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Abstract

Dark matter makes up approximately 85% of total matter in our universe, yet it has
never been directly observed in any laboratory on Earth. The origin of dark matter
is one of the most important questions in contemporary physics, and a convincing
detection of dark matter would be a Nobel-Prize-level breakthrough in fundamental
science. The ABRACADABRA experiment was specifically designed to search for
dark matter. Although it has not yet made a discovery, ABRACADABRA has pro-
duced several dark matter search results widely endorsed by the physics community.
The experiment generates ultra-long time-series data at a rate of 10 million samples
per second, where the dark matter signal would manifest itself as a sinusoidal
oscillation mode within the ultra-long time series. In this paper, we present the
TIDMAD — a comprehensive data release from the ABRACADABRA experiment
including three key components: an ultra-long time series dataset divided into
training, validation, and science subsets; a carefully-designed denoising score for
direct model benchmarking; and a complete analysis framework which produces
a physics community-standard dark matter search result suitable for publication
as a physics paper. This data release enables core Al algorithms to extract the
dark matter signal and produce real physics results thereby advancing fundamental
science. The data downloading and associated analysis scripts are available at
https://github.com/jessicafry/TIDMAD.

1 Introduction

The quest to uncover the nature of dark matter is one of the biggest challenges in contemporary
physics. Several key observations in astrophysics and cosmology have confirmed the existence of
dark matter, which constitutes approximately 85% of all mass in the universe [2} (3} 26} 131} [32].
However, dark matter has never been detected by any detector on Earth. Because the composition of
dark matter is unknown, theoretical physicists propose various dark matter candidates — hypothetical
particles that can be characterized by their physical parameters. Experimental physicists then design
experiments to search for these candidates. A convincing detection of any dark matter candidate
would be a Nobel-Prize-level breakthrough in fundamental science, but even if nothing is detected,
the null results still play a significant role in advancing our understanding of physics by setting limits
within the physical parameter space. This means that a particular experiment has eliminated the
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existence of a dark matter candidate within these limits and does not have sufficient sensitivity to test
outside these limits. Reciprocally, these limits are used by theorists to propose better dark matter
candidates, thereby improving our understanding of this mysterious constituent of our universe.

Attributable to its extremely rare interactions with normal matter, the signal of dark matter is often
submerged in a sea of noise from various sources internal and external to the experimental apparatus.
Machine learning (ML) offers a promising means to reduce this noise. Advancements in denoising
techniques using ML algorithms have the potential to significantly improve dark matter analyses [27].
These techniques enable the detection of weaker dark matter signals, or in the case of no observation,
the setting of stronger limits. In other words, improvements in data denoising directly enhance the
scientific reach of dark matter experiments. In this paper, we present an ultra-long time series dataset
produced by a real dark matter detector: ABRACADABRA (A Broadband/Resonant Approach
to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus, abbrev. ABRA-10cm).
ABRA-10cm is the world leading sub-ueV dark matter experiment that pioneered the quantum
enabled lumped element dark matter detection technique [21} 22, 28]. We operated the ABRA-10cm
detector in February 2024 to obtain a special time series dataset for these studies: TIDMAD (TIme
series dataset for discovering Dark Matter with Ai Denoising). These data are partitioned into three
parts: (1) training data, (2) validation data, and (3) science data.

The training data include time series data where a dark matter-like signal is injected by hardware. If
dark matter enters ABRA-10cm, it will manifest itself as a sinusoidal oscillation mode within the
time series; therefore, the injected signals are also sinusoidal oscillations within a range of specific
frequencies. While the signal shape is known, the dark matter signal amplitude and frequency are
unknown parameters in dark matter searches. Both the detected (noisy) time series and the injected
(ground truth, clean) time series are provided with one-to-one temporal correspondence. This allows
the training of machine learning algorithms to denoise the detector data and recover the injected signal.
The validation data is used to produce Benchmark 1: Denoising Score, see Section[4.1] Algorithms
that effectively dampen the detector noise while amplifying the injected signal will achieve a better
denoising score. The science data is collected without the injected signal with an extended duration
to produce Benchmark 2: Dark Matter Limits. The limit generation procedure is detailed in Section
M.2] The scientific data are titled to reflect their use in producing real, community-standard physics
results that are suitable for presentation in scientific journals. Several traditional and deep learning
denoising algorithms are presented in Section[3|and Appendix[C| where the resulting denoised data is
benchmarked against the raw, un-denoised detector data.

1.1 Axion dark matter and ABRACADABRA

In recent years, the axion has emerged as one of the leading dark matter candidates as a result
of its theoretical elegance. Axions interact with normal matter via electromagnetism, which can
be characterized by a physics parameter g,-~. Arising from its small mass m, < leV (107°
times smaller than electron), axions act as a classical field oscillating at a frequency f, = m, /2.
Astrophysical measurements determine that the Earth exists in a bath of dark matter with a known
local density of ppas [12.

The latest advancements in quantum detector technology have facilitated new avenues to search
for the axion. ABRA-10cm is one of the novel detectors designed to search for axions leveraging
these advancements in quantum technologies [22]]. ABRA-10cm capitalizes on the fact that we are
immersed in a bath of a feebly electromagnetically-interacting, oscillating dark matter field to detect
this elusive particle. Specifically, in the presence of a static magnetic field By, the axion, henceforth
referred to as dark matter, induces an oscillating magnetic field B,. Thus, to detect dark matter
ABRA-10cm provides a strong magnetic field By = 17 and uses a superconducting pickup loop
to observe the oscillating dark matter signal. Read out by a superconducting quantum interference
device (SQUID), the pickup loop detects the dark matter signal as a time-oscillating current given by

Jeff = ga’y’y\/mBOCOS(mat) M

where the two parameters that define the theory, the coupling g, and mass m,, appear as the
relative strength of the signal and oscillation frequency respectively [21]. The total signal power
expected in our detector is given by

A= <|(I)a|2> = g(?,'y’prI\/IQZVZB?na'Jf (@)
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Figure 1: Left to right: ABRA-10cm dilution fridge with outer vacuum cans on; Coldest stage of
ABRA-10cm fridge above shielded 1T superconducting torroidal magnet; Interior of ABRA-10cm
magnet including pickup and calibration loop wires in the center of the magnet; Effective circuit
diagram for both dark matter and injected signals.

where G ~ 0.0217 is a geometric coupling, V' = 890cm? is the magnetic field volume, and
Biaz ~ 1T is the maximum static magnetic field [21]].

The frequency of this oscillating signal is a model parameter meaning if we knew the dark matter
mass, this frequency would be set. However, theoretical models point to a range of possible dark
matter masses, not a singular value; this signal frequency range covers more than seven orders of
magnitude making the data denoising task extremely challenging.

1.2 TIDMAD construction

In the classical analysis, we use a calibration procedure to determine the end-to-end response of our
system for different signal frequencies. As shown in Figure[T] the ABRA-10cm detector contains a
toroidal magnet equipped with both a pickup loop and a calibration loop. During calibration, we first
inject a fake dark matter signal into the calibration loop at a specific frequency. This generates a sine
wave with a known amplitude and frequency, creating a dark matter-like flux with our pickup loop.
Finally, this flux is detected by the SQUID sensor for detector calibration.

The dark matter signal injected into the calibration loop by the signal generator follows the form
prescribed by axion theory, as shown in Equation [T] and derived in Appendix [A] We specifically
choose to inject sine waves with frequencies from 1.1 kHz to 4.9 MHz, corresponding to axion masses
mg = [0.005,17] neV, to target the mass range that our experimental hardware is designed to detect.
The injected signals were all set to an amplitude of 50 mV to ensure a reasonable signal-to-noise
ratio. A total of 309 different frequencies were sequentially stepped through, from 1.1 kHz to 4.9
MHz, simulating 309 distinct axion masses in our detector hardware.
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Figure 2: 10-millisecond snapshot of the time series in TIDMAD training dataset compared to the
power spectral density of the same data snapshot.



The TIDMAD dataset presented in this work is inspired by this calibration procedure. The ABRA-
10cm detector hardware enables us to simultaneously record two types of ultra-long time series: the
one injected into the calibration loop (referred to as the “injected time series”) and the one detected by
the SQUID sensor coupled to the pickup loop (referred to as the “SQUID time series”). As shown in
Figure[2] the injected time series exhibit a clear sinusoidal oscillatory signal, which can be considered
the ground truth. Meanwhile, the SQUID time series contains the same ground truth submerged
within a sea of detector noises. While the ground truth time series is simple, the detector readout
contains a complex spectrum of noise spanning a large frequency range, which cannot be modeled
using any simple approach [11]. The two time series are exactly aligned at every time step. This
defines the signal recovery task: a model could be applied to the SQUID time series to reproduce the
injected signal in the injected time series. A model trained on this task will be efficient in rejecting
noise of different kinds while retaining the dark-matter-like signal within the detector. We then
collected a science dataset where no fake dark matter signal is injected. The trained denoising model
can then be applied to the SQUID time series of the science dataset. If a sinusoidal signal is found
after denoising, it could potentially be a real dark matter particle entering the detector.

2 Dataset description

The data presented in this paper were acquired using the ABRACADABRA detector. The overall
schematics of the data is shown in Figure[3] All data are saved as a series at 10 MS/s (Megasample
per second), where each sample is a 8-bit integer ranging from -128 to 127. These integers can be
converted into a physics units of mV (millivolts) with a scaling factor of 40/128. The procured
datasets are stored at Open Science Data Federation (OSDF) [6} 18, [37] in .hdf5 format and can be
accessed via the download_data.py script in the github repository provided.
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Figure 3: TIDMAD data flow explaining how data splits (green) result in benchmarks (blue).
Rectangles correspond to provided scripts. Left to right, top to bottom the scripts are train.py,
inference.py, benchmark.py, process_science_data.py, brazilband.py

Training dataset: The training dataset contains 80.23 Gigasamples of time series data, correspond-
ing to roughly two hours of data collection. For training purposes, we injected a fake dark matter
signal into the hardware as discussed in Section[I.2] The injected signal scans through dark matter
frequencies from 1100 Hz to 5 MHz at two different amplitudes: 50 mV (standard) and 10 mV (weak).
Only the standard injection was considered in the rest of this paper. However, the weak injection data
is also available to download by using the additional -w flag with the download_data.py script,
providing a more challenging scenario for signal recovery. All training data are partitioned into 20
files. Each file contains two channels: the injected time series is saved in the second channel (CH2),
while the SQUID time series is saved in the first channel (CH1). As discussed in Section[I.2] the
training task is to recover the CH2 ground truth time series using the CH1 noisy time series as input.

Validation dataset: The validation dataset, consisting of 80.23 Gigasamples, has the same format
as the training dataset. The only difference is that the validation dataset was independently collected
at a different time using the same detector apparatus, making it an out-of-sample dataset with
slightly altered noise conditions. After training, users can perform model inference by running the
inference.py script to denoise the CHI time series while preserving the injected signal. The



denoised SQUID time series in CH1 and the injected time series in CH2 are then processed through
the benchmark. py script. To determine the efficacy of the model’s denoising, a benchmarking score
called ‘denoising score’ is calculated, which will be discussed in detail in Section@

Science dataset: The science dataset comprises 833.82 Gigasamples of time series data collected
over a 24-hour period. This data is distributed across 208 .hdf5 files. Unlike the training and
validation datasets, there are no injected signals, meaning that only the CH1 time series is saved per
file. The inference task for ML models is to denoise the SQUID time series in CH1. The denoised
science data is then analyzed to obtain a dark matter limit, which will be discussed in Section@

3 Experiments

We benchmarked eight different denoising algorithms including three traditional algorithms and five
deep learning models. The traditional algorithm can be directly applied to the validation dataset
using inference. py, while deep learning models need to be trained first on the training dataset with
train.py. The eight algorithms are listed below:

* Moving average: a simple moving average with a window size of 19, implemented using
the numpy convolve function.

» Savitzky-Golay filter: with a window size of 19 and a polynomial order of 11.

* Fourier Averaging (baseline): this operation was originally adopted on ABRA-10cm to
compress its data [21, 28]. For every 10-second time series segment, a Fourier transform
is applied to each one-second interval, and the resulting 10 Fourier spectra are averaged to
produce a single spectrum representing the 10-second segment. This method is considered
the baseline approach, representing the current status quo of ABRA-10cm.

* FC net: an autoencoder architecture designed for transforming input data. This model
consists of an encoder and a decoder. The encoder encodes the input data into a low-
dimensional representation, while the decoder reconstructs the original data from this
encoded representation. Both the encoder and decoder are composed of multiple fully-
connected layers and activation layers. FC-Net outputs a single float point number at each
time step, and the training is conducted by minimizing the mean square error between this
float point number and corresponding ground truth time series at every sample.

* WaveNet: a deep neural network originally developed to generates high-quality raw audio
waveforms by autoregressively predicting each sample using dilated causal convolutions
[33]. The model was adapted with residual blocks containing exponentially increasing
dilation rates, gated activations, and skip connections to maintain the same input-output
shape for TIDMAD denoising task.

* PU net: a deep learning architecture based on the UNet architecture [25]. U-Net uses
convolution layers as encoder and deconvolution layers as decoder, with contracting paths
established between each pair of convolutional and deconvolution layers at the same level.
This allows information at different encoding levels to flow to the decoding part. Positional
encoding layers are introduced at all encoder layers to enhance the model’s ability to
understand positions in the time series. Since every sample of the ground truth time series
has to be 8-bit integers ranging from -128 to 127, we require the model to output a 256-class
classification decision at every time step, where each class corresponds to one possible
output value. This effectively redefines the denoising task into a semantic segmentation task.

* Transformer: the transformer utilizes a self-attention mechanism to capture long-distance
dependencies in sequences [34]. After processing by the multi-layer Transformer encoder,
the model effectively extracts features and represents the input sequence. Finally, the
encoded sequence is mapped to the output dimension through a linear layer for the same
256-class classification decision as PU-Net. Positional encoding is also added before the
time series is fed into Transformer layers.

* RNN Sequence to Sequence Model: a neural architecture with separate encoder and
decoder RNNs where the encoder processes the entire input sequence to produce a context
representation, and the decoder autoregressively generates the output sequence [33]. Both



encoder and decoder adopts a LSTM architecture, and the decoder output is the same 256-
class classification decision as PU-Net. PU-Net, Transformer, WaveNet, and RNN Seq2Seq
are all trained using Focal Loss to handle class-imbalanced segmentation labels [17].

The benchmarking results of these models are discussed in Section 4 A hyperparameter search
study is conducted on the Moving Average and Savitzky-Golay filter. The best-performing window
size and polynomial order are chosen, with the rest of the study detailed in Appendix [E| There
are two additional constraints for the deep learning models. First, because of memory constraints,
we segment the ultra-long SQUID and injected time series into smaller segments before feeding
them into each model. The exact segment sizes are outlined in Table[I] Secondly, due to the broad
frequency spectrum in our input data, we implemented frequency splitting for all models except
WaveNet, training multiple specialized versions of each model to handle distinct frequency ranges.
During benchmarking, we observed that a single WaveNet model is efficient to handle all frequencies.
Both limitations and additional details of the deep learning models are discussed in Appendix [B]

4 Evaluation metrics

We developed two benchmarking criteria to evaluate the performance of denoising algorithms.
Benchmark 1: Denoising Score provides a quantitative measure of denoising performance based on
the signal-to-noise ratio. This score is designed to be linear with respect to the noise level and equal to
one when no denoising is applied. While Benchmark 1 offers a quick, straightforward assessment of
model performance, it lacks direct relevance to fundamental science. To bridge this gap, we developed
Benchmark 2: Dark Matter Limit, which directly links Al algorithms to community-standard physics
result by automating the entire dark matter analysis on the science dataset. This benchmark allows
Al algorithms to directly improve the physics reach of dark matter detectors.

4.1 Benchmark 1: denoising score

The denoising score is a modified signal-to-noise ratio (SNR) of the denoised CH1 SQUID time
series. It is calculated over the validation dataset by first segmenting both the injected and SQUID
time series into one-second segments. Each second of the time series is transformed into a power
spectral density (PSD) using a squared fast Fourier transform. This frequency domain data records
signal power at each frequency — P.SD(v). Since the injected dark matter signal is a clean sinusodial
oscillation, it should appear as a single-bin peak (1) in the PSD, while noise in SQUID time series is
distributed across all frequency bins. The location of vy is identified by the PSD of the injected time
series (ground truth) as the largest single bin peak relative to its nearest neighbors.

vy = argmaX(PSDInjected(V) - (PSDInjected(V - df) + PSDInjected(V + df))) (3)

where df is the sampling frequency of 10~7 Hz. Once v is identified in the injected time series,
the signal region is defined by selecting n5;4, = £1 bins around the signal frequency to account for
spectral leakage. Similarly, the noise region is defined by selecting ny14q = 450 bins outside of
the signal region. By taking the ratio of the PSD in the signal region to that in the noise region, we
acquire the SNR for each one-second segment PSD.

P.. Vo+Vsig Vo+Vbkg
— stg _ ) )
SNR; = ( Pn) = Y PSD;(v) > PSD;(v) (4)
V=V0—Vsig V=V —Vbkg

Multiplying by the sampling frequency (df) turns bin range (nsiq,514) to frequency range (Vsig pig)-

The hardware setup includes a bandpass filter between the pickups and the digitizer, resulting in a
frequency dependence for the signal magnitude in both the injected and the SQUID time series. To
account for this, we first calculate the normalized injected SNR:

(SNRInjected)i (5)
max (SN Ripjected)

The SQUID SNR then gets multiplied to the corresponding, normalized SQUID SNR in the same
one-second segments, and then summed over all one-second segments to produce A defined below:

1 n
A= <,n Z(SNRSQUID)i X (SNRinjected)i> (6)

(SNRinjected)i =

" =0
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Figure 4: Left: The color bar represents the denoising score for 20s of raw data with added Gaussian
noise showing that noisier data results in a lower score. Right: Denoising score and A for 20s of
raw data with added Gaussian noise of variable noise amplitude. The exponential behavior of A can
clearly be seen in contrast to the smooth linearity of the denoising score.

We examine the validity of A as a measure of denoising efficiency through a controlled study involving
added Gaussian noise. The ABRA-10cm detector is subject to a variety of independent noise sources
both internal and external, and both stable and stochastic in time. Together, these real noise sources
produce a distinctly non-Gaussian noise distribution, as demonstrated in Figure 2] Although the
detector noise itself is non-Gaussian, we introduce synthetic Gaussian noise to the real time series
data to probe how A behaves under systematically varied and well-characterized noise conditions.
This approach allows the denoising score to be linearized and validated in a controlled setting, even
if not precisely replicating the complex, full statistical structure of the detector noise. In this study,
Gaussian noise is added to the SQUID time series and A values are computed for a range of added
noise amplitudes and standard deviations. As shown in Figure ] (right), A exhibits an exponential
decay trend with increased noise amplitude. To establish a linear correlation between the denoising
score and noise, we apply a logarithmic transformation to A to obtain the final denoising score:

Denoising Score = logs o7 A @)

The base of the logarithm is chosen to be 5.27 so that the denoising score equals 1 for the raw SQUID
time series over the validation dataset (i.e., when no denoising algorithm is applied). We further
examined this denoising score over a range of imposed Gaussian noise amplitude and STD, and
observed a smooth linear response as shown in Figure [] (left).

This denoising score is implemented in the provided script, benchmark . py, which takes as input the
denoised SQUID time series of the validation dataset produced by model inference. The script is
designed for parallelization and takes about 30 minutes to run on an 8-core CPU node. To further
reduce the time required for calculating the denoising score, we defined this second-by-second scan
as the Fine Score and introduced a new Coarse Score Denoising Score. The Coarse Score is a tenfold
downsample of the full Fine Scan thereby providing a fast benchmarking score that users can leverage
to get a rough estimate of model performance in 10% the computational time.

Table [T] shows the denoising scores for all algorithms discussed in Section 3] The case with no
denoising is shown in the first row, with its fine denoising score calibrated to 1. The deep learning
algorithms repeatedly outperform all of the traditional denoising methods. Based on the results,
all traditional algorithms decrease the denoising score because time domain averaging erases high-
frequency signals in the region of interest. Meanwhile, all deep learning algorithms efficiently boost
the denoising score. We observed that in all cases, the coarse denoising score is slightly higher
than the fine denoising score. Surprisingly, we observed that the FC Net model achieved the best
performance with a denoising score of 6.43.

The model training and inference is conducted upon the SDSC Expanse cluster equipped with V100
GPUs. For benchmarking tasks, model training and inference over the denoising score data takes less
than O(100 GPU hours). The actual value varies slightly with model complexity and data size.



Table 1: Fine and coarse denoising score for raw data, traditional algorithms, and trained ML models.
FS means frequency splitting, or training multiple versions of the same model to handle different
frequency ranges. The detail of segment size and FS is discussed in Section[B]

Algorithms Segment Size  FS Parameters Fine Score  Coarse Score
None 1.00 1.10
Fourier Averaging 1 x 108 - 10-fold Average 0.24 0.26
Moving Average 1 x 108 - window = 100 0.86 0.95
SG Filter 1x 108 — window = 19, order = 11 0.95 1.04
FC Net 4x10°  Yes See Appendix [B} 6.43 6.55
PU Net 4 x 10% Yes See Appendix Bl 3.69 3.84
Transformer 2 x 10% Yes See Appendix Bl 3.95 4.18
WaveNet 4 x 10* No See Appendix Bl 4.99 5.16
RNN Seq2Seq 4 x 10* Yes See Appendix Bl 3.38 3.79

4.2 Benchmark 2: dark matter limit

The second benchmark empowers algorithm creators with the capability to conduct a community-
standard dark matter search using the science dataset. This benchmark bridges the gap between ML
and particle physics; ML developers can translate algorithmic performance directly to improved
particle physics experimental reach. By abstracting the full physics analysis chain, the ML community
can translate their denoising results to physics results without understanding the underlying physics,
all while maintaining full physics rigor.

The two physics parameters for the dark matter candidate in this paper are the dark matter mass
(mg) and the dark matter to electromagnetic coupling (gq~~). Null results from different dark matter
experiments place limits within this parameter space expressed by the shaded regions in Figure
[l In the physics community, a better dark matter limit is represented by pushing towards lower
values of g4 at different m,. For dark matter physicists, this dark matter exclusion limit is the
community standard for benchmarking different detector performances against each other on the
metric of experimental sensitivity to theoretical dark matter candidates. We provide a comprehensive
tool necessary for performing the statistical analysis to produce dark matter limits in Figure[5] The
limit-setting procedure is repeated for 11.1 million independent m,, (f,) from 0.4 neV (100 kHz)
to 8 neV (2 MHz). The dark matter limit at each m,, is obtained using a frequentist log-likelihood
ratio test statistic (TS). The details of this analysis can be found in Appendix [C] However, by simply
inputting the provided science data, denoised with an algorithm of choice, into the brazilband.py
script, ML developers can automatically produce Figure [5]to measure the improvements to physics
experimental reach enabled by their denoising algorithm.

This analysis is performed twice on the SQUID time series of the science dataset: once without any
denoising algorithm which produces the ABRA-TIDMAD Raw limit, and once with FC Net, the top-
performing denoising algorithm, which produces the ABRA-TIDMAD Denoised limit. These limits
can be directly compared to the previous world-leading ABRA-10cm Run 3 limit, limits obtained by
other dark matter experiments, as well as theoretical predictions [28]]. While the ABRA-TIDMAD
Denoised limit does not outperform the ABRA-10cm Run 3 limit because of hardware and time
constraints, it is evident that denoising algorithms significantly improved the dark matter limit by
1-2 orders of magnitude across different m,. Although the size of the ABRA-TIDMAD science
dataset is only 1% of the ABRA-10cm Run 3 science dataset, the Al denoising algorithm boosted
the ABRA-TIDMAD limit to nearly the same level as ABRA-10cm Run 3 and even surpassed the
ABRA-10cm Run 3 limits at small m,.

5 Limitations and applications

Hardware and datataking period: As illustrated in Figure|5} the baseline models fail to surpass
the results of ABRA-10cm Run 3. This is attributed to hardware limitations and changes since the last
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Figure 5: Plotted alongside the present, state-of-the-art axion dark matter limits (grey) are the 20
exclusion limits for ABRA-10cm Run 3 (pink) [28], ABRA-TIDMAD Raw limit (red), and ABRA-
TIDMAD Denoised limit from the trained FC net (maroon). The ABRA-TIDMAD result does not
surpass ABRA-10cm Run 3 due to reduced geometric coupling and shorter data taking duration in
the TIDMAD configuration. Shaded regions correspond to pairings of dark matter model parameters
(M4, gay~) that are ruled out by the specified experiment, and the bright yellow region indicates
theoretical predictions (See Appendix [D|for details). The plotting script is modified from the publicly
available AxionLimits repository
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data run, including (1) replacing the dark matter pickup cylinder with a pickup loop, consequently
reducing the geometric coupling to the dark matter signal, and (2) reducing the data taking period
to 24 hours from three months. The decision to implement these changes was driven by the aim
to enable ABRA-10cm to simultaneously search for dark matter and gravitational waves, thereby
enhancing the scientific scope of the experiment. The shortened data taking duration was necessitated
by operational constraints of the dilution refrigerator. Because the signal-to-noise ratio scales as the
fourth root of integration time, we can increase ABRA-10cm’s sensitivity to dark matter by increasing
the data taking period [20]. Another more efficacious way to increase this signal-to-noise ratio is
improving our denoising with ML; a doubling of our noise reduction represents a /6x speed up our
data taking time revealing the out-sized return on investment in denoising techniques when compared
to increased detector run time.

Null result vs. potential discovery: In Section[d.2] we discussed how to set a dark matter limit
using the provided analysis scripts. This script assumes a null result as no 5o dark matter candidates
were identified in this region of parameter space by ABRA-10cm Run 3. Therefore, we assume a null
result for this much shorter (24 hr) data taking. This assumption enables us to establish upper limits
on the coupling parameter g,.~ for every mass point. As shown in Figure |§|, the ABRA-TIDMAD
Raw limit without denoising covers a smaller region than ABRA-10cm Run 3 [28].

However, with the denoising algorithm applied to the 24-hour science data, ABRA-TIDMAD could
potentially reach beyond the ABRA-10cm Run 3 region, where a discovery of dark matter is possible.
In this paper, we focused on increasing the experimental sensitivity and setting exclusion limits. A
straightforward modification to the interpretation of the TS would unlock the discovery potential
of this analysis framework. Future efforts will focus on employing a more extensive dataset and
implementing dark matter discovery analysis code. Given that discovering dark matter would be
a Nobel Prize-level breakthrough, it is crucial to not only claim discovery but also to convince
the scientific community of its validity. If TIDMAD users find any anomalous signals in the



science dataset, please contact the authors for further investigation and understanding of systematic
uncertainties.

Generalizability: Axion dark matter is a specific subset of wave-like dark matter candidates,
making the techniques developed in this paper broadly applicable to a wide range of wave-like dark
matter experiments. Other axion dark matter experiments, including but not limited to ADMX [&]],
HAYSTAC [7]], and DMRadio [9]], also produces long time series data and search for similar peaks in
frequency domain; any Al algorithm developed upon TIDMAD can be easily adapted and applied
to these experiments. Because the denoising and benchmarking methods are detector-agnostic, the
authors are presently collaborating with several other axion dark matter experiments beyond ABRA-
10cm on implementing the denoising procedure presented in this paper to various experimental set ups.
This work lays the groundwork for such generalization, and we hope the paper will encourage similar
releases from other experimental collaborations. Furthermore, time series denoising algorithms are
crucial for extracting wave-like signals in various areas of physics. In astrophysics, gravitational wave
searches involve detecting chirp signals with durations on the order of seconds [1} 23], often buried
within detector noise. In nuclear physics, denoising can enhance the efficiency of HPGe detectors [3]]
and bolometer detectors [35)]. Advancements in denoising can be deployed across a suite of these
physics experiments.

While the data released in this paper was tailored to our specific problem statement and benchmarks in
physics, these ultra-long time series datasets have the potential to benefit a wide range of applications
beyond physics. Similar to TIDMAD, many other scientific domains involves time series datasets
exhibiting relatively uniform frequency characteristics, with the primary analytical task focused on
extracting signals from these time series. Examples include pulsar timing from radio observatory
data (astronomy)[16]], detecting seismic arrivals above background noise (geology)[36], identifying
sea surface and near-surface temperature anomalies (climate science)[30], and recognizing atrial
fibrillation among noises and other rhythms in short-term ECG recordings (health science)[[10]]. If a
foundation model were to be developed for general time series analysis in science, our frequency-
rich, detector-generated, long time series data could provide a uniquely abundant source of spectral
complexity.

6 Conclusions and other works

We present TIDMAD, the first dataset and benchmark designed to yield a community-standard dark
matter search result. TIDMAD includes all necessary inputs and processing to train time series
denoising algorithms and produce a science-level dark matter limit. Through a series of experiments,
we developed five ultra-long time series deep learning algorithms, benchmarked their ability to
recover hardware-injected signals, and set dark matter limits. Clear performance improvements
were demonstrated on both benchmarks. Our future work will focus on enhancing the denoising
algorithm to achieve better dark matter limits, expanding to other nuclear and particle experiments,
and embedding these algorithms onto FPGA chips for real-time denoising during data taking.

The aim of this data release is to enable the ML community to use TIDMAD to develop algorithms
tailored for data with highly coherent embedded signals. This development would not only extend the
experimental reach of dark matter searches, leading to improved dark matter limits, but also allow the
AI/ML community to make direct scientific advancements. This transparency aims to foster greater
collaboration between the ML and particle physics communities, benefiting both fields.
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A Dark Matter Signal and Signal Injection

Axion dark matter appears in our detector as a time oscillating current with two free model parameters
(Ma, gar~) described by Equation |1} This signal can be fully derived from axion theory and is
extremely well-defined. While a full derivation of this equation is presented in Reference [20],
schematically, this theoretical prediction for the dark matter signal in our detection comes from four
phenomena — the omnipresent axion field, axion’s interactions with electromagnetism, the specific
geometry of our detector, and the velocity distribution of the dark matter.

Under certain conditions, axions are created in the early universe via the misalignment mechanism
[13L24]. When axions are created they produce a time oscillating omnipresent axion field with an
oscillation frequency equal to m,, and phase coherence. If axions are dark matter then the abundance
of axions and the strength of this axion field are set by our astrophysical observations of dark matter
density [12].

The axion field can interact with other physical forces including electromagnetism. If an axion field
collides with an electromagnetic field, some of the axions will be transformed into photons. These
photons produce a secondary electromagnetic field — an axion-induced electromagnetic field. In the
geometry of our detector, the axion-induced electromagnetic field is read out with a pickup wire
which samples the field like a typical radio antenna. This means the time oscillating axion field turns
into a time oscillating current in our detector (i.e. our dark matter signal).

If earth were stationary, sitting in a uniform bath of dark matter, then the dark matter signal frequency
would be exactly the axion field oscillation frequency (i.e. the axion mass) and completely coherent.
However, the earth is moving within the Milky Way galaxy and thus the axion field gains a velocity
with respect to earth at about vpys ~ 220km/s. Doppler shifting spreads this frequency such that it
is distribution around the original field frequency Af = v%,, f [20]. This frequency distribution is
six orders of magnitude smaller than the signal frequency, therefore can be treated a coherent, single
frequency sine-wave to good approximation. For signal injection, this single frequency approximation
is used while for the dark matter analysis, we model the full frequency distribution.

Thus, we have established that the dark matter signal in the ABRA-10cm detector is approximately
sine-wave current. The frequency of this oscillating signal is a model parameter meaning if we
knew the axion mass, this frequency would be set. However, theoretical models point to a range of
possible axion masses, not a singular value. Ideally we would create a dark matter detector that could
search the entire range of valid dark matter masses, but experimental constraints such detector size,
configuration, and readout electronics preclude this possibility. Instead, experiments must be tailored
to search for smaller areas of the axion mass parameter space with ABRA-10cm the detector being
specifically designed to target m, = 0.4 — 10 neV [21]].

The second free signal parameter is the sine wave amplitude which is proportional to g,-, the
strength of the axion’s interactions with electromagnetism. Theoretical calculations constrain this
parameter to g, = Cm, where C' = [—0.39, 0.22] depending on the theory [14} [29]. Theoretically
motivated axion couplings can be seen in Figure E] as the gold band in the m,, g~ parameter space.
Experimentally, the goal is to detect ever smaller signal amplitudes to reach lower values of gg~.

To inject a fake signal into the hardware, we replicate the signal current, given by Equation [I] with a
signal generator. The signal generator is connected to a calibration loop depicted in Figure [I]designed
to mimic an axion field incident on the detector. We specifically choose to inject sine waves with
frequencies from 1.1 kHz to 4.9 MHz, m,, = [0.005, 17] neV, to contain the masses our experimental
hardware was built to target. The injected fake signals we used all have amplitudes of 50 mV to
achieve a reasonable signal-to-noise ratio. While injecting smaller fake signal amplitudes would
effectively simulate dark matter candidates with smaller electromagnetic couplings, fake signals
smaller than 50 mV are difficult to detect with traditional techniques. Though smaller couplings
provide an interesting ML task, our denoising score benchmark is predicated on finding injected
signals with traditional techniques and subsequently we did not use smaller fake signal amplitudes.
However, we did take data injected with signals ranging from 1.1 kHz to 4.9 MHz at a signal
amplitude of 10 mV. While this data was not used in our benchmark creation or model training, it is
publicly available (see Datasheet) for an extra challenge.

To summarize, our signal injection scheme involves exciting hardware with a sine wave from a
signal generator. We sequentially step through 309 different frequencies from 1.1 kHz to 4.9 MHz to
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simulate 309 different axion masses in our detector hardware all with an amplitude of 50 mV so that
the fake signal is visible above the detector noise floor.

B Details and limitations of deep learning model

There are two special treatments we took to train the five deep learning models:

Training segmentation: To feed the time series data into limited GPU memories, the training
time series are segmented into 4 milliseconds. This imposes a fundamental lower limit on the
frequencies that the models can detect. While this lower limit, approximately 250 Hz given the
sampling frequency of 10 MS/s, is relatively small, it does establish a foundational lower threshold
for frequency resolution in the model. The transformer model requires additional memory, therefore
we have to further reduce the segment to 2 millisecond or 500 Hz. Both of these limits are well below
the dark matter search range: 0.4 neV (100 kHz) to 8 neV (2 MHz).

Frequency splitting: Since the injected dark matter signal spans two orders of magnitude in
frequency, the observed features in the injected time series significantly vary. During training, we
noticed that a single deep learning model (with the exception of WaveNet) to denoise the entire dataset
would fail to generalize across the different injected frequency ranges. To address this issue, we
trained four deep learning models per architecture, each focusing on a specific frequency range: the
first covering the low-frequency regime (training/validation files 0-3), the second covering the mid-low
regime (training/validation files 4-9), the third covering the mid-high regime (training/validation files
10-14), and the fourth covering the high-frequency regime (training/validation files 15-19). During
the benchmark 1 inference, we selected the input validation data corresponding to the frequency range
for which each model was trained and averaged the results of the four models. For the benchmark 2
inference, we ran all four models on the science data and selected the highest-performing model, as
represented in Figure 5]

The WaveNet architecture was the only deep learning model that generalized across the entire
frequency range of validation data. All trained models are made available in https://drive.
google.com/drive/folders/160RX1b2z0o1_10YYAcRBgddBuYImjOBxs?usp=share_link.

The hyperparameters of the FC Net are listed below:

AE(
(encoder) : Sequential(
(0): Linear(in_features=40000, out_features=4000, bias=True)

(1): ReLUQ)
(2): Linear(in_features=4000, out_features=400, bias=True)
(3): ReLUQ)

(4): Linear(in_features=400, out_features=40, bias=True)
)
(decoder) : Sequential(

(0): Linear(in_features=40, out_features=400, bias=True)

(1) : ReLUQ)
(2): Linear(in_features=400, out_features=4000, bias=True)
(3): ReLUQ)

(4): Linear(in_features=4000, out_features=40000, bias=True)
)
)

The output of FC Net at every time step is a single float point number. An MSE loss is calculated
between the float point number and the ground truth value.

The PU Net model consists of four down layers and four up layers, with contracting paths between
each pair of layers. The down layers include Max Pooling and two convolutional operations, while
the up layers comprise Deconvolution and Convolution. Additionally, positional encoding is added
after each down layer [34]. Lastly, the output is fed into a linear layer to produce 256-dimensional
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vector at each time step. The detailed model hyperparameter could be found within the network. py
script inhttps://github.com/jessicafry/TIDMAD.

The transformer model processes the time series data by using an Embedding layer to encode each
input, converting 8-bit integers in the range of (—128, 127) into a 32-dimensional vector. Positional
encoding is then added to the embedded time series [34]. This augmented data is fed into a
Transformer Encoder with two layers, each containing two heads, 128 hidden dimensions, and a 0.1
dropout rate. Finally, the output is passed through a linear layer to produce a 256-dimensional vector
at each time step.

For both PU Net and Transformer, the output at each time step is a 256-dimensional vector, corre-
sponding to 256 possible output classes. This can be considered as a time series semantic segmentation
task where there are 256 possible classes to choose from. We adopted Focal Loss in Object Detection
to address the class imbalance problem in semantic segmentation task [17].
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Figure 6: The denoising performance of FC Net (Left), PU Net (Middle), and Transformer (Right)
at a single injected frequency. The plot is made by Fourier-transform the time series into frequency
space.

The denoising performance of three models at a single injected frequency is illustrated in Figure[6] In
this specific instance, the PU-Net model demonstrates superior denoising performance. However,
when evaluated using the Denoising Score across all frequencies, the FC Net significantly outperforms
the other two models by a large margin.

The WaveNet model implements the core dilated causal convolution architecture with 10 residual
blocks using exponentially increasing dilation rates (1, 2, 4, 8, 16, ..., 512), kernel size of 12, and 32
residual channels with 64 gate channels for the gated activation mechanism (tanh x sigmoid). Each
block processes input through dilated causal convolutions to ensure no future information leakage,
applies gated activation, and produces both residual connections (for depth) and skip connections
(accumulated across all blocks for the final output). The model uses 32 skip channels and projects
the final accumulated skip connections through two 1D convolutions to produce the output shape
of (batch, sequence_length, 256) while achieving a large receptive field of over 1000 timesteps
through the dilated convolution hierarchy, making it suitable for modeling long-term dependencies in
sequential data like audio waveforms.

The simple RNN Seq2Seq model follows the classical encoder-decoder architecture with vocabulary
size of 256 and 256 output classes, using 128-dimensional embeddings and 256-dimensional LSTM
hidden states across 2 layers with 0.1 dropout. The encoder processes the input sequence (batch,
seq_len) through an embedding layer and LSTM to produce final hidden and cell states, which
initialize the decoder LSTM that generates output logits of shape (batch, seq_len, num_classes)
by processing the same input sequence (a simplified teacher-forcing approach for same-length
input/output tasks). The model uses separate embedding and LSTM layers for encoder and decoder,
accumulates the decoder’s hidden states across all timesteps, and projects them through a linear layer
to produce class distributions for each position, making it suitable for sequence-to-sequence tasks
where input and output have identical lengths, such as sequence labeling or token-level classification
with 256 possible output categories per position.

C Frequentist log-likelihood test statistics

The detailed analysis flow to produce the dark matter limit is depicted in Figure[7] The first step
involves performing a fast Fourier transform on the time series data in 10-second segments to produce
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power spectral densities (PSDs). These PSDs are then averaged across the full dataset to generate our
average PSD, reflecting the power in the pickup loop as a function of frequency. Since one of the
physics parameters, dark matter mass (m,), is directly proportional to the frequency, the analysis
script conducts 11.1 million independent searches for dark matter with varying mass points from 0.4
neV (100 kHz) to 8 neV (2 MHz).

Repeat ¥ Dark Matter Masses

Dark Matter Target Masses Dark Matter
11.1 M [0.4 neV, 8 ne > signal Template
l il g o C) Best Fit Signal
Amplitude (6) Dark Matter Limits
and i.e. Brazil Bands
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Figure 7: This represents the analysis flow for dark matter science data and the detection logic to
build the brazil band limits from time series data (raw or denoised). Key types of data are plotted
corresponding to their step in the analysis chain.

At each mass point, the dark matter limit is obtained using a frequentist log-likelihood ratio test
statistic (TS) [L3]]. Given the local velocity distribution and density of dark matter from astrophysical
measurements, as well as our choice of dark matter mass, we create a dark matter signal template for
each mass point. These templates are compared to a chunked frequency subset of the average PSD,
constructed using a sliding window whose width scales as §f/f ~ 5.5 x 1075, We use equation

and calibration data to produce the other physics parameter g,.~, given detector geometry. By
floating the template signal amplitude and allowing the mean background level of noise to vary within
each sliding window, we fit the signal template to the data to construct a likelihood as a function
of gqv~. We then use the TS to determine the 95% one-sided upper limits on g, for every mass
point [15, 28]]. The resulting limits on g4~ as a function of m, (black line) as well as the 1 /20
containment (green, yellow) can be seen on the dark matter sensitivity plot, i.e. "Brazil band" in

Figure[7]
D Current Axion Limits

In Figure 5} the TIDMAD dark matter limits, denoised and raw, are presented alongside ABRA-
10cm’s previous Run 3 limits and various state-of-the-art axion dark matter experiments and observa-
tions. In gold, the theoretically motivated couplings for dark matter candidates are highlighted as
discussed in Appendix [A] In this appendix, a brief summary of the origins of these limits will be
provided.

Light-shining-through-walls: In this class of experiments, a high-intensity laser is directed towards
a solid barrier in a magnetic field. While conventional light cannot traverse the barrier, the interaction
with the magnetic field may cause a fraction of the light to convert into axions. As a result of
their weak interaction with matter, these axions could pass through the wall. On the opposite side,
detectors are placed to identify any reconverted light, which would indicate the presence of axions.
Light-shining-through-walls experiments must both create axions from photons and detect these
axions by converting them back into photons, whereas ABRA-10cm only needs to detect axions, not
create them.
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Cavity Haloscopes:  This class of experiments generate a strong magnetic field to stimulate axions
to convert into microwave photons within a resonant cavity-enclosed space. The resonant cavity is
finely tuned to amplify specific frequencies of electromagnetic radiation. Sensitive radio receivers
then measure the power within the cavity to identify any potential photon signals indicative of axions.
While the conversion mechanism is identical to ABRA-10cm, the resonant cavity only amplifies
targeted frequencies. In contrast, ABRA-10cm’s readout chain has broadband amplification of axion
induced signals. ABRA-10cm, Cavity Haloscopes, and SHAFT are all examples of Haloscopes —
experiments that search for dark matter axions in our galaxy’s dark matter halo.

SHAFT: The Search for Halo Axions with Ferromagnetic Toroids (SHAFT) experiment is an
axion haloscope with a broadband readout, similar to ABRA-10cm in both detection and readout
mechanism. There are two main differences between SHAFT and ABRA-10cm (1) SHAFT uses
toroidal magnets with ferromagnetic material in the core to convert the axions (2) SHAFT contains a
pairs of stacked ferromagnetic toroids each of which has a separate pickup coil and SQUID readout.

Astrophysics:  There are numerous astrophysical processes that would be altered if the axion exists.
Broadly, this class of exclusions takes astrophysical observations, calculates how these processes
would change if axions exits, and sets limits on possible axion couplings. These limits include the
following astrophysical processes. Stellar Cooling. Axions produced in hot astrophysical plasma
can transport energy out of stars. This transport of energy critically affects stellar lifetimes, thus
observations of stellar energy-loss rates can set limits on axion’s couplings to matter. Photon Flux
Large photon fluxes from astrophysical objects like Supernova 1987A traverse the galaxy before
being detected terrestrially. Within the galactic magnetic field, some of these supernova photons
could be converted into axions. By observing the gamma-ray signals from such events, strong bounds
on axions couplings to photons can be derived. Black Hole Superradiance. Light particles, like
axions, affect the gravitational waves emitted by black holes through the superradiance mechanism in
which axion fields extract energy and angular momentum from the black hole. Observations of stellar
black hole spin measurements can therefore constrain allowable axion couplings.

CAST: The CERN Axion Solar Telescope (CAST) experiment is a prominent axion helioscope. In
contrast to haloscopes which search for axions created in the early universe within the dark matter
halo surrounding our galaxy, helioscopes search for axions created in our Sun’s heliosphere. CAST
uses a strong, movable superconducting magnet to convert axions produced in the core of our Sun
into into X-ray photons when aligned with the Sun. CAST is equipped with highly sensitive X-ray
detectors at both ends of the magnet, designed to capture these photons. By tracking the Sun and
searching for excess X-rays that correlate with solar axions, CAST aims to detect solar axions.

E Hyperparameters of Moving Average and SG Filter

We conducted additional studies to understand the effects of different hyperparameters of Moving
Average and Savitzky—Golay filter algorithms. The Moving Average method has one hyperparameter:
WINDOW SIZE, while the Savitzky—Golay filter has two hyperparameters: WINDOW SIZE and
POLYNOMIAL ORDER.

E.1 Experimental Setup
We designed 60 experimental trials to systematically understand these hyperparameters:

* Moving Average (10 trials): Window size randomly sampled from the range [10, 5000]

* Savitzky—Golay filter (50 trials): Window size randomly sampled as odd numbers from
[11,2001], and polynomial order randomly sampled from [2, 20]

For each trial, we executed the corresponding algorithm and calculated both fine and coarse denoising
scores using the evaluation procedure described in Section ] Each tials take about 6 hours on a
8-Core CPU machine with 64Gb memories.
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Table 2: Fine and coarse denoising score for Moving Average and Savitzky—Golay filter under
different parameters

Algorithms Window Size  Polynomial Order Fine Score Coarse Score

None 1.00 1.10
Moving Average 19 - 0.86 0.95
Moving Average 99 - 0.56 0.69
Moving Average 100 - 0.52 0.64
Moving Average 622 - -0.31 -0.47
Moving Average 974 - -0.57 -0.47
Moving Average 1169 - -0.61 -0.72
Moving Average 2632 - -1.07 -0.97
Moving Average 2632 - -1.07 -0.94
Moving Average 2664 - -1.07 -0.94
Moving Average 3040 - -1.23 -1.14
Moving Average 3810 - -1.23 -1.14
SG Filter 19 11 0.95 1.04

SG Filter 171 5 0.58 0.69

SG Filter 945 2 -0.41 -0.31

SG Filter 405 5 0.30 0.42

SG Filter 1245 15 -2.77 -2.35

E.2 Result and Analysis

The results from the 10 Moving Average trials are presented in Table[2] The complete results from all
50 Savitzky—Golay filter trials are displayed in Figure[5] with a representative subset also included in
Table 2

Moving Average Performance: The denoising score consistently improves as the WINDOW SIZE
decreases.

Savitzky—Golay Filter Performance: The algorithm achieves better performance with smaller
window sizes and lower polynomial orders. Notably, the best denoising score was achieved in a trial
with WINDOW SIZE 19 and POLYNOMIAL ORDER 11. This means the SG fitter fits an 11-dimensional
polynomial to every 19 elements in the time series — representing an extreme overfitting scenario. In
other words, SG filter in this trial attempts to memorize and preserve all features in the time series,
resulting in a Fine Denoising Score of 0.94, which asymptotically approach but still inferior to the
baseline score of 1.0 (when no denoising algorithm is applied).

To validate if moving average has a similar asymptotic behavior, we conducted an additional Moving
Average trial with window size 19. This trial, as expected produced the best fine denoising score at
0.85.

E.3 Conclusion and Key Finding

Critically, none of the 60 trials surpassed the baseline denoising score of 1.0, where no denoising
algorithm is applied. This demonstrates that traditional algorithms are fundamentally inadequate
for handling the complex noise characteristics within the TIDMAD dataset. At best, these methods
can only asymptotically approximate the raw time series without providing meaningful denoising
improvements. These findings underscore the necessity of deep learning-based approaches for
effective denoising in the TIDMAD dataset, as traditional signal processing methods prove insufficient
for this challenging task.
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order of SG filter, while the color of each dot represents its fine denoising score.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made in the paper. The
claims in the introduction, abstract, and main paper are the same; we introduce a new,
segmented dataset from a physics detector, a denoising score for direct model benchmarking,
and a complete dark matter analysis framework for science legible benchmarking.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Included in Section[3is a discussion of the limitation of this work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In Section[I]and Section[A] we discuss the physics theory and assumptions for
our result. Additionally, for the evaluation metric, we provide a set of assumptions for the
benchmark construction in Section [4]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We publicly provide all of the data and code necessary to reproduce all
experimental results of the paper. Please use the link in the abstract to access all necessary
materials for reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We publicly provide all of the data and code necessary to reproduce all
experimental results of the paper. Please use the link in the abstract to access our data,
benchmarking code, and analysis code.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 2} we describe the data training splits. In section 3} we describe the
hyperparameters used.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Section ] the second benchmark — the dark matter limit — is accompa-
nied by the relevant confidence intervals and statistical significance of the scientific result.
Additionally, the noise assumptions are discussed with respect to the denoising score.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As stated in the body of the paper, the model training and inference is conducted
upon the SDSC Expanse cluster equipped with V100 GPUs. For benchmarking tasks, model
training and inference over validation and science dataset takes less than O(100 GPU hours).
The actual value varies slightly with model complexity and data size.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

10.

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do not have human subjects or any data related to human beings. Safety:
the authors do not foresee how this data could be directly or indirectly used to harm people.
Security: the research does not introduce security vulnerabilities. Descrimination: our
technology can not be used to discriminate people. Surveillance: we do not use surveillance
data. Deception and Harassment: this is physics data — it can not be used to facilitate
deceptive interactions. Environment: our research does not promote negative impacts to the
environment outside of the computational resources used for the research. Human Rights:
no humans were used in this data collection or benchmark creation. Bias and fairness: our
methods do not encode bias against certain people. Scientific bias is addressed in Section 5}

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This is discussed in Section[5] This is no negative societal impact of the work
performed.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

24


https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our data, models, and benchmarks relate to particle physics data. There is no
risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators of the data are the authors of the paper. This data was produced
by a particle physics detector operated by the authors.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The assets introduced in the paper are documented in the paper and provided
with the publically available code repository.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.
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14.

15.

16.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: There was no crowdsourcing or human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: There were no human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No LLM was used in the core methods of this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

26


https://neurips.cc/Conferences/2025/LLM

TIDMAD: Supplemental Information

Contents

M —Datasheef

A A W WD NN WP

[N

9}



1 Datasheet

1.1 Motivation

1.

For what purpose was the dataset creates? Our datasets were created to train and
benchmark ultra-long time series denoising frameworks for the discovery of dark matter.

. Who created the dataset and on behalf of which entity? This dataset is the direct output

of the ABRACADABRA detector on behalf of the researchers on the author list. The
ABRACADABRA detector was built by the ABRACADABRA collaboration including J. T.
Fry and the authors of [28]].

. Who funded the creation of the dataset? This work was generously funded by the National

Science Foundation under grant numbers NSF-PHY-1658693, NSF-PHY-1806440. J. T. Fry
is supported by the National Science Foundation Graduate Research Fellowship under Grant
No. 2141064

1.2 Composition

1.

What do the instances that comprise the dataset represent? Each instance represents
a voltage at a moment in time read out by our detector. For the SQUID data, this voltage
comes from flux on the pickup loop of wire, converted to a voltage by the SQUID detector,
read out by our digitizer. For the SG data, this voltage comes directly from a signal generator
passed through a power splitter.

. How many instances are there in total? There are 867,260,000,000 voltage instances total.

3. Does the dataset contain all possible instances or is it a sample of instances from a

larger set? The voltage produced by the SQUID and the SG are continuous. The instances
are sampled from this continuous voltage stream at a constant rate of 10MS/s.

. What data does each instance consist of? The data each instance consists of is a raw 8-bit

integer from our digitizer. To convert the raw 8-bit integer to a voltage, each bit must be
scaled by the ADC voltage i.e. multiply by 40mV/128.

. Is there a label or target associated with each instance? Yes, for the calibration data, each

instance of the SQUID data corresponds to a target which is the instance in the SG data.

. Is any information missing form individual instances? No.

7. Are relationships between individual instances made explicit? The instances are related

because they come from the same detector just sampled at a different moment in time.

8. Are there recommended data splits? Yes, please see Section [2]1

10.

11.
12.

. Are there any errors, sources of noise, or redundancies in the dataset? There are no

redundancies. Yes, there are many sources of detector noise.

Is the dataset self-contained, or does it link to or otherwise rely on external resources?
The data is self-contained.

Does the dataset contain data that may be considered confidential? No

Does the dataset containd ata that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No.

1.3 Collection process

1.

2.

How was the data associated with each instance acquired? The data associated with
each instance is acquired by the ABRACADABRA detector. Full details can be viewed in
Sections [L.Tland 21

What mechanisms or procedures were used to collect the data? Full details can be viewed
in Sections[I.T]and [2]and reference [28]]. The hardware necessary for producing said data
include, but are not limited to, an Oxford dilution refrigerator, 1T superconducting magnet,
two-stage Magnicon SQUID, superconducting pickup loop, superconducting calibration
loop, signal generator, digitizer, and data acquisition computer.



Table 3: Summary of critical information about this data release. These are the data files used for
training and benchmarking of the baseline algorithms provided.

Training Data Validation Data Science Data
File Name abra_training abra_validation abra_science
_00{00-19}.h5 _00{00-19}.h5 _0{000-207}.h5
No. Data Points per File 2.01e9 2.01e9 4.01e9
HDFS5 File Size 2.2GB 2.2GB 2.7GB
chl Hardware Input SQUID SQUID SQUID
ch2 Hardware Input SG SG
Injected frequencies (Hz) [1100, 1200, ... , 4.8M, 4.9M]
Injected amplitudes (mV) 50

Table 4: Summary of auxiliary files in this data release. These files provide an interesting challenge
for the user, however were not used in the training or validation of the baseline models.

14

1.5

Aux Training Data Aux Validation Data
File Name abra_training_00{20-39}.h5 abra_validation_00{20-39}.h5
No. Data Points per File 2.01e9 2.01e9
HDFS File Size 2.2GB 2.2GB
chl Hardware Input SQUID SQUID
ch2 Hardware Input SG SG
Injected Frequencies (Hz) [1100, 1200, ... , 4.8M, 4.9M]
Injected Amplitudes (mV) 10

. If the dataset is sampled from a larger set, what was the sampling strategy? The

voltage produced by the SQUID and the SG are continuous. The instances are sampled
from this continuous voltage stream at a constant rate of 10MS/s. The sampling strategy is
deteministic and regular.

. Who was involved in the data collection process and how were they compensated? To

run the ABRACADABRA experiment, one graduate student, J. T. Fry, was needed. This
graduate student was paid via NSF fellowship.

. Over what timeframe was the data collected? The data were collected from 2/21/24 -

2/23/24.

6. Were any ethical review processes conducted? No. These data do not involve humans.

7. Does this dataset relate to people? No.

Preprocessing/cleaning/labeling

1.

Was any preprocessing/cleaning/labeling of the data done? No.

Uses

1.

Has the dataset been used for any tasks already? No, this dataset has not been used for
any tasks yet.

. Is there a repository that links to any or all papers or systems that use the dataset? No.

This dataset has yet to be used outside of this paper.

. What other tasks could the dataset be used for? As discussed in Section[3] these data

can generally be used for training time series algorithms. Due to its high coherence and
extensive length, it is perfect for cross cutting applications.

. Is there anything about the composition of the dataset or the way it was collected and

preprocessed that might impact future use? No.

. Are there tasks for which the dataset should not be used? No.



1.6 Distribution

1.

Will the dataset be distributed to third parties outside of the entity on behalf of which
the dataset was created? Yes, the dataset is open to the public.

. How will the dataset be distriuted? The dataset is publically available to be downloaded

from the Open Science Data Federation cache. For download instructions, please see Section

. When will the dataset be distributed? The dataset is presently available.
. Will the dataset be distributed under a copyright or other intellectual property (IP)

license, and/or under applicable terms of use (ToU)? No.

. Have any third parties imposed IP-based or other restriction on the data associated

with the instances? No.

. Do any export controls or other regulatory restrictions apply to the dataset or to

individual instances? No.

1.7 Maintenance

1.

Who will be supporting/hosting/maintaining the dataset? The dataset is hosted at Open
Science Data Federation (OSDF). The data storage at OSDF was offered to Dr. Aobo Li by
the director of San Diego Supercomputer Center (SDSC). OSDF also provide distributed
cache of the dataset across its global cache location. For more detail, please refer to OSDF
Website} Dr. Aobo Li will be maintaining the dataset.

. How can the owner/curator/mangager of the dataset be contacted? Please email Dr.

Aobo Li at (liaobo77 @ucsd.edu).

. Is there an erratum? No.
. Will the dataset be updated? No, the dataset will not be updated.
. If the dataset relates to people, are there applicable limits on the retention of the data

associated with the instances? This dataset does not relate to people.

. Will older versions of the dataset continue to be supported? Yes, they will continue to

be supported.

. If others want to extend/augment/build on/contribute to the dataset, is there a mecha-

nism for them to do so? No. Access to the ABRACADABRA detector is controlled.

2 Dataset and code access

The data downloading and associated analysis scripts are available at https://github.com/
jessicafry/TIDMAD. All data were uploaded to Open Science Data Federation and cached
using their distributed cache system. The TIDMAD dataset can be downloaded using the
download_data.py script provided in this GitHub repository. This script runs without any ex-
ternal dependencies. This script downloads data by generating a series of wget commands and
executing them in a bash environment. download_data. py has the following argument:

-output_dir -o: Destination directory where the file will be downloaded, default: current
working directory.

-cache -c: Which OSDF cache location should be used to download data. Options include
[NY/NorCal/SoCal/Director(default)]:
— NY: New York
NorCal: Sunnyvale
SoCal: San Diego
Director: automatically find the fastest cache location based on user’s location.

* WARNING: Director cache is sometimes unstable. We recommend switching to a
different cache if the download fails.

“https://osg-htc.org/services/osdf .html
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e —train_files -t: Number of training files to download, must be an integer between 0
and 20, default 20.

e -validation_files -v: Number of validation files to download, must be an integer
between O and 20, default 20.

* -science_files -s: Number of science files to download, must be an integer between 0
and 208, default 208.

» -f, -force: Directly proceed to download without showing the file size and asking the
confirmation question.

* -sk, -skip_downloaded: Skip the file that already exists at -output_dir.

* -w, -weak: Download the weak signal version of training and validation files. In this
version, the injected signal is 1/5 the amplitude of the normal version. This is a more
challenging denoising task. Note that the normal version has a file range 0000-0019, while
the weak version has a file range of 0020-0039.

*-p, -print: Print out all wget commands instead of actually executing the download
commands.

In the same github repository, we also provided a filelist.dat file which contains line-by-line
wget command to download the entire dataset. An example wget command is given here:

wget |https://osdf-director.osg-htc.org/ucsd/physics/ABRACADABRA/ABRA_aires_
validation_data/abra_validation_0009.h5

We have also provided a link to download all trained models used to produce the results in the
main manuscript. The models can be downloaded from https://drive.google.com/drive/
folders/160RX1b2z0o1_10YYAcRBgddBuYImjOBxs7usp=share_linkl|

3 Croissant metadata

We created a croissant metadata file TIDMAD_croissant. json using protocal presented in [4].

4 Author statement

The authors of this paper all bear responsibility in the case of violation of rights. The information
provided in the paper and supplementary material is truthful and accurate. The code from this
paper is hosted, managed, and maintained by the paper author J. T. Fry at https://github.com/
jessicafry/TIDMAD. The data from this paper is hosted, managed, and maintained by the paper
author Dr. Aobo Li with download instructions in Section 2l The dataset is released under the
Creative Commons Attribution (CC BY) license. The code is released under the GNU General Public
License (GPL), version 3.
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