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Abstract

This paper introduces a comprehensive framework
for deriving and estimating fair optimal predictions
in machine learning, grounded in causal and coun-
terfactual path-specific effects as constraints. We
detail the theoretical foundations of our approach,
and provide closed-form solutions for constrained
optimization within prevalent risk frameworks, in-
cluding mean squared error and cross-entropy risks.
These solutions conceptualize the fair risk mini-
mizer as a nuanced adjustment to the unconstrained
minimizer, influenced by the magnitude of the con-
straint, its canonical gradient, and the variance
of this gradient. Additionally, we propose flexi-
ble semiparametric estimation strategies for these
nuisance components, tailored to diverse model
specifications. Such flexibility is essential for ac-
curately implementing fairness adjustments across
varied contexts. This work advances the discourse
on algorithmic fairness by seamlessly integrating
complex causal considerations into model training,
thus providing optimal strategies for implementing
fair models in real-world applications. The full
paper is on arXiv under the same title.

INTRODUCTION
The discourse on fairness in machine learning encompasses
various definitions, each shaped by distinct ethical consid-
erations and operational implications [Mitchell et al., 2021,
Barocas et al., 2023]. Counterfactual and causal reasoning
frameworks are crucial for quantifying algorithmic fairness
Zhang et al. [2017], Kusner et al. [2017], Zhang and Barein-
boim [2018], Chiappa [2019], Nabi et al. [2019]. Our work
builds prediction functions that satisfy constraints based on
path-specific causal effects Nabi and Shpitser [2018], Nabi
et al. [2022]. By leveraging causal inference, constrained
optimization, and semiparametric statistics, we aim to de-
velop an optimal predictive model by nullifying a specified

path-specific effect. We frame fair optimal predictions as the
outcomes of a penalized risk function, integrating fairness
principles into the optimization process [Donini et al., 2018,
Chamon et al., 2022, Nabi et al., 2024].

Our contributions to fair machine learning include introduc-
ing closed-form solutions for deriving optimal predictions
subject to causal fairness constraints under mean squared
error and cross-entropy frameworks. These solutions trans-
form an unconstrained risk minimizer into a constrained one
by incorporating the constraint, its gradient, and the variance
of the gradient. We also provide a flexible semiparametric
estimation strategy for the required fairness adjustments,
accommodating diverse model specifications and enhanc-
ing the adaptability and robustness of fairness interventions
across various data-generating contexts. This comprehen-
sive framework equips practitioners with tools to effectively
integrate fairness into predictive modeling, promoting soci-
etal equity and justice in algorithmic decisions.

PROBLEM FORMULATION
Consider the observed datum O = (S,X, Y ), with S indi-
cating a sensitive attribute, X denoting other covariates, and
Y being the outcome variable. Let Z = (S,X). To facilitate
our discourse, we adopt the framework of directed acyclic
graphs (DAGs) to describe causal relationships among vari-
ables. The causal model implied by a DAG is often described
by a set of nonparametric structural equation models with
independent error terms (NPSEM-IE) [Pearl, 2009].

We define ψ0 as the unconstrained minimizer of a
relevant risk function RP0(ψ0), that is ψ0(z) =
argminψ∈Ψ RP0(ψ). Such risks are often formulated
as the expectation of a loss function L(ψ), RP0

(ψ) =∫
L(ψ)(o)dP0(o). We consider learning ψ0 while adher-

ing to a pre-defined fairness constraint, which requires that
a real-valued functional parameter of ψ0 is set to zero or
is otherwise bounded. Let ΘP0(ψ) denote a user-selected
constraint. The constrained functional parameter, denoted
by ψ∗

0 , is defined as ψ∗
0 = argminψ∈Ψ,ΘP0

(ψ)=0RP0
(ψ).
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CLOSED-FORM SOLUTION
Nabi et al. [2024] proposed to construct a constraint-specific
path, indexed by the Lagrangian multiplier λ ∈ R, through
the unconstrained parameter that would yield a solution
to estimation of the constrained functional parameter. Any
given point on this path, denoted by ψ0,λ, is the minimizer
to the Lagrangian problem: ψ0,λ = argminψ∈ΨRP0(ψ) +
λΘP0

(λ). The authors proved that, for any given datum o
and ∀λ ∈ R, the constraint-specific path satisfies:

DR,P0
(ψ0,λ)(o) + λDΘ,P0

(ψ0,λ)(o) = 0 , (C1)

where DR,P0
and DΘ,P0

denote the canonical gradients of
the risk function and the constraint functional.

We adopt the causal perspective on fairness described by
Nabi and Shpitser [2018], Nabi et al. [2022] and provide
closed-form solutions for fair optimal predictions. Due to
page limits, we present results under MSE risk only.

Theorem 1 (Mean Squared Error risk) Let ψ∗
0(z) =

argminψ∈Ψ,Θ∆,P0
(ψ)=0 P0L(ψ), with L(ψ) representing

the L2 loss and Θ∆,P0
(ψ) denoting the identified functional

for a pre-defined unfair path-specific effect. The conjunction
of condition (C1) and Θ∆,P0

(ψ∗
0) = 0 necessitates

ψ∗
0(z) = ψ0(z)−Θ∆,P0

(ψ0)
DΘ∆,P0

(z)

σ2(DΘ∆,P0)
, (1)

where DΘ∆,P0
(z) is the constraint gradient, and

σ2(DΘ∆,P0) =
∫
D2

Θ∆,P0
(z)dP0(z).

DISCUSSION
Equation (1) implies that the fair risk minimizer ψ∗

0 can be
viewed as an adjustment to the unconstrained risk minimizer
ψ0. This adjustment is characterized by three components:
Θ∆,P0(ψ0), DΘ∆,P0 , and σ2(DΘ∆,P0). Each component is
interpretable in its own right: (i) Magnitude of systematic
disparities: The parameter Θ∆,P0

(ψ0) represents the mag-
nitude of systematic disparities linked to S under sampling
from P0 – the larger the underlying disparities, the larger the
adjustment that must be made to ψ0; (ii) Adjustment where it
matters most: The gradient of the constraint DΘ∆,P0 can be
viewed as the direction in the model space for ψ that leads
to the largest change in the constraint. Thus, the constrained
minimizer seeks to minimize changes made to ψ0 by mak-
ing the largest adjustments to ψ0 in regions where these
adjustments maximally impact the value of the constraint;
(iii) Ability to impact fairness through adjustment: The vari-
ance of the constraint gradient, σ2(DΘ∆,P0

), indicates how
adjustments in ψ0 can impact the constraint. Large variance
implies regions in the covariate space where the gradient
is steeper, meaning minor changes to ψ0 would result in
comparably large changes in the value of the constraint. In
this case, we only need make relatively minor adjustments
ψ0 to satisfy the fairness constraint. On the other hand, if

Figure 1: Predictions for the S = 0 group (left, blue) and
S = 1 group (right, red). The optimal prediction function
ψ0 (solid line) disadvantages the S = 0 group with lower
predictions. Using ψ0(0, X) for both groups (dash/dotted
line) meets the fairness constraint but results in large errors
for the S = 1 group. These errors are minimized by the
optimal constrained prediction function ψ∗

0 (dashed line).

the variability in the gradient of the constraint is small, then
adjustments to ψ0 must be made approximately uniformly
across the covariate space, as all values of Z have approxi-
mately the same influence on the value of the constraint.

As an example, consider a causal model where nullifying
the average effect of S on Y is the constraint of inter-
est. Suppose that X is a univariate standard normal ran-
dom variable and P0(S = 1|X = x) = expit(x). Thus,
higher values of x are associated with the S = 1 class. Out-
comes are generated according to a linear mean function,
ψ0(s, x) = 0.5 + 0.2x + 0.75s (Figure 1, solid lines), im-
plying the ATE of S = 1 vs. S = 0 is Θ∆,P0(ψ0) = 0.75.
If higher predicted outcomes confer an advantage, then the
positive value of Θ∆,P0

(ψ0) implies that the S = 0 group
would be on average disadvantaged by predicting from ψ0.
A simple solution to nullify the ATE in this example is to
use ψ0(0, x) to predict for an individual with X = x, irre-
spective of their observed value of S (Figure 1, dotted line).
However, this approach is suboptimal since it introduces a
population-level bias, E{ψ0(0, X) − ψ0(S,X)} ̸= 0, and
individual-level predictions suffer due to the relatively large
differences between ψ(1, X) and ψ(0, X) for the relatively
large number of observations with S = 1 and higher X
values, evident in Figure 1. The optimal predictions, based
on the gradient of the constraint, are shown as dashed lines.
These predictions differ minimally from the unconstrained
ones in the most supported regions of X , with larger differ-
ences occurring only in less common X values, yet these
still effectively satisfy the constraint.

We extend our discussions to risk minimization under any
identifiable path-specific effect within the NPSEM-IE frame-
work, considering both MSE and cross-entropy risks. We
also introduce a flexible semiparametric framework for es-
timating nuisance parameters essential for fairness adjust-
ments. For details, see our submission on arXiv.



References

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fair-
ness and machine learning: Limitations and opportunities.
MIT Press, 2023.

Luiz FO Chamon, Santiago Paternain, Miguel Calvo-
Fullana, and Alejandro Ribeiro. Constrained learning
with non-convex losses. IEEE Transactions on Informa-
tion Theory, 69(3):1739–1760, 2022.

Silvia Chiappa. Path-specific counterfactual fairness. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 7801–7808, 2019.

Michele Donini, Luca Oneto, Shai Ben-David, John S
Shawe-Taylor, and Massimiliano Pontil. Empirical risk
minimization under fairness constraints. Advances in
neural information processing systems, 31, 2018.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo
Silva. Counterfactual fairness. In Advances in Neural In-
formation Processing Systems, volume 30. PMLR, 2017.

Shira Mitchell, Eric Potash, Solon Barocas, Alexander
D’Amour, and Kristian Lum. Prediction-based decisions
and fairness: A catalogue of choices, assumptions, and
definitions. Annual Review of Statistics and Its Applica-
tion, 2021.

Razieh Nabi and Ilya Shpitser. Fair inference on outcomes.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 32, 2018.

Razieh Nabi, Daniel Malinsky, and Ilya Shpitser. Learning
optimal fair policies. In International Conference on
Machine Learning, pages 4674–4682. PMLR, 2019.

Razieh Nabi, Daniel Malinsky, and Ilya Shpitser. Opti-
mal training of fair predictive models. In Conference on
Causal Learning and Reasoning, pages 594–617. PMLR,
2022.

Razieh Nabi, Nima S Hejazi, Mark J. van der Laan, and
David Benkeser. Statistical learning for constrained func-
tional parameters in infinite-dimensional models with
applications in fair machine learning. arXiv preprint
arXiv:2404.09847, 2024.

Judea Pearl. Causality: Models, Reasoning, and Inference.
Cambridge University Press, 2009.

Junzhe Zhang and Elias Bareinboim. Fairness in decision-
making—the causal explanation formula. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 32, 2018.

Lu Zhang, Yongkai Wu, and Xintao Wu. A causal frame-
work for discovering and removing direct and indirect
discrimination. In Association for the Advancement of
Artificial Intelligence, 2017.


