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ABSTRACT

We propose a new framework that deals with the privacy-utility tradeoff problem
under two centralized settings: a dynamic setting and a constant setting. The dy-
namic setting corresponds to the min-max two-player game whereas the constant
setting corresponds to a generator which tries to outperform an adversary already
trained using ground truth data. In both settings, we use the same architecture
consisting of a generator and a discriminator, where the generator consists of an
encoder-decoder pair, and the discriminator consists of an adversary and a util-
ity provider. Unlike previous research considering this kind of architecture, which
leverage variational autoencoders (VAEs) based on learning a latent representation
which is forced into a Gaussian assumption, our proposed technique removes the
Gaussian assumption restriction on the latent variables, and only focuses on the
end-to-end stochastic mapping of the input to privatized data. We also show that
testing the privacy mechanism against a single adversary is usually not sufficient
to capture the leakage of private information, as better adversaries can always be
created by training under different conditions. Therefore, we test our proposed
mechanism under five different types of adversary models. To compare privacy
mechanisms under a fair framework, we propose a new metric called the Utility-
Privacy Tradeoff (UPT) curve, obtained by using the upper convex hull of the
utility-privacy tradeoff operation points achievable under the most powerful of the
five adversary models. Finally, we test our framework on four different datasets:
MNIST, Fashion MNIST, UCI Adult and US Census Demographic Data, provid-
ing a wide range of possible private and utility attributes. Through comparative
analysis, our results show better privacy and utility guarantees, under our more
rigorous adversary model, than the existing works, even when the latter are con-
sidered under their original restrictive single-adversary models.

1 INTRODUCTION

With the recent surge in the usage of online services, we share an increasingly large amount of
data with different third-party service providers in order to receive some form of utility. Even when
we pay special attention to avoid disclosing what we deem to be private information, such as our
identity, age, race, location, gender, income, medical conditions, political views etc., the data that
we do share may still contain an uncomfortably large amount of information about these attributes –
an amount that may be just enough for intruders to infer our private data. It is therefore important to
be aware of such potential data correlations, and to employ a privacy mechanism that can essentially
destroy the information between the shared data and the private data, while preserving the useful
information – that required to achieve the desired level of utility. We call such a mechanism a
privacy and utility preserving end-to-end transformation (PUPET).

Ideally, a PUPET should minimize the leakage of information about the private attributes, and max-
imize the information that the shared data contains about the utility attributes. The operational
point of the mechanism, establishing a point in some private-information-utility-information plane,
is said to achieve a certain privacy-utility tradeoff. Most notions of privacy, such as Differential
Privacy (Dwork (2006); Dwork & Roth (2014)), or k-anonymity (Sweeney, 2002) are achieved
by using some sort of distortion, such as adding random noise to the data, or performing data su-
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pression or generalization. The privacy-utility tradeoff is the subject of a large body of research,
with many works focused on producing application-specific solutions for the problem (Rajagopalan
et al. (2011); Alvim et al. (2012); Makhdoumi & Fawaz (2013); Sankar et al. (2013); Sharma et al.
(2021)). (Domingo-Ferrer & Torra, 2008) shows the drawbacks of k-anonymity and its variant.
Similarly, it is known that computing the optimal noise addition in higher dimensional data for dif-
ferential privacy can potentially be infeasible. Therefore, a wide majority of recent techniques use
neural networks, which can deal with the high dimensional data and can provide an approximation of
the underlying functions. In particular, research works such as (Edwards & Storkey (2016); Huang
et al. (2017); Madras et al. (2018); Huang et al. (2019); Chen et al. (2019); Erdemir et al. (2021))
have been carried out leveraging variational autoencoder (VAEs) (Kingma & Welling, 2014) and/or
generative adversarial network (GAN) type training (Goodfellow et al., 2014). VAEs are used to
create compressed latent representations capturing maximum and minimum information about the
private and utility features, respectively. However, VAEs need to model explicitly the prior distri-
bution over the latent variable. Their loss functions include a regularization term to minimize the
KL divergence between the variational posterior over the latent variable and some prior distribution
over the latent variable (which, for the convenience of generating data in the absence of an en-
coder, is usually chosen to be white Gaussian). GANs, on the other hand, involve a min-max game
between the generator and discriminator. Similarly, recent obfuscation mechanisms (Ilanchezian
et al. (2019); Hsu et al. (2020)) demonstrate privacy preservation by first estimating each feature’s
information density relative to the private data, and then selectively distorting the most information-
leaking features. All these strategies require either training a filter that adds noise, or adding noise
directly into the input stream while training, or realizing distortions based on the loss function or
some other form of masking technique. Although the strategies around generating private data are
diverse, the approaches used to test such mechanisms still remain trivial i.e. they are tested against a
single and particular type of an adversary network, which is usually trained using ground truth data,
or dynamically trained as in GAN-type training.

In this paper, we show that adversaries employing training techniques different from the ones used by
the privacy mechanism can possibly infer private data in a much more efficient way than adversaries
using the same training technique as the ones used to train the PUPET. Therefore, existing privacy
mechanisms that claim a certain effectiveness for their model against a single adversary might not
be robust enough against other adversaries – hence leading to more leaked private information than
originally expected. To overcome this shortcoming, we propose a new privacy mechanism and test
it on a total of five differently trained adversary models. In our proposed privacy mechanism, we
remove the Gaussian assumption on the prior distribution of the latent variable (like in the case of
VAEs) and only focus on the end-to-end stochastic mapping to transform data that preserves privacy
and utility. The Gaussian assumption used by VAEs is useful for ancestral sampling, which is not
required in the generation of private data. Instead, we require a Markov chain (X −→ Z −→ X̂)

where X is the input data, Z is the latent variable and X̂ is the private data. To implement our pri-
vacy mechanism, we leverage Uncertainty Autoencoders (UAEs) (Grover & Ermon, 2019), which
define an implicit generative model without specifying a prior on the latent representation. The use
of a Markov chain to generate private data is necessary regardless of the generative model (VAE or
UAE) and thus, the use of UAE doesn’t make the process any more computationally expensive than
previous approaches. In our setting, the UAE behaves as a generator, and the discriminators (adver-
sary and utility provider) provide a regularization term that reflects the cost of ensuring protection
of private features and disclosure of utility ones, respectively.

To compare privacy mechanisms under a fair framework, we propose a new metric called the Utility-
Privacy Tradeoff (UPT) curve. The UPT curve is a graph plotting the operational points of accuracy
in inferring the utility feature vs. accuracy in inferring the private feature, for different system
parameter settings, and then finding the upper convex hull (Andrew, 1979) of these operational
points. It is worth noting that the accuracy in inferring the private feature is the one achievable
under the most powerful of the five adversary models considered.

To showcase the effectiveness of our proposed privacy mechanism as well as the necessity of testing
against multiple adversary models, we performed comprehensive experiments on four datasets viz.
MNIST handwritten digits (LeCun & Cortes, 2010), Fashion MNIST (Xiao et al., 2017), UCI Adult
(Dua & Graff, 2017), and US Census Demographic Data (MuonNeutrino, 2017) for both the constant
and dynamic settings. We demonstrate that our constant setting can be used in areas where the
desired goal is to outperform a given adversary. This kind of setting may be very limited in real life
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and therefore, the majority of our work focuses on the dynamic setting where our proposed model
considers five different types of adversary models and is shown to provide us better privacy and
utility guarantees than any of the previously existing methods.

Figure 1: MNIST Case 2: Odd and even adjacent columns
show original and privatized versions respectively. For most
images, numbers are still in the same category (utility at-
tribute: ≥ 5 or < 5) while being switched from odd to even
(private attribute). Some digits change from odd to even but
also switch from ≥ 5 to < 5, and some remain unchanged.

For each dataset, we pick differ-
ent sets of private and utility fea-
tures. In particular, we directly com-
pare our proposed UAE-based PU-
PET (or UAE-PUPET) mechanism
to that of (Chen et al., 2019), in
the same setting as in (Chen et al.,
2019), using the MNIST Case2 (vari-
ant) database, where the private at-
tribute encodes whether a number is
odd or even, while utility attribute
encodes whether a number is ≥ 5.
We show that our mechanism attains
4.2% lesser accuracy for the private
feature, and 11.5% higher accuracy
for the utility attribute, thus clearly
outperforming the previously exist-
ing mechanism. It is worth mention-
ing that this result was obtained by
our UAE-PUPET under the best performing adversary out of five, which shows that our mechanism
is more robust than previous works considering their original restrictive single adversary model.

The rest of the paper is organized as follows. The problem formulation is detailed in Section 2,
experimental results are given in Section 3, and concluding remarks are drawn in Section 4.

2 PROBLEM FORMULATION AND METHODOLOGY

Consider a setting where a user wishes to release some data vector X with the intent to receive
certain level utility, while maintaining a certain level of privacy about a specific feature or set of
features. We represent the private feature vector as XP and the utility feature vector as XU , and
expect that they are both correlated with X . Some examples of possible features include identity,
age, race, location, gender, income, medical conditions, political views, like/dislike on a content
etc. To ensure the desired privacy and utility guarantees, before publicly sharing their data X , users
employ a PUPET that takes X as input, and generates X̂ , a distorted version of X which contains
minimum information about XP and maximum information about XU . the data X̂ is then shared
publicly.

It is very important to note here that the disclosed data X̂ is usually required to preserve in general
the size and structure of X . That is, while it may be tempting to devise a compression mechanism
– for example, through a simple arbitrary affine transformation – that produces a shorter X̂ , each
component of which is some affine transformation of the components of X , such a mechanism has
very little applicability in practice. This is because usually the disclosure of X̂ has to take place over
a pre-existing platform, outside of the data owner’s control, which is designed specifically for X .
This platform usually has very specific fields that the user needs to fill out, so that the structure of
X is enforced on the PUPET’s output. It is also worth noting that most currently existing platforms
(such as social media platforms) would provide their utility by taking the values of X̂ at face value,
as if it was the original X that was being disclosed, which motivates some of the existing privacy-
utility tradeoff works to use the distance between X̂ and X as a measure of utility Asoodeh et al.
(2015); Erdogdu & Fawaz (2015); Wang & Calmon (2017); Kalantari et al. (2017); Basciftci et al.
(2016); Wang et al. (2018); Rassouli & Gündüz (2019); Diaz et al. (2019). However, unlike these
works, we consider a smart and informed utility provider, who is aware of the privacy mechanism
employed by the user – of course, without knowing the exact realizations of the randomness it
uses, and can make a competent inference about the utility feature, using a neural-network-based
architecture. Relating our setting to real world privacy problems, one of the many possible examples
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could be a setting where users are required to fill in certain information when creating e-commerce
accounts. These e-commerce accounts gather the information we share and may want to develop
implicit models to recognize our gender and income. However, users might not be comfortable
knowing that these implicit models learn about their income, but at the same time would also want
to get better recommendation of products based on their gender. In such a case, the users can use
a PUPET which generates X̂ , and then use X̂ to fill up the information to create an account. The
training of the PUPET requires multiple tuples (X,XP , XU ), collected from users who do not mind
disclosing XP , XU , and can be handled either by the data owner, or by a trusted service provider.

Figure 2: UAE-PUPET architecture. This architecture sup-
ports both dynamic and constant setting. After the comple-
tion of training, we detach the discriminator, and use the
generator to generate private data.

Formally, let Xj =

{xj1, x
j
2, x

j
3, · · ·x

j
nj}, where the

components xji are all correlated
random variables denoting n distinct
features of the user U j , which the
user wishes to release to the public.
In addition, the user U j consists of
private features Xj

P , and utility fea-
tures Xj

U with njp and nju component
random variables respectively. Note
that, Xj

P and Xj
U are both correlated

with Xj and no private and utility
feature is in Xj i.e. Xj

P /∈ Xj and
Xj
U /∈ Xj . For different users, the

choice of the data they wish to share,
private features and utility features
differ, and thus our privacy mechanism needs to be trained differently for different sets of users.
For simplicity we drop the user-specific indices and refer to the random vectors directly as X ,
XP and XU . We represent the PUPET in its most general form as a function f (which could be
a randomized mapping) that takes input (X,XP , XU ) and generates X̂ i.e. X̂ = f(X,XP , XU ).
The adversary builds a learning algorithm ap that takes privatized data X̂ to infer the private
attributes X ′

P which is an estimate of XP i.e. X ′
P = ap(X̂). The goal of adversary is to minimize

loss between X ′
P and XP i.e. lP (X ′

P , XP ) = lP (ap(f(X,XP , XU )), XP ). Correspondingly, the
utility provider builds a learning algorithm au to infer X ′

U which is an estimate of XU and desires
to minimize the loss lU (X ′

U , XU ) = lU (au(f(X,XP , XU )), XU ). The privacy mechanism f is
now chosen to maximize the inference loss lP and minimize the inference loss lU . This setting
refers to the min-max game and can be expressed as follows:

max
f∈F

{
λP min

ap∈AP
E [lP (ap (f (X,XP , XU )) , XP )]− min

au∈AU
E [lU (au (f (X,XP , XU )) , XU )]

}
,

where λP is a hyperparameter that controls the tradeoff between adversary loss and utility provider
loss, and the expectation is taken over all samples of the dataset, and F , AP and AU are the sets
of functions from which the privacy mechanism, the adversary and the utility provider select their
corresponding operators, respectively. In this paper we shall use neural networks to optimize over
different functions f, ap, au and the loss lP is taken as the cross-entropy (de Boer et al., 2004).
This is standard for most classification problems. We also note that cross-entropy loss affects the
mutual information (Chen et al., 2019) between two random variables, and this supports our original
goal to reduce correlation with the private features and maintain similar correlation with the utility
features. To solve the optimization problem, we propose two settings: a dynamic setting and a
constant setting, which are both described in the subsections below.

2.1 DYNAMIC SETTING (JOINT TRAINING)

In order to solve the optimization problem above, we leverage an uncertainty autoencoder (UAE),
which serves as the generator for our privacy mechanism. The objective of UAE is given by
maxθ,φ EQφ(X,Z) [log pθ(x|z)], where X is the input data distribution, Z is the latent variable, φ, θ
are parameters of encoder and decoder, respectively, Qφ(X,Z) is the true joint distribution of the
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input and latent representation, and pθ(X|Z) is the posterior distribution produced by the decoder,
which aims to emulate Qφ(X|Z) as closely as possible.

Notice that we don’t force a Gaussian assumption on the latent variable prior, but instead focus on
end-to-end stochastic mapping. In our joint setting, we introduce the parameter γ, which represents
parameters of generator (encoder-decoder pair) with function f (basically, γ = (φ, θ)). Additionally,
the output of the generator is attached to the discriminator, which consists of an adversary and a
utility provider as shown in Figure 2.

The adversary learns the function ap with parameters γP to minimize the privacy-specific loss
lP (X

′
P , XP ). Similarly, the utility provider learns the au with parameters γU to minimize the

utility-specific loss lU (X ′
U , XU ). Conversely, the generator function f with parameter γ learns

to maximize lP (X ′
P , XP ) and minimize lU (X ′

U , XU ) respectively along with the objective of UAE.
In this setting, the neural network parameters γ, γP , γU all are trained together to solve the following
optimization problem:

max
γ

{
EQφ(X,Z) [log pθ(x|z)] + λP min

γP
{E [lP (X ′

P , XP )]} −min
γU
{E [lU (X ′

U , XU )]}
}
,

where X ′
P = ap(f(X,XP , XU )) and X ′

U = au(f(X,XP , XU )).

2.2 CONSTANT SETTING (INDIVIDUAL TRAINING)

This setting considers a scenario where the desired goal is to outperform a given, a-priori estab-
lished adversary. The architecture used for training the privacy mechanism is similar to the dynamic
setting. Unlike joint training, the generator and discriminator are trained in two different phases.
In the first phase, the adversary learns the function ap with parameters γP , and utility provider
learns the function au with parameters γU to minimize the private loss lP (X ′

P , XP ), and utility
loss lU (X ′

U , XU ) respectively. It is important to note that ap and au are trained using ground truth
data and their respective labels. In the second phase of the privacy mechanism, the discriminator
part is kept fixed, i.e., the parameters γP and γU are not updated. With respect to the fixed γP and
γU , the generator’s function f with parameters γ is then trained to solve the following optimization
problem:

max
γ

{
EQφ(X,Z) [log pθ(x|z)] + λP {E [lP (X ′

P , XP )]} − {E [lU (X ′
U , XU )]}

}
,

where X ′
P = ap(f(X,XP , XU )) and X ′

U = au(f(X,XP , XU )).

3 EXPERIMENTS AND RESULTS

We perform comprehensive experiments using the machine learning library Tensorflow (Abadi et al.,
2015), Keras (Chollet et al., 2015) and optimizer Adam (Kingma & Ba, 2017) on four widely-
used datasets such as MNIST, Fashion MNIST, UCI-adult, and US Census Demographic Data, to
demonstrate the effectiveness of our privacy mechanism. In order to test our mechanism we first
develop five different adversary and utility models for each of the different dataset experiments we
conduct. The models are chosen as follows. (1) For the constant setting, the first phase is to train au
and ap using ground truth data. The pair (au, ap) that is used to train the generator is used to define
first attacker and utility provider model pair. (2) If we train another pair (au, ap) using ground truth
data similar to the first scenario above, we usually obtain different sets of weights (parameters) – this
is because we allow random initialization of weights. This is how we produce the second attacker
and utility provider model pair. (3) The third attacker and utility provider model pair is produced
by training a (au, ap) pair using the distorted data (X̂) which is generated from the constant setting
and a pre-defined λP value. The training labels used are still from the corresponding ground truth
data. The pre-defined λP value is selected based on our experiments, such that the adversary and
utility provider can capture the notion of distortion in the data. More details about the architecture
of the discriminators is provided in the Appendix A. (4) The fourth attacker and utility provider
model pair is produced by training a (au, ap) pair using the distorted data (X̂) which is generated
from the dynamic setting and a pre-defined λP value. The training labels used are still from the
corresponding ground truth data. (5) The fifth model pair is produced by a separate joint training
process, managed by the attacker or utility provider, and using ground-truth data. The training uses
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(a) private (raw) (b) private (UAE-PUPET) (c) utility (UAE-PUPET)

Figure 3: MNIST Case 1: Confusion matrix before and after privacy mechanism

a pre-defined λP value. The generator is only relevant to the training of the (au, ap) pair, and is
subsequently discarded. (6) The sixth model pair, which is only used when the UAE is trained in the
joint setting, consists of the exact (au, ap) pair that results from the joint training.

Utility Privacy Tradeoff (UPT) curve: The UPT curve is a concave curve on the graph plotting
the operational points of the accuracy in inferring the utility feature vs. the accuracy in inferring the
private feature (hence forth the utility-privacy graph), for different system parameter settings. The
UPT curve is used to represent the upper bound on the performance of the privacy-utility mechanism.
As such, it consists of the upper convex hull of all the achieved operational points, under various
values of the system hyperparameters. The operational interpretation of the upper convex hull relies
on an operational interpretation of any line connecting two operational points. Recall that each
operational point is defined by two accuracy levels, achieved by averaging over an entire test dataset.
If we split the test dataset in two parts of sizes α and 1− α times the original size, respectively, and
apply the first part to the mechanism achieving operational point P1, and the second part to the
mechanism achieving P2, then the average over the entire dataset should achieve operational point
αP1 + (1− α)P2. It is in this sense that the upper convex hull is achievable.

For our experiments, all the points on the utility-privacy graphs are achieved by selecting the highest
accuracy obtained over the different adversaries and utility provider models, for some privatized
data X̂ which was generated by the privacy mechanism under some value of λP . For example,
if we generate privatized data X̂ using a certain λP value, and consider a total of six different
adversary and six different utility provider models, we get six accuracy scores for the adversary and
six accuracy scores for the utility provider. We select the highest of the six accuracy scores for the
inference of the private feature, and also the highest of the six accuracy scores for the inference of
the utility feature. This pair forms one point in the utility-privacy graph. repeating the process for
a different λP yields a different point, and so forth. Points in the north-west region of the graph
are preferable. In all our graphs, we take a trivial-classifier point as achievable by default – this
represents the accuracy levels that could be achieved by always deciding in favor of the most highly
represented class, and depends on the specification of the private and the utility features, as well as
on the composition of the test dataset. For example, if the private feature lives on an alphabet of size
2, and the test dataset contains 60% points from class 1, and 40% from class 2, then always deciding
in favor of class 1 produces an accuracy of 0.6. The trivial-classifier points will appear in the lower
left portions of all our graphs.

MNIST Case 1: This case of MNIST considers similar setting as (Chen et al., 2019) where the
identity of the digit (0, 1, 2, 3 · · · , 9) is considered private, while the utility encodes whether the
digit contains a circle (0, 6, 8, 9) or not (1, 2, 3, 4, 5, 7). We test our privatization scheme based on
different hyperparameter values of λP for both settings, i.e., dynamic and constant. Each point

Table 1: MNIST Case 1 accuracy and F1 scores

Models Private attr. Utility attr.
accuracy F1 score accuracy F1 score

without distortion (raw) 0.98 0.98 0.98 0.98
UAE-PUPET 0.29 0.26 0.9604 0.967
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(a) Original Images v/s Privatized Images

(b) UPT curve (Accuracy Scores)

Figure 4: MNIST Case 1: (4a) Odd and even adjacent columns show original and privatized ver-
sions respectively (generated by joint training). Private feature refers to digit identity and utility
attribute refers to whether a number contains a circle or not. It is interesting to see that some pri-
vatized data looks like a combination of more than one digits masked together, making it harder to
infer the digit identity. (4b) shows the robustness of joint training against multiple adversaries and a
performance comparison of the two settings.

on the utility-privacy graph in Figure 4b represents the best achieved accuracy for a particular λP
value, over five different ap and au models (in case of joint training, there are six au and ap). With
an increase in λP , the accuracy of the inference of the private feature decreases, with only a minimal
change to the accuracy of the inference of the utility attribute. The belts of blue and orange points
represent the best achievable points for joint training and individual training, respectively. It is clear
that joint training outperforms individual training. Table 1 shows that the accuracy on private labels
decreases from 98% to 29% on the best performing adversary, which in this case turns out to be
the ap from Model 4 above, while the best performing au is capable of capturing utility attributes
with 96.7% accuracy after the privatization using the dynamic setting. Figure 3 shows the confusion
matrix before and after privatization, which further supports our argument. Similarly, Figure 4a
shows the private images that were generated using the dynamic setting with λP = 175. Individual
training, despite not being as robust as Joint Training, still performs well, by reducing the accuracy
of private attributes to 18.3% and keeping utility accuracy to 91.57%, both referring to Model 1
(au, ap).

(a) private (raw) (b) private (UAE-PUPET)

(c) UPT curve (Accuracy scores)

Figure 5: MNIST Case 2: (5a) shows the confusion matrix prior to distortion and (5b) shows
confusion matrix post distortion. (5c) shows upper bound performance of two settings.

MNIST Case 2:

This case considers the private attribute as whether the number is odd or even, while the utility
attribute encodes whether the number is ≥ 5 or not. Figure 1 shows the original and privatized
images generated by the dynamic setting with λP = 30. Table 2 shows the accuracy result of joint
training under hyperparameter λP = 30 and its comparison to emb-g-filter of (Chen et al., 2019).
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Table 2: MNIST Case 2 accuracy results

Model Private attr. (acc) Utility attr. (acc)
without distortion (raw) 0.98 0.98

emb-g-filter (Chen et al., 2019) 0.651 0.855
UAE-PUPET 0.609 0.97

Our proposed mechanism outperforms the existing method by achieving 4.2% smaller accuracy on
the private attribute and 11.5% higher accuracy on the utility attribute. Similarly, Figure 5c shows
that joint training performs much better than individual training. Also notice that considering only
the Model 1 adversary, the private feature accuracy is 50%, whereas utility accuracy is maintained at
96%. However, when we test the same private data against multiple adversaries we find adversaries
which can perform much better, hence collapsing the privacy guarantee made by (Chen et al., 2019)
under this model.

(a) UPT curve (Accuracy scores) (b) UPT curve (Accuracy scores)

Figure 6: (6a) Experiment results for UCI adult, (6b) Experiment results for US Census Demo-
graphic Data

UCI Adult: In this experiment, we set our private feature as gender, and utility feature as income.
Data pre-processing steps include converting categorical variables to one-hot encoding and normal-
izing values based on their mean and standard deviation. Figure 6a shows that joint training is robust
against multiple adversaries which is evident from the UPT curve reaching far in the north-west re-
gion. Similarly, we compare our joint training results to other existing works such as (Louizos et al.
(2017); Song et al. (2018); Chen et al. (2019)) and it is evident through Table 3 that our proposed
method has the least accuracy and AUROC scores for private features and comparable accuracy and
AUROC scores for the utility feature.

Table 3: UCI Adult accuracy and AUROC result comparison with existing techniques

Models Private attr. Utility attr.
accuracy AUROC accuracy AUROC

LFAE (Louizos et al., 2017) 0.802 0.703 0.851 0.761
LMFIR (Song et al., 2018) 0.728 0.659 0.829 0.741

emb-g-filter (Chen et al., 2019) 0.717 0.632 0.822 0.731
UAE-PUPET 0.681 0.52 0.8274 0.731

Fashion MNIST: We now consider a setup where the private feature is the identity of the fashion
article (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot) and the
utility feature is encoded on two labels: Upper (meaning T-shirt/top, Pullover, Dress, Coat, Shirt)
and Miscellaneous. Figure 7a shows the privatized images, along with their original versions. We

Table 4: Fashion MNIST accuracy and F1 scores

Models Private attr. Utility attr.
accuracy F1 score accuracy F1 score

without distortion (raw) 0.98 0.98 0.99 0.99
UAE-PUPET 0.24 0.20 0.95 0.95
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see that the privatized images appear to have been changed to different articles of clothing. We also
notice blurriness of privatized images, in such a way that they appear sometimes to be comprised of
two different images juxtaposed on one. Figure 7b shows the performance comparison of joint and
individual training, while Table 4 shows a drop of inference accuracy on private feature from 98%
to 24% whereas the inference accuracy on utility feature decrease slightly from 99% to 95%.

(a) Original images v/s Privatized images

(b) UPT curve (Accuracy scores)

Figure 7: Fashion MNIST: Figure 7a obtained from dynamic setting with hyperparameter λP = 60,
where clothing identity is the private feature, while “upper body clothing” and “miscellaneous” are
the two classes of the utility feature. Figure 7b shows the best achievable points for individual and
joint training under different adversaries.

US Census Demographic Data: The American Community Survey data for 2017 consists of 74,001
records for different counties. It has a total of 37 features, out of which we select the sixteen features
which are highly correlated to each other similar to the setting in (Sharma et al., 2021). Examples of
some of the selected features include the men population, women population, population of citizens
eligible to vote, per capita income, percentage of population unemployed etc. Among the sixteen
features, we select Employed as the utility and Income as the private feature. We further categorize
the utility feature into two labels i.e. ≤ 2000 or > 2000 and private feature into two labels i.e.
≤ 55000 or > 55000 to make the dataset balanced. All fourteen features are numerical, and thus we
normalize them based on the mean and standard deviation. Similarly, some data points have missing
values. In such case the entire data point was ignored. We use a total of 43,657 data points for
training, and 29,105 data points for testing purposes. The UPT curve is given in Figure 6b. Table 5
shows that the accuracy for private features drops down from 88.7% to 52% and the utility accuracy
drops ever so slightly from 92% to 90%.

Table 5: US Census Demographic Data Accuracy results

Models Private attr. Utility attr.
accuracy AUROC accuracy AUROC

without distortion (raw) 0.887 0.885 0.92 0.925
UAE-PUPET 0.52 0.52 0.90 0.899

4 CONCLUSION

In this paper, we introduced a novel UAE-based privacy mechanism (UAE-PUPET), and showed
that it can attain better privacy-utility tradeoffs than the existing works. This implies that forcing a
Gaussian distribution on the latent variable of autoencoders (such as in VAE-based privacy mecha-
nisms) appears to hinder, rather than help, the privacy mechanism. We emphasized the importance
of testing the privacy mechanism against multiple adversaries to provide better privacy guarantees.
To compare different privacy mechanisms under a fair framework, we propose to use a new metric
called the Utility-Privacy Tradeoff (UPT) curve, which is the upper convex hull of the set of best
achievable accuracies for private and utility inference, under various hyperparameters.
For more details about the architecture of generators, discriminators, different λP values used
for multiple experiments please refer to our source code in the following repository : https:
//anonymous.4open.science/r/abc-6BAC/README.md
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A APPENDIX

In this section we provide the implementation details for different adversary and utility models:

A.1 MNIST EXPERIMENTS

Optimizer: Stochastic Gradient Descent (SGD)
Learning rate: 0.01
Loss: Categorical Cross-entropy
Batch Size: 32
Epochs: 35

For MNIST Case 1 experiment where discriminators are trained either on distorted data or trained
together with the joint training:
λP = 50 for (Model 4 and Model 5), λP = 0.8 for (Model 3).

For MNIST Case 2 experiment where discriminators are trained either on distorted data or trained
together with the joint training:
λP = 60 for (Model 4 and Model 5), λP = 0.7 for (Model 3).

Table 6: This neural network architecture reflect the architecture of both adversary and utility models
for MNIST case 1 and case 2 for discriminator mentioned in Model 1, Model 3, Model 4, Model 5
and Model 6(in case of joint setting)

Name Configuration Repetition
Input Layer Input shape = (28 * 28) 1

Reshape Reshape(28,28,1) 1
Convolution conv2D (filter = 32 kernel size = 4), activation = relu 1
MaxPooling MaxPooling2D(pool size=(2, 2)) 1
Convolution conv2D (filter = 16 kernel size = 4), activation = relu 1
MaxPooling MaxPooling2D(pool size=(2, 2)) 1

Flatten Flatten() 1
Output Fully Connected FC (output shape), activation = softmax 1

Table 7: This neural network architecture reflect the architecture of both adversary and utility models
for MNIST case 1 and case 2 for discriminator mentioned in Model 2

Name Configuration Repetition
Input Layer Input shape = (28 * 28) 1

Reshape Reshape(28,28,1) 1
Convolution conv2D (filter = 64, kernel size = 4), activation = relu 1
MaxPooling MaxPooling2D(pool size=(2, 2)) 1
Convolution conv2D (filter = 16 kernel size = 4), activation = relu 1
MaxPooling MaxPooling2D(pool size=(2, 2)) 1

Flatten Flatten() 1
Output Fully Connected FC (output shape), activation = softmax 1

A.2 FASHION MNIST EXPERIMENTS

Optimizer: Stochastic Gradient Descent (SGD)
Learning rate: 0.01
Loss: Categorical Cross-entropy
Batch Size: 32
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Epochs: 30

For FashionMNIST experiment where discriminators are trained either on distorted data or trained
together with the joint training:
λP = 60 for (Model 4 and Model 5), λP = 0.8 for (Model 3).

Table 8: This neural network architecture reflect the architecture of both adversary and utility models
for all discriminators of FashionMNIST experiments

Name Configuration Repetition
Input Layer Input shape = (28 * 28) 1

Reshape Reshape(28,28,1) 1
Convolution conv2D (filter = 32, kernel size = 3), activation = relu,

kernel initializer = he uniform, padding = same,
BatchNormalization()

2

MaxPool Maxpooling2D(pool size = (2,2)), Dropout(0.3) 1
Convolution conv2D (filter = 64, kernel size = 3), activation = relu,

kernel initializer = he uniform, padding = same,
BatchNormalization()

2

MaxPool Maxpooling2D(pool size = (2,2)), Dropout(0.4) 1
Convolution conv2D (filter = 128, kernel size = 3), activation = relu,

kernel initializer = he uniform, padding = same,
BatchNormalization()

2

MaxPool Maxpooling2D(pool size = (2,2)), Dropout(0.5) 1
Flatten Flatten() 1
Dense FC(128), activation = relu, kernel initializer = he uniform 1

BatchNorm BatchNormalization() 1
Dropout Dropout(0.6) 1
Output FC(Output shape), activation = softmax 1

A.3 UCI ADULT EXPERIMENTS

Optimizer: Adam
Loss: Categorical Cross-entropy
Batch Size: 512
Epochs: 20

For UCI Adult experiment where discriminators are trained either on distorted data or trained to-
gether with the joint training:
λP = 50 for (Model 4 and Model 5), λP = 0.8 for (Model 3).

Table 9: This neural network architecture reflect the architecture of both adversary and utility models
for all discriminators of UCI adult experiments

Name Configuration Repetition
Input Layer Input shape = (input shape = 102) 1

Dense FC(256), activation = relu 1
Dropout Dropout(0.2) 1
Dense FC(256), activation = relu 1

Dropout Dropout(0.3) 1
Dense FC(128), activation = relu 1

Dropout Dropout(0.4) 1
Output FC(output shape), activation = softmax 1
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A.4 US DEMOGRAPHY CENSUS DATA EXPERIMENTS

Optimizer: Adam
Loss: Categorical Cross-entropy
Batch Size: 512
Epochs: 50

For US Demography Census Data experiment where discriminators are trained either on distorted
data or trained together with the joint training:
λP = 60 for (Model 4 and Model 5), λP = 0.6 for (Model 3).

Table 10: This neural network architecture reflect the architecture of both adversary and utility
models for all discriminators of US Census Demographic Data experiments

Name Configuration Repetition
Input Layer Input shape = (input shape = 14) 1

Dense FC(64), activation = relu 3
Output FC(output shape) , activation = softmax 1

For more details on the architecture of the encoder and decoder, different system parameters based on
which the experiments were conducted please refer to this url: https://anonymous.4open.
science/r/abc-6BAC/README.md. It also provides the weights of all the pre-trained adver-
sary and utility models for testing of the privacy mechanism.
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