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Abstract

As machine learning (ML) practitioners, we often have hundreds of (trained) ML1

models at hand from which we need to choose one, based on various objectives2

such as accuracy, robustness, fairness, scalability, etc. However, how to compare,3

aggregate and, ultimately, trade-off these objectives is usually a time-consuming4

task that requires expert knowledge, as they may be measured in different units or5

scales. In this work, we investigate how objectives can be automatically normalized6

and aggregated to systematically navigate their Pareto front. To do so, we make7

incomparable objectives comparable using their CDFs, approximated by their8

relative rankings. As a result, we can aggregate them while matching user-specific9

preferences, allowing practitioners to meaningfully navigate and search for models10

in the Pareto front. We demonstrate the potential impact of our approach, named11

COPA, in both model selection and benchmarking tasks across diverse ML areas12

such as fair ML, domain generalization, AutoML and foundation models, where13

classical ways to normalize and aggregate objectives fall short.14

1 Introduction15

In many phases of machine learning (ML), from model development to deployment, we often need16

to compare and select among a population of trained models according to multiple objectives.17

For example, even in the simple scenario of a single classification task, model selection involves18

comparing and selecting among a population of trained classifiers with different hyperparemeters19

to find a specific compromise among objectives such as accuracy, sensitivity, or specificity [24]. A20

common and more complex scenario these days involves benchmarking a large number of large deep21

learning models in terms of how they perform with respect to many and diverse objectives that go22

beyond accuracy, such as robustness [61], fairness [21], and CO2 footprint [9, 35]. In both examples,23

we encounter the following challenge: how do we systematically compare and select among a large24

number of ML models in terms of multiple objectives?25

Moreover, different users and applications often have different needs and preferences. For example, a26

user may want to download a subset of trained large language models (LLMs) from the Open LLM27

Leaderboard [12] to compare different prompt engineering approaches for a new task. The user28

requires LLMs that perform relatively well without leaving unnecessarily large CO2 footprints. To this29

end, they need to compare the 2148 submitted LLMs in terms of 7 objectives, i.e., their performance30

across 6 benchmarks and inference CO2 cost. Among these models, 487 present non-trivial trade-offs,31

i.e., for every pair, one is better in an objective but worse in another (see Fig. 1). How should they32

compare the hundreds of models to decide what are acceptable performance-emission trade-offs?33

Should they manually inspect all 487 LLMs? And what if another user required the most robust34

model, rather than the most performant? Should they start from scratch?35

Similar challenges can be easily found in the literature related to, e.g., multitask learning or domain36

generalization [43, 48], where the selected model is expected to work ‘well’ on several tasks/domains;37
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fair classification [62], where it is often unclear what is an acceptable fairness-accuracy trade-off for38

deployment; or AutoML [15], where tens of frameworks are compared on hundreds of objectives.39

Crucially, all these works highlight two important limitations in multi-objective ML evaluation:40

L1. Objectives with different semantics and domains, such as average performance score and41

CO2 cost in Fig. 1, are not directly comparable, and thus cannot be properly aggregated nor42

traded-off. In physics, this would be akin to comparing meters and grams.43

L2. When dealing with many objectives (7 in our LLM example), it is challenging for humans44

to translate their preferences into a concrete decision, as the number of plausible trade-offs45

quickly becomes overwhelming (487 in our example).46
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Figure 1: COPA meaningfully navigates the
performance-emissions trade-off of the Open
LLM Leaderboard [12], evenly mapping the im-
portance of CO2 cost to the Pareto front. In con-
trast, existing approaches are biased toward one
of the objectives. This is reflected in the retrieved
LLMs where, e.g., COPA maps α = 1/2 to a top-
18% model for both objectives, and all other ap-
proaches select either a high-performing but CO2-
demanding model, or vice versa.

These challenges reinforce the idea that we need47

automatic tools to navigate the Pareto front (i.e.,48

the set of optimal trade-offs) in high dimensions,49

tuning their parameters according to the user50

preferences. The most common approach would51

be to perform a weighted combination of either52

the raw (Naive) or normalized objectives (Norm.53

and Delta, see §2 for their definitions). How-54

ever, as we show in Fig. 1, both fail to address55

L1 and, thus, to evenly explore the Pareto front.56

In other words, they map most CO2 importance57

values, α, to a small region of the front. To over-58

come these issues, prior works had to devise59

heuristic approaches tailored to their specific60

cases [5, 44]. For example, the authors of De-61

codingTrust [57] had to provide 8 ad hoc rules to62

normalize their objectives, one per objective. To63

date, we lack grounded approaches to compare,64

aggregate and, ultimately, trade-off objectives65

according to user preferences, that can be used66

out-of-the-box in multi-objective ML evaluation.67

Contributions. We first motivate and estab-68

lish the incomparability problem in multi-69

objective ML evaluation, shedding light on why70

previous approaches fail (§2). Next, we intro-71

duce COPA �, a novel approach to allow prac-72

titioners to meaningfully navigate the Pareto front, and thus compare and select models that reflect73

their preferences (§3). COPA accomplishes this goal with two components: i) a normalization74

function that universally makes all objectives comparable via their cumulative distribution functions,75

which we approximate using relative rankings; and ii) a criterion function with two easily interpretable76

parameters controlling the aggregation and importance of each objective. We then place COPA in the77

context of related work (§4), and finally demonstrate its potential impact (§5) in diverse and timely78

applications such as domain generalization, multitask learning, fair ML, AutoML benchmarking, and79

LLM selection. As we illustrate in Fig. 1, COPA enables thoroughly exploring the Pareto front as a80

function of the user preferences, here controlled by α. For instance, a deployer equally interested in81

the performance and CO2 emissions of the LLM, could use COPA with α = 1/2 to pick the model in82

the middle of the Pareto front (last row in Fig. 1), ranked top-18% for both objectives.83

2 Problem statement84

We are given a population of already-trained models H, typically obtained by changing hyperparamet-85

ers, where each model h ∈ H is associated to a vector of K metrics assessing its performance with86

respect to different evaluation objectives. In addition, we assume each objective to be a continuous87

random variable for which we have sampled observations in H.88

Without loss of generality, we assume that each individual objective has to be minimized, and we can89

thus frame the problem as a multi-objective optimization (MOO) problem of the following form:90

min
h∈H

y(h) := [y1(h), y2(h), . . . , yK(h)] , (1)
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where y(h) is the objective vector of model h, and yk(h) its performance on the k-th objective. When91

it is clear from the context, we will omit the argument and write y and yk directly.92

How can we minimize a vector? A fundamental problem of Eq. 1 is that minimizing the vector y is93

not well-defined, as there is no canonical total order in high dimensions. Therefore, two models could94

yield objective vectors where one is not always better than the other for all objectives. In the MOO95

literature, the set of optimal trade-off solutions is known as the Pareto front and, more formally, an96

objective vector y∗ is in the Pareto front (and called Pareto-optimal) if there exists no other feasible97

vector y such that yk ≤ y∗k for all k ∈ {1, 2, . . . ,K} , and yk < y∗k for at least one of the objectives.98

While the Pareto front is theoretically appealing, in practice, the decision maker (DM) needs to99

navigate the Pareto front and, eventually, select one single model.1 In other words, the DM needs100

to specify a total order in Eq. 1 which implies: i) taking a total order directly in RK , e.g., the101

lexicographic order where y < y∗ iff yk < y∗k and yi = y∗i ∀i < k ; or ii) defining a criterion102

function C: RK → R to rewrite Eq. 1 as a scalar-valued problem:103

min
h∈H

C(y(h)) . (2)

One remarkable example of the latter is the global-criterion method [63] which maps DM preferences104

to the problem geometry by interpreting Eq. 2 as selecting the model closest to the ideal one, i.e.,105

min
h∈H

∥y(h)− yideal∥∗ , (3)

where yideal is the ideal solution, yideal := [minh y1,minh y2, . . . ,minh yK ], and ∥·∥∗ is typically a106

p-norm. However, naively solving Eq. 3 (and, more generally, Eq. 2) is well-known in the MOO107

literature to be sensitive to the scaling of the objectives [4] (recall L1 in §1), and thus prevents us108

from properly accounting for any DM preferences (L2). In this work, we argue that the criterion109

function C should fulfill the following desiderata:110

D1. Reflect the DM preferences, translating their model expectations into an optimization problem.111

D2. Provide a simple way to tune its parameters to meaningfully explore the Pareto front.112
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Figure 2: As we explore a synthetic
Pareto front with different normalization
functions to solve Eq. 3, only COPA
meaningfully navigates it as we change
α, and its min-max solution agrees with
our expectations of a robust solution.

When are objectives incomparable? Similar to dimen-113

sional analysis in physics [2]—which argues that we can-114

not combine incommensurable quantities, e.g., kilograms115

and meters—we argue that a second fundamental issue116

that we face in Eq. 2 is semantic incomparability, i.e.,117

whether it is sensible to compare (and thus aggregate) the118

values of two different objectives.119

For example, if objectives differ in their semantics they are120

hardly comparable in general, e.g.: despite both accuracy121

and ROC AUC lying in the unit interval, it does not make122

immediate sense to compare their values. There are, how-123

ever, other aspects that are more subtle. To illustrate these,124

Fig. 2 presents a synthetic Pareto front from §5.1 where125

both objectives quantify prediction error in significantly126

different domains, namely, within the intervals [0, 0.2] and127

[0.5, 3.0]. We navigate the Pareto front solving a weighted Tchebycheff problem [3] of the form128

min
h∈H

max {α|y1|, (1− α)|y2| } , (4)

which solves Eq. 3 with C as the ∞-norm weighted by α ∈ [0, 1]. Intuitively, Eq. 4 looks for robust129

solutions that account for the importance of solving one objective over the other, seemingly satisfying130

our desiderata, D1-2. However, its naive application over the original objectives clearly shows how we131

can bias model selection in favor of Objective 2, as it can be seen in Fig. 2 : for any given preference132

α smaller than 0.75, Eq. 4 yields a solution which completely ignores Objective 1 performance.133

How can we make objectives comparable? As we just discussed, even if we use a well-designed134

criterion function, semantic incomparability can hinder our goal to meaningfully explore the Pareto135

1Note that, when we plot the Pareto front in 2D, e.g., in Fig. 1, the linear interpolation between models (dots)
only serves visualization purposes, i.e., we cannot interpolate between models.
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front. Historically, this has been addressed in the MOO literature by applying component-wise136

transformations to the objectives to normalize them [40], turning Eq. 2 into137

min
h∈H

C(ϕ(y)) := C ([ϕ1(y1), . . . , ϕK(yK)]) . (5)

Two classic examples of these transformations are138

∆k(yk) :=
yk − yideal

k

yideal
k

and normk(yk) :=
yk − yideal

k

ynadir
k − yideal

k

, (6)

where ynadir
k := [maxh y1,maxh y2, . . . ,maxh yK ] is the worst possible solution. Intuitively, ∆k139

represents the difference relative to the ideal solution, and normk reweighs the objective to lie in the140

unit interval. Prior works have extensively used ∆k, often replacing yideal
k with a reference vector, as141

computing it can be challenging [33, 38, 40]. Back to our synthetic case, we now want to solve142

min
h∈H

max {α|ϕ1(y1)|, (1− α)|ϕ2(y2)| } . (7)

By testing different ϕk, we can understand why classic approaches fail to make objectives comparable.143

More specifically: i) using ∆k now biases the problem toward the first objective, since minh y1 ≈ 0;144

and ii) using normk alleviates these problems, as the denominator is now bigger than the numerator,145

yet the differences between distributions (that of y2 being heavy-tailed) still bias the optimization146

towards the first objective. Instead, we seek to explore the Pareto front making a more meaningful147

use of α, spreading it uniformly along the curve.148

The main goal of the functions ϕk : R → R is thus to make the objectives semantically comparable,149

so that we can seamlessly aggregate them with the criterion function C. To this end, we argue that150

the functions ϕk should be:151

D3. Objective-agnostic, so that we can normalize any objective irrespectively of its specific nature.152

D4. Order-preserving (i.e., strictly increasing), so that it preserves Pareto-optimality.153

In summary, to meaningfully explore the Pareto front, it is important to design a criterion function154

C that translates well DM preferences into an optimization problem (D1-2), and a normalization155

function ϕ that makes objectives semantically comparable (D3-4). These desiderata will blend in156

COPA, discussed in the next section. In the synthetic experiment above, COPA maps the value157

α = 1/2, which turns Eq. 7 into a robust min-max problem [56], to the flat region of the curve in158

Fig. 2, matching the intuition of what a robust solution should represent.159

3 Methodology160

Next, we introduce the proposed normalization and criterion functions fulfilling the desiderata D1-4161

described in §2. We refer to the problem resulting of solving Eq. 5 with the proposed functions as162

cumulative-based optimization of the Pareto front or, in short, COPA �.163

3.1 Designing a universal normalization function164

We argued in §2 that the function ϕ should fulfill desiderata D3-4, i.e., it should make any objectives165

semantically comparable while preserving their Pareto-optimality. Taking advantage of our prob-166

abilistic perspective (recall that yk is a continuous random variable), we propose to design ϕ such167

that the resulting variables are all equally distributed and, w.l.o.g., uniformly distributed in the unit168

interval. That is, we propose to use u := [u1, u2, . . . , uK ] instead of y, where169

uk := Fk(yk) ∼ U(0, 1) ∀k ∈ {1, 2, . . . ,K} , (8)

and ϕk = Fk is the marginal cumulative distribution function (CDF) of the k-th objective. Indeed,170

this transformation is known in statistics as the probability integral transform [6, Example 5.6.3], and171

uk is guaranteed to follow a standard uniform distribution if yk is continuous.172

Remarkably, Eq. 8 makes all criterion functions marginal-distribution-free in the sense of Kendall173

and Sundrum [29], i.e., it strips away all individual properties of the marginal distributions (e.g., the174

domain) of any given objective (D3). We note that normalizing random variables this way is one175

of the fundamental building stones of copulae in statistics [14, 51], ensuring that copula functions176

exclusively learn the relationship across random variables.177
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How can we interpret the values of u? One important advantage of using u in place of y in Eq. 5178

is that it provides a common framework to think about all objectives, since all their values all are now179

framed as elements within a population. In practice, this means that the DM has a common language180

to express their expectations on the model. For example, u = 1/2 corresponds for all objectives to the181

the median value, which divides H into two halves comprising the best and worst performing models.182

However, there is still one caveat we need yet to address: we have no access to the marginal CDF of183

each objective, but only to samples of the joint distribution in H.184

3.2 Rankings as finite-sample approximations185

As mentioned above, while we have no access to the CDFs themselves, we have samples from the186

joint distribution over the objectives, i.e., over, p([y1, y2, . . . , yK ]). Namely, we can consider each187

model h ∈ H as a sample from the joint distribution and, by looking at each objective individually,188

as a sample from the marginal distributions.189

Let us now focus on the k-th objective, yk, and drop the subindex in the following to ease notation. Say190

that we have |H| = N i.i.d. realizations of the objective, i.e., {y1, y2, . . . , yN} i.i.d.∼ Pk . Then, we can191

approximate Eq. 8 for the i-th sample, ui = F (yi), by computing its order statistic, i.e., the random192

variable representing its relative ranking within the population, R(i) :=
∑N

j=1[ yj < yi ] , where193

Iverson brackets denote the indicator function, such that yR(1) ≤ yR(2) ≤ . . . ≤ yR(N) . Specifically,194

since the empirical CDF is the fraction of samples smaller than the input, it is direct to show that195

ûi = F̂(i) :=
1

N

N∑
j=1

[ yj < yi ] =
1

N
R(i) (9)

enjoys the following properties [6]:196

Proposition 3.1. ûi is an unbiased estimator of the CDF at yi, ui, with variance ui(1− ui)/N . The197

variance of ûi decreases linearly with N , and has a maximum value of 0.25/N at the median.198

Proof. First, note that [ yj < yi ] ∼ Bern(ui). Then, we have R(i) ∼ Bin(N, ui) with mean Nui199

and variance Nui(1 − ui) . Hence, ûi has mean 1
N E[R(i)] = ui, and variance 1

N2 V[R(i)] =200

ui(1− ui)/N which, by taking derivatives w.r.t. ui, ∂ui V[ûi] = 1− 2ui = 0 ⇒ ui = 1/2, which is a201

maximum since ∂2
ui V[1/2] < 0 .202
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In other words, we can use the relative rankings of each objective to build203

an unbiased2 estimator of the CDF, ûi, whose variance rapidly decreases as204

we increase the size of H, i.e., V[ûi] → 0 as N → ∞ . Indeed, the inset205

figure shows the variance of ûi as a function of the sample size for three206

different values of ui. Note that the relative ranking is strictly increasing:207

if yi < yj , then F̂(yi) < F̂(yj) for any H containing both samples (D4).208

While this is an approximation of the true CDF, which would retain instead209

all the information about the joint distribution, it works egregiously well in our experiments (§5).210

Furthermore, note that this transformation is meant to ease inter-objective computations, we can (and211

should) use the original values of yk to perform intra-objective comparisons or decisions.212

3.3 Incorporating preferences into the optimization213

Now that we can effectively approximate our normalization function, we introduce a criterion function214

to translate DM preferences into an optimization problem (D1). To do so, we start by looking back215

at global criterion methods, since plugging in our transformation u = ϕ(y) simplifies the problem216

in Eq. 3 to minh ∥u∥∗ as the ideal point becomes the origin, i.e., uideal = 0 . Then, by using the217

approximation described in §3.2, the problem becomes a simple finite search of the form218

min
i∈{1,2,...,N}

∥ûi∥∗ . (10)

That is, we have reduced our problem to finding the model whose ranking vector has the smallest219

norm. Using this new marginal-free global-criterion method, mapping the DM preferences now boils220

down to selecting an appropriate norm for the problem in Eq. 10. To this end, we propose to use as221

criterion function C a norm with parameters p ≥ 1 and ω ∈ RK
+ defined as222

2In fact, it is known to be a consistent estimator [55].
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∥u∥p,ω :=

(
K∑

k=1

|ωkuk|p
)1/p

, (11)

where
∑

k ωk = 1. This norm can be interpreted as a regular p-norm on a space with coordinates223

scaled by ω. More remarkably, note that this differs from the usual weighted p-norm, as the weights224

are inside the absolute value. We justify this choice given that the values of uk lie in the unit interval,225

and the power would often make them vanish too quickly, as we demonstrate in Fig. 10.226

How can we interpret the parameters? Fortunately, the parameters of the proposed criterion227

function, p and ω, provide an easy and interpretable way for the DM to navigate the Pareto front (D2).228

Regarding ω, as we apply them in Eq. 11 before taking the power, we can provide a clear interpretation229

of ω in terms of ratio trade-offs. For example, if we had two objectives with ω = [0.75, 0.25], then230

we can see by equating the weighted objectives that minimizing the first objective to a value of u1 is231

worth the same as minimizing the second objective to a value of u2 = ω1/ω2u1 = 3u1 , i.e., u1 is232

three times more important than u2. If we combine this interpretation with that of u given in §3.1, we233

could say, e.g., that we value being in the top-25% of the models for the first objective the same as234

being in the top-75% for the second objective.235

We can interpret p using the same intuition as in ML regularization [16]: the models selected in Eq. 10236

are those first intersecting an ever-expanding p-ball centered at the origin, whose shape depends on237

p. Higher values of p lead to denser objective vectors, while smaller values lead instead to sparser238

ones. Additionally, some values of p have clear interpretations: p = 1 is the average rank; p = 2 is239

the Euclidean distance; and p = ∞ turns Eq. 10 into a min-max problem, typically used to formulate240

robust optimization problems [56].241

Does Eq. 11 enjoy theoretical guarantees? Given the similarity with commonly-used norms, it242

is natural to ask whether we can leverage existing results from the MOO literature and adapt them243

to the proposed norm. This is indeed the case, and we can easily guarantee, e.g., that the solutions244

found using Eq. 11 with 1 ≤ p < ∞ are always Pareto-optimal [40, Thm. 3.4.1]. However, it might245

not reach all optima. Similarly, note that p = ∞ reduces Eq. 10 to a weighted Tchebycheff problem246

which reaches any Pareto-optimal solution [40, Thrm. 3.4.5], but also weakly optimal ones.247

In practice, using a weighted Tchebycheff problem (p = ∞) is a good practice when we have few248

objectives and a large budget for the weights ω to test. Instead, when interested in finding a particular249

model (i.e., solving Eq. 5 once), we suggest setting p based on the level of robustness desired (as250

lower values of p lead to higher tolerance to bad performance on individual objectives), and ω based251

on the importance of solving each objective given by the DM.252

4 Related work253

Our work draws connections with other scientific domains, e.g., the notion of semantically incompar-254

ability is akin to that of incommensurability in dimensional analysis [2]. Similarly, using relative255

rankings to make better comparisons has been previously explored in microeconomics [47], MOO256

[23, 31], and statistics, designing methods that avoid the normality assumption, e.g., the Friedman257

test [13], Wilcoxon signed-rank test [60], or Kendall’s τ coefficient [28]. Finally, as mentioned in §2,258

copulas exploit the probability integral transform to become marginal-distribution-free [14], and the259

proposed criterion functions share similarities with weighted Lp-problems in MOO [40].260

In ML, the closest work to ours is Park et al. [46], which learns the joint CDF, approximated with a261

copula, to recover a partial order for multi-objective Bayesian optimization. In contrast, we employ262

marginal CDFs and provide a principled way to translate DM preferences to an optimization problem.263

Another line of related works are those that attempt to learn the Pareto front either for model merging264

[7, 32] or a posteriori MOO methods [64]. Unfortunately, these methods fail to address semantic265

incomparability as they use the raw objectives. ROC curves [11] provide an interesting connection,266

since their axes can be understood as the CDFs of the target classes [18]. In practice, many prior267

works proposed ad hoc approaches to normalize and aggregate objectives using, e.g., normalized268

RMSEs [44, 57]—we refer to §8.3 of Japkowicz and Shah [24] for other references. Notoriously,269

some works in multitask learning [33, 43] and domain generalization [48] use rank averages to270

aggregate objectives, yet the standard is to use the average of ∆k-normalized objectives (see Eq. 6).271

COPA can benefit these two areas, along any others accounting for several objectives such as fair272

ML [39], federated learning [27], probabilistic ML [26], and multimodal learning [1].273
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5 COPA in action274

In this section, we motivate the use of COPA by showing a range of practical scenarios which would275

benefit from adopting the proposed methodology. We defer additional details and results to §A.276

5.1 Synthetic evaluation277

To qualitative assess COPA, we consider a synthetic Pareto front of the form y2 = 0.25 cos(39y0.851 )−278

log(y1)− 0.46 where y1 ∼ U(0.02, 0.2) . We obtain as a result a non-convex Pareto front with a flat279

area around y1 = 0.1, and two objectives with significantly different distributions.280
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Figure 3: Distribution of solutions (circles) found
for different values of p as we sweep over values
of α. The darkness of the circles represents the
number of times they were selected.

Does the parameter p match our intuitions?281

We corroborate the insights from §3.3 by showing282

in Fig. 3 the distribution of solutions found taking283

different values of p. First, note that since the284

front is strictly increasing except in [0.083, 0.091],285

we have that u1 ≈ 1 − u2. As a result, we see286

that p = 1 almost exclusively finds solutions on287

the extrema. When we increase p, the distribution288

of solutions better spreads along the front and,289

as the p-balls become more square-like, we gain290

finer control on the solution found by tuning α.291

It is important to stress, however, that the finer292

control of p = ∞ comes at cost: as we increase293

K, finding a proper ω could prove challenging.294

5.2 Case 1: Model selection295

First, we explore how the norm proposed in §3.3 can help us explore the Pareto front more meaning-296

fully, i.e., how sensibly it maps the DM preferences to Eq. 5.297

1. The performance-emissions trade-off. Despite LLMs recently showing outstanding perform-298

ance [42], their CO2 footprint can be concerning and needs to be taken into account [9]. Next, we299

show how practitioners can leverage COPA to better navigate this crucial trade-off in the LLM space.300

0.0 0.2 0.4 0.6 0.8 1.0

CDF - CO2 cost

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
-P

er
fo

rm
an

ce
ra

nk
in

g

RYS-XLarge

Qwen2.5-32B

Qwen2.5-14B
Falcon3-7B

Phi-3.5-mini

IceFog’s model

Llama2-4B

GPT-2-355M

0.0

0.2

0.4

0.6

0.8

1.0

C
O

2
im

po
rt

an
ce

(α
)

Figure 4: We can meaningfully explore the
Pareto-optimal models of the Open LLM Lead-
erboard [12] with COPA. We use p = ∞ on the 7
objectives and highlight some of the selected mod-
els as we change the value of α.

We gather the results of 2148 LLMs submitted301

to the Open LLM Leaderboard [12] and take302

as objectives their inference CO2 cost and per-303

formance on 6 different datasets: IFEval [65],304

BBH [54], MATH [20], GPQA [49], MuSR [52],305

and MMLU-Pro [58]. Then, we use COPA with306

p = ∞ to select an LLM, changing ω as we vary307

the importance given to their CO2 footprint, de-308

noted by α, as ω := [α, (1−α)/6, . . . , (1−α)/6] .309

We highlight the selected LLMs in Fig. 4, which310

groups all benchmarks into one dimension as311

their ∞-norm for visualization purposes. We ob-312

serve that the proposed norm enables the mean-313

ingful exploration of the Pareto front, with the314

values of α being uniformly spread-out across315

the front. Furthermore, not only can we sensibly explore the LLM space, but COPA enables inter-316

preting these models in terms of the original objectives and the population they live in. For example,317

we can say that GPT-2 is Pareto-optimal as it consumes the least, but it only achieves a 6% average318

performance score, or that Phi-3.5-mini is a top-10% model in both aspects, consuming 0.53 kg of319

CO2 vs. the 13 kg consumed by the best-performing model.320

2. The fairness-accuracy trade-off. Moving to a more classic example, we consider how a DM321

could use COPA to choose a trade-off between accuracy and fairness in a classification problem, two322

objectives which are defined in completely different ways [62].323

We reproduce the CelebA [34] experiment from Maheshwari and Perrot [37] using FairGrad—an324

algorithm whose hyperparameter ϵ upper-bounds the unfairness of the classifier—and create a325

population of models by sweeping through values of ϵ and five random initializations.326
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as user-constrained scenarios (right).

Fig. 5 (left) shows the Pareto front in the327

accuracy-fairness space, as we navigate it328

by changing α, clearly showing the differ-329

ence between both objectives. Note that330

directly solving Eq. 3 leads to the solution331

with maximum accuracy, as in §5.1. In-332

stead, using COPA we can uniformly nav-333

igate the Pareto front where, e.g., the ro-334

bust min-max solution (α = 1/2) lies pre-335

cisely in the middle of the front. As a res-336

ult, COPA offers a more reliable interpreta-337

tion of its parameters than the upper-bound338

given by ϵ, which is clear by observing that,339

e.g., a value of ϵ = 1 or 0.25 yields relat-340

ively similar solutions in Fig. 5.341

In addition, we consider a more realistic scenario where DMs bargain on acceptable values for the342

objectives, e.g., a regulatory body could demand equal opportunity to never exceed 0.02 [36]. Despite343

constraining the Pareto front to consider only valid solutions (we still use invalid ones to approximate344

the CDF), COPA stills provides a sensible way to navigate the space of valid models, proving that we345

can easily combine rules on the original and CDF-transformed objective spaces.346

5.3 Case 2: Comparative model analysis347

Previously, we have explored how DMs can meaningfully explore the Pareto front. Now, we focus on348

a related but different question: How much could semantic incomparability alter the conclusions we349

draw from comparative analyses in ML research?350

1. Incomparable objectives. First, we consider a multitask learning (MTL) setting, where the351

heterogeneity of the tasks to solve makes it prone to face incomparable objectives. In fact, it is352

common to aggregate objectives with the average relative performance, ∆, as discussed in §4. To353

clearly showcase the issue, we look at the multi-SVHN experiment from Javaloy and Valera [25],354

which uses a modified version of SVHN [45] with a digit on each side of the image, and where we355

solve three classification tasks: i) left digit; ii) right digit; and iii) parity of their product; and two356

regression tasks: iv) sum of digits; and v) number of active pixels in the image.357

MSEdensity ∆ p = 1 p = 2 p = 4 p = 8 p =∞

GradDrop

Single

MGDA-UB

COPA

best

worst

Figure 6: Ranking of MTL methods using different
criteria to evaluate them. Methods whose rankings
drastically change with ∆ are colored.

Fig. 6 shows the ranking of the 14 MTL meth-358

ods considered by Javaloy and Valera [25], if we359

were to use different criterion functions, namely:360

COPA with different values of p and equal361

weights, the average relative performance, ∆,362

and the regression error over the density task.363

The first two columns of the plot make extremely364

clear how much the density task dominates the365

average relative performance, perfectly match-366

ing its ranking. Again, this is a result of the367

reference method having nearly zero regression368

error on this task, greatly magnifying its relative performance, ∆k.369

As expected, the outlined issue has a tremendous impact on the conclusions drawn, e.g.: i) the worst370

method for all COPA instances, MGDA-UB [50], becomes the 3rd best method w.r.t. ∆; or ii) the best371

one for every COPA, GradDrop [8], becomes the 6th best. Fig. 6 also shows that the reference method372

(Single) is among the least robust models (p = ∞), and slowly improves as we look less at individual373

performances (p = 1). It is worth-noting that the authors were aware of the issue and left the density374

task out when aggregating objectives, reporting both ∆ and density MSE as a pair.375

2. Seemingly comparable objectives. Sometimes, semantic incomparability can arise in unex-376

pected scenarios. We take domain generalization as an example and, in particular, the DomainBed377

[17] experiment from Hemati et al. [19]. Here, the authors compare different methods by training378

them on some domains, and testing them on 4 unseen ones, reporting the average domain accuracy as379

commonly done in the literature.380

Fig. 7 shows the ranking of the considered methods as we use different criterion functions, with381

the average accuracy in the first column. For two of the highlighted methods, RSC [22] and SagNet382
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[41], we observe their performance deteriorate and improve, respectively, as we consider less robust383

criteria, in accordance with the average accuracy. However, we see a different story with HGP [19]384

and Mixup [59], whose rankings are consistent for all COPA instances, but drastically change when385

we average accuracies. This leads to significantly different analyses concluding, e.g., that Mixup is386

worse than SagNet and HGP, in disagreement with every other criterion function.387

avg norm p = 1 p = 2 p = 4 p = 8 p =∞

SagNet
HGP

Mixup
RSC

COPA

best

worst

Figure 7: Ranking of domain generalization meth-
ods as we change the criterion function. Average
accuracy is inconsistent with every COPA instance.

In fact, accuracies present significantly differ-388

ent ranges across domains (see Tab 2) and dif-389

ferences in domains with less variance are less390

important in the average computation. If we nor-391

malize the results using normk (Eq. 6), we see392

that Mixup significantly outperforms HGP in these393

domains, swapping their rankings. This can also394

be observed in Fig. 7, where norm aligns much395

better with COPA.396

5.4 Case 3: Benchmarking397

Finally, we motivate the use of COPA and CDF-normalized objectives in general benchmarking398

where, in contrast with the previous use cases, objectives are not necessarily aggregated into a scalar399

value, but plotted together. Additional plots can be found in §A.5.400
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AMLB [15] using scaled performance, norm,
with a random forest as reference method (red
line); and using a CCDF-transformation (bottom).
Brackets indicate the number of off-view outliers.

We take the AutoML Benchmark (AMLB) [15]401

for the use-case as it “follows best practices and402

avoids common mistakes when comparing frame-403

works.” We reproduce all figures from the original404

work, comparing 15 AutoML methods evaluated405

on 104 different objectives. Since objectives are406

incomparable, the authors scale them using normk407

(Eq. 6) with a random forest as reference model,408

providing a number of analyses from these ob-409

jectives. Remarkably, the authors also encourage410

the use of CD diagrams and Friedman tests, two411

methods that based on relative rankings.412

A natural step is therefore to use CDF-normalized413

objectives. Fig. 8 shows the same AMLB box-414

plot using scaled and CCDF performance, i.e.,415

1 − Fk(yk). We find that using CCDFs comes416

with several benefits: i) there are no outliers to417

report, unlike in the original plot (all values lie418

in [0, 1]); ii) there is no need for an arbitrary419

reference model; and iii) we can provide clear420

population-based interpretations, e.g., “on average, AutoGluon(B) [10] yields over top-10% perform-421

ance on the considered objectives.” These benefits extend to all AMBL plots, demonstrating that the422

proposed CDF transformation is a sensible way of normalizing objectives in general.423

6 Concluding remarks424

In this work, we have shown the importance of meaningfully navigating the Pareto front in multi-425

objective ML evaluation, allowing users to perform better-informed decisions. To this end, we have426

highlighted how crucial is to properly normalize all objectives and to have a criterion function that427

sensibly reflects DM preferences into an optimization problem. Finally, we have implemented these428

insights in COPA, and extensively demonstrated the impact that it can have in areas as fundamental429

and timely as model selection and benchmarking.430

Our work opens many intriguing venues for future research. For example, we would be excited to see431

COPA adapted to active settings with humans-in-the-loop, criterion functions that parametrize other432

preference types, a formal systematization of model selection enabled by COPA, or its adoption in433

public portals such as the Open LLM Leadearboard [12] or the DecodingTrust benchmark [57].434
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Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri,533
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2018, Montréal, Canada, pages 525–536, 2018. URL https://proceedings.neurips.cc634

/paper/2018/hash/432aca3a1e345e339f35a30c8f65edce-Abstract.html. (Cited in635

page 8.)636
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faithfully reproduce the main experimental results, as described in supplemental material?971

Answer: [Yes]972

Justification: All experiments use publicly-available data (except for the fairness use-case data,973

which is attached), and the code to reproduce the experiments are attached too.974

Guidelines:975

• The answer NA means that paper does not include experiments requiring code.976

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public977

/guides/CodeSubmissionPolicy) for more details.978

• While we encourage the release of code and data, we understand that this might not be979

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including980

code, unless this is central to the contribution (e.g., for a new open-source benchmark).981

• The instructions should contain the exact command and environment needed to run to982

reproduce the results. See the NeurIPS code and data submission guidelines (https:983

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.984

• The authors should provide instructions on data access and preparation, including how to985

access the raw data, preprocessed data, intermediate data, and generated data, etc.986

• The authors should provide scripts to reproduce all experimental results for the new proposed987

method and baselines. If only a subset of experiments are reproducible, they should state988

which ones are omitted from the script and why.989

• At submission time, to preserve anonymity, the authors should release anonymized versions990

(if applicable).991

• Providing as much information as possible in supplemental material (appended to the paper)992

is recommended, but including URLs to data and code is permitted.993

6. Experimental setting/details994

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,995

how they were chosen, type of optimizer, etc.) necessary to understand the results?996

Answer: [Yes]997

Justification: Yes, all details are provided in §A.998

Guidelines:999

• The answer NA means that the paper does not include experiments.1000

• The experimental setting should be presented in the core of the paper to a level of detail that1001

is necessary to appreciate the results and make sense of them.1002

• The full details can be provided either with the code, in appendix, or as supplemental material.1003

7. Experiment statistical significance1004

Question: Does the paper report error bars suitably and correctly defined or other appropriate1005

information about the statistical significance of the experiments?1006

Answer: [Yes]1007

Justification: While we assume no stochasticity in the classical ML sense (i.e., via the datasets),1008

we do so through H and clearly describe the properties of the ranking estimator in Prop. 3.1.1009

Guidelines:1010

• The answer NA means that the paper does not include experiments.1011

• The authors should answer ”Yes” if the results are accompanied by error bars, confidence1012

intervals, or statistical significance tests, at least for the experiments that support the main1013

claims of the paper.1014
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• The factors of variability that the error bars are capturing should be clearly stated (for example,1015

train/test split, initialization, random drawing of some parameter, or overall run with given1016

experimental conditions).1017

• The method for calculating the error bars should be explained (closed form formula, call to a1018

library function, bootstrap, etc.)1019

• The assumptions made should be given (e.g., Normally distributed errors).1020

• It should be clear whether the error bar is the standard deviation or the standard error of the1021

mean.1022

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably1023

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality1024

of errors is not verified.1025

• For asymmetric distributions, the authors should be careful not to show in tables or figures1026

symmetric error bars that would yield results that are out of range (e.g. negative error rates).1027

• If error bars are reported in tables or plots, The authors should explain in the text how they1028

were calculated and reference the corresponding figures or tables in the text.1029

8. Experiments compute resources1030

Question: For each experiment, does the paper provide sufficient information on the computer1031

resources (type of compute workers, memory, time of execution) needed to reproduce the experi-1032

ments?1033

Answer: [No]1034

Justification: Experiments are extremely lightweight and can be run in any modern device.1035

Guidelines:1036

• The answer NA means that the paper does not include experiments.1037

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud1038

provider, including relevant memory and storage.1039

• The paper should provide the amount of compute required for each of the individual experi-1040

mental runs as well as estimate the total compute.1041

• The paper should disclose whether the full research project required more compute than the1042

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it1043

into the paper).1044

9. Code of ethics1045

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS1046

Code of Ethics https://neurips.cc/public/EthicsGuidelines?1047

Answer: [Yes]1048

Justification: Data does not involve human participants and is publicly-available.1049

Guidelines:1050

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1051

• If the authors answer No, they should explain the special circumstances that require a deviation1052

from the Code of Ethics.1053

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration1054

due to laws or regulations in their jurisdiction).1055

10. Broader impacts1056

Question: Does the paper discuss both potential positive societal impacts and negative societal1057

impacts of the work performed?1058

Answer: [Yes]1059

Justification: While we do dedicate a specific paragraph, the entire discussion within the manu-1060

script concerns the need of properly mapping the preferences of users into the Pareto front and1061

their possible misuses (e.g., by not normalizing objectives), and we thus believe that the impacts1062

of our work are clear.1063

Guidelines:1064
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• The answer NA means that there is no societal impact of the work performed.1065

• If the authors answer NA or No, they should explain why their work has no societal impact or1066

why the paper does not address societal impact.1067

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,1068

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-1069

ment of technologies that could make decisions that unfairly impact specific groups), privacy1070

considerations, and security considerations.1071

• The conference expects that many papers will be foundational research and not tied to1072

particular applications, let alone deployments. However, if there is a direct path to any1073

negative applications, the authors should point it out. For example, it is legitimate to point out1074

that an improvement in the quality of generative models could be used to generate deepfakes1075

for disinformation. On the other hand, it is not needed to point out that a generic algorithm1076

for optimizing neural networks could enable people to train models that generate Deepfakes1077

faster.1078

• The authors should consider possible harms that could arise when the technology is being1079

used as intended and functioning correctly, harms that could arise when the technology is1080

being used as intended but gives incorrect results, and harms following from (intentional or1081

unintentional) misuse of the technology.1082

• If there are negative societal impacts, the authors could also discuss possible mitigation1083

strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms1084

for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,1085

improving the efficiency and accessibility of ML).1086

11. Safeguards1087

Question: Does the paper describe safeguards that have been put in place for responsible release1088

of data or models that have a high risk for misuse (e.g., pretrained language models, image1089

generators, or scraped datasets)?1090

Answer: [NA]1091

Justification: We do not provide any of the above.1092

Guidelines:1093

• The answer NA means that the paper poses no such risks.1094

• Released models that have a high risk for misuse or dual-use should be released with necessary1095

safeguards to allow for controlled use of the model, for example by requiring that users adhere1096

to usage guidelines or restrictions to access the model or implementing safety filters.1097

• Datasets that have been scraped from the Internet could pose safety risks. The authors should1098

describe how they avoided releasing unsafe images.1099

• We recognize that providing effective safeguards is challenging, and many papers do not1100

require this, but we encourage authors to take this into account and make a best faith effort.1101

12. Licenses for existing assets1102

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the1103

paper, properly credited and are the license and terms of use explicitly mentioned and properly1104

respected?1105

Answer: [Yes]1106

Justification: We properly cite and point to every method and data we use.1107

Guidelines:1108

• The answer NA means that the paper does not use existing assets.1109

• The authors should cite the original paper that produced the code package or dataset.1110

• The authors should state which version of the asset is used and, if possible, include a URL.1111

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1112

• For scraped data from a particular source (e.g., website), the copyright and terms of service of1113

that source should be provided.1114
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• If assets are released, the license, copyright information, and terms of use in the package1115

should be provided. For popular datasets, paperswithcode.com/datasets has curated1116

licenses for some datasets. Their licensing guide can help determine the license of a dataset.1117

• For existing datasets that are re-packaged, both the original license and the license of the1118

derived asset (if it has changed) should be provided.1119

• If this information is not available online, the authors are encouraged to reach out to the1120

asset’s creators.1121

13. New assets1122

Question: Are new assets introduced in the paper well documented and is the documentation1123

provided alongside the assets?1124

Answer: [NA]1125

Justification: No new assets.1126

Guidelines:1127

• The answer NA means that the paper does not release new assets.1128

• Researchers should communicate the details of the dataset/code/model as part of their sub-1129

missions via structured templates. This includes details about training, license, limitations,1130

etc.1131

• The paper should discuss whether and how consent was obtained from people whose asset is1132

used.1133

• At submission time, remember to anonymize your assets (if applicable). You can either create1134

an anonymized URL or include an anonymized zip file.1135

14. Crowdsourcing and research with human subjects1136

Question: For crowdsourcing experiments and research with human subjects, does the paper1137

include the full text of instructions given to participants and screenshots, if applicable, as well as1138

details about compensation (if any)?1139

Answer: [NA]1140

Justification: Not applicable.1141

Guidelines:1142

• The answer NA means that the paper does not involve crowdsourcing nor research with human1143

subjects.1144

• Including this information in the supplemental material is fine, but if the main contribution of1145

the paper involves human subjects, then as much detail as possible should be included in the1146

main paper.1147

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or1148

other labor should be paid at least the minimum wage in the country of the data collector.1149

15. Institutional review board (IRB) approvals or equivalent for research with human subjects1150

Question: Does the paper describe potential risks incurred by study participants, whether such1151

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals1152

(or an equivalent approval/review based on the requirements of your country or institution) were1153

obtained?1154

Answer: [NA]1155

Justification: Not applicable.1156

Guidelines:1157

• The answer NA means that the paper does not involve crowdsourcing nor research with human1158

subjects.1159

• Depending on the country in which research is conducted, IRB approval (or equivalent) may1160

be required for any human subjects research. If you obtained IRB approval, you should clearly1161

state this in the paper.1162

• We recognize that the procedures for this may vary significantly between institutions and1163

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines1164

for their institution.1165
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• For initial submissions, do not include any information that would break anonymity (if1166

applicable), such as the institution conducting the review.1167

16. Declaration of LLM usage1168

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-1169

standard component of the core methods in this research? Note that if the LLM is used only for1170

writing, editing, or formatting purposes and does not impact the core methodology, scientific1171

rigorousness, or originality of the research, declaration is not required.1172

Answer: [NA]1173

Justification: We do not use any LLM.1174

Guidelines:1175

• The answer NA means that the core method development in this research does not involve1176

LLMs as any important, original, or non-standard components.1177

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for1178

what should or should not be described.1179
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