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Abstract

Neural Cellular Automata (NCAs) offer a power-
ful framework for modeling self-organizing pro-
cesses with potential applications in biomedicine.
However, their deterministic nature limits their
ability to represent the stochastic dynamics of
real biological systems.

We introduce the Mixture of Neural Cellular Au-
tomata (MNCA), a novel extension that incorpo-
rates stochasticity and probabilistic rule clustering.
By combining intrinsic noise with learned rule as-
signments, MNCAs can capture heterogeneous
local behaviors and emulate the randomness in-
herent in biological processes.

We assess MNCAs on synthetic tissue simulations
and spatial transcriptomics data from mouse intes-
tine. Our results show improved reconstruction of
biological growth patterns and interpretable seg-
mentation of local rules, establishing MNCAs as
a promising tool for modeling complex biological
dynamics.

1. Introduction

Biological systems exhibit complex spatial patterns driven
by stochastic interactions between cells and molecules. Tra-
ditional models often struggle to capture this complexity due
to limited expressiveness and scalability. Cellular Automata
(CAs) can simulate self-organization through simple local
rules, but classical CAs are difficult to parameterize, and
Neural Cellular Automata (NCAs), though more flexible,
are typically deterministic, limiting their biological realism.

Stochasticity is central to processes such as gene expression
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and differentiation, where identical genomes can lead to
diverse behaviors due to molecular noise. Capturing this
variability is essential for accurate modeling.

We propose the Mixture of Neural Cellular Automata
(MNCA), a novel framework that incorporates stochastic-
ity and clustering into NCAs, enabling the simulation of
heterogeneous and probabilistic cellular behaviors.

Our contributions are:

* MNCA Framework: We develop the MNCA frame-
work that extends NCAs by incorporating stochasticity
and clustering, allowing for the simulation of a more
diverse set of local behaviors.

 Biological Applications: Demonstrates MNCA on
simulations of tissue development and on real spatial
transcriptomic data from mouse intestine.

2. Background
2.1. Spatial Modelling of Biological Systems

Spatial mathematical modeling plays a crucial role in un-
derstanding biological systems by capturing how spatial
distributions and interactions among cells, molecules, or
organisms influence system-level behavior. This is essential
for studying emergent phenomena where spatial context
shapes biological function.

In many cases, spatial organization directly determines bio-
logical outcomes. Morphogen gradients guide differentia-
tion during development (Rogers & Schier, 2011), spatial
cues in the intestine regulate stem cell identity (Beumer
& Clevers, 2021), and tumor cell positioning affects can-
cer progression and treatment response (Seferbekova et al.,
2023).

Agent-based models are widely used to represent such spa-
tial phenomena. Among these, stochastic cellular automata
offer a simple yet powerful framework, applied to cancer
growth (Tari et al., 2022; Lewinsohn et al., 2023; Sottoriva
et al., 2010), development (Ermentrout & Edelstein-Keshet,
1993), and ecology (Balzter et al., 1998). Parameters are
typically inferred from experiments or via Approximate
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Bayesian Computation (ABC) (Noble et al., 2022), with
recent efforts exploring ABC-Deep Learning integration
(Cess & Finley, 2023).

2.2. Cellular Automata

Cellular Automata (CA) are discrete computational models
that simulate the physical dynamics of complex systems
through simple local interactions. Historically CA where
introduced by Von Neumann as a model of self-reproducing
systems (Von Neumann et al., 1966)

In a CA, the state of each cell s; € S at discrete time ¢ is
updated based on a local update rule:

sttt =f (st {st | e N(D)}) (1)

where N/ (i) denotes the neighborhood of cell i, and f is a
deterministic function defining the update rule.

While the update function f in a standard cellular automaton
is strictly deterministic, probabilistic rules are more fitting
for capturing the randomness inherent in processes like
biological evolution. A stochastic cellular automaton (SCA)
introduces randomness into the update rule:

st~ P(f (st {sh |5 € N(i)})) )

Specifically, each cell’s next state is drawn from a probabil-
ity distribution P that depends on its current state and the
states of its neighbors.

2.3. Neural Cellular Automata

Neural Cellular Automata (NCAs) extend traditional CA
by replacing the deterministic update function with a neu-
ral network (Mordvintsev et al., 2020; Gilpin, 2019). The
update rule becomes:

sttt = s+ ¢ (st {st |7 e N (@)} 0) 3)

where ¢ is a neural network parameterized by weights 6.
The neural network processes the current state of a cell
and its neighbors to compute an update, which is added to
the existing state. This enables the NCA to learn complex
behaviors via backpropagation, avoiding hand-crafted rules
or inefficient evolutionary and sampling-based methods.

Recent work has extended NCAs in various directions:
attention-based updates (Tesfaldet et al., 2022), generaliza-
tion to graph domains (Grattarola et al., 2021), latent-space
dynamics (Menta et al., 2024), and PDE approximation
(Richardson et al., 2024). Multi-rule approaches have also
emerged, such as (Hernandez et al., 2021), where an au-
toencoder maps an image to its generative rule. However,

these models remain largely deterministic, limiting their
biological realism where stochastic, cell-specific behavior
is key (Noble et al., 2022).

Stochastic NCAs have been explored in generative contexts:
as VAE decoders (Palm et al., 2022), denoising diffusion
models (Kalkhof et al., 2025), or hierarchical processes
(Zhang et al., 2024). (Zhang et al., 2021) proposed a stochas-
tic NCA outputting Bernoulli probabilities.

We focus on NCA formulations that preserve classical lo-
cality assumptions, crucial for modeling morphogenesis,
collective behavior, and development. Accordingly, we com-
pare only with models like the GCA (Zhang et al., 2021).
In particular, in this work, we will use a GCA that learns
the mean and variance of a Gaussian distribution, as it bet-
ter aligns with our experimental setup (this is equivalent to
equation 2 where P is a Gaussian).

3. Mixture of Neural Cellular Automata
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Figure 1. Graphical description of the MNCA The model inte-
grates signals from a central cell and its neighbors using spatial
filters, while a Rule Selector outputs probabilities for the different
NCAs.

The Mixture of Neural Cellular Automata (MNCA) is a
framework that extends traditional Cellular Automata (CA)
by incorporating multiple sets of local update rules within a
single grid-based system. In MNCA, each cell can be gov-
erned by one of several distinct automata, allowing for the
modeling of heterogeneous systems where different regions
exhibit unique local interactions.

3.1. Model Definition

Consider a grid of N cells, where each cell ¢ has a state
st € Sattime t and S is the set of possible states. We define
a set of K distinct cellular automata, each characterized
by its own neural-network parametrized transition function
dr - SW@IHL 5 with parameters 6, and where A (7)
denotes the neighborhood of cell <.



Mixtures of Neural Cellular Automata: A Stochastic Framework for Biological Growth Modelling

The state update for cell 7 at time ¢ + 1 is given by:
z ~ Cat(n(st,n)) (4a)
2 ~ Norm(0, 1) (4b)

K
sttt = st T on (st As5 17 € N(@)}ani00) ™ (do)

k=1

where z; € {0,1} is the automaton assigned to cell i, z
is a random variable distributed according to a Categorical
distribution. A neural network with parameters 7 controls
the rule assignment probability. The intrinsic Gaussian
noise xj, can be used as an internal source of randomness to
implement intra-rule stochastic updates. To back-propagate
through the Categorical distribution at training time, we use
the Gumbel-Softmax trick (Jang et al., 2016).

4. Experiments

Our main motivation for studying Mixtures of Neural Cellu-
lar Automata is to model cellular development. To demon-
strate its potential, we designed a synthetic experiment of
stem-driven tissue growth. We then applied our model to
real data from mouse intestinal crypts.

4.1. Synthetic Data of Biological Development

For the setup in Figure 2A, we generated 200 simulations of
tissue growth on 35 x 35 grids. Each grid square represents
a cell, with simulations initialized from a central cluster of
[5, 15] stem cells and evolved for 35 steps. Stem cells divide
into either new stem or intermediate cells, with two inter-
mediate types showing decreasing plasticity. Differentiation
yields two terminal types, one requiring interaction between
intermediate and type-1 differentiated cells. Full simulation
details are in Appendix A.

We trained the three models from Section 3 to reconstruct
system states over time using one-hot encoded cell types
as input (training details in Appendix D). Reconstruction
results (Figure 2B—C) show that MNCAs achieved signif-
icantly better fidelity than deterministic NCAs, with a KL
divergence drop from 2.045 to 0.018 (Table 1).

MNCAs also generated realistic synthetic tissues, bet-
ter matching true spatial patterns and producing all cell
types—including DIFFERENTIATED 2, which standard
NCAs failed to generate.

Rule assignment analysis showed MNCAs learned distinct
dynamics for most cell types, allocating one rule to empty
space and merging the two intermediates due to their similar
behavior. Identifying class-specific behaviors in the system.

Compared to ABC-based ABMs (Appendix F), MNCAs
achieve similar simulation quality with minimal supervision.

Table 1. Comparison of NCA variants. KL-div, Size-W, and
Border-W are respectively the KL divergence for the cell types
probability and the Wasserstein distance of the cell composition,
tissue size, and border size in the generated and original dataset.
For a formal definition of the metrics see Appendix B

MODEL KL-D1v S1ZE-W BORDER-W

NCA 2.057 £0.000  0.547 £0.000 0.430 +£0.000
GCA 0.112 £0.003 0.477 £0.002 0.339 +0.005
MNCA 0.018 £0.001 0.061 £0.008 0.184 +0.010

While ABC requires prior knowledge and manual tuning,
our model learns directly from the data.

4.2. 10X Visium Analysis of Intestinal Crypts Recovery

To evaluate our model in a real biological context, we ana-
lyzed a Visium spatial transcriptomics dataset from a full
mouse intestine section (Parigi et al., 2022). The dataset
includes a tissue image with gene expression measured in
fixed-size spatial spots, capturing only a terminal snapshot
from the adult mouse, with no temporal dynamics.

To introduce a dynamic element, we manually annotated
the stem cell compartment and tested the model’s ability to
reconstruct the tissue by iteratively adding neighbor spots.
The details on this procedure are described in Appendix E.

For each spot, we computed expression values for several
core biological pathways, based on curated annotations from
(Schubert et al., 2018). These pathways, encompassing both
internal and environmental signaling components, approxi-
mate the molecular context sensed by each cell.

In this complex setting, MNCAs achieved markedly lower
reconstruction error (MSE: 0.055 NCA, 0.049 GCA, 0.021
MNCA), demonstrating superior performance also in recon-
structing real data.

5. Conclusion

In this work, we extended Neural Cellular Automata (NCA)
by introducing stochasticity, proposing the Mixture of Neu-
ral Cellular Automata (MNCA) to bridge modern NCA
models with the stochastic nature of biological agent-based
simulations.

Through synthetic experiments and spatial transcriptomic
data analysis, we showed that MNCAs can robustly and
interpretably simulate complex biological systems.

This work opens several future directions: scaling to larger
systems, improving rule interpretability, and handling in-
complete time-series data. The general MNCA framework
can also be adapted to the structural and technical nuances
of emerging single-cell spatial biology technologies.
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Figure 2. Visualization of MNCA'’s stochastic framework applied to synthetic tissue growth. The figure illustrates the development of
cellular patterns over time, starting from an initial configuration of stem cells and evolving into differentiated tissue structures. In panel A
there is a brief description of the tissue model used for the simulation. In panel B we show an example of 8 realizations of the process. In
the first row we have the original final tissue, in the second row the deterministic NCA, in the third the MNCA and in the last row the
MNCA with noise (O= Origina). In Panel C there is an example of full tissue evolution with an MNCA starting from a random initial

configuration and evolving the model for 35 steps

STEM INTERMEDIATE_1  INTERMEDIATE_2 DIFFERENTIATED_1 DIFFERENTIATED_2
w w w - 10 . 10
- A H T
om0 R om VL om0
™ w ) ""'J. wo A o0
PR I R 00
o0 o Hie s i

Rule 2

0s0
080
040
020
000

Figure 3. Visualization of rule assignments in MNCA simula-
tions: We first split the tissue into separate channels based on cell
type to make the visualization easier (shown in the first row). In
the second row, we display the assignment probabilities for each
rule. The results show that distinct rules are strongly associated
with specific cell types, effectively producing a semantically mean-
ingful segmentation of the image.
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Figure 4. Analysis of 10X Visium spatial transcriptomics data
for mouse intestinal crypts. The figure highlights the reconstruc-
tion process of a set of three ubiquitous cellular pathways starting
from annotated stem cell compartments. We let it evolve for 12
steps. We then plot the original expression in the last column for
comparison. Here we show the MNCA model with noise as it is
the one that achieves the lowest MSE.
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A. Synthetic Simulation of Tissue Growth

This model simulates the development and maintenance of tissue organization from an initial cluster of stem cells. It captures
key biological features of stem cell-driven tissue organization, which is particularly relevant for studying systems such as
intestinal crypts or clonal hematopoiesis.

The model incorporates several fundamental biological principles:

e Hierarchical Cell Organization: The tissue is organized in a hierarchy of cell types, from stem cells through
intermediate progenitors to fully differentiated cells, reflecting the organization observed in many epithelial tissues.

* Local Cell Interactions: Cell fate decisions are influenced by the local cellular environment, mimicking the role of
signaling niches in tissue organization.

« Differential Division Rates: Different cell types exhibit distinct proliferation rates, with stem cells and early progenitors
showing higher division rates compared to differentiated cells.

¢ Cell Type-Specific Survival: The model implements different death and growth rates for each cell type, reflecting the
biological reality where stem cells are more protected while differentiated cells undergo regular turnover.

The model implements a stochastic process where each cell is synchronously updated at each time step based on a set of
kinetic parameters. A full description of the procedure is in Algorithm 1

Here we report the parameters we used in our experiment:

The system comprises five distinct cell types 7 = {STEM, INT1,INT2, DIFF1, DIFF2}, with dynamics governed by
division, death, and survival rates.

The division rates b are defined as: bgen = 0.8, bing = 0.5, biny = 0.5, for differentiated cells b is set to 0. Death rates d
are specified as: dsem = 0, dingg = 0, dinz = 0, dgigrr = 0.001, dgigrr = 0.001. Survival rates s follow: sgem = 0, Sineg = 0,
sint2 = 0.01, sgir; = 1.0, sqigr = 1.0.

The base differentiation probabilities are defined by matrix D € R5*5:

0.3
0.1
D=|00
0.0
0.0

where D;; represents the rate of transitioning from type i to type j.

0.8
0.2
0.0
0.0
0.0

0.0
0.8
0.2
0.0
0.0

0.0
0.0
1.0
1.0
0.0

0.0
0.0
0.0
0.0
1.0

Cell-cell interactions are modeled through the interaction matrix I € R5*5:

0.0
0.0
I=10.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.3
0.0

)

6)

where I;; modifies the differentiation rate based on neighboring cells of type j for cells of type i.

At each time step ¢, cells undergo stochastic events (division, death, or survival) with probabilities normalized by the total
rate. For instance, for the cell type stem the probability of dying would be: P(event) = dstem/(bstem + dstem + Sstem)-
During division events, daughter cells may differentiate according to the probabilities in D, modified by neighboring cells
through I. The division is allowed only on empty cells in the Moore neighbor; otherwise, the cell survives.

The model’s simplicity and incorporation of key biological principles make it a useful tool for understanding. While it
necessarily abstracts many biological details, it captures essential features that drive tissue organization and maintenance.
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Algorithm 1 Tissue Growth Simulation
Input: grid size N, initial stem cells 74
Input: cell rates R = {b,,d., s, } for each cell type 7 € T, transition matrices {D, I}
Initialize G € Z™*" with n, stem cells at random positions
repeat
for each cell ¢ at position (z,y) in G do
if c # EMPTY then
p ~ U(0,1) {Sample uniform random variable }
p = R(c)/||IR(¢)|l1 {Normalize rates to probabilities }
if P < Ddeath then
Gt+1 ({E, y) <~ EMPTY
else ifp < Ddeath + Pdiv then
N + EmptyNeighbors(z, y)
if N # () then
Sample (7, 7) ~ Uniform(N') {Pick a Random Empty Neighbour}
k = B(c) + >_,cn I(n) {Generate a vector of rates for cell-type division}
k = k/| k|| {Normalize to probabilities }
Gi41(1,7) ~ Categorical (k)
end if
end if
end if
end for
tt+1
untilt =T

B. Evaluation Metrics for Neural Cellular Automata Models

We evaluate our Neural Cellular Automata (NCA) models using different complementary metrics that capture complementary
aspects of the generated cellular patterns. Since our models aim to generate realistic tissue patterns with multiple cell types,
we need metrics that assess both the statistical distribution of cell types and their spatial organization.

To compare the real and generated tissues, we employ three complementary measures:

* Kullback-Leibler (KL) Divergence on cell type proportions: D (P|Q) = ). P(i)log ggz; Where P is the true
cell type distribution in the whole cohort and @ is the cell type distribution in the generated sample. This metric is
useful for measuring how well our NCA models capture the correct proportions of different cell types.

* Wasserstein Distance of Tissue Size Distribution: For each real and generated data tissue we compute its size as
simply the sum of all non-empty spots. We then compare the size distribution in real U and generated V' using the
1-Wasserstein distance amongst empirical distributions, which for 1D distributions is simply:

oo

WA(U,V) = / |Fy () — Fy(z)| da ™

— 00
Where F is the empirical Cumulative Distribution Functions F' = 1 3" | 1 (z; < )

* Wasserstein Distance of Tissue Border Size Distribution: For each real and generated data tissue we compute a
border size metric as:

B=> [(V*M);| >0 (8)
,J

where M is the binary mask of cell occupancy (1 for cells, 0 for empty space), V2 is the discrete Laplacian operator
implemented as a 3 x 3 convolution kernel and 8 = 0.25 is a threshold parameter:

T
K=2|-1 8 -1 9)
1 -1 -1

8
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Table 2. Model configurations across experiments. Milestones and Gamma are the epoch and the multiplicative factor for the learning
rate schedule, k stands for 103

Parameter Tissue Visium
Channels 6 14
Hidden dim. 128 256
Rules 5 4
Learning rate 1 x 1073 1x1073
Epochs 800 3000
Residual No Yes
Dropout 0 0
Milestones [500] [1.5k,2k,2.5k]
Gamma 0.1 0.1
Filters Vi, Vy \V&

The combination of these metrics allows us to compare different NCA architectures and evaluate their ability to capture both
the statistical and structural properties of real biological tissues. This is essential for developing NCA models that can not
only match cell type distributions but also generate spatially coherent and biologically plausible tissue patterns.

We then again compute the 1-Wasserstein distance between the border statistics of real and generated data.

C. Model Architectures and Parameters

We maintained consistent neural network architectures across our two experiments ( Visium spatial transcriptomics, and
synthetic biological simulations). All models were trained using the Adam optimizer (Kingma, 2014) and with a Multi-Step
LR Scheduling, where every time the training reaches a set of epoch milestones, the learning rate gets multiplied by a scaling
factor gamma.

To keep the model simple and all rule functions ¢, follow a standard architecture with two 1 by 1 convolutional layers:

h = ReLU(Conv 1 Cat(s}, Vs, V,st)) (10)

st = st 4 Convy w1 (Cat(h, 21,)) (11)

where s! represents the state at time ¢, V, and V,, are Sobel filters for spatial derivatives, xy, is the gaussian noise, and Cat
denotes channel-wise concatenation. This is the implementation of Equation 4c, in case of 3 the implementation is the
same but with Convy 1 (Cat(h)) instead of Convy 1 (Cat(h, zx)), having now just one of those networks. The tissue in
experiment 4.2 is distorted and rotated in the slide; there is no clear up and down, as such, instead of the Sobel filters we use
a discrete Laplacian filter V2.

The network 7 is implemented by a network of the same type with the only difference that the input in this case is just the
current cell value x; and not Cat(x¢, V¢, Vy, 2¢). We used the Mean Squared Error (MSE) against the target as our loss
in all experiments.

We report the parameters used in the experiment in Table 2. All experiments were run on a single NVIDIA Tesla V100-
SXM2-32GB.

D. Training routines for the Neural Cellular Automata

We use a simple algorithm (described in Algorithm 2) to train our automata on the biological time series data. For each
epoch with a specific time-window size, the algorithm samples a random part of the time series and learns to reconstruct it
by computing the loss with the original realization every 7 steps (which has been set to 1 for our experiments). The training
algorithm for Neural Cellular Automata (NCA) introduced in (Mordvintsev et al., 2020) is actually more complicated then
the one we used above, mainly because in the task of image morphogenesis, the model has to evolve without supervision for
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a long time.

Algorithm 2 NCA Training for Biological Time-Series

Input: target sequences {51, ..., Sy, },sequence length T’
Input: window size w, number of cell types K, epochs E,
Input: evolution steps of the automata 7, number of tissue samples M, small stability constant e
Initialize model parameters 6 randomly
Initialize optimizer
for epoch =1 to E do
tstart ~ U(0,T — w) {Sample random window }
fort = tstart t0 tstart + W Step 7 do
X: < Si {Encode states}
Y; < Si.. {Future states}
for t,,cq =t tot + 7 step 1 do
if t,.cq ==t then
Y, < f9(X;) {NCA prediction, from input}
else
Y; « fo(Y1) {NCA prediction, from evolved input}
end if
end for
/I Compute loss and update
L+ LMSE(Y;,V?)
VO« VoL
Vo % {Normalize gradients}
Update 6 using optimizer
end for
end for

To evaluate the impact of rule complexity, we analyze the KL divergence between the simulated and target cell-type
distributions as a function of the number of mixture rules. As illustrated in Figure 5, models with an increasing number of
rules tend to exhibit lower KL divergence, suggesting that greater rule diversity enhances the model’s ability to approximate
the target distribution.

However, this improvement is not strictly linear, and we observe diminishing returns beyond a certain number of rules.
This saturation effect suggests that while additional mixture components increase flexibility, excessive complexity does not
necessarily translate into significant performance gains. Furthermore, we find that introducing internal stochasticity in the
model slightly reduces KL divergence for this task. These findings support the idea that an excessively high number of rules
can be detrimental, as performance improvements do not sufficiently compensate the increased computational cost.

E. Analysis of Spatial Transcriptomics Data

We evaluated our models on Visium spatial transcriptomics data from mouse intestinal tissue. The intestine is an excellent
system for studying tissue evolution due to its rapid and continuous cellular turnover, driven by stem cells located in the
crypts. These stem cells divide and differentiate into various cell types as they migrate upward to form the villi, creating
a dynamic, self-renewing structure. This property means that the spatial dimensions correspond also to a differentiation
pseudotime, that we can use to generate time-series “’like” data, by considering the cells at the bottom of the crypt as the
ones starting at time zero and then slowly going forward in time by adding cells towards the villum. The differentiation
process is tightly regulated by a complex network of signaling interactions involving different cell types and compartments,
which collectively determine cell fate and maintain tissue homeostasis. This intricate coordination makes the intestine a
powerful model for exploring how spatial and temporal signals influence tissue development and evolution. The main idea is
summarized in a cartoon in Figure 6. Figure 7, on the other end, shows the time series in the actual slide.

Visium spatial transcriptomics is a spot-based technology that maps gene expression directly onto tissue sections by
combining high-resolution imaging with RNA sequencing. Each spot on the array has a diameter of approximately 55
micrometers, capturing RNA from a defined area of the tissue that typically includes multiple cells, allowing spatially
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Figure 5. KL divergence of the cell-type distribution as a function of the number of rules used in the Mixture NCA model. As the
number of rules increases, the divergence between the simulated and target distributions decreases, indicating improved alignment with
the expected cell-type dynamics.

resolved transcriptomic profiling of a high number of genes. The dataset consists of approximately 5,000 spots per sample,
each containing expression measurements for over 20,000 genes.

Data processing followed standard single-cell analysis protocols using the Scanpy package (Wolf et al., 2018):

1. Normalization of counts to 10,000 reads per spot followed by loglp transformation
2. Feature selection using the top 3000 genes in terms of variance

3. PCA dimensionality reduction to 50 principal components

4. Neighborhood graph construction using 10 nearest neighbors

5. Leiden clustering for initial cell type annotation
Cell types were annotated using established marker genes for intestinal tissue:

» Epithelial cells: Epcam, Krt8, Krt18

Goblet cells: Muc2, Tff3, Spink4

* Enteroendocrine cells: Chga, Chgb, Sst
* Stem cells: Lgr5, Ascl2, Olfm4

¢ Immune cells: Cd3e, Cd19

e Stromal cells: Collal, Vim, Acta2

To get a subset of putative stem spots (spots with a putative high content of stem cells) we looked at the stem marker
expression in the different clusters and took the ones with some signal. As the proportion of stem cells in the intestine is
quite low, we expect the signal to be relatively small, and indeed we find just two clusters with a detectable signal of stem
markers (Figure 8).
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Figure 6. Overview of spatial transcriptomics on mouse intestine using 10X Visium. The rolled tissue is sectioned, stained, and
sequenced to capture spatial gene expression. Each crypt encodes a differentiation trajectory from stem cells at the base to mature cells at
the top, allowing inference of pseudo-temporal dynamics from spatial structure.

Time step 0 Time step 1 Time step 2 Time step 3

Figure 7. Time series extraction from static tissue. Only the first 4 steps are shown here, but the process continues until all the spots in
the slide have been covered. Grey dots are empty spots, while red spots are alive cells at a given time.
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Figure 8. Leiden clustering and gene marker expression. We performed Leiden clustering using the first 50 components of the PCA,
we then manually looked at Stem Cell Marker expression to select putatively enriched stem spots.

To incorporate a dynamical system into our MNCA framework, we drew inspiration from the continuous renewal process
of intestinal villi, which is sustained by an underlying crypt of proliferating stem cells. In this context, we manually
annotated the region corresponding to the putative stem cell compartment within the tissue and used it as the initial condition
for our simulations. The model was then evaluated on its capacity to accurately reconstruct the spatial organization and
differentiation trajectories of the intestinal epithelium.

To simulate a biologically plausible developmental trajectory, we adopted an iterative procedure: beginning from the
annotated stem cell compartment, we progressively expanded the simulated domain by sequentially incorporating neighboring
cells at each time step. This approach effectively generated a synthetic time series that mimics live imaging or in vivo
sampling of tissue development, enabling us to assess the MNCA's ability to capture both structural and temporal aspects of
intestinal regeneration.

We did not use the full gene expression but we focused on a set of 14 curated and fundamental pathways from (Schubert
et al., 2018). This resource provides curated pathways and their associated target genes, with interaction weights derived
from perturbation experiments; for this example, we use the mouse weights and the top 200 most responsive genes ranked
by p-value. The pathways include Androgen (male reproductive organ development), EGFR (cell growth, survival, and
migration), Estrogen (female reproductive organ growth), Hypoxia (angiogenesis under low oxygen), JAK-STAT (immune
response and cell division), MAPK (cell growth and proliferation), NFkB (immune response and cytokine production),
p53 (tumor suppression and DNA repair), PI3K (growth and proliferation), TGFb (tissue development and repair), TNFa
(immune surveillance and infection protection), Trail (apoptosis induction), VEGF (angiogenesis and vascular permeability),
and WNT (morphogenesis and tissue repair).

To get the pathway activity for all 14 pathways we perform a multivariate linear regression as implemented in (Badia-i
Mompel et al., 2022). Namely, given a matrix of weights W € RE* " for each gene and pathway, where P is the number
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of pathways and G the number of genes and the expression matrix Y € RV X% where N is the number of spots, the final
activity score is the X € R”*S matrix of coefficients from a simple multivariate linear model Y = W X.
F. Comparison with Approximate Bayesian Computation

We implement a standard Approximate Bayesian Computation (ABC) approach to infer the parameters of our agent-based
tissue growth model and compare it with the MNCA results. The parameter space © is the same as the original model in
Appendix A, here we report the sampling distribution:

* division rates (5 € R ~ Gamma(1,0.1))

« death rates (d € R® ~ Gamma(1,0.01))

* survival rates (5 € R® ~ Gamma(1,0.1))

« differentiation rates (D € R%*5 ~ Gamma(1,0.1))

* cell-cell interaction strengths (I € R>*5 ~ A/(0, 1))

Algorithm 3 Parallel ABC for Tissue Growth Model
Require: Observed data D, number of particles IV, acceptance threshold ¢, summary statistic type .S
Ensure: Estimated parameters *

1: Initialize empty sets Ap, As for accepted parameters and distances

2: fori =1to N do

3:  Sample 6; ~ p(6) from prior distributions

4:  Simulate tissue growth x; ~ f(-|6;) for T steps
5 Compute summary statistic s; = S(x;)

6:  Calculate distance 0; = Dist(s;, S(D))

7. if d; < e then

8: Ag +— Ap U {91}

9: As +— As U {52}
10:  end if
11: end for

12: Compute weights w; = 1/4;, normalized
13: Return 0* =Y, w;0; for §; € Ay

We trained three different models each with specific summary statistics to compare simulated and observed data:

1. Cell-type Distribution: Captures the global proportion of each cell type, including empty spaces. The distance
between distributions is computed using the Wasserstein metric . This statistic provides a high-level view of tissue
composition but does not capture spatial organization.

2. Neighborhood Composition: Computes the average composition of 3x3 neighborhoods around each position,
including empty spaces. This metric captures local spatial patterns and cell-type clustering, using the Wasserstein
distance for comparison.

3. Cell-type Correlation Matrix: Quantifies pairwise correlations between spatial distributions of cell types. Each entry
R;; represents the Pearson correlation coefficient between the binary masks of types 7 and j, with positive values
indicating co-occurrence and negative values suggesting spatial segregation. The distance between correlation matrices
is computed using the normalized Frobenius norm | R; — Rp||r/v/2.

Parameters are accepted if their distance is below the threshold ¢, and final estimates are computed as weighted averages of
accepted particles, with weights inversely proportional to their distances. The € in this case have been chosen to accept
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Table 3. Comparison of ABC inference on agent-based models of the simulation

MODEL KL-DIV x> S1ZE BORDER-W

ABM MODEL PROPORTION 0.152 £0.002 0.132 £0.001  0.241 £0.010 0.054 £0.006
ABM MODEL NEIGHBORHOOD  0.857 £0.010 0.488 £0.004 0.489 +0.025 0.284 +0.010
ABM MODEL CORRELATION 0.386 £0.010  0.285 +0.005 0.241 £0.012 0.055 +0.009
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Figure 9. Simulated tissues by different agent-based models trained with ABC on the simulated dataset. Top row is 10 tissues from
the training data. The second row are tissues generated by the ABC schema with type correlation as summary statistics. The third row are
tissues generated by the ABC schema with neighborhood composition as summary statistics. The last row has cell-type distribution as
summary statistics.

approximately 10% of the samples (respectively [0.04, 0.4, 0.52]). For the first model, we generated 5000 samples as this is
the fastest statistic to compute, while for the others we drew 1000 samples.

We present the results in Table 3, highlighting how performance is significantly influenced by the choice of statistics used
for parameter inference. Interestingly, simple cell-type proportions yield the best results, not only in terms of accuracy but
also in maintaining consistency across tissue borders and overall size. These results are comparable to our MNCA approach,
though in this case, we had to fully specify the model and fine-tune both the statistics and acceptance threshold. It is also
crucial to note that our evaluation is based on the KL divergence of cell proportions, which is directly tied to the statistics
used for ABC—specifically, the Wasserstein distance between cell-type proportions.

However, the limitations of this approach are well illustrated in Figure 9. A naive selection of statistics may produce models
that generate seemingly accurate summary statistics, yet fail to capture the intricate spatial characteristics of real tissue. As a
result, while the summary metrics appear realistic, the simulated tissue structure diverges significantly from the actual one.
Conversely, models that better preserve spatial coherence tend to exhibit substantial distortions in cell-type proportions.
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