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Can Small Language Models be Good Reasoners for
Sequential Recommendation?

Anonymous Author(s)

ABSTRACT
Large language models (LLMs) open up new horizons for sequential
recommendations, owing to their remarkable language comprehen-
sion and generation capabilities. However, there are still numerous
challenges that should be addressed to successfully implement
sequential recommendations empowered by LLMs. Firstly, user
behavior patterns are often complex, and relying solely on one-
step reasoning from LLMs may lead to incorrect or task-irrelevant
responses. Secondly, the prohibitively resource requirements of
LLM (e.g., ChatGPT-175B) are overwhelmingly high and imprac-
tical for real sequential recommender systems. In this paper, we
propose a novel Step-by-step knowLedge dIstillation fraMework
for recommendation (SLIM), paving a promising path for sequen-
tial recommenders to enjoy the exceptional reasoning capabilities
of LLMs in a “slim” (i.e., resource-efficient) manner. We introduce
CoT prompting based on user behavior sequences for the larger
teacher model. The rationales generated by the teacher model are
then utilized as labels to distill the downstream smaller student
model (e.g., LLaMA2-7B). In this way, the student model acquires
the step-by-step reasoning capabilities in recommendation tasks.
We encode the generated rationales from the student model into a
dense vector, which empowers recommendation in both ID-based
and ID-agnostic scenarios. Extensive experiments demonstrate the
effectiveness of SLIM over state-of-the-art baselines, and further
analysis showcasing its ability to generate meaningful recommen-
dation reasoning at affordable costs.
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1 INTRODUCTION
Sequential recommendation is extensively utilized in a variety of in-
ternet applications due to its prominent performance in uncovering
a user’s evolving and dynamic interests from his/her chronological
interactions [20]. Despite the effectiveness, existing models are of-
ten trained on a closed-loop user-item interaction dataset, inevitably
suffering from severe exposure bias and popularity bias. Therefore,
beyond narrow information present in the original datasets, it is
crucial to incorporate open-world knowledge to foster a more com-
prehensive and generalized understanding of historical behaviors.

Due to the impressive reasoning capability, the recent emergence
of Large Language Models (LLMs), such as GPT 3.5/4, has brought a
significant breakthrough in various NLP tasks [18, 19, 28, 35], show-
ing substantial potential in overcoming the isolated nature of real-
world sequential recommenders that rely on closed data sources
for training [1, 22]. These LLMs are trained on massive corpora,
granting them to exhibit the remarkable capability of human-like
thinking as well as seamless reasoning. Roughly speaking, current
LLM empowered recommenders mainly fall into the following two
groups: (1) LLM as a ranker, which typically involves prompt-
ing the frozen LLM to offer a reasonable ranked list that satisfies
the user interests [9]. However, solely relying on the zero-shot
or few-shot learning capability of LLMs is still inferior compared
to traditional sequential recommendations that utilize in-domain
collaborative knowledge. To address this limitation, (2) LLM as
a knowledge enhancer has been proposed, typically following
a cascading architecture: the LLM is first instructed to generate
rich knowledge (e.g., user preference and factual knowledge on
items), followed by a classical recommendation backbone for har-
vesting in-domain knowledge and collaborative signals. Generally,
the bridging of both worlds tends to elicits a more promising perfor-
mance [31]. While LLMs for recommendation hold promise, they
also face significant challenges that cannot be ignored.

One is the exceptional reasoning capability of LLM within the
context of recommendation has not been fully explored. There is a
gap between the open-world nature and recommender systems,
which means that the recommendation knowledge generated by
LLMs may be incorrect or task-irrelevant. Fortunately, with the
chain-of-thought (CoT) prompting strategy [10, 17, 27], LLMs can
break down complex tasks into a series of intermediate reasoning
steps, which can improve the ability to understand behavior pat-
terns and explore user interests. Consequently, there is a strong
motivation to leverage the CoT reasoning capability of LLMs in se-
quential recommender systems, enabling the generation of targeted
recommendation-related rationales. For instance, guiding LLMs to
reason progressively, similar to a human salesperson, to deduce
user interests, narrow down the categories of items that align with
their interests, and ultimately recommend specific items within
these categories that the user is likely to interact with.
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Another significant challenge is the prohibitively high resources are
far beyond affordable for real-world recommender systems. The im-
mense size of LLMs demands a considerable amount of memory and
computational power, which necessitates specialized infrastructure.
For instance, the deployment of the open-source LLaMA2-70B re-
quires eight Nvidia A100 servers. On the other hand, working with
closed-source LLMs also involves significant costs. For instance,
using ChatGPT as an example, the current approach requires call-
ing its API, which comes with substantial monetary expenses. For
instance, in gpt-3.5-turbo, the costs are approximately $0.0015 per
1,000 tokens for input and $0.002 per 1,000 tokens for output. There-
fore, a natural question arises:

Can a language model with affordable costs still serve as
an effective reasoning engine for sequential recommendation?

To answer this question, in this paper, we propose a novel Step-
by-step knowLedge dIstillation fraMework for recommendation
(SLIM), which enables sequential recommendations to enjoy the
significant reasoning capabilities of LLMs in a “slim” (i.e., resource-
efficient) manner. Specifically, we develop a step-by-step knowledge
distillation strategy for sequential recommendations to transfer
the reasoning capabilities of LLMs (i.e., teacher) to a small lan-
guage model (i.e., student). This strategy guides the larger teacher
model to engage in macro-to-micro thinking for complex recom-
mendation task through CoT prompting. Through the process of
distillation, the small student model with only 4% parameters of
the large teacher model acquires step-by-step thinking capabilities
and evolves into a good reasoner. Subsequently, we directly deploy
the small language model as a knowledge generator for sequential
recommendation, which can derive high-quality reasoning knowl-
edge highly relevant to recommendation. These knowledge reflect
user preferences for categories, brands, and specific items, which
can be flexibly integrated with any sequential recommendation
backbone, including ID-based and ID-agnostic scenarios. Our key
contributions can be summarized as follows:
• To the best of our knowledge, it is the first knowledge distillation

framework of LLMs tailored for sequential recommendation.
• We propose SLIM, a novel step-by-step knowledge distillation

framework, empowering sequential recommenders with the CoT
reasoning capabilities of LLMs in a resource-efficient manner.

• Extensive experiments on three datasets demonstrates the ef-
fectiveness of our proposed SLIM. Further analysis reveals that
SLIM generates meaningful reasoning at affordable costs.

2 THE PROPOSED FRAMEWORK
In this section, we propose SLIM, a novel knowledge distillation
framework tailored for recommendation, which incorporates the
reasoning capabilities of LLMs into recommender systems in a
resource-efficient manner. The overview is illustrated in Figure 1.

2.1 Sequential Recommendation Backbone
Sequential recommendation aims at the accurate prediction of users’
next behavior by capturing evolved and dynamic preferences over
historical behavior sequences, which has occupied a critical position
in various modern information systems [20]. In general, the success
of sequential recommendation typically hinges on the meaningful
representation of items and effectively encoding behavior patterns.

Item Representation. For neural sequential recommendations,
the item encoder is the key component which transfers the items to
representations. Formally, given an item set I, each item 𝑖 may be
associated with several optional attributes 𝑓𝑖 , such as title, category
and brand. The encoder can generate the item representations for
each item based on their ID (i.e., 𝑖) and attributes (i.e., 𝑓𝑖 ):

𝒛𝑖 = ItemEncoder (𝑖, 𝑓𝑖 ) , (1)

where 𝒛𝑖 is the representation of item 𝑖 . Generally, ItemEncoder(·)
is implemented as a hybrid architecture where a embedding layer
aims at tackling ID-like features (e.g., item id), coupled with a text
encoder (e.g., BERT [4]) for context embedding based on the item
description (e.g., title, category).

Sequential Encoding. To capture the sequential characteristics of
user behaviors, the action sequence of user 𝑢 ∈ U can be organized
in chronological order S𝑢 = [𝑖1, 𝑖2, · · · , 𝑖𝑡−1], where 𝑖𝑘 ∈ I repre-
sents the 𝑘-th item that the user 𝑢 interacted with. Next, each item
in S𝑢 is firstly fed into ItemEncoder(·) (denoted asZ𝑢 ), followed
by the a sequential encoding.

𝒔𝑢 = SeqEncoder (Z𝑢 ) , (2)

where 𝒔𝑢 denotes the representation of sequence S𝑢 . SeqEncoder
is sequence encoder, which can be implemented with the Atten-
tion [25] or other neural architectures [21, 34]. Based on the se-
quence S𝑢 , our objective is to predict the next item 𝑖𝑡 that the user
𝑢 is likely to interact with at the 𝑡-th step.

Prediction and Optimization. After generating the above rep-
resentations, we can obtain the final prediction �̂� ∈ {0, 1} at time
𝑡 with dot product or MLP layer followed by a sigmoid activation
function [6], where each element �̂�𝑢𝑖 indicates how likely the item
𝑖 should be recommended to the target user 𝑢. Finally, the model is
trained with binary cross-entropy [3] loss as follows:

L=−
∑︁
𝑢∈U

∑︁
𝑖∈I

𝒚𝑢𝑖 log �̂�𝑢𝑖 + (1 −𝒚𝑢𝑖 ) log (1 − �̂�𝑢𝑖 ) . (3)

Note that these classical sequencical models typically perform
recommendation based on the user action sequences and item at-
tributes (e.g., title, category and brand), lacking the reasoning power
that have recently emerged in LLMs.

2.2 Step-by-Step Knowledge Distillation for
Recommendation

Despite the remarkable reasoning ability of LLMs, it is non-trivial
to adapt LLMs to empower the traditional recommender systems.
The challenge arises from two aspects: (1) Complex behavior pat-
terns of users are difficult to understand directly by LLMs. (2) The
large size and high inference latency of LLMs exacerbates resource-
consuming. Therefore, we propose step-by-step knowledge distil-
lation to transfer the reasoning capabilities of LLMs to a smaller
LLaMA2-7B [24] model specialized for the recommendation tasks.

In detail, our distillation strategy consists of two straightforward
steps: Firstly, we employ CoT prompting related to user behavior to
guide the LLM (i.e., teacher) in thinking step-by-step and generating
natural language rationales that support its predictions in the rec-
ommendation scenario. Secondly, these rationales are subsequently
utilized as labels to fine-tune the downstream smaller language

2
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Step-by-Step Knowledge Distillation for Recommendation

Smaller 
Student Model

Recommendation 
Rationale

Frozen

Update

Distilling

Recommendation 
Rationale

Generative Loss

Step 1: From your purchase history ……

Step 2: (The inferred categories or brands)

Step 3: (The recommended products)

Rationale from Smaller Model

Item Title/Category/brand ……

Item Description Text

Text
Encoder

Text-based Item Rep.

Rationale-based Seq Rep.

Transformation Layer

Seq Rep.

Text-based Item Rep.

Score

Seq Rep.

ID-agnostic
ID-based

Information Fusion Layer

Item Rep.

Score

ID-based ID-based

Recommendation Knowledge Encoding

Larger 
Teacher Model

User Behavior
Prompt 

User Behavior
Prompt 

Rationale Enhanced Recommendation

𝒯!

𝒯"

Rationale-based Seq Rep.

Item Rep.

Rationale-based Seq Rep. Text-based Item Rep.

Figure 1: The overview of the proposed framework.

model (i.e., student), enabling it to approach the reasoning capabili-
ties of the larger model in the recommendation domain. Finally, the
fine-tuned smaller model acts as the ultimate knowledge generator,
offering reasoning knowledge to the recommender systems.

2.2.1 Extracting Recommendation Rationales from LLMs. Tradi-
tional sequential recommendations rely solely on scores to per-
form recommendation and ignore the intermediate reasoning steps,
which constrains the accuracy and explainability of recommenda-
tions. Inspiringly, the emergence of LLMs has led to a significant
breakthrough in understanding human and generating rationales
step-by-step for recommendation through CoT prompting. There-
fore, we guide LLMs in generating critical reasoning, encompassing
user preferences, interested categories/brands and specific items, all
of which are essential for providing appropriate recommendations.

To achieve this objective, we utilize zero-shot CoT prompting to
elicit LLMs in extracting this reasoning information from user be-
haviors. Specifically, given the user set U and the behavior dataset
D = {S𝑢 |𝑢 ∈ U}, we construct a user sub-setU′ and a small behav-
ior sub-dataset D′ = {S𝑖 } by random sampling, where U′ ⊂ U
and |U′ | ≪ |U|. Then, we have meticulously designed a CoT
prompt template T𝑡 to facilitate in-depth reasoning according to
user behavior by LLMs. As illustrated in Figure 2, our instructions
consists of three progressive steps:

• 𝑆𝑡𝑒𝑝1. Summarize user preferences based on the historical be-
havior sequences.

• 𝑆𝑡𝑒𝑝2. Recommend categories or brands to the user based on the
summarized preferences.

• 𝑆𝑡𝑒𝑝3. Recommend products that align with the recommended
categories/brands.

The template starts with a macro perspective and gradually zooms
in to a micro perspective, which guides LLMs in a step-by-step
thinking process and ensures that the output of the LLM conforms
to a specific format. Through this process, LLMs can effectively
leverage extensive open-world knowledge to infer the aspects that
users are likely to be interested in the future. As shown in Fig-
ure 2, through CoT prompting, the teacher model can generate
informative recommendation rationales in response.

Subsequently, we further fill the template T𝑡 with user histori-
cal behaviors in small dataset D′ to generate corresponding CoT
prompts X′ = {𝑥 ′𝑢 |𝑢 ∈ U′} for the teacher LLM model. With this
incremental CoT prompts X′, LLMs will generate corresponding
recommended rationales 𝑟 ′𝑢 ∈ R′ for each input 𝑥 ′𝑢 . Although the
current recommendations overlook these rationales, they are crucial
for achieving more efficient and explainable recommender systems.
Besides, unlike previous studies [31], we do not concentrate on
inferring item factual information (e.g., the director of movie items),
as most real-world items (e.g., food, home and kitchen items) are
difficult to associate with trustworthy open-world knowledge.

2.2.2 Fune-tuning Smaller Models with Recommendation Rationales.
By guiding the thought process of LLMs step-by-step, we can com-
prehend complex behavior patterns of users and generate high-
quality recommendation rationales. However, their large scale and
computational overheadmake them unsuitable for recommendation
scenarios that require low latency. For instance, serving a single 175
billion LLM necessitates a minimum of 350GB of GPU memory [36].
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I’ve purchased the following products in the past in order: <Historical Behaviors>
Please help me to do the following things in order:
Step 1: Could you help me identify the key factors that influence my choice of products by analyzing my
purchase history (summarize my preferences briefly)? Let's work this out in a step by step way to be
sure we have the right answer.
Step 2. You will select the product categories or brands that appeal to me the most based on my personal
preferences. Please split these output with a line break (Format: no. a product category or brand).
Step 3. Based on my purchase history, can you recommend 5 products that fit the categories or brands
selected in Step 2? Please split these recommended products with a line break (Format: no. a
recommended product).

Step 1: Based on your purchase history, it seems like you are interested in gaming-related products that
focus on online gaming and social interaction. You also seem to be interested in simulation games.
Step 2:
1. Xbox Live products
2. Sims franchise
Step 3:
1. Xbox Live Gold Membership
2. Xbox Wireless Controller
3. The Sims 4 Deluxe Edition
4. The Sims 4 Cats and Dogs Expansion Pack
5. The Sims 4 City Living Expansion Pack

Template (𝒯!) for Teacher Model

Teacher Model Response

0). Xbox 360 Live 12 Month Messenger Gold Pack, 1). Xbox 360 Live Camera Bundle, 2). The Sims 3
Deluxe [Download].

Historical Behaviors

Figure 2: Zero-shot CoT prompting for larger teacher model.
Eliciting LLMs to generate recommendation rationales in a
step-by-step manner.

Despite recent study [31] attempting to mitigate this issue by of-
fline inference, it’s still unaffordable to generate recommendation
rationales for all users in the real-world scenario.

To this end, we leverage knowledge distillation to transfer the
recommendation reasoning capabilities of larger teacher models to
smaller student models, thereby reducing the computational over-
head. Considering that complex prompts can improve the reasoning
quality of large models but greatly increase the understanding diffi-
culty of small models, we design simplified template T𝑠 based on
the template T𝑡 , as showed in Figure 3. Subsequently, we generate
simplified prompts P′ = {𝑝′𝑢 |𝑢 ∈ U′} as input, and collect the
rationales R′ generated by teacher LLMs as the expected output
labels to fine-tune the smaller student model. As a result, for a
given input instruction 𝑝′𝑢 , we train the smaller model with param-
eters 𝜃 to generate the corresponding recommendation rationale 𝑟 ′𝑢 .
Formally, we optimize the negative log-likelihood of conditional
language modeling objective as follows:

L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 =
∑︁

𝑢∈U′

|𝑟 ′𝑢 |∑︁
𝑡=1

log
(
𝑃𝜃

(
𝑟 ′𝑢,𝑡 | 𝑝′𝑢 , 𝑟 ′𝑢,<𝑡

))
, (4)

where 𝑟 ′𝑢,𝑡 is the 𝑡-𝑡ℎ token of the 𝑟 ′𝑢 , 𝑟 ′𝑢,<𝑡 represents the tokens
before 𝑟 ′𝑢,𝑡 . To conserve resources, we employ the LoRA [11] for
parameter-efficient model fine-tuning. This approach involves train-
ing only a small set of additional parameters instead of the entire
model. Through experimental validation, we demonstrate that the
generated rationales maintain a comparable quality to models with
25 times the model size, despite using a limited number of train-
ing samples and a smaller model size. As illustrated in Figure 3,
the student model responses showed a step-by-step reasoning abil-
ity similar to that of the teacher model. For instance, the student
model initiates by logically inferring the user’s intent by leveraging
its recommendation-related CoT. Subsequently, it offers potential

I've watched the following movies in the past in order: <Historical Behaviors>
Please provide a brief summary of my products preferences, followed by the recommendation of five
product categories or brands that align with my interests, and then suggest five products that fall under
each category or brand.

Step 1: From your purchase history, it seems that you enjoy gaming-related products that are action-
packed, have fast-paced gameplay, and involve warfare or fighting. You also seem to prefer games based
on popular franchises such as Dynasty Warriors and Gundam. Additionally, you have a preference for
racing and sports games.
Step 2:
1. Racing games
2. Action-packed games with fast-paced gameplay
3. Games based on popular franchises such as Dynasty Warriors and Gundam
Step 3:
1. Forza Horizon 5 - Xbox Series X/S
2. Gundam Breaker: Battlege - PlayStation Vita
3. Dynasty Warriors 9 - PlayStation 4
4. Need for Speed Heat - Xbox One
5. Gran Turismo Sport - PlayStation 4

Template (𝒯!) for Student Model

Student Model Response

0). Gundam Breaker, 1). Shin Gundam Musou, 2). Forza Motorsport 4 - Xbox 360, 3). Armored Core:
For Answer - Xbox 360, 4). Dynasty Warriors: Gundam 3 - Xbox 360, 5). Import Tuner Challenge -
Xbox 360, 6). Forza Horizon - Xbox 360, 7). PlayStation Vita Memory Card 64GB (PCH-Z641J).

Historical Behaviors

Figure 3: Prompting for fine-tuned student model. Eliciting
smaller model to generate recommendation rationales in a
step-by-step manner.

game genres that align with the user’s interests. Ultimately, several
specific games are recommended to the user.

Overall, by utilizing recommendation rationales as labels instead
of generating pseudo-labels for recommended results from LLMs,
we enhance the smaller languagemodel with step-by-step reasoning
capabilities similar to the reasoning process of the larger model.

2.3 Empowering Recommender with Reasoning
Knowledge

With the help of step-by-step knowledge distillation, small lan-
guage models can become efficient reasoners. However, traditional
sequential recommendation models cannot directly utilize the ra-
tionales of natural language forms. Thus, in this section, we ex-
plore how to apply the recommendation rationales generated by
small language models to the sequence recommendation model,
enabling it to efficiently combine the reasoning ability of LLMs
in a resource-efficient manner. Specifically, we introduce two ap-
plication approaches. The first approach is ID-based, where we
treat the rationales text as supplementary knowledge and combine
them with ID-based recommendation backbone to improve the tra-
ditional closed-loop learning dependent on user-item interactions.
The second approach is ID-agnostic, where we encode the rationale
text of user behaviors and the description text of candidate items
as the representations of user and item, respectively. This allows
us to make recommendations based on text similarity.

2.3.1 Encoding Recommendation Rationales. Owing to the efficient
reasoning power of small language model, each user behavior se-
quence S𝑢 ∈ D can be associated with corresponding CoT ratio-
nales 𝑟𝑢 , while each item 𝑖 can be associated with attribute descrip-
tions 𝑓𝑖 (e.g., title, category, brand). Then we leverage pre-trained
language models (PLMs) to learn text representations, enabling the
measurement of semantic distance in vector space. Concretely, we
adopt the text encoder to map the text on both the item side and
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the sequence side into a unified semantic space:

𝒛text𝑖 = TextEncoder(𝑓𝑖 ),
𝒔text𝑢 = TextEncoder(𝑟𝑢 ),

(5)

where 𝒛text
𝑖

and 𝒔text𝑢 represent the text representations of item
descriptions and recommendation rationales, respectively. The en-
coder TextEncoder(·) can be flexibly configured as any frozen or
trainable text encoding model, which we instantiate with BERT [4]
in this work. Due to the step-by-step thinking process of language
model, the representation 𝒔text𝑢 encodes rich reasoning knowledge
from open-world at both macro-level (i.e., general user preference)
and micro-level (i.e., specific recommended item).

2.3.2 Utilizing Recommendation Rationales. Traditional sequential
recommendation methods learn the user sequence representation
based only on the user-item interaction history, resulting in an
information-enclosed model. To alleviate this issue, we enhance the
traditional recommender systemswith the rationale representations
obtained from Eq. (5), which is derived from open-world knowledge
and deep reasoning about the user’s behavior patterns. Specifically,
we leverage it through the following two approaches.

Empowering ID-Based Recommendation. To disrupt the closed
systems of sequential recommendation, we integrate the rationale
representations into traditional recommendation backbone, effec-
tively combining the open-world reasoning knowledge with the
collaborative signal of traditional recommendations. Specifically,
we propose an information fusion layer to combine the meaningful
text representations (i.e., 𝒔text𝑢 and 𝒛text

𝑖
) with the original embed-

dings in the backbone model as follows:

𝒛𝑖 = 𝑔𝑓 ( [𝑔𝑙 (𝒛text𝑖 ); 𝒛id𝑖 ]),

𝒔𝑢 = 𝑔𝑓 ( [𝑔𝑙 (𝒔text𝑢 ); 𝒔SeqEnc𝑢 ]),
(6)

where 𝒛id
𝑖
is the ID embedding of item, 𝒔SeqEnc𝑢 is the sequence repre-

sentation obtained from SeqEncoder (i.e., Eq (2)) in backbone model,
[; ] denotes the concatenation operation, 𝑔𝑙 (·) transforms the text
representations to the same dimension with the ID embeddings,
and 𝑔𝑓 (·) is an fusion layer that enables the model to learn and
incorporate flowing information from both sources. Without loss
of generality, we implement 𝑔𝑙 (·) and 𝑔𝑓 (·) with linear layers.

Empowering ID-Agnostic Recommendation. Recent studies
have revealed that sequential models that focus on text modeling
exhibit superior generalization abilities and are more effective in
handling cold-start items [8, 13]. Therefore, we explore a direct
utilization of rationale representations in ID-agnostic recommen-
dation scenarios. In this case, the representations of item text and
rationale are directly transformed into a unified space as follows:

𝒛𝑖 = 𝑔𝑡 (𝒛text𝑖 ),
𝒔𝑢 = 𝑔𝑡 (𝒔text𝑢 ),

(7)

where 𝑔𝑡 (·) denotes the transformation layer, which we imple-
ment using linear layers. Since 𝒔text𝑢 contains step-by-step reasoning
knowledge about user preferences, the model can recommend item
with matching item-side information 𝒛𝑖 to the user and provide
explainable recommendation rationales of natural language form.

3 EXPERIMENTS
3.1 Experimental Settings
3.1.1 Datasets. We conducted our experiments on three categories
from the Amazon Review dataset:Video Games (Games),Grocery
and Gourmet Food (Food), and Home and Kitchen (Home). Fol-
lowing the pre-processing procedure from [9, 12], and we random
sampling 26222 interactions with 3000 users and 9647 items for
Games datasets, 17668 interactions with 2000 users and 11190 items
for Food datasets, 20000 interactions with 2000 users and 15740
items for Home datasets. More information about these datasets
are presented in A.1.

3.1.2 Baselines. We adopt three widely used sequencial recom-
mendation models as the backbone.
• GRU4Rec [7] is a pioneering method that uses Recurrent Neural

Networks to model user behavior sequences.
• SASRec[12] is typical self-attention based framework designed

to capture the user’s preferences within a sequence.
• SRGNN[30] is graph-based model designed to capture the tran-

sition information between items in user sequences.
For each backbone model, we examine the performance of its

Item Feature Extensions: denoted as GRU4Rec+, SASRec+, and
SRGNN+. These extended versions involve concatenating the item
ID vector and item description text vector as the input, resulting in
enhanced item representations. We also introduce another ChatGPT
Feature Extension of each backbone model: SLIM− . This extended
version directly input the rationales generated by the teacher model,
ChatGPT, into Eq (5) without distillation. We present the imple-
mentation details of each methods in A.2.

3.1.3 Evaluation Metrics . We utilize three widely-adopted metrics
for evaluation: NDCG@10,Hit Rate@10, andHit Rate@20. The
average scores of 5 runs and the standard deviation are reported.
Following the strategy in [12], we randomly sample 100 negative
items for each user 𝑢 and rank these items alongside the ground-
truth item. The rankings of these 101 items are then used to evaluate.

3.2 Overall Performance
3.2.1 Improvement over Backbone Models in ID-based scenarios.
Our SLIM is highly flexible and can be integrated with any type
of sequential recommendation backbone. Firstly, we evaluate the
performance of the SLIM across various backbones. The results of
these comparisons are presented in Table 1. We have the following
observations: (1) Compared to all backbones and their item feature
extensions, the proposed SLIM achieves state-of-the-art (SOTA)
performance across all datasets. This further substantiates the effec-
tiveness of our model in enhancing traditional recommendations.
Notably, SLIM achieves a relative improvement of 28.17% over the
GRU4Rec+ in terms of Hit Rate@10 on the Home dataset. These
improvements are attributed to the meaningful rationales generated
from our distilled student model, which contains a wealth of knowl-
edge that benefits recommendations as a valuable supplement to
closed collaborative signals. (2) Surprisingly, in most cases (22 / 27),
SLIM in each backbone outperforms the ChatGPT feature exten-
sions SLIM− , achieving a relative improvement of 12.68% in terms
of Hit Rate@10 on the Home dataset with the GRU4Rec backbone.
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Table 1: ID-based scenarios. Comparison of recommendation performance among different backbones. The best results are
highlighted in bold. "Improv." indicates the relative improvement of SLIM compared to the best performance in backbones
(original backbone and backbone+).

Methods Games Food Home
NDCG@10 Hit @10 Hit @20 NDCG@10 Hit @10 Hit @20 NDCG@10 Hit @10 Hit @20

GRU4Rec 17.61 ± 0.18 30.87 ± 0.56 42.39 ± 0.62 9.10 ± 0.30 15.27 ± 0.58 19.51± 0.24 2.19 ± 0.21 4.17 ± 0.39 7.53 ± 0.64
GRU4Rec+ 27.33 ± 0.53 44.06 ± 0.79 56.53 ± 1.24 17.75± 0.78 31.10 ± 1.09 45.01 ± 1.46 12.19 ± 1.02 26.76 ± 2.58 49.10 ± 3.82
SLIM− 27.70 ± 0.47 45.13± 0.56 57.70 ± 0.37 17.97 ± 0.70 31.78 ± 1.47 46.88 ± 2.10 13.59 ± 1.05 30.30 ± 2.01 55.85 ± 3.55
SLIM 28.37 ± 0.41 45.68 ± 0.53 58.09 ± 0.58 18.32 ± 0.53 32.56 ± 1.30 46.92 ± 1.82 15.64 ± 0.51 34.33 ± 1.53 62.93 ± 3.46
Improv. 3.81% 3.68% 2.76% 3.21% 4.69% 4.24% 28.3% 28.29% 28.17%
SASRec 22.73 ± 0.28 37.77 ± 0.52 51.53 ± 0.39 26.78 ± 0.24 35.78 ± 0.36 43.32 ± 0.55 2.66 ± 0.22 5.56 ± 0.72 14.93 ± 1.53
SASRec+ 27.46 ± 0.19 44.88 ± 0.63 58.90 ± 0.38 30.95 ± 0.38 44.98 ± 0.53 55.61 ± 1.12 5.58 ± 0.10 11.09 ± 0.16 20.69 ± 0.77
SLIM− 31.58 ± 0.35 50.83 ± 0.62 63.45 ± 0.71 32.65 ± 0.15 48.01 ± 0.48 59.25 ± 0.56 5.95 ± 0.32 11.83 ± 0.62 22.43 ± 0.54
SLIM 31.43 ± 0.39 51.11 ± 0.82 64.10 ± 0.26 32.80 ± 0.40 48.27 ± 0.64 59.30 ± 0.89 6.01 ± 0.19 12.01 ± 0.38 22.29 ± 0.85
Improv. 14.46% 13.88% 8.83% 5.98% 7.31% 6.64% 7.71% 8.3% 7.73%
SRGNN 16.45 ± 0.22 29.29 ± 0.14 40.99 ± 0.52 10.99 ± 2.07 20.32 ± 4.30 32.14 ± 6.55 5.04 ± 0.83 13.48 ± 2.23 37.22 ± 3.85
SRGNN+ 21.54 ± 0.64 36.77 ± 1.05 49.11 ± 1.54 11.91 ± 0.71 21.39 ± 1.91 33.63 ± 3.41 11.61 ± 1.14 25.22 ± 2.46 43.85 ± 3.58
SLIM− 22.35 ± 1.48 37.69 ± 1.53 51.29 ± 0.59 12.92 ± 0.78 23.80 ± 1.60 37.22 ± 2.75 11.25 ± 1.42 24.28 ± 3.19 44.05 ± 5.97
SLIM 23.77 ± 0.20 39.81 ± 0.52 52.34 ± 0.63 12.38 ± 0.51 22.98 ± 1.30 36.44 ± 1.72 12.29 ± 1.39 26.51 ± 2.71 47.01 ± 3.61
Improv. 10.35% 8.27% 6.58% 3.95% 7.43% 8.36% 5.86% 5.11% 7.21%

Table 2: ID-agnostic Text Matching model. Comparison of recommendation performance without relying on any backbone
models. SLIM-Step𝑖 indicates only using the 𝑖-𝑡ℎ step rationales generated by SLIM. SLIM− is the ChatGPT feature extension of
this model.

Methods Games Food Home
NDCG@10 Hit @10 Hit @20 NDCG@10 Hit @10 Hit @20 NDCG@10 Hit @10 Hit @20

SLIM-Step1 13.78 ± 0.59 26.08 ± 0.91 41.71 ± 0.62 13.62 ± 0.22 24.90 ± 0.59 38.15 ± 0.69 4.25 ± 0.06 9.53 ± 0.27 18.91 ± 0.77
SLIM-Step2 16.78 ± 0.66 30.09 ± 0.89 45.75 ± 0.59 13.71 ± 0.48 24.23 ± 0.78 36.89 ± 0.77 4.75 ± 0.29 10.30 ± 0.55 19.99 ± 0.61
SLIM-Step3 20.20 ± 0.31 35.57 ± 0.54 50.04 ± 0.47 15.69 ± 0.26 26.69 ± 0.68 39.19 ± 0.98 4.83 ± 0.27 10.39 ± 0.38 21.05 ± 0.43
SLIM− 21.75 ± 0.58 38.05 ± 0.88 53.73 ± 0.79 19.08 ± 0.71 32.34 ± 0.74 44.63 ± 0.90 4.63 ± 0.28 10.15 ± 0.62 20.11 ± 1.01
SLIM 21.99 ± 0.22 38.33 ± 0.32 53.59 ± 0.72 18.13 ± 0.5 30.84 ± 0.54 44.04 ± 0.66 4.49 ± 0.24 9.96 ± 0.47 19.67 ± 0.59

While SLIM’s knowledge is distilled from the teacher model Chat-
GPT, the lack of control over closed-source models may result in the
generation of correct but irrelevant responses to recommendations.
This indicates that our smaller model can further prioritize the
information relevant to recommendations after distillation. Despite
being smaller in scale, it greater effectiveness in recommendations.

3.2.2 Performance in ID-agnostic scenarios. To establish a more
efficient and generalizable model, we evaluate the performance of
SLIM in ID-agnostic scenarios, i.e., we solely based on matching
CoT-based sequence embeddings and text-based item embeddings
as Eq (7), named Text Matching. The results are shown in Table 2.
We also obtained interesting findings: (1) In comparison to mod-
els that generate rationales based on the teacher model (SLIM−),
SLIM outperforms it in 55.56% of cases, despite having only 4%
of the parameters compared to ChatGPT. This demonstrates that
even with limit training samples (1000-2000) and a smaller model
size, SLIM can generate high-quality recommendation rationales
that are highly competitive with ChatGPT. (2) Additionally, this
straightforward matching approach exhibits superior performance
compared to all ID-based backbones listed in Table 1. This indicates
that high-quality text from both the sequence and item side can lead
to promising recommendations, even without meticulous design of

the text encoder. (3) To verify the effectiveness of each step in the
rationales, i.e., the user interest of Step1, the item category of Step2,
and the specific product of Step3, we evaluate them separately in
Text Matching. It is worth noting that the ranking of recommenda-
tion performance consistently follows the pattern of Step3 > Step2 >
Step1 in all cases. Surprisingly, on the Home dataset, Step3 even sur-
passes the performance achieved using the entire Rationale. These
results suggest that the smaller model trained with CoT prompting
is capable of step-by-step thinking, similar to human reasoning. As
the chain of thought evolves, the information relevant to recom-
mendations will be inferred. However, the performance of the Step1
is not satisfactory, possibly because the macroscopic information in
this step fails to align well with the microscopic information on the
item side, such as titles and categories. Nevertheless, the first step
still plays a crucial role as the foundation for subsequent reasoning
processes and ensures the interpretability of the model.

3.3 Merits of SLIM

Potentially Good Interpretability for the Recommendation
Results. Figure 4 illustrates a sample where SLIM successfully rec-
ommends the ground-truth, while SASRec fails. The target next
item in this sample is a long-tail item that only appears once in the
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Figure 4: Case study. Comparison of the predictions for the
next item obtained from SASRec and SLIM.

training set. As a result, traditional ID-based models struggle to
capture adequate collaborative signals. However, SLIM’s generated
rationales are able to deduce the user’s preferences, which align
closely with the characteristics of the target item “Milk Protein Rich
Nutrition Bar”, such as the categories of “Healthy snacks”. More
significantly, SLIM showcases its remarkable reasoning capabilities
and extensive domain knowledge by accurately inferring that users
are likely to purchase “Protein Bars”. In this manner, the textual
information from both the sequence side and item side aligns well,
leading to a high similarity in the vector space. Moreover, SLIM
generates rationales in human-understandable natural language.
The rationales provided in Step 1 and Step 2 offer justifications for
the recommendation of “Protein Bars” by SLIM. For each recom-
mended item, SLIM can provide a natural language explanation,
enhancing the interpretability of the recommendation process.

Consistent Improvement for User with Different Sparsity. To
investigate the impact of interaction data sparsity, we group users
based on the sparsity level of their interactions and evaluate the
performance of SLIM separately on different user groups. Specif-
ically, we sorted users based on their interaction frequency, and
then divided them equally into five user groups. Subsequently, SLIM
and SASRec are trained separately on the interaction data of each
user group, and compare their recommendation performance on
different user groups. The results, as depicted in Figure 5, that SLIM
consistently outperforms SASRec across all user groups, and SLIM
exhibits greater improvement on the relatively sparse user group
𝐺1 compared to the dense user group 𝐺5. This suggests that our
method’s improvement is stable and robust, effectively mitigating
the issue of sparsity in sequential recommendation.

Impressive Capability of Alleviating Popularity Bias. In the
field of recommender systems, popularity bias means that popular
items are recommended even more frequently than their popu-
larity would warrant. This bias intensifies the long-tail effects in
real-world recommendation domains. To analyze the impact of our
proposed SLIM on popularity bias, we count the frequency of items
in the training data and recommendation results. As shown in Fig-
ure 6, compared with the traditional method SASRec to recommend
the head items with high popularity, our method can effectively
recommend the tail items. Experimental results confirm that our
method significantly mitigate the popularity bias.
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Figure 5: Analysis for different sparse-level users. The spar-
sity decreases from user group 𝐺1 to user group 𝐺5.
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Figure 6: Analysis of popularity bias. We sort the items based
on their frequency in the training set (i.e., popularity) and
draw line plots based on each item’s frequency in the recom-
mendation results of SASRec and SLIM, respectively.

Significantly More Affordable Compared to SOTAs. SLIM has
demonstrated promising performance. In this part, we will analyze
the efficiency of the model through a comprehensive cost analysis
across multiple dimensions, including time cost, model size, deploy-
ment difficulty and API monetary cost. Specifically, we compare two
representative recommendation models based on the generation
capabilities of LLM. (1) LLM as a ranker [9]. (2) LLM as a knowledge
enhancer [31]. We do not take into account the costs associated
with backbones, as the backbone model is typically variable and the
cost is generally negligible compared to LLM. Due to the two-stage
nature of the LLM as a knowledge enhancer approach, it involves
offline knowledge generation based on LLM and online inference.
The term “Offline/Online Time” refers to the average response time
of the closed-source ChatGPT API for the compared methods. Con-
versely, our method corresponds to the average inference time on
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Table 3: The comparison of LLM costs. “Offline Time” rep-
resents the time it takes for LLM to generate one piece of
knowledge offline. “Online Time” represents the time it takes
for LLM to perform inference for each ranking online.

Costs LLM as Ranker LLM as Enhancer SLIM

Offline Time (s) % 5.54 (API call) 6.11
Online Time (s) 5.54 (API call) % %
Model Size 175B 175B 7B
Deployment Hard Hard 1 A100

API Costs/Input $0.0015/1K tokens $0.0015/1K tokens %

API Costs/Output $0.002/1K tokens $0.002/1K tokens %

a single Nvidia A100 GPU. It is worth mentioning that despite de-
ploying SLIM on only one GPU, we achieve a comparable time
cost compared to the API call duration of ChatGPT, which requires
significant resource consumption for deployment. From Table 3, it
can be concluded that SLIM is a highly efficient model compared
to existing LLM-based recommendations. It possesses acceptable
inference latency, minimal model size, and can be deployed on lim-
ited resources. Additionally, being based on an open-source model,
it does not incur any financial cost.

On the other hands, we also study the data efficiency of fine-
tuning the student models, and we conclude that only 1000 samples
is enough for a promising performance. We present the details of
the analysis in B.1.

4 RELATEDWORK
4.1 Sequential Recommender Systems
The core idea of existing sequential recommendation models lies
in initially formalizing user behavior as a chronologically-ordered
interaction sequence with items, followed by designing diverse
behavior encoders to learn behavior patterns that accurately de-
pict user interests [26]. GRU4Rec [7] is one of the earliest attempts
to learn evolving patterns for user behaviors using Gated Recur-
rent Units (GRU). With the rapid development of deep learning,
there have also been emerging many neural network architectures
as behavior encoders, including Convolutional Neural Networks-
based methods [23], Attention-based methods [12], and Graph Neu-
ral Networks-based methods [30]. To enhance the transferability
of the sequence modeling, recent studies have begun exploring
ID-agnostic text-based modeling approaches [8, 13], such as Rec-
former [13], which proposes formulating each item as a “sentence”
and designing a Transformer-based language model to learn user
preference representations. However, these methods rely on lim-
ited textual information provided by the recommendation dataset,
which restricts the model’s capabilities due to its isolation from
rich open-world knowledge. Recently, the emergence of LLM that
utilize massive training corpora and large model sizes has disrupted
the traditional closed-loop of user-item interaction in recommen-
dations [15, 16].

4.2 LLM Enhanced Recommender Systems
The utilization of LLMs, with their human-like understanding and
generation capabilities, introduces new knowledge spaces in recom-
mendations [5, 14, 29]. To integrate LLM’s generation capabilities
into recommendations, the current methods can be primarily cat-
egorized into two mainstream trends based on the different roles
LLM plays in the recommendation pipeline. The first trend involves
utilizing LLM as a ranker or scorer [2, 9, 15, 32, 33]. For instance, [9]
explores the zero-shot ranking capabilities of LLM in recommenda-
tion. This requires careful design of prompts that involve a prede-
fined list of candidate items for the limited re-ranking stage. [33]
proposes to view recommendation as instruction following by LLMs.
In this approach, 39 instruction templates are manually designed to
enable LLMs to execute the instructions. However, these methods
often exhibit limited performance because the frozen LLMs are
typically trained on open-world corpora that lack domain-specific
collaborative signals from recommendations. To incorporate col-
laborative information, recent studies have started exploring an-
other trend, which involves utilizing LLM as a knowledge enhancer
to complement traditional recommender systems [16, 31]. For ex-
ample, [31] explores the acquisition of user preferences and item
factual knowledge from ChatGPT, and utilizes them to enhance
traditional Click-Through Rate (CTR) prediction. [16] proposes to
employ open-source LLM as content encoders and utilize closed-
source ChatGPT to enrich the training data from various perspec-
tives. While promising, existing work has not fully leveraged the
step-by-step reasoning capabilities of LLM in the recommendation
scenario. Furthermore, current approaches often rely on the use
of large model sizes to achieve improved reasoning capabilities.
Although techniques like prestoring can be employed to deploy
only the inference model, these models still require larger model
sizes in either offline or online stages, which may not be feasible in
real-world recommender systems.

5 CONCLUSION
In this paper, we propose SLIM, a method that enables sequen-
tial recommender systems to leverage the substantial reasoning
capabilities of LLMs in a resource-efficient manner. We design a
step-by-step knowledge distillation module to transfer the step-
by-step reasoning capabilities in recommendation from a larger
teacher model to a smaller student model (with approximately
4% of the parameters of the teacher model). This smaller model
evolves into a proficient reasoner, which can be directly deployed
as a “slim” knowledge generator for sequential recommendation.
Consequently, this knowledge can be flexibly integrated with any
sequential recommendation backbone and utilized in both ID-based
and ID-agnostic scenarios. The experimental results demonstrate
that SLIM significantly improves the performance of sequential rec-
ommendation backbones. It also achieves promising results in ID-
agnostic scenarios without relying on any backbone. Furthermore,
additional analysis experiments highlight that the costs associated
with SLIM are affordable and have the potential to enhance the
interpretability of recommendations. A possible future direction is
to design customized knowledge encoders to further capture the
information from smaller models.
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A DETAILS OF EXPERIMENTAL SETTINGS
A.1 Dataset
We conducted our experiments on three categories from the Ama-
zon Review dataset:VideoGames (Games),Grocery andGourmet
Food (Food), and Home and Kitchen (Home). In this dataset, re-
views are considered as interactions. We follow the same prepro-
cessing procedure from [9, 12], i.e., users and items with fewer than
five interactions were filtered out. The interactions of each user
were sorted in ascending order based on timestamps to construct
the corresponding historical interaction sequences. To cope with
the significant cost associated with ChatGPT, we conducted random
sampling of complete user interactions from each dataset. Follow-
ing the sampling process, the resulting sizes of the Games, Food,
and Home datasets are as follows: the number of users [3000, 2000,
2000], the number of items [9647, 11190, 15740], and the number
of interactions [26222, 17668, 20000]. For item description text, we
utilized the titles from all datasets and the sales type from the Food
and Home datasets. Following [9, 12], we employ the leave-one-out
strategy. Specifically, for each interacted sequence S𝑢 , the most
recent interaction is used for testing, the second most recent inter-
action for validation, and all remaining interactions for training.
During testing, the input sequences consist of both training and
validation interactions.

A.2 Implementation Details
We employ the powerful close-source ChatGPT as the teachermodel
and the open-source LLaMA2-7B [24] as the student model. The
OpenAI’s API gpt-3.5-turbo1 is utilized for generating the rationales
of the teacher model. We follow the parameters provided in llama-
recipes2 for fine-tuning LLaMA2-7B. Specifically, for the Games,
Food, and Home datasets, data sizes of 1000, 2000, and 2000 were
used for fine-tuning LLaMA2-7B, respectively. Additionally, we
set the maximum length of generated tokens to be 300 during the
inference process for LLaMA2-7B. All embeddings obtained from
Eq. (5) have a dimensionality of 768. The implementation of SASRec
is based on the PyTorch version code3. For GRU4Rec and SRGNN,
we utilize the RecBole 4, which is a widely-used open-source rec-
ommendation library. The implementation of SLIM ensures that the
embedding dimensions remain consistent with the original back-
bone. We carefully search hyper-parameters of all the baselines to
get the best performance.

B MORE EXPERIMENTAL RESULTS
B.1 Impact of Different Data Size for

Fine-tuning Student Models
In this part, we will analyze the efficiency of the model by analyz-
ing the data size for fine-tuning the student models. In particular,
we validate the optimal fine-tuning data size required for student
models under different backbones, as illustrated in Figure 7. The
recommendation performance demonstrates a trend of initially in-
creasing and then decreasing with an increase in the data size across

1https://openai.com/
2https://github.com/facebookresearch/llama-recipes
3https://github.com/pmixer/SASRec.pytorch
4https://github.com/RUCAIBox/RecBole
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Figure 7: Compare the recommendation performance of fine-
tuning student models with different data sizes using various
backbones on Games dataset.

all backbones. Remarkably, the optimal performance is consistently
achieved with 1000 fine-tuning samples. This finding suggests that
SLIM can effectively perform the fine-tuning process using minimal
data from the teacher model. This is also supported by the observa-
tion that fine-tuning based on CoT is more efficient compared to
fine-tuning based on labels [17].
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