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Abstract

We propose a selective labeling method using meta-learning for medical image interpre-
tation in the setting of limited labeling resources. Our method, MedSelect, consists of a
trainable deep learning model that uses image embeddings to select images to label, and a
non-parametric classifier that uses cosine similarity to classify unseen images. We demon-
strate that MedSelect learns an effective selection strategy outperforming baseline selection
strategies across seen and unseen medical conditions for chest X-ray interpretation. We also
perform an analysis of the selections performed by MedSelect comparing the distribution
of latent embeddings and clinical features, and find significant differences compared to the
strongest performing baseline. Our method is broadly applicable across medical imaging
tasks where labels are expensive to acquire.
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1. Introduction

Large labeled datasets have enabled the application of deep learning methods to achieve
expert-level performance on medical image interpretation tasks (Topol, 2019; Litjens et al.,
2017). However, expert labeling is expensive at scale and approaches to learn in the presence
of limited labeled data are improving (Gadgil et al., 2021; Vu et al., 2021). Active learning
is an approach for reducing the amount of labeled data needed by having an algorithm select
a subset of images that should be labeled (Cohn et al., 1996; Liu, 2004; Hoi et al., 2006).
While active learning strategies can be designed to iteratively select examples to label over
several steps (Azimi et al., 2012; Guo and Schuurmans, 2008), a selective labeling strategy
to select examples in a single step may be more useful and practical for existing medical
image labeling pipelines (Gu et al., 2012; Yang and Loog, 2018).

In this work, we use meta-learning to learn a selective labeling strategy on medical
images. Learning selective labeling strategies (and more generally active learning strategies)
end-to-end via meta-learning represents an advance over using task-specific heuristics for
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Figure 1: MedSelect method. The unlabeled pool of chest X-ray embeddings U is passed to
the selector. The selector outputs a probability distribution over the examples in
U which we sample K examples from. The sampled chest X-ray embeddings are
labeled by ‘the Expert’, creating the support set Dα. This set, Dα, is used to fit
a cosine similarity classifier which is evaluated on the query set Q based on the
AUROC score which is use as the reward function for the selector.

selecting instances to label (Gal et al., 2017; Joshi et al., 2009), and has been shown to be
effective for simple natural image classification tasks (Bachman et al., 2017; Woodward and
Finn, 2017; Mas et al., 2019), including (Contardo et al., 2017) which is most similar to our
setup. However, their development and effectiveness on more complex, real-world medical
image classification settings remains unexplored.

In particular, we develop MedSelect, a deep-learning based selective labeling method for
medical images. MedSelect consists of a trainable selector that selects medical images using
image embeddings obtained from contrastive pretraining, and a non-parametric classifier
that classifies unseen images using cosine similarity. MedSelect is trained end-to-end with
the combination of backpropagation and policy gradients. On chest X-ray interpretation
tasks, we demonstrate that MedSelect outperforms a random selection strategy, a selection
strategy based on clustering of image embeddings, and a deep learning based selection
strategy using clinical data. Furthermore, we demonstrate that MedSelect generalizes to
different medical conditions, even to ones unseen during meta-training. We also perform an
analysis of the selections performed by MedSelect comparing latent embeddings and clincal
features. We find that MedSelect tends to select X-rays that are closer together in a latent
embedding space compared to other strategies. It almost exclusively selects frontal X-rays
and tends to select X-rays from younger patients. The distribution of sex in X-rays sampled
by MedSelect tends to be more balanced than for other strategies.

2. Data

Labeled Chest X-rays. We make use of the CheXpert dataset, containing 224,316 chest
X-rays labeled for several common medical conditions (Irvin et al., 2019). We randomly
sample 70% of the dataset to use for meta-training, 15% for meta-validation and 15% for
meta-testing with no patient overlap. We only make use of medical conditions with a 5%
or greater prevalence of positive labels, which are: Consolidation, Enlarged Cardiomedi-
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astinum, Cardiomegaly, Pneumothorax, Atelectasis, Edema, Pleural Effusion, and Lung
Opacity. We do not use rarer conditions.

Given an X-ray from the CheXpert dataset, each of the medical conditions can be
labeled as “uncertain”, “positive” or “negative”. If an X-ray contains no abnormalities,
it is labeled as “No Finding” The ground-truth labels for these X-rays are produced by
the CheXpert labeler, which is an automatic radiology report labeler. It extracts labels for
each X-ray study using the corresponding free-text radiology report which describes the key
observations in the X-ray.

Task Construction. In our meta learning setting, each task T = (c,U ,Q) is a tuple
consisting of a medical condition c, a set U of 1000 unlabeled chest X-rays which we refer
to as the unlabeled pool, and a set Q of 100 labeled chest X-rays which we refer to as the
query set. The medical condition c is sampled randomly among the conditions we use. We
consider the setting where 50% of the X-rays in U and Q are sampled so that they are
labeled positive for the sampled condition c. The other 50% of X-rays are sampled so that
they are labeled as No Finding, i.e. no abnormalities are found in these X-rays. There is
no overlap between the X-rays in Q and U . The corresponding binary label for an X-ray
is positive if condition c is found in the X-ray, else it corresponds to “No Finding”. Each
task is thus a binary classification problem, in which an X-ray must be classified as either
positive for the condition c, or as No Finding. We produce 10,000 tasks for meta-training,
1000 tasks for meta-validation, and 2000 tasks for meta-testing. There are no tasks with
duplicate patients. Since we only use 8 medical conditions from the CheXpert dataset, each
particular medical condition (e.g. Edema) occurs in several tasks, but the X-rays for each
task are randomly sampled. For each task we sample 1100 X-rays, since |U| = 1000 and
|Q| = 100. When constructing a meta-training task (resp. meta-validation, meta-testing)
we randomly sample the X-rays in Q and U from the 70% split of the CheXpert dataset
used for meta-training (resp. 15% for meta-validation, 15% for meta-testing). There is no
overlap between the X-rays used for meta-training, meta-validation and meta-testing.

We randomly selected two medical conditions, Edema and Atelectasis, to be held out
during meta-training so that the generalization performance of our models can be evaluated
on conditions unseen during meta-training. We refer to Edema and Atelectasis as the
holdout conditions, whereas all other conditions are referred to as non-holdout conditions.
For the meta-training and meta-validation tasks, we only sample c from the non-holdout
conditions. Half of the meta-testing tasks use the non-holdout conditions, while the other
half use the holdout conditions. During meta-testing, we evaluate the performance of our
models on both non-holdout and holdout conditions. There is no overlap between the X-rays
used for holdout conditions and non-holdout conditions.

3. Methods

MedSelect consists of a trainable selector and a non-parametric classifier. The selector con-
sists of a bidirectional LSTM that selects medical images using image embeddings obtained
from contrastive pretraining. The classifier uses cosine similarity to classify unseen images.
Our approach is illustrated in Figure 1.

The selector takes in a pool of unlabeled medical image embeddings and outputs a
probability distribution over the unlabeled images. We use the probability distribution
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to sample a small set of images, for which we obtain labels. In our setup, the labels are
provided by the automated CheXpert labeler, which serves as a strong proxy for the expert
(Irvin et al., 2019). The sampled images and their labels constitute the support set which
is used to fit the cosine similarity classifier before the classifier is used to infer on the query
set.

3.1. Selector

We use a single-layer bidirectional LSTM (BiLSTM) (Hochreiter and Schmidhuber, 1997;
Gers et al., 1999) with 256 hidden units as the selector model. We obtain image embeddings
for each X-ray from a ResNet-18 (He et al., 2015) pretrained by (Sowrirajan et al., 2020)
on the CheXpert dataset using Momentum Contrast (MoCo) pretraining. We only use
embeddings from this ResNet-18, and do not modify its parameters. The unlabeled chest
X-ray embeddings in U = {x(i)}1000i=1 are fed as input to the BiLSTM. The resulting outputs
are normalized and treated as a multinomial probability distribution over the examples
in U . We denote the parameters of the BiLSTM by θ, and the multinomial probability
distribution is denoted by Pθ (α|U), where α ∈ {0, 1}1000 and αi = 1 indicates that the
X-ray xi is selected to be labeled. Since we only select K X-rays from U for labeling, we
have

∑1000
i=1 αi = K. Note that the selector has no access to the labels and can be used in

the same way on the holdout conditions as in the non-holdout conditions.

3.2. Classifier

We use a non-parametric chest X-ray classification model as the classifier. (Sowrirajan et al.,
2020) showed that training a linear head on top of the frozen MoCo-pretrained ResNet-18
achieved superior performance on CheXpert, outperforming ImageNet pretraining. Further-
more, the MoCo-pretrained embeddings did not require any labeled data. Our classifier,
which performs cosine similarity on the MoCo-pretrained image embeddings, does not have
trainable parameters, reducing computational requirements and simplifying the training
procedure.

Given the unlabeled pool U , the selector model selects a set of K examples from U to
retrieve labels from the expert. We denote the set of these selected examples by Dα. Note
that |Dα| = K. The classifier is given the set Dα along with the corresponding labels.

We denote the examples in Dα by (x
(i)
α )Ki=1 with corresponding labels (y

(i)
α )Ki=1. The label

y
(i)
α = 1 if the example x

(i)
α is positive for the condition c, otherwise y

(i)
α = 0 which implies

that the example x
(i)
α is labeled as No Finding.

The classifier then computes two averages: p =
∑K

i=1 1{y
(i)
α =1}x(i)

α∑K
i=1 1{y

(i)
α =1}

and n =
∑K

i=1 1{y
(i)
α =0}x(i)

α∑K
i=1 1{y

(i)
α =0}

.

p is simply the average of all examples in Dα that are positive for condition c, and p can
be considered a prototypical vector for such examples. Similarly, n is the average of all
examples in Dα that are labeled as No Finding.

Given a new example xQ from Q we compute the difference of the cosine similarities:

xQ · p
∥xQ∥∥p∥

− xQ · n
∥xQ∥∥n∥

.

Our experimental methodology is shown in Figure 1.
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Figure 2: Performance of MedSelect and the baseline selectors. Left: AUROC
averaged over all non-holdout conditions. Middle: AUROC averaged over all
holdout conditions. Right: Improvements in AUROC obtained by MedSelect over
the clustering baseline with 95% confidence intervals, averaged over holdout and
non-holdout conditions. We show the results for K = 10, 20, 40, 80, 200, 400.

3.3. Optimization

Given the classifier’s outputs for each X-ray in the query set Q, we compute the AUROC
score using the corresponding labels. We denote this AUROC score by R (Dα,Q), and this
serves as the reward that we wish to optimize. We define our objective function as follows,
which we wish to maximize:

L = Eα∼Pθ(α|U) [R (Dα,Q)]

We make use of the policy-gradient method (Williams, 1992) to optimize this objective
and approximate the expected value Eα∼Pθ(α|U) by a single Monte-Carlo sample. Through
empirical experiments, we find that the training stability improves if we subtract a baseline
reward from R (Dα,Q). Specifically, let the reward obtained using the random baseline be
b (U ,Q). Then the final gradient which we use for gradient ascent is:

∇θL = Eα∼Pθ(α|U)[(R (Dα,Q)

− b (U ,Q))∇θ logPθ (α|U)]

Training details We use the Adam optimizer (Kingma and Ba, 2017) with a learning
rate of 10−4 and a batch size of 64 tasks. We train all our models for 5 epochs. We use a
single GeForce GTX 1070 GPU with 8 GB memory. During meta-training, we periodically
evaluate our deep learning models on the meta-validation set and save the checkpoint with
the highest meta-validation performance.
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3.4. Baseline Comparisons

We compare MedSelect to three baseline strategies: random, clustering, and clinical.

Random. We implement a selector that randomly selects K examples without replace-
ment from the pool of unlabeled data U . This selector provides an expected lower bound
of the performance compared to more sophisticated selection strategies. We refer to this
strategy as the random baseline.

Clustering. Another non-parametric baseline is a K-Medoids clustering method where
the data points in U are partitioned intoK clusters. Unlike K-Means, the centroids obtained
from K-Medoids are datapoints in U . The centroid of each cluster is selected for labeling,
and is passed along with the label to the classifier. We refer to this method as the clustering
baseline and expect it to be a stronger baseline than the random baseline.

Clinical. We also implement a similar BiLSTM selector as in MedSelect that only takes
three features as input, namely age, sex, and laterality where the laterality indicates whether
it is a frontal or lateral chest X-ray. Thus, the input to this selector consists of three
dimensional vectors for each corresponding chest X-ray and the selector has no pixel-level
information of the chest X-rays. We refer to this strategy as the clinical baseline.

4. Results

4.1. Can MedSelect learn a selective labeling strategy that outperforms
baseline comparisons?

We find that MedSelect is able to significantly outperform random and clustering based
selection strategies, as well as a strategy based on clinical metadata. The clustering baseline
outperforms the random and clinical baselines, especially for small K. For K = 10 on non-
holdout conditions, clustering achieves 0.693 AUROC compared to 0.663 for random and
0.666 for clinical. For K = 10 on holdout conditions, clustering achieves 0.850 AUROC
compared to 0.808 for random and 0.815 for clinical. We show the AUROC scores obtained
by MedSelect and the baseline selectors, as well as the improvements obtained by MedSelect
over the clustering baseline, in Figure 2.

We find that MedSelect achieves the highest performance compared to the baselines on
both the non-holdout as well as the holdout conditions. On the non-holdout conditions,
MedSelect obtains statistically significant improvements over the clustering baseline for all
values of K, with the maximum improvement of 0.052 (95% CI 0.046, 0.058) obtained for
K = 10.

On the holdout conditions, MedSelect obtains statistically significant improvements over
the clustering baseline for all K. The largest improvement of 0.008 (95% CI 0.006, 0.010)
is obtained for K = 20. However, the improvements are smaller than for the non-holdout
conditions. This may be because the clustering baseline is non-parametric and does not
require learning, whereas the parameters of the BiLSTM were specifically optimized using
the non-holdout conditions.
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Figure 3: Left: Wasserstein distances corresponding to pairwise L2 distances between se-
lected X-rays. Right: Wasserstein distances corresponding to age of the selected
X-rays. For comparison, we also compute the Wasserstein distance between two
random selectors with different random seeds.

4.2. How do the X-rays selected by MedSelect differ from those selected by
the baselines?

We first compare the distributions of age, sex, and laterality of X-rays selected by MedSelect
and the clustering baseline. We set K = 10 and test both selectors with non-holdout
conditions. For each meta-testing task, we compute the average age, percentage female and
percentage frontal X-rays selected by the two selectors, and test the difference of means of
these statistics over meta-testing tasks using independent two-sample t-tests.

We find that 99.96% of the samples selected by MedSelect are frontal X-rays while
only 77.58% selected by the clustering baseline are frontal (p < 0.001). The percentage
female selected by MedSelect and the clustering baseline are on average 42.31% and 39.46%,
respectively (p < 0.001). The mean ages selected by MedSelect and the clustering baseline
are on average 45.2 and 54.8, respectively (p < 0.001). Thus, we observe that MedSelect
selects (1) mostly frontal X-rays, (2) more evenly from both sexes, and (3) younger samples.

We first hypothesize that MedSelect may be selecting X-rays that are further away
from each other in the embedding space compared to the clustering baseline. To test
this hypothesis, for each meta-testing task, we compute the pairwise L2 distances between
embeddings of X-rays selected by MedSelect, then compute the mean and maximum of
the pairwise distances. We also do this for the clustering baseline. We then calculate the
p-values comparing the mean of these statistics over meta-testing tasks for MedSelect vs.
the clustering baseline, using independent two-sample t-tests.

We find that the mean pairwise distances between embeddings of X-rays selected by
MedSelect are 7.76, while those between embeddings of X-rays selected by the clustering
baseline are 8.78 (p < 0.001). Similarly, the maximum pairwise distance between embed-
dings of X-rays selected by MedSelect is 11.06, while that between embeddings of X-rays
selected by the clustering baseline is 12.37 (p < 0.001). We also find that the mean pairwise
distances between embeddings of frontal X-rays selected by MedSelect is 7.76, while that
between embeddings of frontal X-rays selected by the clustering selector is 8.22 (p < 0.001).
Similarly, the maximum pairwise distances between embeddings of frontal X-rays selected
by MedSelect is 11.06, while those between embeddings of frontal X-rays selected by the
clustering selector is 11.69 (p < 0.001). Therefore, we find the opposite of our hypothesis
to be true: MedSelect selects X-rays that are closer to each other in the embedding space
compared to the clustering baseline.
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Second, we hypothesize that the difference in empirical distribution of ages of X-rays
between MedSelect and the random baseline is significantly higher than that between clus-
tering and random. We use the Wasserstein distance to investigate the difference in the
distributions of X-rays selected by different selectors. The Wasserstein distance of two dis-
tributions is the L1 distance between the quantile functions of these distributions (Ramdas
et al., 2015). For a meta-testing task Ti, let µ̂i

X be the empirical distribution of the age
for X-rays selected by MedSelect. We similarly compute µ̂i

C for the clustering baseline and
µ̂i
R for the random baseline. We compute d

(
µ̂i
X , µ̂i

R

)
, the Wasserstein distance between µ̂i

X

and µ̂i
R, for all i and show these Wasserstein distances in Figure 3 on the right. We also

show d
(
µ̂i
C , µ̂

i
R

)
. We find that the average Wasserstein distance between MedSelect and the

random baseline is 13.58, larger than that between the clustering baseline and the random
baseline which is 8.43 (p < 0.001). Thus we find our hypothesis to be true: the difference
in empirical distribution of ages of X-rays between MedSelect and the random baseline is
significantly higher than that between clustering and random.

Finally, we hypothesize that the above difference in the empirical distributions for ages
also holds for pairwise L2 distances between X-ray embeddings. We repeat the above
procedure while replacing ages of the X-rays with the L2 distances between the embeddings
of each pair of selected X-rays. For a meta-testing task Ti, we compute the L2 distances
between each pair of X-ray embeddings selected by MedSelect. Let ν̂iX be the empirical
distribution over these pairwise distances. We similarly define ν̂iC for the clustering baseline
and ν̂iR for the random baseline. We compute d

(
ν̂iX , ν̂iR

)
and d

(
ν̂iC , ν̂

i
R

)
for all i and show

these in Figure 3 on the left. We find that the average Wasserstein distance between
MedSelect and the random baseline is 2.01, larger than that between the clustering baseline
and random baseline which is 1.22 (p < 0.001). This confirms our hypothesis that the
difference in the empirical distributions between MedSelect and the random baseline is
significantly higher than that between clustering and random.

5. Conclusion

In this work, we present MedSelect, a selective labeling method using meta-learning for
medical image interpretation. MedSelect significantly outperforms random and clustering
based selection strategies, as well as a heuristic strategy based on clinical metadata. Med-
Select successfully generalizes to unseen medical conditions, outperforming other strategies
including clustering with statistical significance.

Our study has three main limitations. First, we simplify the multi-label chest X-ray
interpretation problem to several binary classification tasks. Second, the expert in our
method consists of a rule-based labeler that uses the corresponding radiology report to
label each chest X-ray, and future work should measure the cost-performance tradeoffs
for human annotation. Third, our experiments considers an unlabeled pool of only 1000
examples and future work should extend this approach for larger pool sizes.

We expect our approach to be broadly useful in the medical domain beyond chest X-
ray labeling. In real world clinical settings where unlabeled medical data is abundant but
expert annotations are limited, MedSelect would facilitate the development of classification
models and improve model training through selective labeling of a limited number of medical
images.
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