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Abstract

As machine learning (ML) practitioners, we often have hundreds of (trained) ML
models at hand from which we need to choose one, based on various objectives
such as accuracy, robustness, fairness, scalability, etc. However, how to compare,
aggregate and, ultimately, trade-off these objectives is usually a time-consuming
task that requires expert knowledge, as they may be measured in different units or
scales. In this work, we investigate how objectives can be automatically normalized
and aggregated to systematically navigate their Pareto front. To do so, we make
incomparable objectives comparable using their CDFs, approximated by their
relative rankings. As a result, we can aggregate them while matching user-specific
preferences, allowing practitioners to meaningfully navigate and search for models
in the Pareto front. We demonstrate the potential impact of our approach, named
COPA, in both model selection and benchmarking tasks across diverse ML areas
such as fair ML, domain generalization, AutoML and foundation models, where
classical ways to normalize and aggregate objectives fall short.

1 Introduction

In many phases of machine learning (ML), from model development to deployment, we often need
to compare and select among a population of trained models according to multiple objectives.
For example, even in the simple scenario of a single classification task, model selection involves
comparing and selecting among a population of trained classifiers with different hyperparemeters
to find a specific compromise among objectives such as accuracy, sensitivity, or specificity [24]. A
common and more complex scenario these days involves benchmarking a large number of large deep
learning models in terms of how they perform with respect to many and diverse objectives that go
beyond accuracy, such as robustness [61], fairness [21], and CO, footprint [9, 35]. In both examples,
we encounter the following challenge: how do we systematically compare and select among a large
number of ML models in terms of multiple objectives?

Moreover, different users and applications often have different needs and preferences. For example, a
user may want to download a subset of trained large language models (LLMs) from the Open LLM
Leaderboard [12] to compare different prompt engineering approaches for a new task. The user
requires LLMs that perform relatively well without leaving unnecessarily large CO, footprints. To this
end, they need to compare the 2148 submitted LLMs in terms of 7 objectives, i.e., their performance
across 6 benchmarks and inference CO; cost. Among these models, 487 present non-trivial trade-offs,
i.e., for every pair, one is better in an objective but worse in another (see Fig. 1). How should they
compare the hundreds of models to decide what are acceptable performance-emission trade-offs?
Should they manually inspect all 487 LLMs? And what if another user required the most robust
model, rather than the most performant? Should they start from scratch?

Similar challenges can be easily found in the literature related to, e.g., multitask learning or domain
generalization [43, 48], where the selected model is expected to work ‘well’” on several tasks/domains;
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fair classification [62], where it is often unclear what is an acceptable fairness-accuracy trade-off for
deployment; or AutoML [15], where tens of frameworks are compared on hundreds of objectives.
Crucially, all these works highlight two important limitations in multi-objective ML evaluation:

L1. Objectives with different semantics and domains, such as average performance score and
CO; cost in Fig. 1, are not directly comparable, and thus cannot be properly aggregated nor

traded-off. In physics, this would be akin to comparing meters and grams.

L2. When dealing with many objectives (7 in our LLM example), it is challenging for humans
to translate their preferences into a concrete decision, as the number of plausible trade-offs

quickly becomes overwhelming (487 in our example).

These challenges reinforce the idea that we need 5 - 3 10
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codingTrust [57] had to provide 8 ad hoc rules to
normalize their objectives, one per objective. To
date, we lack grounded approaches to compare,
aggregate and, ultimately, trade-off objectives
according to user preferences, that can be used
out-of-the-box in multi-objective ML evaluation.

Figure 1: COPA meaningfully navigates the
performance-emissions trade-off of the Open
LLM Leaderboard [12], evenly mapping the im-
portance of CO; cost to the Pareto front. In con-
trast, existing approaches are biased toward one
of the objectives. This is reflected in the retrieved
LLMs where, e.g., COPA maps o« = 1/2 to a top-
18 % model for both objectives, and all other ap-
proaches select either a high-performing but CO,-
demanding model, or vice versa.

Contributions. We first motivate and estab-
lish the incomparability problem in multi-
objective ML evaluation, shedding light on why
previous approaches fail (§2). Next, we intro-
duce COPA ¥, a novel approach to allow prac-
titioners to meaningfully navigate the Pareto front, and thus compare and select models that reflect
their preferences (§3). COPA accomplishes this goal with two components: i) a normalization
function that universally makes all objectives comparable via their cumulative distribution functions,
which we approximate using relative rankings; and ii) a criterion function with two easily interpretable
parameters controlling the aggregation and importance of each objective. We then place COPA in the
context of related work (§4), and finally demonstrate its potential impact (§5) in diverse and timely
applications such as domain generalization, multitask learning, fair ML, AutoML benchmarking, and
LLM selection. As we illustrate in Fig. 1, COPA enables thoroughly exploring the Pareto front as a
function of the user preferences, here controlled by «. For instance, a deployer equally interested in
the performance and CO, emissions of the LLM, could use COPA with o = 1/2 to pick the model in
the middle of the Pareto front (last row in Fig. 1), ranked top-18 % for both objectives.

2 Problem statement

We are given a population of already-trained models H, typically obtained by changing hyperparamet-
ers, where each model h € H is associated to a vector of K metrics assessing its performance with
respect to different evaluation objectives. In addition, we assume each objective to be a continuous
random variable for which we have sampled observations in H.

Without loss of generality, we assume that each individual objective has to be minimized, and we can
thus frame the problem as a multi-objective optimization (MOO) problem of the following form:

min y(h) = [y; (h), y2(h), ...

7YK(h)} ’ (1)
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where y (h) is the objective vector of model h, and y,, (k) its performance on the k-th objective. When
it is clear from the context, we will omit the argument and write y and y, directly.

How can we minimize a vector? A fundamental problem of Eq. 1 is that minimizing the vectory is
not well-defined, as there is no canonical total order in high dimensions. Therefore, two models could
yield objective vectors where one is not always better than the other for all objectives. In the MOO
literature, the set of optimal trade-off solutions is known as the Pareto front and, more formally, an
objective vector y* is in the Pareto front (and called Pareto-optimal) if there exists no other feasible
vector y such thaty,, <yj forallk € {1,2,..., K}, andy, <y} for at least one of the objectives.

While the Pareto front is theoretically appealing, in practice, the decision maker (DM) needs to
navigate the Pareto front and, eventually, select one single model.! In other words, the DM needs
to specify a total order in Eq. 1 which implies: i) taking a total order directly in R¥, e.g., the
lexicographic order where y < y* iff y, < y; andy, = y; Vi < k; or ii) defining a criterion
function C: RX — R to rewrite Eq. 1 as a scalar-valued problem:

min  C(y(h)). 2

One remarkable example of the latter is the global-criterion method [63] which maps DM preferences
to the problem geometry by interpreting Eq. 2 as selecting the model closest to the ideal one, i.e.,

: h) — ideal . 3
min [ly(h) =y, ©)

ideal ideal ._ [

where y'“* is the ideal solution, y miny, y;, ming y,, ..., ming y 5], and |||« is typically a
p-norm. However, naively solving Eq. 3 (and, more generally, Eq. 2) is well-known in the MOO
literature to be sensitive to the scaling of the objectives [4] (recall L1 in §1), and thus prevents us
from properly accounting for any DM preferences (L2). In this work, we argue that the criterion
function C should fulfill the following desiderata:

D1. Reflect the DM preferences, translating their model expectations into an optimization problem.
D2. Provide a simple way to tune its parameters to meaningfully explore the Pareto front.

When are objectives incomparable? Similar to dimen- 30 o1 100 3
sional analysis in physics [2]—which argues that we can- o5 075 4
not combine incommensurable quantities, e.g., kilograms 5 20 <>\ =
and meters—we argue that a second fundamental issue % 1'5 0.5 2
that we face in Eq. 2 is semantic incomparability, i.e., 2 Qb 025 8
whether it is sensible to compare (and thus aggregate) the © 0'5 _— - 0.00 8
values of two different objectives. 000 0.05 0.10 0.15 g9 4@?@’134?%

For example, if objectives differ in their semantics they are Objective 1 o

hardly comparable in general, e.g.: despite both accuracy
and ROC AUC lying in the unit interval, it does not make
immediate sense to compare their values. There are, how-
ever, other aspects that are more subtle. To illustrate these,
Fig. 2 presents a synthetic Pareto front from §5.1 where
both objectives quantify prediction error in significantly
different domains, namely, within the intervals [0, 0.2] and
[0.5, 3.0]. We navigate the Pareto front solving a weighted Tchebycheff problem [3] of the form

Figure 2: As we explore a synthetic
Pareto front with different normalization
functions to solve Eq. 3, only COPA
meaningfully navigates it as we change
@, and its min-max solution agrees with
our expectations of a robust solution.

. 1— 4
min max {aly |, (1= a)lys|} . )

which solves Eq. 3 with C as the co-norm weighted by « € [0, 1]. Intuitively, Eq. 4 looks for robust
solutions that account for the importance of solving one objective over the other, seemingly satisfying
our desiderata, D1-2. However, its naive application over the original objectives clearly shows how we
can bias model selection in favor of Objective 2, as it can be seen in Fig. 2 : for any given preference
« smaller than 0.75, Eq. 4 yields a solution which completely ignores Objective I performance.

How can we make objectives comparable? As we just discussed, even if we use a well-designed
criterion function, semantic incomparability can hinder our goal to meaningfully explore the Pareto

'Note that, when we plot the Pareto front in 2D, e.g., in Fig. 1, the linear interpolation between models (dots)
only serves visualization purposes, i.e., we cannot interpolate between models.
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front. Historically, this has been addressed in the MOO literature by applying component-wise
transformations to the objectives to normalize them [40], turning Eq. 2 into

min  C(¢(y)) = C[o1(y1), .-, ox(yi)l) - )

Two classic examples of these transformations are

_ ideal _ ideal

Ye — Yk

— Yk~ Yk —
Ak(yg) = yi,feal and normy(y,) = g T y}?eal , (6)
where y34 .= [maxy, y;, maxy, y,, . .., maxy y ] is the worst possible solution. Intuitively, Ay,
represents the difference relative to the ideal solution, and normy, reweighs the objective to lie in the

unit interval. Prior works have extensively used A, often replacing yi,feal with a reference vector, as

computing it can be challenging [33, 38, 40]. Back to our synthetic case, we now want to solve
min max { a¢1(y1)], (1 = a)ld2(y2)l } - o

By testing different ¢y, we can understand why classic approaches fail to make objectives comparable.
More specifically: i) using A, now biases the problem toward the first objective, since minj y; = 0;
and ii) using normy, alleviates these problems, as the denominator is now bigger than the numerator,
yet the differences between distributions (that of y, being heavy-tailed) still bias the optimization
towards the first objective. Instead, we seek to explore the Pareto front making a more meaningful
use of «, spreading it uniformly along the curve.

The main goal of the functions ¢ : R — R is thus to make the objectives semantically comparable,
so that we can seamlessly aggregate them with the criterion function C. To this end, we argue that
the functions ¢, should be:

D3. Objective-agnostic, so that we can normalize any objective irrespectively of its specific nature.
D4. Order-preserving (i.e., strictly increasing), so that it preserves Pareto-optimality.

In summary, to meaningfully explore the Pareto front, it is important to design a criterion function
C that translates well DM preferences into an optimization problem (D1-2), and a normalization
function ¢ that makes objectives semantically comparable (D3-4). These desiderata will blend in
COPA, discussed in the next section. In the synthetic experiment above, COPA maps the value
a = 1/2, which turns Eq. 7 into a robust min-max problem [56], to the flat region of the curve in
Fig. 2, matching the intuition of what a robust solution should represent.

3 Methodology

Next, we introduce the proposed normalization and criterion functions fulfilling the desiderata D1-4
described in §2. We refer to the problem resulting of solving Eq. 5 with the proposed functions as
cumulative-based optimization of the Pareto front or, in short, COPA ¥.

3.1 Designing a universal normalization function

We argued in §2 that the function ¢ should fulfill desiderata D3-4, i.e., it should make any objectives
semantically comparable while preserving their Pareto-optimality. Taking advantage of our prob-
abilistic perspective (recall that y,, is a continuous random variable), we propose to design ¢ such
that the resulting variables are all equally distributed and, w.l.0.g., uniformly distributed in the unit
interval. That is, we propose to use u := [u1, Us, . .., Uf| instead of y, where

Uy ::Fk(yk)NZ/I(O,l) VkE{l,Z,...,K}, ®)

and ¢y = F}, is the marginal cumulative distribution function (CDF) of the k-th objective. Indeed,
this transformation is known in statistics as the probability integral transform [6, Example 5.6.3], and
uy, is guaranteed to follow a standard uniform distribution if y,, is continuous.

Remarkably, Eq. 8 makes all criterion functions marginal-distribution-free in the sense of Kendall
and Sundrum [29], i.e., it strips away all individual properties of the marginal distributions (e.g., the
domain) of any given objective (D3). We note that normalizing random variables this way is one
of the fundamental building stones of copulae in statistics [14, 51], ensuring that copula functions
exclusively learn the relationship across random variables.
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How can we interpret the values of u? One important advantage of using u in place of y in Eq. 5
is that it provides a common framework to think about all objectives, since all their values all are now
framed as elements within a population. In practice, this means that the DM has a common language
to express their expectations on the model. For example, u = 1/2 corresponds for all objectives to the
the median value, which divides H into two halves comprising the best and worst performing models.
However, there is still one caveat we need yet to address: we have no access to the marginal CDF of
each objective, but only to samples of the joint distribution in H.

3.2 Rankings as finite-sample approximations

As mentioned above, while we have no access to the CDFs themselves, we have samples from the
joint distribution over the objectives, i.e., over, p([y;, Vs, - - -, Y] )- Namely, we can consider each
model i € H as a sample from the joint distribution and, by looking at each objective individually,
as a sample from the marginal distributions.

Let us now focus on the k-th objective, y;, and drop the subindex in the following to ease notation. Say
that we have |H| = N i.i.d. realizations of the objective, i.e., {y,, Yo, ---,Yn} < Pk . Then, we can
approximate Eq. 8 for the i-th sample, u; = F(y,), by computing its order statistic, i.e., the random
variable representing its relative ranking within the population, R(i) = Z;-V:l[)’j <'y; ], where
Iverson brackets denote the indicator function, such that y R(1) <y R(2) <...<y R(N) - Specifically,
since the empirical CDF is the fraction of samples smaller than the input, it is direct to show that

P 1.
U = F) = Dly; <vil= w B(@) ®
j=1

enjoys the following properties [6]:

Proposition 3.1. 0; is an unbiased estimator of the CDF at y,, u;, with variance u;(1 —v;)/N . The
variance of 0; decreases linearly with N, and has a maximum value of 0.25/N at the median.

Proof. First, note that [y; <y, ] ~ Bern(u;). Then, we have R(i) ~ Bin(N,u;) with mean Nu;

and variance Nu;(1 — u;). Hence, @; has mean < E[R(i)] = u;, and variance » V[R(i)] =
u; (1 — u;)/N which, by taking derivatives w.r.t. u;, 9,, V[G;] = 1 — 2u; = 0 = u; = 1/2, whichis a
maximum since 97, V[1/2] <0 . O

Variance of i
In other words, we can use the relative rankings of each objective to build s pr——
an unbiased? estimator of the CDF, §i;, whose variance rapidly decreases as 02 |
we increase the size of #, i.e., V[G;] — 0 as N — co. Indeed, the inset 015 |
figure shows the variance of 0; as a function of the sample size for three — *'[
different values of u;. Note that the relative ranking is strictly increasing: il
if y, <y;,then F(y;) < F(y,) for any # containing both samples (D4). 100 10l 107 103
While this is an approximation of the true CDF, which would retain instead N
all the information about the joint distribution, it works egregiously well in our experiments (§5).
Furthermore, note that this transformation is meant to ease inter-objective computations, we can (and
should) use the original values of y,, to perform intra-objective comparisons or decisions.

u;
—0.12
— 0.25

3.3 Incorporating preferences into the optimization

Now that we can effectively approximate our normalization function, we introduce a criterion function
to translate DM preferences into an optimization problem (D1). To do so, we start by looking back
at global criterion methods, since plugging in our transformation u = ¢(y) simplifies the problem
in Eq. 3 to miny, |[ul|. as the ideal point becomes the origin, i.e., u'®¥ = 0. Then, by using the
approximation described in §3.2, the problem becomes a simple finite search of the form

eipn vy M0l (10
That is, we have reduced our problem to finding the model whose ranking vector has the smallest
norm. Using this new marginal-free global-criterion method, mapping the DM preferences now boils
down to selecting an appropriate norm for the problem in Eq. 10. To this end, we propose to use as
criterion function C' a norm with parameters p > 1 and w € Rf defined as

2In fact, it is known to be a consistent estimator [55].



223
224
225
226

227
228
229
230
231
232

234
235

236
237

239
240
241

242
243
244
245
246
247

248
249
250
251
252

254
255
256
257
258
259

261
262
263
264

266
267
268
269
270
271
272
273

K 1/p
[lp,e = <Z|Wkuk‘|p> , (1)
k=1

where ), wj, = 1. This norm can be interpreted as a regular p-norm on a space with coordinates
scaled by w. More remarkably, note that this differs from the usual weighted p-norm, as the weights
are inside the absolute value. We justify this choice given that the values of uy, lie in the unit interval,
and the power would often make them vanish too quickly, as we demonstrate in Fig. 10.

How can we interpret the parameters? Fortunately, the parameters of the proposed criterion
function, p and w, provide an easy and interpretable way for the DM to navigate the Pareto front (D2).
Regarding w, as we apply them in Eq. 11 before taking the power, we can provide a clear interpretation
of w in terms of ratio trade-offs. For example, if we had two objectives with w = [0.75, 0.25], then
we can see by equating the weighted objectives that minimizing the first objective to a value of u; is
worth the same as minimizing the second objective to a value of us = w; /wou; = 3uy, i.e., uy is
three times more important than us. If we combine this interpretation with that of u given in §3.1, we
could say, e.g., that we value being in the top-25 % of the models for the first objective the same as
being in the top-75 % for the second objective.

We can interpret p using the same intuition as in ML regularization [16]: the models selected in Eq. 10
are those first intersecting an ever-expanding p-ball centered at the origin, whose shape depends on
p. Higher values of p lead to denser objective vectors, while smaller values lead instead to sparser
ones. Additionally, some values of p have clear interpretations: p = 1 is the average rank; p = 2 is
the Euclidean distance; and p = oo turns Eq. 10 into a min-max problem, typically used to formulate
robust optimization problems [56].

Does Eq. 11 enjoy theoretical guarantees? Given the similarity with commonly-used norms, it
is natural to ask whether we can leverage existing results from the MOO literature and adapt them
to the proposed norm. This is indeed the case, and we can easily guarantee, e.g., that the solutions
found using Eq. 11 with 1 < p < oo are always Pareto-optimal [40, Thm. 3.4.1]. However, it might
not reach all optima. Similarly, note that p = oo reduces Eq. 10 to a weighted Tchebycheff problem
which reaches any Pareto-optimal solution [40, Thrm. 3.4.5], but also weakly optimal ones.

In practice, using a weighted Tchebycheff problem (p = c0) is a good practice when we have few
objectives and a large budget for the weights w to test. Instead, when interested in finding a particular
model (i.e., solving Eq. 5 once), we suggest setting p based on the level of robustness desired (as
lower values of p lead to higher tolerance to bad performance on individual objectives), and w based
on the importance of solving each objective given by the DM.

4 Related work

Our work draws connections with other scientific domains, e.g., the notion of semantically incompar-
ability is akin to that of incommensurability in dimensional analysis [2]. Similarly, using relative
rankings to make better comparisons has been previously explored in microeconomics [47], MOO
[23, 31], and statistics, designing methods that avoid the normality assumption, e.g., the Friedman
test [13], Wilcoxon signed-rank test [60], or Kendall’s 7 coefficient [28]. Finally, as mentioned in §2,
copulas exploit the probability integral transform to become marginal-distribution-free [14], and the
proposed criterion functions share similarities with weighted L,,-problems in MOO [40].

In ML, the closest work to ours is Park et al. [46], which learns the joint CDF, approximated with a
copula, to recover a partial order for multi-objective Bayesian optimization. In contrast, we employ
marginal CDFs and provide a principled way to translate DM preferences to an optimization problem.
Another line of related works are those that attempt to learn the Pareto front either for model merging
[7, 32] or a posteriori MOO methods [64]. Unfortunately, these methods fail to address semantic
incomparability as they use the raw objectives. ROC curves [11] provide an interesting connection,
since their axes can be understood as the CDFs of the target classes [18]. In practice, many prior
works proposed ad hoc approaches to normalize and aggregate objectives using, e.g., normalized
RMSEs [44, 57]—we refer to §8.3 of Japkowicz and Shah [24] for other references. Notoriously,
some works in multitask learning [33, 43] and domain generalization [48] use rank averages to
aggregate objectives, yet the standard is to use the average of Ag-normalized objectives (see Eq. 6).
COPA can benefit these two areas, along any others accounting for several objectives such as fair
ML [39], federated learning [27], probabilistic ML [26], and multimodal learning [1].
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5 COPA in action

In this section, we motivate the use of COPA by showing a range of practical scenarios which would
benefit from adopting the proposed methodology. We defer additional details and results to §A.

5.1 Synthetic evaluation

To qualitative assess COPA, we consider a synthetic Pareto front of the form y, = 0.25 cos(39y{-8%) —

log(y;) — 0.46 where y; ~ 1£(0.02,0.2) . We obtain as a result a non-convex Pareto front with a flat
area around y; = 0.1, and two objectives with significantly different distributions.

Does the parameter p match our intuitions?

1.00 =

We corroborate the insights from §3.3 by showing 30 -9 S
in Fig. 3 the distribution of solutions found taking ;2.5 0.75 g’-
different values of p. First, note that since the 020 0.50 —
front is strictly increasing except in [0.083,0.091], & 15 RS e
we have that u; = 1 — uy. As a result, we see .2, 025 ©

i i K10 2
that p = 1 almost exclusively finds solutionson ¢ " 8
the extrema. When we increase p, the distribution 0.5 . 0.00
of solutions better spreads along the front and, 0.00 0.05 0.9 o 5 o5 \\\\:&%

. . . . N\

as the p-balls become more square-like, we gain Objective 1 20 N,

finer control on the solution found by tuning «.

It is important to stress, however, that the finer
control of p = co comes at cost: as we increase
K, finding a proper w could prove challenging.

5.2 Case 1: Model selection

Figure 3: Distribution of solutions (circles) found
for different values of p as we sweep over values
of a.. The darkness of the circles represents the
number of times they were selected.

First, we explore how the norm proposed in §3.3 can help us explore the Pareto front more meaning-
fully, i.e., how sensibly it maps the DM preferences to Eq. 5.

1. The performance-emissions trade-off. Despite LLMs recently showing outstanding perform-
ance [42], their CO, footprint can be concerning and needs to be taken into account [9]. Next, we
show how practitioners can leverage COPA to better navigate this crucial trade-off in the LLM space.

We gather the results of 2148 LLMs submitted
to the Open LLM Leaderboard [12] and take t/-

as objectives their inference CO, cost and per- o

formance on 6 different datasets: IFEval [65],
BBH [54], MATH [20], GPQA [49], MuSR [52], /
and MMLU-Pro [58]. Then, we use COPA with /
p = oo to select an LLM, changing w as we vary ¢

the importance given to their CO; footprint, de- . T T

noted by «, as w = [a, 1=)/6,. .., (1=)/g]. P or o "

CDF - CO» cost
We highlight the selected LLMs in Fig. 4, which
groups all benchmarks into one dimension as
their co-norm for visualization purposes. We ob-
serve that the proposed norm enables the mean-
ingful exploration of the Pareto front, with the
values of o being uniformly spread-out across
the front. Furthermore, not only can we sensibly explore the LLM space, but COPA enables inter-
preting these models in terms of the original objectives and the population they live in. For example,
we can say that GPT-2 is Pareto-optimal as it consumes the least, but it only achieves a 6 % average
performance score, or that Phi-3.5-mini is a top-10 % model in both aspects, consuming 0.53 kg of
CO; vs. the 13 kg consumed by the best-performing model.

1.0

o
1

0.8

0.6

0.4 -

0.2 -

CO, importance («)

CDF - Performance ranking

Figure 4: We can meaningfully explore the
Pareto-optimal models of the Open LLM Lead-
erboard [12] with COPA. We use p = oo on the 7
objectives and highlight some of the selected mod-
els as we change the value of «.

2. The fairness-accuracy trade-off. Moving to a more classic example, we consider how a DM
could use COPA to choose a trade-off between accuracy and fairness in a classification problem, two
objectives which are defined in completely different ways [62].

We reproduce the CelebA [34] experiment from Maheshwari and Perrot [37] using FairGrad—an
algorithm whose hyperparameter e upper-bounds the unfairness of the classifier—and create a
population of models by sweeping through values of € and five random initializations.
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Fig. 5 (left) shows the Pareto front in the Unconstrained User-constrained
accuracy-fairness space, as we navigate it

€ [ fg=l
by changing «, clearly showing the differ- g °** 1T Q“; 1 08 i
ence between both objectives. Note that & 00813 S<7 Gl 06 E
directly solving Eq. 3 leads to the solution 'S 002 - l'. . ° 04 §
with maximum accuracy, as in §5.1. In- & oo1 - S . S 02 £
stead, using COPA we can uniformly nav- 0004 € : 1, s : 00 &
igate the Pareto front where, e.g., the ro- 0.840 0.845 0.850 0.855 0.840 0.845 0.850 0.855
bust min-max solution (« = 1/2) lies pre- Accuracy Accuracy

cisely in the middle of the front. As a res-
ult, COPA offers a more reliable interpreta-
tion of its parameters than the upper-bound
given by €, which is clear by observing that,
e.g., a value of e = 1 or 0.25 yields relat-
ively similar solutions in Fig. 5.

Figure 5: COPA can be used to meaningfully ex-
plore the Pareto front between accuracy and fairness
(equal opportunity) in the CelebA experiment from Ma-
heshwari and Perrot [37] in unconstrained (left) as well
as user-constrained scenarios (right).

In addition, we consider a more realistic scenario where DMs bargain on acceptable values for the
objectives, e.g., a regulatory body could demand equal opportunity to never exceed 0.02 [36]. Despite
constraining the Pareto front to consider only valid solutions (we still use invalid ones to approximate
the CDF), COPA stills provides a sensible way to navigate the space of valid models, proving that we
can easily combine rules on the original and CDF-transformed objective spaces.

5.3 Case 2: Comparative model analysis

Previously, we have explored how DMs can meaningfully explore the Pareto front. Now, we focus on
a related but different question: How much could semantic incomparability alter the conclusions we
draw from comparative analyses in ML research?

1. Incomparable objectives. First, we consider a multitask learning (MTL) setting, where the
heterogeneity of the tasks to solve makes it prone to face incomparable objectives. In fact, it is
common to aggregate objectives with the average relative performance, A, as discussed in §4. To
clearly showcase the issue, we look at the multi-SVHN experiment from Javaloy and Valera [25],
which uses a modified version of SVHN [45] with a digit on each side of the image, and where we
solve three classification tasks: i) left digit; ii) right digit; and iii) parity of their product; and two
regression tasks: iv) sum of digits; and v) number of active pixels in the image.

Fig. 6 shows the ranking of the 14 MTL meth- CoPA
ods considered by Javaloy and Valera [25], if we MEaensity A p=1 p=2 p=4 p=8 p=oo
were to use different criterion functions, namely: worst

COPA with different values of p and equal
weights, the average relative performance, A,
and the regression error over the density task.
The first two columns of the plot make extremely
clear how much the density task dominates the . . .
average relative performance, perfectly match- Figure 6: Ranking of MTL methods using different
ing its ranking. Again, this is a result of the Cfiteria to evaluate thpm. Methods whose rankings
reference method having nearly zero regression drastically change with A are colored.

error on this task, greatly magnifying its relative performance, Ay.

GradDrop

MGDA-UB
Single best

As expected, the outlined issue has a tremendous impact on the conclusions drawn, e.g.: i) the worst
method for all COPA instances, MGDA-UB [50], becomes the 3rd best method w.r.t. A; or ii) the best
one for every COPA, GradDrop [8], becomes the 6th best. Fig. 6 also shows that the reference method
(Single) is among the least robust models (p = c0), and slowly improves as we look less at individual
performances (p = 1). It is worth-noting that the authors were aware of the issue and left the density
task out when aggregating objectives, reporting both A and density MSE as a pair.

2. Seemingly comparable objectives. Sometimes, semantic incomparability can arise in unex-
pected scenarios. We take domain generalization as an example and, in particular, the DomainBed
[17] experiment from Hemati et al. [19]. Here, the authors compare different methods by training
them on some domains, and testing them on 4 unseen ones, reporting the average domain accuracy as
commonly done in the literature.

Fig. 7 shows the ranking of the considered methods as we use different criterion functions, with
the average accuracy in the first column. For two of the highlighted methods, RSC [22] and SagNet
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[41], we observe their performance deteriorate and improve, respectively, as we consider less robust
criteria, in accordance with the average accuracy. However, we see a different story with HGP [19]
and Mixup [59], whose rankings are consistent for all COPA instances, but drastically change when
we average accuracies. This leads to significantly different analyses concluding, e.g., that Mixup is
worse than SagNet and HGP, in disagreement with every other criterion function.

In fact, accuracies present significantly differ-
ent ranges across domains (see Tab 2) and dif-
ferences in domains with less variance are less
important in the average computation. If we nor- o

malize the results using normy, (Eq. 6), we see best

that Mixup significantly outperforms HGP in these . . . o
domains, swapping their rankings. This can also Figure 7: Ranking of domain generalization meth-

be observed in Fig. 7, where norm aligns much ods as we change the criterion function. Average
better with COPA. ’ accuracy is inconsistent with every COPA instance.

avg norm p=1 p=2 p=4 p=8 p=oco

RSC worst
Mixup

5.4 Case 3: Benchmarking

Finally, we motivate the use of COPA and CDF-normalized objectives in general benchmarking
where, in contrast with the previous use cases, objectives are not necessarily aggregated into a scalar
value, but plotted together. Additional plots can be found in §A.S.

We take the AutoML Benchmark (AMLB) [15] Regression, 4 hours
for the use-case as it “follows best practices and +1.0 =g = T
i Ll el T M

avoids common mistakes when comparing frame-
works.” We reproduce all figures from the original
work, comparing 15 AutoML methods evaluated

Scaled Perf.

on 104 different objectives. Since objectives are 21 @4 2 0 0 @2 [0 5] 2 [(IJ] (0]
incomparable, the authors scale them using normy, +1.0 '?

providing a number of analyses from these ob- ' i i + ; + % + ? i é E
jectives. Remarkably, the authors also encourage 4

(Eq. 6) with a random forest as reference model,
the use of CD diagrams and Friedman tests, two [o] [o] [o] (0] [01 (01 (0] [01 [0] [o] [o] [01

CCDF Perf.
+
o
w
1

. . > S &
methods that based on relative rankings. °°<§’ Q@O\%\O\V\b o v‘\v& & 7,&°@\§® S R
S & & & X & W & £
. . SN IR & &
A natural step is therefore to use CDF-normalized ~ v & & ° N & &
¥ «

objectives. Fig. 8 shows the same AMLB box-

plot using scaled and CCDF performance, i.., Figure 8: Comparison of AutoML methods on
1 — Fy(y,). We find that using CCDFs comes AMLB [15] using scaled performance, norm,
with several benefits: i) there are no outliers to with a random forest as reference method (red
report, unlike in the original plot (all values lie line); and using a CCDF-transformation (bottom).
n [0, 1]); ii) there is no need for an arbitrary Brackets indicate the number of off-view outliers.
reference model; and iii) we can provide clear

population-based interpretations, e.g., “on average, AutoGluon(B) [10] yields over top-10 % perform-
ance on the considered objectives.” These benefits extend to all AMBL plots, demonstrating that the
proposed CDF transformation is a sensible way of normalizing objectives in general.

6 Concluding remarks

In this work, we have shown the importance of meaningfully navigating the Pareto front in multi-
objective ML evaluation, allowing users to perform better-informed decisions. To this end, we have
highlighted how crucial is to properly normalize all objectives and to have a criterion function that
sensibly reflects DM preferences into an optimization problem. Finally, we have implemented these
insights in COPA, and extensively demonstrated the impact that it can have in areas as fundamental
and timely as model selection and benchmarking.

Our work opens many intriguing venues for future research. For example, we would be excited to see
COPA adapted to active settings with humans-in-the-loop, criterion functions that parametrize other
preference types, a formal systematization of model selection enabled by COPA, or its adoption in
public portals such as the Open LLM Leadearboard [12] or the DecodingTrust benchmark [57].
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1003 ¢ The full details can be provided either with the code, in appendix, or as supplemental material.
1004 7. Experiment statistical significance

1005 Question: Does the paper report error bars suitably and correctly defined or other appropriate
1006 information about the statistical significance of the experiments?

1007 Answer: [Yes]

1008 Justification: While we assume no stochasticity in the classical ML sense (i.e., via the datasets),
1009 we do so through H and clearly describe the properties of the ranking estimator in Prop. 3.1.
1010 Guidelines:

1011 * The answer NA means that the paper does not include experiments.

1012 * The authors should answer ”Yes” if the results are accompanied by error bars, confidence
1013 intervals, or statistical significance tests, at least for the experiments that support the main
1014 claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

e Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer:
Justification: Experiments are extremely lightweight and can be run in any modern device.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Data does not involve human participants and is publicly-available.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: While we do dedicate a specific paragraph, the entire discussion within the manu-
script concerns the need of properly mapping the preferences of users into the Pareto front and
their possible misuses (e.g., by not normalizing objectives), and we thus believe that the impacts
of our work are clear.

Guidelines:
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The answer NA means that there is no societal impact of the work performed.

If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards

12.

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA|
Justification: We do not provide any of the above.

Guidelines:

The answer NA means that the paper poses no such risks.

Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We properly cite and point to every method and data we use.

Guidelines:

The answer NA means that the paper does not use existing assets.

The authors should cite the original paper that produced the code package or dataset.

The authors should state which version of the asset is used and, if possible, include a URL.
The name of the license (e.g., CC-BY 4.0) should be included for each asset.

For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: Not applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]
Justification: Not applicable.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.
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1166 * For initial submissions, do not include any information that would break anonymity (if

1167 applicable), such as the institution conducting the review.

1168 16. Declaration of LLM usage

1169 Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
1170 standard component of the core methods in this research? Note that if the LLM is used only for
171 writing, editing, or formatting purposes and does not impact the core methodology, scientific
1172 rigorousness, or originality of the research, declaration is not required.

1173 Answer: [NA]

1174 Justification: We do not use any LLM.

1175 Guidelines:

1176 * The answer NA means that the core method development in this research does not involve
1177 LLMs as any important, original, or non-standard components.

1178 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
1179 what should or should not be described.
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