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ABSTRACT

Large language models (LLMs) are commonly used in question answering (QA)
settings, including natural science and related research domains. Reliable un-
certainty quantification (UQ) is critical for the trustworthy uptake of generated
answers, yet existing approaches remain insufficiently validated in scientific QA.
We introduce the first large-scale benchmark for evaluating UQ metrics in this set-
ting, providing an extensible open-source framework to assess calibration across
diverse models and datasets. Our study spans eleven LLM models in base,
instruction-tuned and reasoning variants and covers eight scientific QA datasets,
including both multiple-choice and arithmetic question answering tasks. At the
token level, we find that instruction tuning induces strong probability mass polar-
ization, reducing the reliability of token-level confidences as estimates of uncer-
tainty. At the sequence level, we show that verbalized uncertainty estimates are
systematically biased and poorly correlated with correctness, while answer fre-
quency (consistency across samples) yields the most reliable calibration, albeit at
high computational cost. These findings expose critical limitations of current UQ
methods for LLMs and highlight concrete opportunities for developing scalable,
well-calibrated confidence measures for scientific QA.

1 INTRODUCTION

Large language models (LLMs) have rapidly emerged as powerful tools for natural language pro-
cessing, understanding and generation. Among their diverse applications, they are increasingly
deployed in chat-based assistants for question answering (QA), automated agent-based systems, and
serving as surrogates for traditional search engines (Jin et al.| |2025; Xiong et al.|[2024a; [Kelly et al.,
2023). Within this landscape, scientific QA constitutes a particularly critical and challenging task.
It spans a wide range of use cases, from public science communication (Schéfer, 2023) and educa-
tion across different levels of expertise (Welbl et al., 2017), to supporting research and knowledge
discovery (Gu & Krennl 2025). In these contexts, accuracy and trustworthiness are essential, as
errors may misinform the public, impair learning, or distort scientific practice. A central obsta-
cle to reliability is the phenomenon of hallucinations, where LLMs generate fluent and seemingly
confident answers that are factually incorrect or misleading (Ji et al., [2022). While hallucinations
are now widely recognized, effective methods to detect and mitigate them remain underdeveloped,
particularly in high-stakes domains such as science.

Research into UQ aims to develop reliable, automated methods for quantifying how certain a model
is in its own predictions (Guo et al. [2017). In the context of LLMs, UQ serves as a critical tool
to mitigate hallucinations: by identifying outputs with high uncertainty, systems can flag poten-
tially erroneous responses, abstain from answering, or route queries to alternative mechanisms —i.e.
larger models, retrieval-augmented systems, or human reviewers. Beyond error mitigation, reliable
UQ enhances transparency and user trustworthiness by providing interpretable indicators of answer
reliability and soundness (Dhuliawala et al., 2023} |Devic et al., [2025} [Reyes et al., [ 2025).
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2 KEY CONTRIBUTIONS

To address open questions regarding the applicability of UQ in scientific QA, this work benchmarks
a range of uncertainty methods with a qualitative and quantitative focus on calibration. With this,
we strive to fill gaps in available studies which we highlight in Section [3| We target structured tasks
such as multiple-choice and arithmetic questions to enable rigorous ground truth verification. The
evaluation centers on physics QA datasets as a representative natural science domain and control-
lable environment with strong potential for generalisation (Zhang et al., |2024b). We benchmark a
selected subset of uncertainty methods across open-weight models. By evaluating how well these
UQ methods capture the reliability of model predictions, we aim to characterize model behavior and
limitations in a scientific context. In addition, we also investigate the most common information
source for LLM uncertainty estimates: token probabilities.

We approach this task by identifying key conceptual approaches to uncertainty estimation in LLMs.
We conduct a qualitative assessment of representative UQ methods. These are subsequently empiri-
cally evaluated on scientific QA datasets. We then study this data to answer two research questions:

(RQ1) To what extent are the token probabilities a calibrated measure of confidence and what
effect does the instruction-tuning or reasoning process have on the calibration?

(RQ2) How do different UQ methods compare in reliable estimation of uncertainty in scientific
QA?

Finally, to facilitate ongoing research and rapid iteration as LLMs and UQ methods continue to
evolve, we introduce a flexible and extensible framework for LLM benchmarking. We release this
framework together with the implementation of benchmarks for calibration assessment presented
in this paper, detailed reproduction instructions, leaf-node results from our benchmark runs, and
additional visualizations in an open-access repository accompanying this pape

Our paper is structured as follows: After the introduction and key contributions of Sections [T]to 2}
we highlight the epistemic background of our analysis in Section We present related work in
Section 4] which in turn motivated our experimental setup of Section[5] We then describe our find-
ings on token probability calibration in Section [ (RQ7) and benchmark sequence-level uncertainty
calibration in Section [/| (RQ2). Our report concludes with limitations in Section [§] conclusions in
Section[Qand a brief outlook in Section[TQl

3 BACKGROUND

3.1 CHALLENGES IN SCIENTIFIC QUESTION ANSWERING

Scientific QA involves unique challenges stemming from the structured, coherent and complex na-
ture of scientific knowledge at large. Questions often require interpreting numerical values ex-
pressed in various lexical forms (“eighteen” instead of “18”), units (“pounds” instead of “lbs”), or
domain-specific notations like chemical formulae and mathematical representations. In addition to
parsing these elements, models must recall relevant formulae, relate their parameters, and grasp the
relationships among variables. Many problems involve non-linear functions or require rearranging
equations before applying them. Since LLMs do not possess intrinsic arithmetic capabilities, they
depend on pattern recognition from training data or external tools such as code execution to perform
calculations accurately. Multi-step reasoning as often required in scientific QA tasks are particularly
difficult as errors in earlier steps propagate downstream and compromise the final result.

3.2 UNCERTAINTY QUANTIFICATION IN PREDICTIVE MODELS

Neural networks, including LLMs, face predictive uncertainty as their training data provide only
a discrete and incomplete mapping of real-world artifacts (Hiillermeier & Waegeman, [2021).The
paradigm of negative log likelihood training for next token prediction (Radford et al.| |2018) in LLM
pre-training enforces uncertainty of generated tokens. Besides obtaining this predictive uncertainty
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with dedicated methods (Gal et al.| 2016)), the act of validating the quantitative soundness of uncer-
tainties comes as a challenge to many practitioners (Guo et al.,[2017;|Chung et al., [2021}).

The field of UQ methods in LLMs is still nascent compared to methods for classification or re-
gression tasks (Kendall & Gall, 2017 [Kuleshov et al., [2018; |Papamarkou et al.,2024) in general.
The standard evaluation technique for UQ methods are calibration plots (calibrations for short),
which visualise how well predicted confidence scores correlate to the true likelihood of correctness
(Guo et al.||2017; Hendrycks & Gimpel, 2018)). Many quantitative approaches rely on information-
theoretic metrics, such as entropy or perplexity, but these often fail to capture language-specific
nuances and require further validation in the LLM context. Recently, LLM-specific uncertainty es-
timation methods have emerged, such as Verbalized Uncertainty, P(True), and Claim Conditioned
Probability (CCP) (see details in Section and Section . However, they are studied in narrow
domains, such as factual QA on biographies or encyclopedic content (Fadeeva et al.,[2024). Conse-
quently, it remains unclear how well these approaches generalize to scientific QA. Compounding the
issue, current benchmarks are often tightly coupled to specific models, datasets, and UQ methods,
limiting adaptability to rapidly evolving LLM architectures and use cases.

3.3 UQ METHODS AND CALIBRATION

A straight forward way of estimating uncertainty in LLMs is to reformulate multiple-choice
question-answering (MCQA) items as classification tasks, prompting the model to output a single
label token (e.g., A/B/C/D) representing the chosen answer.The confidence scores are derived from
the probabilities assigned to each label. These probabilities can be used as confidence scores directly,
i.e. excluding probability mass from non-label tokens. Alternatively, a normalization with respect
to the total probability mass assigned to all possible answer labels is applied. By normalizing over
the label set, the resulting confidence scores represent only relative preferences among the labels —
not (un-)certainty in the options. This may obscure uncertainty that would otherwise be expressed
through low absolute probabilities, making the normalized scores less reliable as measures of uncer-
tainty (Wang et al.| 2024a)). The authors of (OpenAll 2023 compared the calibration of responses
from base model and instruction-tuned GPT-4 using this approach. Their results suggested good cal-
ibration in the base model, but significantly worse calibration in the instruction-tuned model. This
sparked a controversy about the influence of instruction-tuning on the calibration of models.

We have conducted an extensive analysis of existing UQ methods, see Section[A.4] Only methods
producing normalized sequence-level uncertainty scores are included in our analysis to enable relia-
bility UQ validation by calibration. Subsequently, we focus our work on the following UQ methods:
Verbalized Uncertainty (Tian et all 2023)), P(True) (Kadavath et al.| 2022), Frequency of Answer
(Wang et al.l 2023), Claim-Conditioned Probability (CCP) (Fadeeva et al., 2024). More details of
these methods are discussed in Section[Z.1]

4 RELATED WORK

UQ is particularly critical for LLMs because their token-level probabilistic generation can produce
fluent yet confidently incorrect or misleading outputs known as hallucinations (Maynez et al.,[2020).
These hallucinations, classified as intrinsic contradictions or extrinsic fabrications, complicate trust-
worthiness and highlight the need for robust uncertainty detection (Sui et al., 2024; [Zhang et al.,
2023b; |Banerjee et al., 2024). Many methods have been established to obtain predictive uncertain-
ties for LLM generated text (Geng et al., 2024).

Token-level uncertainty estimation faces challenges due to varying semantic importance of tokens,
while many methods assume equal token importance, leading to misrepresentations (Ullrich et al.,
2025} Kuhn et al., [2023a). Linguistic calibration through epistemic markers (e.g., “might,” “po-
tentially”’) provides interpretable uncertainty cues, but models tend to be overconfident in these
expressions, risking user over-reliance (Band et al.| 2024; Zhou et al.|[2024). Empirical work shows
that base LLMs are generally better calibrated than instruction-tuned models, which often become
overconfident and produce polarized token probability distributions that impair uncertainty repre-
sentation (OpenAll 2023} [Tian et al. 2023} |Cruz et al., 2024} Wang et al [2025). Prompt design
significantly affects uncertainty and calibration: small prompt variations, the use of epistemic phras-
ing, and simulating knowledge profiles influence both accuracy and confidence. Strategies have been
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proposed to mitigate overconfidence in self-evaluations (Cao et al., 2024} He et al., | 2024;|Sclar et al.|
2024} Zhou et al., 2023; |Lu & Wang, 2024} Xiong et al.,2024b). This body of work underscores the
complexity of uncertainty estimation in LLMs and the need for context-aware UQ methods.

First comprehensive studies of UQ effectiveness as well as their calibration were undertaken only
recently by Huang et al.| (2025) and |[Fadeeva et al.| (2023a). For the latter, the authors share open-
source UQ benchmark tooling (LM-Polygraph) publicly, underlining the importance of UQ analyses
as LLM architectures progress rapidly. Both studies rate the effectiveness of UQ methods by virtue
of two and one summary statistic respectively. This stands in contrast to existing best practices (cali-
bration plots) to evaluate the quality of predictive uncertainties (Guo et al.,|2017) both quantitatively
and qualitatively.

We also observe early studies of calibration as a measure of quality control for UQ in LLMs: [Tao
et al.| (2025) presented a vast analysis with respect to LLM models explored, but restrict them-
selves to one single dataset only. |Liu et al.| (2025) surveyed a variety of published UQ methods
and presented available datasets. But they did not perform experiment for an empirical comparison.
Multiple reports around the LM-Polygraph project (Fadeeva et al.|[2023a)) offer a structured compar-
ison of UQ methods along axes like logit access, computational cost, and granularity of uncertainty
of up to 28 uncertainty methods, but they focus on one single summary statistic to survey methods.
Our work aspires to improve on this and present a comprehensive suite of results for multiple UQ
methods, multiple datasets and LLMs, which is reproducible, fast and provides robust evidence with
respect to qualitative and quantitative assessments.

5 GENERAL EXPERIMENTAL SETUP

5.1 DATASET SELECTION

To ensure reliable and verifiable evaluation of uncertainty methods, we use multiple-choice question
answering (MCQA) and arithmetic question answering (arithmetic QA) as our primary task formats.
These formats provide either structured answer options with a single correct choice (MCQA) or
verifiable numeric solutions (arithmetic QA), allowing for objective, automated correctness checks,
unlike open-ended QA which often requires subjective human evaluation.

Physics is chosen as the core domain due to its foundational role in the natural sciences, with sup-
porting datasets from mathematics to capture formula-based reasoning and calculation. To study
the effect of task complexity, the selected datasets span a range of difficulty levels and cognitive
demands, from fact retrieval to multi-step reasoning.

The following provides an overview over seleted datasets (more details provided in Section|A.3).

MMLU (Hendrycks et al.,2021) is a multiple-choice benchmark with 15, 908 questions across 57
academic subjects, including physics at varying levels. It is primarily testing comprehension, factual
knowledge and single step reasoning.

ARC (Clark et al., 2018)) tests scientific reasoning using grade-school science exam questions split
into ARC-Easy and ARC-Challenge subsets. The latter emphasizes multi-step reasoning, making it
a strong benchmark for evaluating UQ methods under complex conditions.

SciQ (Welbl et al., |2017) contains 13,679 multiple-choice questions in physics, chemistry, and
biology. It emphasizes conceptual understanding.

GPQA (Rein et al.} 2023) is a graduate-level science benchmark with 448 expert-written questions
designed to resist simple lookup. Its high difficulty and reasoning demands make it particularly
useful for stress-testing UQ methods.

GSMS8K (Cobbe et al.,[2021)) is a standard math word problem dataset with 8,500 arithmetic ques-
tions requiring step-by-step symbolic reasoning.

GSM-MC (Zhang et al., [2024b) is a multiple-choice variant of GSM8K, using model-generated
distractors to reduce evaluation ambiguity.

SVAMP (Patel et al., 2021)) is an arithmetic reasoning dataset containing 1,000 questions that in-
troduce distracting information in the problem text. While featuring low to moderate computational
complexity, these distractors are specifically designed to induce ambiguity and decision uncertainty,
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challenging models can recognize and quantify uncertainty in the presence of misleading or irrele-
vant information.

SciBench (Wang et al 2024b) comprises 692 college-level questions from math, chemistry, and
physics textbooks. It targets advanced symbolic reasoning involving formulas and physical units.

5.2 MODEL SELECTION

Models were chosen to cover a broad spectrum of LLMs while ensuring reproducibility through
the use of open-weight, publicly available models. To capture diversity in design, the selection
spans five major providers (OpenAl, Mistral, Meta, Qwen, and Google) and includes models of
varying sizes (from 7B to 70B parameters), types (base, instruction-tuned and reasoning models)
and architectural designs, such as Mixture-of-Experts. To research the effect of instruction tuning
on the calibration of label probabilities, instruction-tuned and reasoning models are complemented
by their base model counterparts to enable controlled comparison. A detailed list of selected models
can be found in Section[A2l

6 BENCHMARKING LABEL PROBABILITY CALIBRATION

6.1 METHODOLOGY / EXPERIMENTAL SETUP

While confidence scores represent a model’s self-assessed probability of correctness, effective UQ
requires calibration methods that align these scores with empirical accuracy (Guo et al., 2017).
Expected Calibration Error (ECE) is a widely used metric for this purpose, comparing binned con-
fidence estimates with actual correctness.

To ensure comparability while extending prior work, the experimental setup was designed to remain
close to the GPT-4 Technical Report (OpenAll [2023)), with expansions in model coverage, dataset
diversity, and calibration analysis. We evaluated all selected base, instruction-tuned and reason-
ing models across four MCQA datasets, chosen to represent increasing reasoning complexity: fac-
tual and single-step reasoning (MMLU), symbolic arithmetic reasoning (GSM8K), and multi-step
reasoning (ARC-Reasoning, GPQA). Initial tests revealed substantial differences in task compre-
hension between base and instruction-tuned models. To address this, we designed four alternative
prompts (see Section [A.5.T), each using three-shot prompting to ensure task comprehension. We
then selected the prompt that maximized the probability mass assigned to label tokens, thereby en-
suring consistent task adherence across models.

Calibration performance was then assessed by comparing the model variants and raw and normalized
label probabilities as confidence scores, using calibration plots and summary metrics such as ECE.

6.2 KEY FINDINGS

shows a subset of results that illustrate our key findings, which we discuss below. All results
shown use Prompt Design 1 (see Section[A.5.1)), which was found to optimize task comprehension
across model types (see Section[A.5.2)). Comprehensive plots showing results for all models, datasets
and prompt designs are included in Section[A.5.4]

While we had previously hypothesised that using raw label probabilities may enable the model to
express general uncertainty, our results show that the task comprehension poses a bigger impact on
the total probability mass assigned to label tokens. As a result, we find that raw probabilities are
confounded by overall task comprehension and yield misleading calibration, while normalization
(excluding non-label tokens) enables meaningful confidence estimates (see Figure[A.3).

We further find that ECE increases with reasoning complexity (see [Figure TJ). Tasks requiring sym-
bolic or multi-step reasoning, such as GSM8K and GPQA, exhibit substantially higher ECE com-
pared to factual retrieval tasks, such as MMLU. This distinction highlights that token-level prob-
abilities can reliably capture aleatoric uncertainty in fact retrieval, but become overconfident and
unreliable when reasoning is required as a result of epistemic uncertainty.

Comparing base and instruction-tuned models, we reproduce the degradation of ECE observed by
(OpenAlL 2023), although not uniformly across models to the same degree. However, visual calibra-



Under review as a conference paper at ICLR 2026

Mistral-Small Llama-3 Qwen3-30B-A3B
Small-3. istral-S i Liama-3.1-708 Llama-3. Q se
M [ECE
0.1556

.1-24B-Base Mis

-A3B-Thinking

ECE,
0.0972

ECE

ECE. ECE
0.0590 0.1476) 0.0848

ECE
01032

MMLU

ECE ECE ECE
0.0390 =H 02995 0.0307

GSMBKMC

ECE
0.0985

ECE:
0.5564

ECE

ECE:
0.4665 0.0429

GPQA

Figure 1: Calibration Plots Using Normalized Label Probabilities and Only the Most Probable
Label Per Prompt. Columns correspond to three selected model families: base variants are shown
in orange, instruction-tuned variants in blue, and reasoning variants in green. Rows refer to three
QA datasets on MMLU, GSM8KMC and GPQA. Darker shading indicates a higher number of items
within each confidence bin. Each bin is labelled with the sample count contained. The plot shows
the results using Prompt Design 1.

tion analysis reveals systematic polarization of token probabilities. Instruction-tuned models tend
to concentrate nearly all probability mass on a single label compared to their base model counter-
parts, thereby degrading the expressiveness of token-level confidence scores. This effect is evident
in |Figure 1} which shows a pronounced accumulation of items in the highest-confidence bucket.
This effect is even more pronounced in reasoning models, where the reasoning process prior to re-
sponding with a label appears to commit to a single option, leaving minimal probability mass on
the other options. The degree of polarization is consistent across most model families, with the
notable exception of certain Mistral models, such as Ministral-8B-Instruct (see section m and
Mistral-Small-3.2-24B-Instruct (see[Figure T). Whether this difference arises from architectural de-
sign choices or from specific fine-tuning datasets and paradigms remains a subject of future research.

6.3 IsSUESs WITH ECE

The observed contrast between mixed levels of ECE degradation and the uniform polarization that
diminishes the practical usefulness of calibration scores reveals a fundamental limitation of ECE
as a calibration metric. Although ECE measures the correlation between predicted confidence and
the likelihood of correctness, it is not independent of the model’s overall accuracy. As a result,
the ECE of highly overconfident models that consistently produce high confidence scores is largely
determined by the model’s overall accuracy rather than the reliability of confidence estimates for in-
dividual predictions. Consequently, as model accuracy increases, ECE may appear deceptively low
even when the model remains poorly calibrated at the instance level. This dependence undermines
the utility of ECE for UQ, where the primary goal is to flag potentially incorrect answers through
high uncertainty. This limitation is particularly relevant for LLMs, which suffer from overconfi-
dent in their generations (Zhou et al., 2024). As a result, we advocate for the use of ECE only in
combination with visual assessment of calibration plots and complementary summary metrics.

7 BENCHMARKING SEQUENCE-LEVEL CALIBRATION

7.1 SELECTION OF UNCERTAINTY MEASURES

The selection of the following four methods emphasizes relevance to scientific QA, theoretical
soundness, computational feasibility, and empirical promise.

Verbalized Uncertainty (Tian et al., 2023 prompts the model subsequent to the answer generation
to provide a self-assessed probability estimate of correctness in token space. While straightforward,
it ignores token probability distributions and may be susceptible to training data bias.
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P(True) (Kadavath et al.l 2022)) prompts the model subsequent to the answer generation to clas-
sify the answer as “(A) True” or “(B) False”. The underlying token probabilities assigned to the
corresponding labels ”(A)” and ”(B)” are then used as confidence scores.

Frequency of Answer estimates certainty by the proportion of semantically equivalent answers
among multiple sampled generations for the same prompt. This is computationally expensive and
semantic equivalence detection of answers is non-trivial in open ended questions answering. How-
ever, it captures semantic consistency and proxies other approaches like self-consistency prompting
(Wang et al.} 2023).

Claim-Conditioned Probability (CCP) (Fadeeva et al. 2024) evaluates uncertainty at the token
level by determining the semantic consistency among the top probable token alternatives. This is
done by clustering the token alternatives in tokens that entail and contradict the original meaning
by comparing the chosen token with its alternatives using an NLI model. The token-level confi-
dence score is the ratio of probability mass assigned to entailing tokens to the sum of entailing and
contradicting tokens. Sequence-level confidence is calculated from product of token confidences.

7.2 METHODOLOGY / EXPERIMENTAL SETUP

To evaluate the calibration of different uncertainty methods in long-form QA, we focus exclusively
on instruction-tuned and reasoning models, as base models exhibit poor task comprehension and
are unsuitable for QA tasks. For this experiment, all previously selected MCQA and arithmetic QA
datasets were used.

MCQA introduces specific challenges: (1) Selection bias. Models may favor certain answer choices
due to token frequency or formatting learned during training, regardless of semantic content (Myrza-
khan et al., 2024). (2) Positional bias. Models can exhibit systematic preference for certain label
positions (e.g., always selecting “A”) (Zheng et al.| 2024)).

We address these biases using the APriCoT prompting strategy (Moore et al.l 2025)), which com-
bines Chain-of-Thought reasoning with counterfactual prompting. Each answer choice is evaluated
independently, and the model classifies it as correct or incorrect, producing a verifiable judgment.
This isolates answer evaluation from ordering and formatting effects, reducing both selection and
positional bias and improving calibration. Rephrasing MC questions as open-ended queries could
avoid format-related biases, but many items depend on predefined choices (e.g., fill-in-the-blank or
elimination logic). APriCoT approximates open-ended QA by eliciting reasoning over individual
answers while preserving a verifiable format.

For arithmetic QA datasets, Chain-of-Thought (CoT) prompting is used to facilitate multi-step rea-
soning. To balance coverage and computational cost, each dataset is subsampled to 250 items, and
10 generations are sampled per prompt, resulting in a total of 57, 500 QA prompts per model.

7.3 KEY FINDINGS

Llama-3.3-70B gpt-0ss-20b
€) Frequen Frequency

Verbalized Uncertainty P(Tru

s .|l il ..

Figure 2: Selected Calibration Plots For The Four Selected Methods. Results for Llama-3.3-70B
(left) and gpt-o0ss-20b (right) are shown, each for MMLU and GPQA for the four computed sequence
level uncertainty methods. The full plots for all models and datasets per UQ method can be found

in Section [@
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Verbalized Uncertainty Our results show that, although all models reliably produced valid nu-
meric outputs, they overwhelmingly defaulted to a small set of values (see [Figure 3a), with higher
confidences dominating the responses. This leads to a biased distribution of confidence scores,
potentially driven by training data and instruction tuning. Calibration plots reveal no meaningful
correlation between these verbalized scores and answer accuracy in nearly all models, indicating
that Verbalized Uncertainty is not a reliable proxy for true model confidence. The gpt-oss models
represent a notable exception: they provide well-calibrated scores, achieving low ECE values even
on challenging datasets such as GPQA and SciBench (see [Figure A.8). The reason for the relia-
bility of these verbalized scores remains unclear, as no architectural or scale-related factors clearly
distinguish these models from others.

P(True) We find that P(True) suffers from pronounced response bias. In several models P(True)
overwhelmingly assigns near 1.0 confidence with little use of intermediate confidence scores, result-
ing in a polarized distribution of certainty scores (see [Figure 3b). This polarization may stems from
the model’s commitment to a single reasoning path before classification, and varies by model. Cali-
bration plots further reveal no meaningful correlation between P(True) scores and actual correctness,
indicating that P(True) cannot reliably quantify uncertainty. This reflects again the polarisation in

reasoning models observed in [Figure 1]
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(a) Verbalized Uncertainty Confidence scores seen
in less than 5% of the total responses have been
grouped into “Other”, with the number of distinct
confidence scores shown in brackets.

(b) P(True) Confidence scores are derived by prob-
ability mass assigned to labels (&) and (B), repre-
senting the model’s confidence that the answer is true
or false respectively.

Figure 3: Distribution of Confidence Scores Across Selected Representative Models. Confidence
scores have been aggregated across all datasets (57,500 prompts in total). See Section [A.6.4] and
Section[A.6.5| for extensive plots for all models.

Frequency of Answer Our evaluation (Figure [2) shows that higher answer frequencies strongly
correlate with correctness across both multiple-choice and arithmetic tasks. More challenging
datasets (e.g., GPQA, SciBench) exhibiting greater answer diversity, which reflects higher model
uncertainty. Calibration plots confirm well-aligned confidence estimates based on Frequency of An-
swer, demonstrating the reliability of this approach. However, due to its computational cost, due to
multiple generations per prompt, and its dependence on semantic clustering of outputs, it remains
challenging or unapplicable to open-ended QA.

Claim Conditioned Probability In practice, we find that CCP suffers from vanishing sequence-
level scores as generation length grows, i.e. multiplying a large number of token confidences drives
overall confidence near 0. As a result, calibration plots (Figure [2) show no meaningful alignment
with correctness. Furthermore, high impact of single NLI misclassifications and the inclusion of stop
words in the aggregation further destabilize scores. These issues make CCP unreliable for sequence-
level uncertainty estimation. But, its token-level insights could still inform targeted analyses once
aggregation and domain-specific entailment are improved.

8 LIMITATIONS

This study focuses on scientific QA in structured formats (multiple-choice and arithmetic), which
constrains the generalizability of the findings to other domains and task types such as open-ended
generation or summarization. All datasets are in English, and the potential impact of cross-linguistic
variation, input formatting, and prompt phrasing on calibration was not examined. Despite mitiga-
tion efforts using prompting strategies like APriCoT, the multiple-choice setting itself may intro-
duce systematic biases, such as steering effects. Furthermore, the benchmark employs controlled
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inference conditions (e.g. fixed temperature, fixed decoding parameters) that may not capture the
variability of real-world deployments. Finally, the evaluation of sequence-level uncertainty was
limited to a subset of UQ methods with normalized outputs, selected to enable calibration analysis
via calibration plots and summary metrics. This leaves unnormalized or claim-level metrics for fu-
ture investigation into their potential value for detecting incorrect answers through high uncertainty
estimates.

9 CONCLUSION

We presented a systematic evaluation of four UQ methods for LLMs across seven natural science
datasets and eleven open-weight model families, including base, instruction-tuned, and reasoning
variants. We acquired our results by developing an open-source framework for benchmarking LLMs
with a focus on efficiency and reproducibility.

Our results reveal a pronounced polarization effect in token-level confidence distributions induced
by instruction-tuning, which diminishes their utility as reliable uncertainty signals. This effect is
even stronger in reasoning models, where the generation process commits to a single hypothesis as
part of the reasoning chain.

At the sequence level, verbalized UQ methods exhibit consistently poor performance across most
models. In particular, P(True) is adversely affected by the same confidence polarization previ-
ously observed at the token level. Verbalized Uncertainty scores are biased toward a narrow range
of high-confidence scores and generally fail to correlate with answer correctness. A notable ex-
ception is observed in the gpr-oss family, which yielded well calibrated scores, underscoring the
need for continued benchmarking to disentangle the impact of architectural design choices, fine-
tuning data, and training paradigms on UQ behavior. The Frequency of Answer method based in
semantic consistency showed strong reliability, albeit at high computational cost and with the non-
trivial challenge of robust semantic equivalence detection. Claim-Conditioned Probability (CCP)
suffers from vanishing sequence-level scores as generation length increases, compounded by NLI
misclassifications and instability from stop-word aggregation. These issues render it unreliable for
sequence-level uncertainty estimation. Yet, its efficiency and informative token-level signals suggest
potential for refinement through improved aggregation and entailment modeling.

We advocate that our results have substantial relevance outside of scientific QA tasks given the
variety and number of datasets. As such, our findings highlight a critical need for the development
of more robust, efficient, and theoretically grounded UQ methods for LLMs. Advancing this field
will require not only algorithmic innovation but also sustained empirical benchmarking to isolate the
contributions of model architecture, fine-tuning strategy, and training data to uncertainty behavior in
real world scenarios.

10 FUTURE WORK

Future research on uncertainty estimation in LLMs should pursue several directions. In the short
term, benchmarks should be extended with new UQ methods as they are proposed, e.g. building
on the benchmarking framework provided alongside this paper. Systematic studies of inference
parameters (e.g., temperature, sampling strategies) and prompting strategies are also promising. As
new model LLM families continue to emerge, ongoing UQ benchmarking will be essential not only
to track improvements in uncertainty estimation but also to trace these gains back to architectural
choices or training paradigms that most strongly drive better calibration behavior.

Further, LLM progress will require new dataset designs. Benchmarks that explicitly induce un-
certainty (e.g., contradictory or unsolvable questions) or reformulate multiple-choice tasks into
open-ended formats could better isolate task-specific sources of uncertainty. Longer-term direc-
tions include claim-level uncertainty estimation, which assesses reliability of individual statements
or reasoning steps, and linguistic calibration, which studies alignment between epistemic markers
and model confidence. Finally, ranking-oriented metrics may prove valuable in practice, guiding
model outputs toward more trustworthy generations even without perfect calibration.
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REPRODUCIBILITY STATEMENT

Reproducibility in UQ for LLMs poses unique challenges due to the multistage evaluation pipelines
and inherent randomness at each step, which can compound and introduce measurement noise. This
stochasticity affects comparisons across UQ methods and model outputs, particularly when methods
are evaluated on different generations, potentially contaminating results. To address these issues,
we developed a modular benchmarking framework designed to ensure reproducibility and resource
efficiency in large-scale LLM experiments. The framework supports extensible and replaceable
computation nodes, caches probabilistic outputs such as model generations to ensure consistent re-
evaluation, preserves intermediate outputs for qualitative inspection and allows incremental updates
so that only affected steps need recomputation. It also enables sharing of intermediate results to
reduce compute costs and allow other researchers to rerun the benchmark with their own methods.
This is particularly valuable for ongoing research in UQ on models gated by proprietary access or
costly hardware, supporting broader collaboration within the scientific community. These features
not only enhance the reliability of the present study but also establish a foundation for future research
in the field.

To facilitate reproducibility, the repository includes the full framework async-graph-bench
in its current form, final leaf-node outputs containing confidence scores required to reproduce the
plots, a container definition file to build the execution environment, exact pip and driver versions,
and instructions to install the framework and run the benchmarks presented in this work. While the
framework is in its early stages, it is fully functional for reproducing the experiments reported here,
and we plan to continue improving documentation and testing before its broader release in the near
future.

LLM DISCLOSURE

LLMs were used in a limited manner to assist with writing, coding, and literature search. Specifi-
cally, LLMs provided minor support for language polishing, code-related assistance and identifying
relevant references. All outputs were carefully reviewed, tested, and verified by the authors. LLMs
did not contribute to the conceptualization of the research, the design of experiments, or the inter-
pretation of results.
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A APPENDIX

A.1 REPOSITORY

The repository accompanying this paper is available online at
https://anonymous.4open.science/r/llm-uncertainty-bench-9B2B/.

A.2 MODEL SELECTION

Table A.1: Overview of LLMs used in the experiments of this paper by provider, type, size, and re-
lease date. Model families of corresponding base, instruct and reasoning variants have been grouped
together.

Provider Model Name Type Size Release Date
OpenAl gpt-0ss-20b Reason?ng 20B Aug 2025
gpt-oss-120b Reasoning 120B Aug 2025
Mistral-Nemo-Base-2407 Base 8B Jul 2024
Mistral-Nemo-Instruct-2407 Instruct 8B Jul 2024
Ministral-8B-Instruct-2410 Instruct 8B Oct 2024
Mistral Al Mistral-Small-3.1-24B-Base-2503 Base 24B Mar 2025
Mistral-Small-3.2-24B-Instruct-2506 Instruct 24B Jun 2025
Magistral-Small-2507 Reasoning  24B Jul 2025
Llama-3.1-70B Base 70B Jul 2024
Meta LLaMA Llama-3.3-70B-Instruct Instruct 70B Dec 2024
Llama-4-Scout-17B-16E Base 109B Apr 2025
Llama-4-Scout-17B-16E-Instruct Instruct 109B Apr 2025
Qwen3-30B-A3B-Base Base 30B Jul 2025
Qwen Qwen3-30B-A3B-Instruct-2507 Instruct 30B Jul 2025
Qwen3-30B-A3B-Thinking-2507 Reasoning  30B Jul 2025
DeepSeek Al DeepSeek—R]-D%st%ll-Llama-7OB Reason%ng 70B Jan 2025
DeepSeek-R1-Distill-Qwen-32B Reasoning  32B Jun 2024
gemma-3-27b-pt Base 27B Mar 2025
Google .
gemma-3-27b-it Instruct 27B Mar 2025

A.2.1 MODEL CONFIGURATION AND EXCEPTIONS

All models were evaluated in their default configurations. No system prompts were employed, with
the sole exception of Magistral-Small-2507, which requires a system prompt to enable reasoning
prior to generating a final answeﬂ Without the system prompt, the model will behave like an
instruction-tuned model. For the label-probability experiments, this model was tested in two vari-
ants: with reasoning enabled (Magistral-Small-2507-Reasoning-Enabled) and without reasoning
(Magistral-Small-2507).

The base (pre-trained) model gemma-3-27b-pt, corresponding to the instruction-tuned gemma-3-
27b-it, was excluded from the label-probability calibration experiments. In preliminary evaluations,
the base model exhibited insufficient task comprehension, resulting in negligible probability mass
assigned to label tokens within the top-20 most probable tokens. Consequently, label probabilities
could not be retrieved through v1 1m, preventing the computation of confidence scores.

All models were used in their base configuration. With the exception of Magistral-Small-2507,
no system prompts were used. Magistral-Small-2507 uses the system prompt to elicit reasoning
steps before providing a final answer. It was included in the label probability experiment both
with (Magistral-Small-2507-Reasoning-Enabled) and without (Magistral-Small-2507) the system

2see https:/huggingface.co/mistralai/Magistral-Small-2506
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prompt. gemma-3-27b-pt, the pre-trained or base variant of gemma-3-27b-it was excluded from the
experiment researching the label probability calibration due to lack in task comprehension. This
resulted in no probability mass being assigned to label tokens within the 20 most probable tokens,
rendering probabilities unaccessible via v11m. Therefore no certainties could be retrieved.

For the exact configuration parameters supplied to v11m, please refer to the models.py files located
in the experiment subdirectories of the repository accompanying this paper.

A.3 DATASET SELECTION

Table A.2: Scientific QA datasets surveyed. Selection criteria emphasized natural-science do-
mains (especially physics) and inclusion of different reasoning requirements for answering, while
providing a verifiable ground-truth.

Dataset Size Task Format  Domain

MMLU 15,908 Multiple Choice General (57 topics, including Physics)

ARC 7,787  Multiple Choice  Science (Physics, Chemistry, Biology, Earth Science)
SciQ 13,679 Multiple Choice  Science (Physics, Chemistry, Biology)

GPQA 448 Multiple Choice  Physics (Graduate-level)

GSMSK 8,792 Arithmetic Mathematics
GSM-MC 8,787 Multiple Choice ~Mathematics
SVAMP 1,000 Arithmetic Mathematics

SciBench 2,229 Arithmetic Science (Physics, Chemistry, Biology, Medicine,
Earth Science)

For the exact dataset configuration parameters, please refer to the data_source subdirectories
located in the experiment directories of the repository accompanying this paper.

A.4 UNCERTAINTY QUANTIFICATION METHOD EXCLUSION

For evaluating the calibration of long form generations, several sequence level uncertainty methods
exist. Our selection of methods follows the taxonomy from Fadeeva et al.|(2023a)) into five different
categories: information-based, ensemble-based, density-based, reflexive and meaning diversity ap-
proaches. We have conducted an extensive literature review on available UQ methods. The results
are contained in Table [A3]

Table A.3: Reasons for Exclusion of Uncertainty Metrics in Benchmark. List of UQ Meth-
ods was adapted from the comprehensive evaluation and classification of uncertainty methods by
Fadeeva et al.| (2023a).

Method Category Exclusion Reasons
Perplexity (Fomicheva et al., Information-based Produces unnormalized scores
2020)

Mean/max  token entropy Information-based Produces unnormalized scores
(Fomicheva et al., [2020))

Monte Carlo sequence entropy  Information-based Produces unnormalized scores
(Kuhn et al.|[2023b)

Pointwise mutual information Information-based Produces unnormalized scores
(PMI) (Takayama & Arase,

2019)

Conditional PMI (van der Poel  Information-based Produces unnormalized scores
et al.,[2022)

Rényi divergence (Darrin et al.,  Information-based Produces unnormalized scores
2023)
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Method

Category

Exclusion Reasons

Fisher-Rao distance (Darrin

eta l 2023)

Information-based

Produces unnormalized scores

Focus (Zhang et al.|[2023a)

Information-based

Produces unnormalized scores

Semantic entropy (Kuhn et al.|

Meaning diversity

Designed to work at the individual claim level
rather than on entire sequences
Very high computational cost

TokenSAR (Duan et al.l, 2024)

Meaning diversity

Alters sentences in a way that violates autore-
gressive assumptions

Relies on NLI models whose performance in
scientific contexts is inadequate

SentenceSAR (Duan et al|

Meaning diversity

Alters sentences in a way that violates autore-
gressive assumptions

Relies on NLI models whose performance in
scientific contexts is inadequate

SAR (Duan et a1.|, 2024)

Meaning diversity

Alters sentences in a way that violates autore-
gressive assumptions

Relies on NLI models whose performance in
scientific contexts is inadequate

EigenScore (Chen et al.| [2024)

Meaning diversity

Produces unnormalized scores

Sentence-level ensemble-based

measures (Malinin & Gales),

Ensembling

Requires running multiple independent models,
leading to high computational cost

Introduces extra variability that complicates
comparison to single-model methods

Token-level  ensemble-based

measures (Malinin & Gales,
2020)

Ensembling

Requires running multiple independent models,
leading to high computational cost

Introduces extra variability that complicates
comparison to single-model methods

Mahalanobis distance (MD)

(Cee et al|[2018)

Density-based

Density-based approach that requires propri-
etary training data

Robust  density estimation

(RDE) (Yoo et a1.|, 2022)

Density-based

Density-based approach that requires propri-
etary training data

Relative Mahalanobis distance

(RMD) (Ren et al.L 2023)

Density-based

Density-based approach that requires propri-
etary training data

Hybrid Uncertainty Quantifica-
tion (HUQ)
2023)

Density-based

Density-based approach that requires propri-
etary training data

Number of semantic sets (Num-

Sets) (Lin et a].|7 2023))

Meaning Diversity

Produces count-based outputs that are not nor-
malized to [0,1]

Sum of eigenvalues of the graph
Laplacian (EigV)
2023)

Meaning Diversity

Produces unnormalized scores

Degree matrix (Deg) (Lin et al.|

Meaning Diversity

Produces unnormalized scores

Eccentricity (Ecc) (Lin et al.|7
2023)

Meaning Diversity

Produces unnormalized scores

Lexical similarity (LexSim)

(Fomicheva et al.L 2020)

Meaning Diversity

Relies on surface-level token overlap instead of
semantic meaning

Kernel Language Entropy

(Nikitin et a |, 2024)

Meaning Diversity

Produces unnormalized scores

LUQ ((Zhang et al.}[2024a))

Meaning diversity

Produces unnormalized scores

Ensemble- and density-based methods are excluded from our analysis due to high computational
cost, dependence on multiple models or inaccessible training data, and limited uncertainty coverage.
Claim-level methods from the meaning diversity category (Farquhar et al.| 2024) are omitted due to
the complexity and unreliability of claim extraction as a required intermediary processing step.

Only methods producing normalized sequence-level uncertainty scores are included in our analysis
to enable reliability UQ validation by calibration. Subsequently, we focus our work on the following

UQ methods: Verbalized Uncertainty 2023)), P(True) (Kadavath et al} 2022)), Frequency
of Answer (Wang et all, 2023)), Claim-Conditioned Probability (CCP) (Fadeeva et al.,[2024). More

details of these methods are discussed in Section[7.1]
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A.5 LABEL PROBABILITY CALIBRATION
A.5.1 PROMPT DESIGNS

Listing 1: Prompt Design 1 for Experiment 1. The prompt design uses 3-shot prompting.
<QUESTION> and <ANSWER CHOICE X> are replaced with the individual questions and answer
choices from the benchmarked dataset. Prompt Design 1 features markdown construct.

You are a highly capable language model trained for multiple-choice
question answering.
Below are three examples of multiple-choice questions with labeled answer
choices. Each example includes the correct answer.
After the examples, you will be given a new question with four labeled
answer choices (A, B, C, D).

Your task is to select the answer choice you believe is correct by
responding with only the corresponding label: A, B, C, or D.
Do not include any explanation or additional text.

### Example 1:
**Question:+x What is the capital of France?

A) Berlin
B) Madrid
C) Paris
D) Rome

*xCorrect Answer:*xx C

<Two More Examples Omitted for Readability>

**Question:x* <QUESTION>
A) <ANSWER CHOICE A>
B) <ANSWER CHOICE B>
C) <ANSWER CHOICE C>
D) <ANSWER CHOICE D>

*xCorrect Answer: xx

Listing 2: Prompt Design 2 for Experiment 1. The prompt design uses 3-shot prompting.
<QUESTION> and <ANSWER CHOICE X> are replaced with the individual questions and answer
choices from the benchmarked dataset. Prompt Design 2 features no introductary text, role or task
description. The format is designed to represent natural language without special formatting.

Question: What is the capital of France?

A) Berlin
B) Madrid
C) Paris
D) Rome

The correct answer is C
<Two More Examples Omitted for Readability>

Question: <QUESTION>
A) <ANSWER CHOICE A>
B) <ANSWER CHOICE B>
C) <ANSWER CHOICE C>
D) <ANSWER CHOICE D>

The correct answer is
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Listing 3: Prompt Design 3 for Experiment 1. The prompt design uses 3-shot prompting.
<QUESTION> and <ANSWER CHOICE X> are replaced with the individual questions and answer
choices from the benchmarked dataset. The format of Prompt 3 is designed to represent natural
language without special formatting. The format of the answer specifically requests the label, not
the answer in general.

o R Y I O )

R - T I )

You are a highly capable language model trained for multiple-choice

question answering. In the following examples, you will see questions
with answer choices. The answer choices are preceded by the phrase "
Answer Choices:". Each answer choice is annotated with one of the
labels A, B, C or D. The correct answer to the question is given by
the sentence "The label of the correct answer choice is" followed by
the corresponding label. Your task is to answer the new question in
the same format, outputting only the label of the correct answer to
the question you are provided. Do not output anything other than one
of the labels A, B, C or D.

Question: What is the capital of France?
Answer Choices:

A) Berlin
B) Madrid
C) Paris
D) Rome

The label of the correct answer choice is C
<Two More Examples Omitted for Readability>

Question: <QUESTION>
Answer Choices:

A) <ANSWER CHOICE A>
B) <ANSWER CHOICE B>
C) <ANSWER CHOICE C>
D) <ANSWER CHOICE D>

The label of the correct answer choice is

Listing 4: Prompt Design 4 for Experiment 1. The prompt design uses 3-shot prompting.
<QUESTION> and <ANSWER CHOICE X> are replaced with the individual questions and answer
choices from the benchmarked dataset. Prompt Design 2 features special tags to mark the answer
given as a label.

You are a highly capable multiple-choice question answering model. Below
are three examples that show the format you must follow. Each
question has four answer choices labeled A, B, C, and D. Your task is

to answer a new question by outputting the correct answer in the
following format: <ANSWER>X<ANSWER>, where X is the label
corresponding to the correct answer, A, B, C or D. Do not add any
extra text or explanation.

Example 1:
Question: What is the capital of France?
Answer Choices:

A) Berlin

B) Madrid

C) Paris

D) Rome
<ANSWER>C<ANSWER>

<Two More Examples Omitted for Readability>
Now, please answer the following question in the same format.

Question: <QUESTION>
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Answer Choices:

A) <ANSWER CHOICE A>
B) <ANSWER CHOICE B>
C) <ANSWER CHOICE C>
D) <ANSWER CHOICE D>

<ANSWER>

A.5.2 TASK COMPREHENSION PER PROMPT DESIGN

Table A.4: Task Comprehension Measured by Probability Mass Assigned to Answer Labels.
Mean over the sum of label probabilities per question for base, instruction-tuned, and reasoning
models. On average, task comprehension is highest under Prompt 1.

Model Category Prompt1l Prompt2 Prompt3 Prompt4
Base Models 0.2368 0.5928 0.4135 0.1632
Instruction-Tuned Models 0.9912 0.3597 0.9561 0.2646
Reasoning Models 0.7002 0.0895 0.4475 0.0022
Average 0.6427 0.3474 0.6057 0.1434

A.5.3 INVALID ANSWER COUNTS

Table A.5: Number of Invalid Answers Given by Models for Different Prompt Designs Across
All Datasets (n = 25,316). Invalid answers assign no probability mass to any answer-choice labels.

Model Prompt1 Prompt2 Prompt3 Prompt4
gpt-0ss-20b 307 3356 498 25304
gpt-oss-120b 38 3323 27 24873
Ministral-8B-Instruct-2410 0 0 0 0
Mistral-Nemo-Base-2407 0 0 12574 0
Mistral-Nemo-Instruct-2407 0 0 0 0
Mistral-Small-3.1-24B-Base-2503 0 0 0 0
Mistral-Small-3.2-24B-Instruct-2506 0 0 0 0
Magistral-Small-2507 0 0 0 0
Magistral-Small-2507-Reasoning-Enabled 8604 18716 4749 21232
Llama-3.1-70B 0 13 0 6636
Llama-3.3-70B-Instruct 0 2527 19 125
Llama-4-Scout-17B-16E 2 3 0 5048
Llama-4-Scout-17B-16E-Instruct 0 15 0 0
Qwen3-30B-A3B-Base 2 1 0 55
Qwen3-30B-A3B-Instruct-2507 0 6270 0 722
Qwen3-30B-A3B-Thinking-2507 6242 11746 8656 21840
DeepSeek-R1-Distill-Llama-70B 425 7538 725 7477
DeepSeek-R1-Distill-Qwen-32B 914 7465 1170 3337
gemma-3-27b-it 0 431 0 2

A.5.4 COMPREHENSIVE PLOTS PER PROMPT WITH TABLES

Detailed calibration plots of label probabilities for all prompt designs and config-
urations are available in the project repository at label_prob_calibration/
resources/figures/full_plots. Each file follows the naming convention
cal plot_prompt<id>_table<t>_chosenonly<c>_norm<n>.svg, where the place-
holders encode the following settings:

* prompt: Identifier of the prompt design used to generate the plot (see Section [A.5.1]).
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* table: Indicator of whether a table summarizing key calibration statistics is included.

* chosenonly: Flag specifying whether confidence scores are computed for all candidate
labels (0) or restricted to the chosen (most probable) label (1).

* norm: Flag denoting whether label probabilities are normalized such that their sum equals
one across all candidate labels.

In the following, the plots showing the calibration plots for Prompt 1 (best task comprehension) can
be seen.
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Figure A.1: Calibration Plots for Prompt 1, using normalized label probabilities and only the
most probable label. The columns represent different models, while the rows represent datasets.
Tables below the plots list summary metrics such as ECE, normalized entropy of bucket counts and
AUROC. Base models are shown in orange, instruction-tuned models in blue, and reasoning models
in green. Darker colors indicate a higher number of items in the bin.
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Figure A.2: Calibration Plots for Prompt 1, using unnormalized label probabilities and only the
most probable label. The columns represent different models, while the rows represent datasets.
Tables below the plots list summary metrics such as ECE, normalized entropy of bucket counts and
AUROC. Base models are shown in orange, instruction-tuned models in blue, and reasoning models
in green. Darker colors indicate a higher number of items in the bin.
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A.5.5 EFFECT OF NORMALIZATION

MMLU ArcReasoning GSMSKMC GPQA

Without Normalization

With Normalization

C : fi ins g Bins

Figure A.3: Representative Comparison of Calibration Plots for Unnormalized and Normal-
ized Label Probabilities for the Model Mistral-Small-3.1-24B-Base-2503 and Prompt 1 across
all datasets used. Calibration improves significantly after normalizing label probabilities.

A.5.6 SELECTION BIAS

Ground Truth

s i

Figure A.4: Probabilities for the Labels summed across all Datasets for each individual Model
using Prompt 1. The ground truth, represented by the distribution of the labels of the correct
answers across all items in the datasets, is visualized by the grey bars and the dashed baselines.

A.5.7 TASK COMPREHENSION PER PROMPT DESIGN

Prompis
B ponpl B Powp2 BE Prompd B Promprd

Label Prob Sum Mean

Figure A.5: Task Comprehension per Prompt Design. Mean over Sum of Label Probabilities
for the Different Prompt Designs and Models. The data has been aggregated across all datasets,
spanning 25,316 items per model and prompt design. Base models are shown in orange, instruction-
tuned models in blue, and reasoning models in green.
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A.6 SEQUENCE-LEVEL CALIBRATION
A.6.1 PROMPTS USED FOR QUESTION ANSWERING

The sequence-level experiments employed the APriCoT prompting strategy for MCQA and
a standard Chain-of-Thought (CoT) approach for arithmetic question answering (Arithmetic
QA), followed by final answer extraction. The exact prompts for both answer generation
and final answer extraction are available in the repository accompanying this paper, specif-
ically in /llm-uncertainty-bench/seq_ue_calibration/nodes/apricot_mc_
calc.py for MCQA and /1llm—-uncertainty-bench/seq ue_calibration/nodes/
arithmetic_calc.py for Arithmetic QA.

A.6.2 METRIC IMPLEMENTATION

Verbalized Uncertainty The prompt for Verbalized Uncertainty was adopted directly
from the original work (Tian et al) [2023). The exact prompt can be found in
/1llm-uncertainty-bench/seq_ue_calibration/run.py, where itis provided to the
corresponding computation node as verbalized_prompt.

P(True) The prompt used for the P(True) metric follows the formulation of (Kadavath et al.,[2022).
For APriCoT prompting in MCQA, a minor adaptation was applied, while preserving the core se-
mantics of the original design. The exact prompts are availablein /11m-uncertainty-bench/
seq ue_calibration/nodes/ptrue.py.

Frequency of Answer For this metric, 10 samples were generated per prompt. The Frequency of
Answer of a given response is defined as the proportion of semantically equivalent answers within
the set of 10 samples. Invalid answers are assigned a confidence of 0.0. Semantic equivalence was
determined according to the task type:

* Multiple-Choice QA: Using the APriCoT prompting strategy, each option is indepen-
dently evaluated, and the model classifies each option as correct or incorrect. Semantic
equivalence is established when different generations reach the same classification deci-
sion for a given option.

» Simple Arithmetic QA: For datasets such as GSM8K, which primarily involve integers
and rarely require floating-point precision, the final numeric result was extracted using
a dedicated prompt and parsed into a numeric representation. Semantic equivalence is
then determined by strict numeric equality of the extracted results. For details on the fi-
nal answer extraction prompt, please refer to /11lm-uncertainty-bench/seq _ue_
calibration/nodes/arithmetic_calc.py in the repository.

* SciBench: This dataset presents additional complexity due to intricate computations
and the inclusion of physical units, rendering the simple numeric matching used
for other arithmetic datasets insufficient. To address this, a specialized clustering
prompt was developed to group sampled answers into semantically equivalent cate-
gories, with L1ama-3.3-70B-Instruct serving as the judging model. Implementa-
tion details are provided in /11m-uncertainty—-bench/seq_ue_calibration/
leaf_nodes/answered_correctly_scibench.py.

For evaluation of the calibration of the Frequency of Answer metric, the binning strategy will be
slightly modified. Unlike the other methods, this methods yields only discrete confidence values,
determined by the number of sampled generations. With 10 generations per question, the resulting
confidence scores can only take on values from 0.1 (indicating that all of the other nine sampled
generations resulted in a different answer) to 1.0 (all generations produced the same result), in steps
of 0.1. For responses that fail to yield a numeric outcome in arithmetic datasets, a confidence score
of 0.0 is assigned. To accommodate these discrete confidence levels, 11 bins centered on the possible
certainty scores will be used for generating the calibration plots and summary statistics thereof for
the Frequency of Answer metric.

Claim-Conditioned Probability (CCP) The Claim-Conditioned Probability (CCP) metric, pro-
posed by [Fadeeva et al.| (2024)), was originally designed for claim-based uncertainty estimation.
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While conceptually valuable, applying CCP to long, complex generations proved challenging: ex-
tracting meaningful claims was computationally expensive, often unreliable, and complicated by
interdependent claims that hindered aggregation. Nevertheless, CCP was included by aggregating
token-level confidence scores through multiplicative composition. The implementation builds upon
the authors’ implementation of the metric in their LM-Polygraph framework (Fadeeva et al., 2023b))
and was optimized for improved computational efficiency.

A.6.3 EXTENSIVE CALIBRATION PLOTS

In the following, extensive calibration plots for the evaluation of sequence level uncertainty methods
are provided. Again, instruction tuned models are highlighted in blue, while reasoning models are
highlighted in green. Darker shading indicates a higher number of items within each confidence bin.

==

o 0010

v

4

T

il

Figure A.6: Calibration Plots for P(True). Columns correspond to the models and rows to datasets.
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Figure A.7: Calibration Plots for CCP. Columns correspond to the models and rows to datasets.
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Figure A.8: Calibration Plots for Verbalized Uncertainty. Columns correspond to the models and
rows to datasets.
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Figure A.9: Calibration Plots for Frequency of Answer. Columns correspond to the models and
rows to datasets.
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A.6.4 VERBALIZED UNCERTAINTY CONFIDENCE SCORE DISTRIBUTION
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Figure A.10: Distribution of Confidence Scores Provided During Verbalized Uncertainty
Prompting Across Models. Value counts are aggregated over all datasets (57, 500 prompts in total).
Confidence scores seen in less than 5% of the total responses have been grouped into “Other”, with
the number of distinct confidence scores shown in brackets.
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A.6.5 P(TRUE) CONFIDENCE SCORE DISTRIBUTION
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Figure A.11: Distribution of Confidence Scores Assigned by P(True) Across Models. Confidence
scores have been aggregated across all datasets (57, 500 prompts in total). Most models exhibit a
clear polarization towards either (A) (representing the model’s confidence that the answer is true) or
(B) (representing the model’s confidence that the answer is false) regarding the token probabilities.
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