).

Tools: In the case of solving mathematical problems, the model leverages tools for code generation
and execution. Specifically, it generates Python code, executes it using an external interpreter, and
incorporates the returned result into its subsequent reasoning process.

Benchmarks: To assess mathematical reasoning proficiency, we employ four benchmarks: MATH-
500 (Lightman et al., 2023), a 500-question subset of the MATH benchmark curated for rigorous;
Minerva Math (Hendrycks et al., 2021); AIME24; Olympiad Bench (He et al., 2024) as well as
competition-level benchmarks such as AMC23 (AMC, 2023). We evaluate the performance of the
model on each dataset using the pass@1 measure.

Baselines: We compare our method against state-of-the-art tool-use training baselines, all trained
on the same dataset for a fair comparison: (i) Original refers to a baseline model trained without
any tool-use capability, serving as a reference point for improvements from tool integration; (ii)
SFT + RL represents the standard two-stage approach that first applies SFT, followed by RL for
further optimization; (iii) SFT loss augments the RL objective with an additional SFT loss on
positive examples generated by the model itself during rollouts, using a combined loss of Lθ =
LRL(θ) + Lself-rollout

SFT (θ); (iv) LUFFY (Yan et al., 2025) introduces a dynamic weighting mechanism
that balances imitation and exploration by integrating off-policy demonstrations with on-policy
rollouts throughout training; and (v) SR-Loop with accuracy reward (SRL (w/ acc)) implements
our proposed SR-Loop strategy but includes an explicit accuracy-based reward during the RL phase,
contrasting with our main setting which relies solely on structural and behavioral feedback.

Models: We evaluate three widely-used open-source LLMs as backbone models, spanning different
architectures and model sizes. Skywork-OR1-Math-7B (He et al., 2025) is derived from DeepSeek-
R1-Distill-Qwen-7B (Guo et al., 2025) through RL and is specifically optimized for mathematical
reasoning. Qwen-2.5-7B-SimpleRL and Qwen-2.5-1.5B-SimpleRL (Zeng et al., 2025) are based on
Qwen-2.5 (Yang et al., 2024), further refined through a lightweight RL process.

Implement Details: For the SFT stage, we employed the LLaMA-Factory library (Zheng et al., 2024),
a widely adopted GitHub-hosted framework for efficient large-model fine-tuning, to carry out all
training procedures. Experiments are conduced on four 141GB NVIDIA H200 GPUs, with learning
rate as 1× 10−5, global batch size as 32, and max token as 8192. Furthermore, to reduce memory
consumption during training, we applied ZeRO Stage-2 optimization and gradient checkpointing,
both provided by the DeepSpeed library. For RL training, we use the EasyR1 (Zheng et al., 2025)
framework built on verl (Sheng et al., 2024), with specialized support for VLMs. Experiments

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Main results of SR-Loop and SRL (w/ acc). “Tool” indicates whether the model acquires
tool-use capabilities. The “Average” column reports the mean accuracy across all five math reasoning
benchmarks. Relative improvements over the Original model are shown in superscript.

Model Method Tool Math Reasoning Average
MATH-500 AMC AIME Olympiad Minerva

Skywork-OR1
-Math-7B

Original ✗ 86.4 74.5 53.3 55.3 36.7 61.2
SFT + RL ✓ 84.6 75.9 56.7 57.4 37.1 62.3+1.1

SFT loss ✗ 87.2 72.3 53.3 54.1 36.0 60.6−0.6

LUFFY ✗ 83.0 73.5 56.7 56.5 37.1 61.4+0.2

SRL (w/ acc) ✓ 90.4 78.2 63.3 60.2 37.9 66.0+4.8

SR-Loop ✓ 88.8 76.8 60.0 59.6 37.8 64.6+3.4

Qwen-2.5-7B
-SimpleRL

Original ✗ 73.2 45.8 16.7 38.7 25.7 40.0
SFT + RL ✓ 78.6 47.0 20.0 40.8 25.9 42.5+2.5

SFT loss ✗ 73.8 45.8 16.7 40.2 25.4 40.4+0.4

LUFFY ✗ 74.4 44.6 23.3 39.9 26.8 41.8+1.8

SRL (w/ acc) ✓ 79.8 50.4 23.3 44.1 27.6 45.0+5.0

SR-Loop ✓ 79.4 49.3 20.0 42.5 27.3 43.7+3.7

Qwen-2.5-1.5B
-SimpleRL

Original ✗ 21.0 16.9 3.3 11.1 11.4 12.7
SFT + RL ✓ 26.2 18.5 3.3 12.4 13.1 14.7+2.0

SFT loss ✗ 18.8 15.7 6.7 10.3 10.9 12.5−0.2

LUFFY ✗ 29.6 20.5 6.7 12.9 13.3 16.6+3.9

SRL (w/ acc) ✓ 34.6 24.1 13.3 16.3 17.2 21.1+8.4

SR-Loop ✓ 31.4 21.7 10.0 14.3 15.7 18.6+5.9

are conducted using eight 141GB NVIDIA H200 GPUs with a global batch size of 48, a rollout
batch size of 16, a rollout temperature of 1.0, a consistent learning rate of 1× 10−6, and 8 rollouts.
Additionally, to mitigate the risk of model overfitting caused by repeated exposure to the same corpus,
we uniformly partitioned the dataset into multiple non-overlapping subsets of equal size.

3.2 MAIN RESULTS

SR-Loop improves tool use and accuracy without accuracy-based rewards. As shown in
Table 1, our SR-Loop method consistently enhances model performance even without access to any
accuracy-based reward during RL training. On Skywork-Math-7B, SR-Loop achieves an average
score of 64.6, outperforming both LUFFY (61.4), SFT loss (60.6), and the full SFT+RL pipeline
(62.3). Similar improvements are observed for Qwen2.5-7B-SimpleRL (43.7 vs. 41.8 for LUFFY,
40.4 for SFT loss and 42.5 for SFL+RL), and on the smaller Qwen2.5-1.5B-SimpleRL model (18.6 vs.
16.6, 12.5 and 14.7 respectively). Notably, SR-Loop also learns to invoke tools correctly, without
any explicit reward signal for accuracy, indicating that the SFT and RL loop structure itself provides
a strong training signal that keeps the model on a meaningful learning trajectory. This suggests that
looped optimization alone can help stabilize training even under weak supervision.

Adding accuracy rewards further boosts performance. When we incorporate programmatic
accuracy signals back into the RL stage, as in SRL (w/ acc), we see further notable gains. On Skywork-
Math-7B, accuracy rises to 66.0, the highest among all methods. For Qwen2.5-7B-SimpleRL, SRL
(w/ acc) reaches 45.0, significantly outperforming all baselines. Even for the small Qwen2.5-1.5B-
SimpleRL, accuracy climbs to 21.1, showing a remarkable +8.4 absolute gain over the original model.
These results confirm that adding verifiable accuracy signals complements the SFT-RL loop: the
loop provides structure and stability and helps the model escape local minima and training collapse.
Together, they enable robust and scalable reasoning across model sizes and tasks.
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Figure 3: Concrete Example.
Figure 4: Training Process.

3.3 ANALYSIS

Concrete Examples Figure 3 shows a representative output from a model trained with SR-Loop.
The model Skywork-OR1-Math-7B presents a clear natural language explanation followed by well-
structured, executable code. It correctly calls tools, formats its output with formal expressions and
boxed answers, and organizes the reasoning into modular steps that mirror the problem structure. This
output reflects both the formatting conventions reinforced during SFT and the reasoning flexibility
encouraged by RL.

Training Process Figure 4 illustrates the model Skywork-OR1-Math-7B’s performance trajectory
across three full SR-Loop epochs, showing steady improvements in accuracy over training steps.
Each epoch reflects one complete cycle of alternating SFT and RL phases over the corresponding par-
titioned datasets. Notably, accuracy consistently improves from Epoch 1 to Epoch 3, demonstrating
the effectiveness of our iterative training strategy. In Epoch 1 (purple), the model exhibits unstable per-
formance, likely due to early-stage exploration during RL that introduces output variability. However,
in Epoch 2 (blue), we observe a marked increase in accuracy and reduced variance, indicating that the
SFT stage has successfully realigned the model with structured, high-quality behavior while retaining
beneficial exploration gains. By Epoch 3 (orange), the model achieves both higher average accuracy
and more stable performance, showing that the SR-Loop’s alternation between SFT correction and
RL-driven exploration leads to cumulative improvements. This progressive refinement suggests that
the model gradually learns to balance structured tool use and effective reasoning, ultimately achieving
better task-level performance without relying on explicit accuracy-based rewards. The visualization
affirms that our method enables stable and effective learning dynamics over time.

Figure 5: Correlation of accuracy and other re-
wards during RL training, with (blue) and without
(yellow) the accuracy reward.

Correlation of Accuracy Reward and Other
Rewards To assess how well non-accuracy
rewards align with model accuracy, we sam-
ple several checkpoints during the training pro-
cess of SR-Loop, both with and without the
accuracy reward. Specifically, we compute the
correlation between accuracy and other reward
components, including format, tool-calling, and
balance rewards. As shown in Figure 5, the
model trained with the accuracy reward (blue)
exhibits a slightly higher correlation (0.5695)
compared to the model trained without it (yel-
low, 0.4554). Nevertheless, the strong correla-
tion in the absence of the accuracy signal indi-
cates that our SFT+RL loop method effectively
keeps the model on the correct track. These
results demonstrate that carefully designed non-
accuracy rewards are sufficient to guide the model toward accurate behavior, eliminating the need for
explicit accuracy supervision during RL training.
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Table 2: Performance of SR-Loop in training general reasoning models without tool use.

Method Math Reasoning Out-of-Distribution
MATH-500 AMC AIME Olympiad Minerva Avg. ARC-C GPQA-D MMLU-Pro Avg.

Original 48.8 32.6 11.4 15.8 8.7 23.5 18.2 11.1 16.9 15.4
SFT + RL 84.2 67.1 32.5 54.6 34.1 54.5 76.4 37.9 49.6 54.6
SimpleRL 76.0 54.9 27.0 34.7 25.0 43.5 30.2 23.2 34.5 29.3
LUFFY 87.6 65.6 29.4 57.2 37.5 55.5 80.5 39.9 53.0 57.8
TAPO 83.4 77.5 33.3 46.2 38.2 55.7 81.6 37.9 49.6 56.4
SR-Loop 85.6 69.6 35.3 57.4 37.1 57.1+1.4 83.4 40.9 55.9 60.1+2.3

4 GENERAL TRAINING WITHOUT TOOL

In a more general setting, where the model is trained to improve its reasoning capabilities, we
implement the SR-Loop to demonstrate its generalizability.

4.1 SETUP

Training Datasets In the SFT stage, we utilize the OpenR1-Math-46k-8192 dataset1 (Yan et al.,
2025), a 46,000-example subset of OpenR1-Math-220k (Face, 2025), containing mathematical
problems drawn from NuminaMath 1.5 (LI et al., 2024) and paired with high-quality reasoning
responses generated by DeepSeek-R1 (Guo et al., 2025). For the RL stage, we use the DeepScaleR
dataset (Luo et al., 2025), which comprises 40,000 math problems sourced from pre-2023 AIME and
AMC competitions as well as Omni-MATH (Gao et al., 2024).

Baselines In the context of general training, we evaluate several state-of-the-art algorithms that
combine SFT and RL in different ways. Specifically, we include: (i) SimpleRL-Zoo (Zeng et al.,
2025), which applies GRPO to approximately 24k mathematical samples from GSM8K and MATH;
(ii) SFT + RL, the standard two-stage approach that first applies SFT, followed by RL for further
optimization; (iii) LUFFY (Yan et al., 2025), which introduces a dynamic weighting mechanism to
balance imitation and exploration by integrating off-policy demonstrations with on-policy rollouts
during training; (iv) TAPO (Wu et al., 2025a), which dynamically incorporates structured external
knowledge within the GRPO framework.

Evaluation We evaluate the model on five mathematical reasoning benchmarks: AIME24, AMC,
Minerva, OlympiadBench, and MATH500, as described in Section 3. For datasets with limited
sample sizes, specifically AIME24 and AMC, we report the avg@32 metric, while for the remaining
benchmarks we adopt pass@1 as the evaluation criterion. To further assess the model’s generalization
ability beyond mathematical reasoning, we also evaluate it on three out-of-distribution benchmarks:
ARC-C (Clark et al., 2018), which focuses on open-domain reasoning; GPQA-Diamond (Rein et al.,
2024), which targets graduate-level scientific knowledge and is denoted as GPQA-D; and MMLU-
Pro (Wang et al., 2024c), which includes reasoning problems drawn from academic examinations and
textbooks.

Reward We simply apply a format reward to guide general reasoning models, such as plac-
ing the reasoning process within <think>...</think> tags and the final answer within
<answer>...</answer> tags.

4.2 MAIN RESULT

We conduct experiments on Qwen2.5-Math-7B (Yang et al., 2024). As shown in Table 2, SR-Loop
delivers consistently strong performance across five mathematical reasoning benchmarks, achieving
the highest average accuracy of 57.1 and outperforming leading baselines such as LUFFY (55.5)
and TAPO (55.7). Notably, even without using an explicit accuracy reward, SR-Loop improves

1https://huggingface.co/datasets/Elliott/Openr1-Math-46k-8192
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upon conventional SFT+RL pipelines and other advanced methods, demonstrating the effectiveness
of its self-refinement mechanism. Beyond in-domain math tasks, SR-Loop also exhibits excellent
generalization to out-of-distribution benchmarks—including ARC-C, GPQA-Diamond, and MMLU-
Pro—achieving the best average score of 60.1, a +2.3 gain over the strongest baseline. These results
highlight the robustness and broad transferability of SR-Loop across diverse reasoning tasks, even
in the absence of external tools or structured supervision.

5 RELATED WORK

Tool Use in LRMs LRMs (Guo et al., 2025; Yang et al., 2025; Seed et al., 2025; Team et al.,
2025) excel at complex reasoning (Wang et al., 2024a; Hsiao et al., 2025; Shi et al., 2025; Qu et al.,
2025) but are limited by static pretraining knowledge (Gao et al., 2023; Zhu et al., 2025; Wang
et al., 2024b; Cheng et al., 2024; Matarazzo & Torlone, 2025). To overcome this, recent work
augments LRMs with external tools (Qu et al., 2025; Mei et al., 2025), enabling dynamic interaction
with sources like Python interpreters (Forootani, 2025), web search (Jin et al., 2025), and worker
LLMs (Guo et al., 2024; Team et al., 2025; Li et al., 2025b; Feng et al., 2025; Gim et al., 2024).
This reduces hallucination and enhances symbolic reasoning (An et al., 2025; Niketan et al., 2024),
allowing models to produce grounded outputs and perform deterministic tasks (Forootani, 2025).
Tool integration methods are typically tuning-free (e.g., ICL prompts (Qu et al., 2024)) or tuning-
based (e.g., SFT on tool-use data (Zhang et al., 2025b; Liu et al., 2024)). Toolformer introduced
self-supervised API call learning (Schick et al., 2023), while later work uses RL with execution-based
rewards (Zhang et al., 2025a). The toolbox now includes databases, expert models, and physical
systems (An et al., 2025), enabling LRMs to act as autonomous agents that decompose and execute
multi-step plans (Qu et al., 2025).

SFT and RL Training of LRMs Prior work shows that both pure RL and SFT-then-RL approaches
often suffer from instability (Li et al., 2025a; Wu et al., 2025b; Li et al., 2025b). In pure RL,
models trained to use tools via reward signals frequently fail to learn effective tool use, resulting in
low tool-call rates (Qian et al., 2025; Chu et al., 2025). The field has since shifted toward RL for
Verifiable Reasoning (RLVR), which uses objective rewards on tasks with ground truth, like math
and code (Zhang et al., 2025a). A more common approach combines SFT and RL—first training
on tool use via imitation, then refining with RL (Chen et al., 2025a). However, SFT can overfit to
static data and generalize poorly, especially in multi-step or unfamiliar settings (Chu et al., 2025;
Qian et al., 2025). This rigidity can destabilize subsequent RL (Chen et al., 2025a). Moreover, both
paradigms rely on verifiable rewards, which are scarce in open-ended tasks like QA (Li et al., 2025b),
scientific writing (Du et al., 2025), or summarization (Zhang et al., 2024). To address this, recent
work explores using LLMs as judges (Gu et al., 2024; Zhou et al.) or training reward models from
human preferences (Ouyang et al., 2022). Yet these face issues like bias, variance, and annotation
costs (Zhang et al., 2025a). Emerging efforts aim to learn from both successes and failures via
preference data from tool-use trajectories, applying optimization methods like DPO (Chen et al.,
2025b; Jung et al., 2025).

6 CONCLUSION

We propose SR-Loop, a general training framework that alternates between SFT and RL to improve
tool-augmented reasoning without relying on accuracy-based rewards during RL. By leveraging weak
but structured signals—such as format, tool-use, and balance rewards—SR-Loop enables stable
training, avoids entropy collapse, and supports exploration beyond static SFT data. Experiments
across multiple model sizes and benchmarks show that SR-Loop consistently improves both tool-use
and task accuracy, outperforming strong baselines. When accuracy rewards are reintroduced, perfor-
mance improves further, validating the synergy between SFT and RL. Beyond tool use, SR-Loop
also generalizes to tool-free reasoning tasks, achieving strong in-domain and out-of-distribution
performance using only format rewards. These results demonstrate that alternating between SFT
and RL provides a robust and scalable solution for training reasoning models in settings where
ground-truth supervision is limited or unavailable.
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LLM USAGE

We used LLMs as general-purpose writing and debugging assistants. Specifically, LLMs were
employed to help polish the writing (e.g., improving sentence clarity, grammar, and flow) and
occasionally to assist with debugging minor implementation issues (e.g., identifying syntax errors or
suggesting code refactoring). However, all core ideas, research questions, methodological designs,
codebase implementations, experiments, and analyses were entirely conceived, developed, and
conducted by the authors. No part of the intellectual contribution, experimental framework, or
scientific reasoning was generated by an LLM.

LIMITATION

While SR-Loop demonstrates stable and scalable learning without relying on accuracy-based re-
wards, it has several limitations. First, the approach still requires access to a capable off-policy
model to generate high-quality, tool-augmented responses during the SFT phase. These off-policy
demonstrations play a critical role in bootstrapping tool-use behavior and guiding the model’s initial
learning. However, in domains where such expert models are unavailable, underperforming, or pro-
hibitively expensive to fine-tune or generate data from, applying SR-Loop may become impractical
or less effective. This reliance introduces a bottleneck that may hinder adoption in low-resource
or rapidly evolving domains. Second, its scalability to more complex, multi-turn, or interactive
settings remains an open question. In such environments—such as web agents, dialogue systems, or
real-time information retrieval—the model must reason over non-deterministic tool outputs, partial
observability, and dynamically evolving contexts. It is unclear whether the current SFT-RL alternating
structure is sufficient to handle these challenges, or whether additional mechanisms (e.g., memory,
planning, or hierarchical control) are needed to support stable learning and generalization in these
more demanding scenarios.

A APPENDIX

A.1 CONVERGENCE PROCESS OF SR-LOOP

SR-Loop alternates between RL and SFT to improve a model’s tool-use and reasoning capabilities
without relying on accuracy-based supervision. In the RL phase, the model policy πθ is updated
to maximize a proxy reward signal r, which captures desirable behaviors such as correct output
formatting, appropriate tool usage, or balanced reasoning strategies. These proxy rewards are dense
and practical to compute, but only partially aligned with true task success. Optimizing them directly
can introduce drift or brittle behaviors that exploit the reward signal without improving actual
performance. To correct for this, each RL phase is followed by an SFT phase, where the model is
fine-tuned on high-quality responses generated by an off-policy teacher πoff. This step minimizes
a supervised loss, which acts as a projection that pulls the current policy back toward expert-like
behavior. The SFT step repairs structural issues, recovers entropy, and prevents collapse into narrow
or reward-hacking solutions.

Over successive iterations, this alternating procedure leads to convergence. The RL phase explores
new behaviors and improves proxy reward, while the SFT phase regularizes that exploration by
reinforcing well-structured, interpretable outputs. Even though the reward signal r is not directly
tied to ground-truth correctness, the combination of exploration and correction steadily improves the
model’s ability to reason and use tools effectively. The result is a stable policy that balances learned
reward optimization with consistency to expert-like behavior, enabling long-term improvement
without requiring access to explicit accuracy labels during RL training.
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