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ABSTRACT

Simulation has enabled unprecedented compute-scalable approaches to robotics.
However, many existing simulators typically support a narrow range of tasks and
lack features critical for scaling generalizable robotics and sim2real. We intro-
duce ManiSkill3, a state-of-the-art state-visual GPU parallelized robotics simula-
tor with contact-rich physics targeting generalizable manipulation. ManiSkill3
supports GPU parallelization of many aspects including simulation+rendering,
heterogeneous simulation, pointclouds, and more. GPU simulation+rendering
uses 2-4x less GPU memory compared to other platforms and achieves up to
30,000+ FPS in benchmarked environments due to minimal overhead, simulation
on the GPU, and the use of the SAPIEN parallel rendering system, enabling visual
RL to solve tasks in minutes instead of hours. We further provide the most com-
prehensive range of tasks spanning 12 distinct domains including but not limited
to mobile manipulation, drawing, humanoids, and dextrous manipulation in real-
istic scenes designed by artists or real-world digital twins. In addition, millions
of demonstration frames are provided from motion planning, RL, and teleopera-
tion. ManiSkill3 also provides a comprehensive set of baselines that span popular
RL and learning-from-demonstrations algorithms. Website: maniskill.ai/. Video
demo gallery: maniskill.readthedocs.io/en/latest/user guide/demos/gallery.html

1 INTRODUCTION

One of the grand challenges of robotics is robust and generalized manipulation. However, unlike
vision and language research, there are still no good datasets for robotic manipulation that can be
trained on. One approach has been to create human-scalable real-world teleoperation tools (Fu
et al., 2024; Cheng et al., 2024b) to then perform imitation learning. Another is to set up real-
world reinforcement learning to fine-tune offline trained policies (Feng et al., 2023). However, real-
world imitation learning approaches require enormous amounts of data that are infeasible to collect
efficiently at low costs only to achieve relatively low success rates that are otherwise impractical
for real-world deployment (Zhao et al., 2024). Real-world reinforcement learning approaches are
promising, but require extensive setups to generate real-world rewards and environment resets.

GPU parallelized simulations such as Isaac (Makoviychuk et al., 2021) and Mujoco’s MJX (Todorov
et al., 2012) have made massive advancements in solving some robotics problems such as robot lo-
comotion by training in large-scale GPU parallelized simulations with reinforcement learning (RL)
(Rudin et al., 2021). GPU parallelized simulation makes data incredibly cheap to generate. How-
ever, when it comes to manipulation, success is often limited to narrower ranges of manipulation
tasks and typically requires strong state estimation (Handa et al., 2023) to replace visual inputs like
RGB or pointcloud. Existing GPU simulators have limitations that hinder the generalization and
scalability of previous work. These simulators lack support for heterogeneous simulation, where
each parallel environment contains different scenes. Additionally, they often don’t support fast par-
allel rendering capabilities. As a result, algorithms like reinforcement learning (RL) that operate
on visual input train too slowly to be practical. We propose ManiSkill3 to address past limitations,
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Figure 1: Multiple distinct task categories are displayed, ranging from room-scale tasks to humanoid
interactions and drawing tasks. Majority of tasks are GPU-parallelized, simulating+rendering at
state-of-the-art speeds and GPU memory efficiency. Scenes are from ReplicaCAD and AI2-THOR.

building upon past work in ManiSkill 1 and 2 (Mu et al., 2021; Gu et al., 2023).The core contribu-
tions of ManiSkill3 that set it apart from existing simulators are as follows:

1) State-of-the-art GPU Parallelized Simulation and Rendering: RL algorithms like PPO (Schul-
man et al., 2017) can now solve visual tasks faster than before due to fast parallel rendering and low
overhead in the system design of ManiSkill3, leading to highly efficient use of the GPU. Depending
on task the simulation + rendering FPS can reach up to 30,000+ with 2-4x better GPU memory
usage. RGB policies can be trained and deployed zero-shot for simple tasks much faster as well.

2) Most comprehensive range of environments with 12 different categories of environments
and 20+ different robots provided out of the box: ManiSkill3 out of the box provides a diverse
set of different types of environments including but not limited to mobile manipulation, room-
scale scenes, drawing, and humanoid/bi-manual manipulation. Furthermore we support several
sim2real and real2sim setups for manipulation. A core focus of ManiSkill3 is building many tem-
plate/examples that users can then build on top of themselves for their own use-cases.

3) Heterogeneous Simulation for Generalizable Learning: ManiSkill3 makes it possible to sim-
ulate and render completely different objects, articulations, even entire room-scale scenes in each
parallel environment. This is done thanks to a data-oriented system design and easy-to-use API to
manage GPU memory of objects/articulations even if they may have different degrees of freedom.

4) Simple Unified API to Easily Manage and Build GPU Simulated Tasks: ManiSkill3 distin-
guishes itself from other GPU-parallelized robotics simulators by offering a user-friendly API for
creating diverse tasks. Improvements include object-oriented APIs and the elimination of complex
tensor indexing. The platform provides feature-rich tooling to streamline various operations, such
as visual domain randomization, trajectory replay, controller action conversion, and more.

5) Scalable Dataset Generation Pipeline from Few Demonstrations: For tasks in ManiSkill3
where reward design is difficult, we provide a pipeline that leverages demonstration efficient, wall-
time fast, online imitation learning algorithms, to learn a generalized neural network policy from a
few teleoperated/hardcoded demonstrations. The generalized task-specific neural network policy is
then used to rollout many more demonstrations to form larger datasets.

2 RELATED WORK

Robotics Simulation Frameworks: Isaac Lab (Mittal et al., 2023) and Brax (Freeman et al., 2021)
are open-source GPU-parallelized robotics frameworks. Similar to ManiSkill3, Isaac Lab and Brax
(which uses the Mujoco MJX (Todorov et al., 2012) backend) provide ready-to-use environments for
reinforcement/imitation learning and APIs for custom environments. In contrast, CPU-based frame-
works like Robocasa (Nasiriany et al., 2024), Habitat (Szot et al., 2021), AI2THOR (Kolve et al.,
2017), OmniGibson (Li et al., 2022), and RLBench (James et al., 2020) run significantly slower,
often limiting research to imitation learning and motion planning. Isaac Lab relies on Isaac Sim for
GPU-based simulation and rendering while ManiSkill3 uses the open-source SAPIEN (Xiang et al.,
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Parallelized Simulation ✓ ✓ ✗ ✗ ✗ ✗
Parallelized Rendering ✓ ✓ ✗ ✗ ✗ ✗
Parallelized Heterogeneous Sim ✓ ✗ ✗ ✗ ✗ ✗
Large Scale Demonstrations ✓ ✗ ✓ ✗ ✗ ✗
Realistic Object Physics ✓ ✓ ✓ ✓ ✗ ✗
Photorealistic Rendering ✓ ✓ ✓ ✓ ✗ ✗
Visual RL Baselines ✓ ✓ ✗ ✗ ✓ ✓
Vision-based sim2real setups ✓ ✗ ✗ ✗ ✗ ✗
Trajectory replay/conversion ✓ ✗ ✗ ✗ ✗ ✗
Task Categories 12 5 2 2 1 1

Table 1: Comparison of major features across different open-source robotics frameworks/tools.

2020) for the same features. We note that the provided parallel rendering features are concurrent to
Isaac Lab’s work.

Robotics Datasets: Amongst existing datasets there are typically two kinds, real-world and simu-
lated datasets. Open-X (Collaboration et al., 2023) and DROID (Khazatsky et al., 2024) are two of
the largest real-world datasets. However, both Open-X and DROID require immense amounts of hu-
man labor to collect data and are inherently difficult to scale up to the sizes of typical vision/language
datasets. Among simulated datasets, frameworks like AI2-THOR (Kolve et al., 2017), and Omni-
Gibson (Li et al., 2022) have complex room-scale scenes but do not readily provide demonstrations
or ways to generate large-scale demonstrations for use in robot learning. Robocasa has a myriad
of tasks and realistic room-scale scenes, but further leverages MimicGen (Mandlekar et al., 2023)
to scale human teleoperated demonstrations by generating new demonstrations. ManiSkill3 sources
large-scale demonstrations through a few methods. For easier tasks, motion planning and rewards
for RL are used to generate demonstrations. For more complex tasks without easily defined motion
planning solutions or rewards, ManiSkill3 relies on online learning from demonstrations algorithms
to train on a few demos and then rollout converged policies to generate more demos.

3 CORE FEATURES OF MANISKILL3

ManiSkill3 is the most feature-rich GPU simulation framework compared to popular alternatives as
shown in Table 1. For the largest features, we detail them in the subsections below.

3.1 DIVERSE TASKS SUPPORTED OUT OF THE BOX

The design of ManiSkill3 enables support for many different kinds of task categories via a flex-
ible task-building API. Of the existing popular robotics simulators ManiSkill3 supports the most
categories of different tasks. Concretely we categorize the 12 distinct categories as follows: Table
top manipulation, mobile manipulation, room-scale scenes for manipulation, quadruped/humanoid
locomotion, humanoid/bi-manual manipulation, multi-agent robotics, drawing/cleaning, dextrous
manipulation, vision-tactile manipulation, classic control, digital twins, and soft body manipula-
tion environments. The majority of these tasks are GPU parallelized and can be rendered fast in
parallel as well, with examples of the tasks shown in Fig. 1. Each of these task categories have
various optimizations done to run more accurately and/or faster. Other simulators typically support
a smaller subset of the type of tasks ManiSkill3 supports easily. Additional details on the exact
optimizations/implementations and available robots are detailed in Appendix A.

3.2 GPU PARALLELIZED SIMULATION AND RENDERING

ManiSkill3 distinguishes itself from its predecessors and other robotics simulators by offering robust
support for GPU-parallelized simulation and rendering. ManiSkill3 is the first general benchmark
to enable fast RL from visual inputs on complex robot manipulation tasks, with Isaac Lab recently
adding a similar feature. Tasks such as picking up a cube or controlling a quadruped to reach a goal
from pixel inputs are now solved on the order of minutes instead of hours. RL training results/speed
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are detailed in Section 4.2. The performance results shown in Figure 4 are the results after simulat-
ing + rendering RGB, depth, and segmentation data simultaneously for various tasks. In terms of
speed and GPU memory use, Figure 2 shows ManiSkill3 outperforms Isaac Lab, particularly when
it comes to rendering common real-world camera resolutions which can be important for sim2real
and real2sim transfer. In particular, with 128 parallel environments for the benchmarked task, Man-
iSkill3 uses just 3.5GB of GPU memory whereas Isaac Lab uses 14.1GB. The memory efficiency of
the ManiSkill3 platform allows for more room for e.g. RL replay buffers or larger neural network
models such as large vision language action models. Training and inference can be kept extremely
optimized on a single GPU as a result without needing to store any data on the CPU. From exper-
imentation with visual RL, we find that GPU memory efficiency becomes much more important as
the FPS gains from more parallel environments become marginal. GPU memory efficiency is espe-
cially important for off-policy algorithms like TD-MPC2 (Hansen et al., 2024) and SAC (Haarnoja
et al., 2018) that typically maintain replay buffer sizes on the order of 105 ∼ 106 frames. For
example storing RGB data from one 128x128 camera would require at least 9GB of GPU mem-
ory for a replay buffer of size 200, 000, which can easily lead to out of memory issues. For more
in-depth performance benchmarking results and comparisons of rendered outputs, see Appendix E.

Figure 2: GPU Simulation+Rendering of RGB speeds of the Cartpole environment with different
camera setups ManiSkill3 and Isaac Lab. Annotated numbers indicate GPU memory usage, with no
data points beyond 128 environments for Isaac Lab due to running out of GPU memory. Note that
this rendering setting mimics that of real world datasets collected in Open-X and Droid. Speed is
dependent on a few factors, primarily the number of objects, geometry complexity of each object, as
well as simulation/rendering configurations which can be tuned for speed or accuracy. As a result,
it is possible the numbers/trends here may not hold for every environment.

Figure 3: Comparison of ManiSkill3
(Top row) and Isaac Lab (Bottom row)
parallel rendering 640x480 RGB and
depth images of the Cartpole task.

We acknowledge that this comparison is not strictly
apples-to-apples due to differences in rendering tech-
niques. Isaac Lab employs ray-tracing for parallel ren-
dering, while the ManiSkill3 results are generated using
SAPIEN’s rasterization renderer (see Figure 3 for a visual
comparison), although ManiSkill3 also supports a ray-
tracing mode without parallelization. Ray-tracing gener-
ally offers greater flexibility in balancing rendering speed
and quality through the adjustment of parameters such as
samples per pixel. Note that the Isaac Lab data presented
here uses the fastest rendering settings, but can be tuned
to improve rendering quality for e.g. sim2real. Despite
the use of different rendering techniques, we believe this
provides a meaningful basis for comparison.

GPU parallelized simulation and rendering enable an en-
tirely new regime of running efficient domain randomizations. For example you can quickly render
over a 1000 different cameras, each with different extrinsics/intrinsics, mounted/fixed, as well as
randomize object textures in each of the parallel environments. A subset of 4 out of 1024 envi-
ronments renders are shown in Figure 5 with different settings. This type of visual diversity in
simulation enables much faster training of more visually robust policies and is critical for sim2real
applications. Furthermore, ManiSkill3 supports parallelized rendering of voxel/pointcloud formats
necessary for 3D robot learning approaches (Ze et al., 2024; Huang et al., 2023; Shridhar et al.,
2022).
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Finally, ManiSkill3 enables extremely fast visual digital twins. For example, ManiSkill3 imple-
ments 4 of the environments in SIMPLER (Li et al., 2024) which are evaluation digital twins
that enable the evaluation of generalist robotic policies trained on real-world data like Octo (Octo
Model Team et al., 2024) and Robotics Transformers (RT) (Brohan et al., 2022). ManiSkill3
digital twins can evaluate models like Octo at 60x to 100x the speed of the real world with-
out human supervision, approximately 10x faster than the original digital twin implementations
in SIMPLER. The speed increase is due to fast and efficient parallel rendering of large cam-
era resolutions (640x480) and flexible GPU parallelized controllers to match most real-world
robot arms/manipulators. More details on sim2real/real2sim support are covered in Section 3.5.

Figure 4: GPU Simulation+Rendering speeds of
various tasks with a single 128x128 resolution
camera with a simulation frequency of 120 and
control frequency of 60, meaning the camera ren-
ders ever 2 sim steps. RGB, depth, and segmenta-
tion data are all simultaneously being rendered.

Figure 5: Parallel rendering outputs of 1024 par-
allel environments for the StackCube and PushT
tasks with a subset of 4 them visualized here.
Original renders are size 128x128, images shown
are up-scaled for clarity. Top-row shows camera
pose randomization and bottom row shows texture
randomization.

Figure 6: Tasks in ManiSkill3 showing heteroge-
neous GPU simulation with different DoF articu-
lations and/or different numbers of objects being
simulated in each parallel environment.

3.3 HETEROGENEOUS GPU SIMULATION

ManiSkill3 is so far the only simulation frame-
work that completely supports heterogeneous
GPU simulation. This is the feature of be-
ing able to simulate different object geometries,
different numbers of objects, and different ar-
ticulations with different DOFs across parallel
environments. For example, in the OpenCabi-
netDrawer task, for each parallel environment,
we build a different cabinet (all with different
DOFs) and sample a random drawer link that
needs to be opened to succeed. In the Pick Clut-
ter YCB task, we sample a different number of
YCB objects in each parallel environment and
sample one random object out of the clutter as
the goal object to pick. ManiSkill3 easily sup-
ports this kind of simulation and further sup-
ports rendering these different scenes in paral-
lel all at once with an example 3rd view render-
ing illustrated in Figure 6. Heterogeneous GPU
simulation enables more generalizable manip-
ulation as algorithms like PPO can simultane-
ously train on every single object from the YCB
dataset (Çalli et al., 2015) or the PartNetMobil-
ity dataset of cabinets (Mo et al., 2019).

3.4 TELEOPERATION

We provide a Virtual Reality (VR) Teleopera-
tion system that is seamlessly integrated into
ManiSkill3 with immersive visual feedback and
supports wired connections. ManiSkill3 re-
ceives real-time hand pose data from the tele-
operator that is translated into corresponding
robot actions. At the same time, the sys-
tem streams 4K stereo video via Air Light VR
(ALVR) to the VR device at 60 Hz, ensuring a
smooth and immersive ”all-scene view” experi-
ence. This allows the user to explore the entire
environment freely, making it possible to tele-
operate long-horizon tasks as well as more pre-
cise tasks by simply looking closer in the simu-
lation. A crucial control feature is “where your
hand is, where the end-effector is”, which tightly aligns the operator’s hand movement with the
robot’s end-effector. Prior work provide ways to stream video feedback over the internet via a hard-
ware agnostic web app Cheng et al. (2024a); Ding et al. (2024) but tradeoff some ease-of-use for
better accessibility (such as long-range remote teleoperation). Our integrated system enables wider
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viewports and reduce the need for teleoperators to compensate for hand-robot misalignment and
visual disparities, visualized in 7. Our VR teleop system is also compatible with real-world teleop-
eration. For real-world operations, we use one or more depth cameras to generate a point cloud of
the scene. The point cloud is then rendered and streamed as stereo RGB video to the operator in real
time, allowing for effective and immersive control. Example code for configuring this system is pro-
vided for teleoperating robot arms or floating robots with multiple grippers/fingers. See Appendix F
for more details on this teleoperation system.

Figure 7: Visualization of VR teleoperation system. Left: A teleoperator using hand poses captured
by the Meta Quest 3 headset to control robot motion in real-time. Middle: A 360-degree scene
displayed in the VR device, providing immersive sensory feedback. Right: Trajectory replay.

3.5 SIM2REAL AND REAL2SIM FOR ROBOT MANIPULATION

Figure 8: Three different kinds of digital twins in ManiSkill3. Top row shows the real-world setup
and bottom row shows the digital twin. Left: Domain randomized digital twin of a cube picking
task. Middle: Digital twin of the vision-tactile simulation of a key insertion task. Right: Real2sim
digital twin of a spoon placing task.

Towards the goal of robust real-world robotics beyond simulation, we verify sim2real and real2sim
are both possible using ManiSkill3 via digital twins on some tasks. Figure 8 showcases several
digital twins supported with real world counterparts. For the cube picking task, we train with RL on
simulation images and directly deploy to the real world, achieving a real world success rate of 91.6%
averaged across 3 RL training runs. See Section 4.3 for more details on rigid body manipulation
sim2real. For the vision-tactile peg insertion task, we simulate the tactile sensor made of silicone
as a softbody and refer readers to the results showcased in the original work by Chen et al. (2024)
for those environments, which achieved a 95.08% success rate in the real world. Finally, for the
real2sim digital twins we evaluate Octo and RT-1X on the ManiSkill3 GPU parallelized version of 4
tasks in SIMPLER (Li et al., 2024). We achieve a correlation between real-world success rates and
simulation success rates of 0.9284 and a Mean Maximum Rank Violation value 0.0147, close to the
original values reported in SIMPLER. See Appendix A.11 for more details on real2sim evaluations.

3.6 SIMPLE UNIFIED API FOR BUILDING GPU PARALLELIZED ROBOTICS TASKS

To enable the flexibility of the ManiSkill3 system to support many different distinct task categories,
we provide a clean/simple API for task-building. The API enables users to easily build and cus-
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tomize their own robotics tasks without having to worry about complex GPU memory management
details or desigining robot controllers. We describe two features provided by ManiSkill3 below:

3.6.1 OBJECT-ORIENTED API FOR ARTICULATIONS, LINKS, JOINTS, AND ACTORS

Figure 9: Code comparison for computing a grasp position on a cabinet handle and the joint angle
of the cabinet drawer in 3 different GPU simulation frameworks.

Figure 10: Code comparison for manipulating batched poses

ManiSkill3 is the only framework with a complete object-oriented API around the high-level articu-
lations/actors down to individual links/joints and meshes. In contrast, IsaacGymEnvs requires users
to instantiates relevant GPU buffers for holding articulation state such as root pose and joint angles.
Isaac Lab improves on this with a partially object-oriented articulation API that allows one to create
an articulation object (e.g., for a cabinet). However, one still has to often play around with index
values to get the relevant articulation data they need. We use a cabinet opening task as a case study.
In a cabinet drawer opening task, to write good reward functions you need to access the drawer
link’s handle mesh’s pose, as well as the joint angle between the drawer and the cabinet. A visual
comparison of the 3 APIs (simplified from the actual code) is shown in Figure 9.

Furthermore, pose information in ManiSkill3 is object-oriented and stored as batched Pose objects,
enabling an easy to read, method chaining pattern of programming for working with poses. For
the sake of an example, suppose that we have 2 poses P1, P2 and want to compute (P1P2)

−1P−1
1 ,

ManiSkill3 provides a simpler method chainable API compared to Isaac Lab, as shown in Figure 10.

3.6.2 ROBOTS AND CONTROLLERS

ManiSkill3 supports both URDF and Mujoco MJCF definition formats natively and builds articu-
lated robots based on the URDF/MJCF directly. For each robot, ManiSkill3 further provides a num-
ber of pre-built configurable controller options for both GPU parallelized joint position control and
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inverse-kinematic (IK) control, modified from ManiSkill2 for GPU simulation. ManiSkill3 builds
upon the PyTorch Kinematics package (Zhong et al., 2024) to support inverse-kinematic based con-
trollers parallelized on the GPU, typically used to control robot arm end-effectors. These options are
easily configured at runtime with either preset configurations or user-supplied controller configura-
tions. Currently, there are 20+ different robots supported out of the box in ManiSkill3, a subset of
which are visualized in Figure 14. Finally, ManiSkill3 comes with extensive tutorials and examples
of how to tune and optimize robots for fast simulation, which has often proven a stumbling block
for those new to robot simulation importing complex robots for the first time.

3.7 DEMONSTRATION DATASETS

We leverage a variety of approaches to collect/generate demonstration datasets infinitely at scale.
For easy tasks, we provide motion planning scripts to generate demonstration data. Some tasks with
easy-to-define rewards have dense reward functions defined and converged RL policies are used to
generate demonstration data. For more difficult tasks, we collect demonstration data (typically about
10 emos) via teleoperation tools. Then, we use RFCL (Tao et al., 2024) or RLPD (Ball et al., 2023)
to run fast online imitation learning and generate data from converged policies.

We further adapt the trajectory replay tool from ManiSkill2 to work with both CPU and GPU sim-
ulated demonstration data. The replay tool enables users to change the observations stored (e.g.,
state or rgbd, and allow modifying the rendering shaders used) as well as modifying the rewards
stored (dense or sparse). In tasks involving the Franka robot arms, we provide code to convert
actions from one controller type to another (e.g. joint position control to delta end effector pose
control). Importantly we support collecting data in CPU/GPU simulation and replaying them in
CPU/GPU simulation with different numbers of parallel environments via explicit control over ran-
domization/RNG seeding at the per-parallel-environment level. This enables flexibility in trajectory
replay as data collected on one machine with more GPU memory can be replayed on other machines
with less GPU memory that cannot use as many parallel environments.

4 BASELINES AND RESULTS

4.1 REINFORCEMENT LEARNING / LEARNING FROM DEMONSTRATIONS (LFD)

We provide two categories of RL baselines and two categories of LfD baselines as follows:

Wall-time Efficient Reinforcement Learning: We include a torch based vectorized implementa-
tion of model-free RL algorithms PPO and SAC (Haarnoja et al., 2018), as well as the state-of-the-art
model-based RL algorithm TD-MPC2 (Hansen et al., 2024). Configurations for baselines are tuned
to minimize training wall time with no regard to sample efficiency. Code for PPO and SAC is im-
plemented based on CleanRL (Huang et al., 2022) and leverages the torch compile and cudagraphs
acceleration features introduced by LeanRL.

Sample Efficient Reinforcement Learning: All of the RL baselines in the wall-time efficient set-
ting besides PPO are included here with configurations tuned towards more gradient updates and
fewer environment steps to maximize sample efficiency.

We share results on training speed in Section 4.2. More in-depth details on RL setups and more
training results are shared in Appendix C.

Offline Imitation Learning: We currently provide Behavior Cloning, Diffusion Policy (Chi et al.,
2023), Action Chunking Transformer (Zhao et al., 2024), and PerACT (Shridhar et al., 2022) as
baselines. We also support evaluating (but not training) several vision-language action (VLA) mod-
els, namely Octo (Octo Model Team et al., 2024), RT-X (Collaboration et al., 2023), and RDT-1B
(Liu et al., 2024). We leave to future work to support training VLA models on simulation data as
RDT-1B has done with the previous ManiSkill2 datasets.

Online Imitation Learning: Online imitation learning generally refers to algorithms that learn from
demonstrations in addition to collecting online environment transitions. We currently provide the
two state-of-the-art baselines: Reinforcement Learning from Prior Data (RLPD) (Ball et al., 2023),
and Reverse Forward Curriculum Learning (RFCL) (Tao et al., 2024).
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Mandlekar et al. (2021) show that imitation learning algorithm performance heavily depends on how
the demonstrations were collected, particularly on how “multimodal” the data is. For example, some
behavior cloning algorithms perform poorly when trained on motion planning or human teleoper-
ated data, but perform well if trained on data generated by a neural network. With this caveat in
mind, we explicitly track in all our LfD baselines the number of demonstrations used, what type of
demonstrations are used (RL generated, motion planning, or human), and where the demonstrations
are sourced from exactly (a longer description e.g. neural net trained via TD-MPC2, teleoperation
via Meta-Quest VR). Imitation learning results on some environments are shared in Appendix D.

4.2 RL TRAINING SPEED
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Figure 11: Wall-clock training time of PPO on
GPU/CPU simulation showing the average suc-
cess rate over time across 5 seeds. Shaded areas
correspond to the 95% confidence interval.

We run experiments using PPO (Schulman
et al., 2017) on the ManiSkill3 GPU simula-
tion and the ManiSkill2 CPU simulation. Man-
iSkill2 was previously the fastest robotics sim-
ulation+rendering framework until ManiSkill3.
The experiments were run on an RTX-4090
GPU on the PickCube task, where a Franka
robot arm must grasp a randomly initialized
cube and hold it still at a random goal loca-
tion. For the vision-based task no ground truth
data like cube pose is provided and the RL pol-
icy must solve from proprioceptive information
and one 128x128 RGB image rendered by the environment’s 3rd-person camera. RL hyperparame-
ters are tuned to achieve the fastest training time in both settings. Results in Figure 11 show that state
and vision based training are massively accelerated with GPU simulation and rendering. PickCube
with delta joint position control from state-based observations in GPU simulation reaches near 100%
success rate after about 1 minute of training, a 15x speed up relative to ManiSkill2. From RGB ob-
servations with parallel rendering PickCube is solved after about 10 minutes of training, a 8x speed
up relative to ManiSkill2. For results and details of RL on more environments see Appendix C.

4.3 VISION-BASED SIM2REAL MANIPULATION

Figure 12: Green screening visualized with Koch-
v1.1 robot. Left: Real RGB observations. Right:
Sim RGB observations overlaid on real back-
ground. Middle: Sim RGB observations overlaid
on real RGB observations.

To showcase the use-case of heterogeneous
simulation and parallel rendering, we provide a
simple reproducible setup for end-to-end train-
ing a vision-based manipulation policy that
deploys successfully zero-shot. The setup
uses the low-cost $300 Koch robot arm and a
phone camera for third-person RGB observa-
tions, leveraging the open-source Hugging Face
LeRobot library (Cadene et al., 2024) for the
hardware and setup to enhance reproducibility
and accessibility. This setup is not limited to the
Koch arm; other more expensive robotic arms
can be used and likely perform better due to more precise hardware.

During simulation training and real-world evaluation, observations are restricted to RGB inputs and
robot joint positions; no demonstrations or privileged state information such as cube pose is used,
and the robot is controlled via continuous joint level input. We note however that future work
combining simulation training with teleoperated demonstrations could improve performance and
training time. To match the real background within simulation and reduce the visual sim2real gap
we green screen the real-world background. We skip green-screening over the dynamic objects like
the cube and robot arm via the environment’s segmentation map, see Figure 12 for an example. To
enhance generalization and accommodate variations in real-world setups, we domain randomize a
number of elements of the simulation. Task agnostic domain randomizations include camera pose,
lighting direction, and the robot pose. Specific to the cube picking task we further domain randomize
the cube size, color, and friction.

9



Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

In this demonstration we picked a random table in a house and set up the green-screening and
roughly aligned the simulation camera pose with the real-world camera pose. Then we train on
the cube picking environment with PPO using a simple Nature CNN backbone for image feature
processing for 15 million samples using 256 parallel environments, taking approximately 1 hour on
a RTX 4090 GPU. The trained policy is then zero-shot deployed on the real robot, using the same
controller as in sim, namely a delta target joint position controller. Evaluating the final checkpoint
across 3 training runs in the real-world 8 times each yielded a 22/24 = 91.6% success rate. Real
world evaluations test on cubes of varying sizes, colors, and start poses, demonstrating our vision-
based sim2real setup is capable of learning manipulation policies.

We further evaluated each intermediate checkpoint from the 3 RL training runs and plot the sim-
ulation and real-world success rates in Figure 13. The figure shows a good correlation between
real-world and simulated success rates, indicating that some sim2real digital twins built with Man-
iSkill can be fairly accurate and reflect the real-world. Interestingly, we observe that despite not
modelling shadows or the exposed wiring of the robot arm accurately, a successful sim2real pol-
icy is still capable of being trained. See Appendix B for more details on the exact setup, domain
randomizations, controller implementation, as well as videos.

5 LIMITATIONS
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Figure 13: Pick-cube sim and real success rates
on the grasp cube subtask as well as the full suc-
cess consisting of grasping, lifting, and return the
cube to a goal position. 14 training checkpoints
for each of the 3 seeds are evaluated on both sim
and real 8 times, using a variety of cube colors and
sizes. Success rates are averaged across trials and
shaded areas represent 95% confidence intervals.

While parallel rendering can enable some new
and more accessible approaches to sim2real and
visual RL, it has its limits. For complex en-
vironments with many geometries (e.g. room-
scale scenes) we can GPU parallel render and
simulate them but at a lower number of envi-
ronments on one GPU.

While it is now possible to do some more gen-
eralizable zero-shot RGB based sim2real with a
relatively simple setup, some reward engineer-
ing was required to encourage safer and more
robust grasp behaviors of RL trained policies.
Moreover, we have not solved sim2real, but
have opened a new avenue of accessible ap-
proaches based on fast visual RL in simulation
on one consumer GPU. The sim2real demo is also limited to using just static cameras which can
be addressed in future work exploring novel-view rendering. One could also explore algorithmic
changes and/or domain randomizations that can help remove the need for green screening.

Not all types of environments in ManiSkill are readily ”GPU parallelized” in the sense that there are
a batch of parallel environments. Most GPU parallelized environments are rigid-body based. The
soft body environments are not batched as they use a significant portion of the GPU to simulate just
a single environment fast. The vision-tactile simulator tuned for sim2real transfer uses a different
set of algorithms for physics simulation compared to the majority of rigid-body only environments.

6 CONCLUSION

ManiSkill3 introduces a state-of-the-art framework/benchmark for generalizable robotics simulation
and rendering. ManiSkill3 uses less GPU memory and depending on scenario can run faster while
also supporting heterogeneous GPU simulation. Additionally we support the most diverse range
of robotics tasks compared to alternative simulators. Importantly, we reliably support both sim2real
and real2sim environments in manipulation tasks with real-world reproducible results. Moreover, we
provide a immersive VR teleoperation system option for users to collect data for their own research.
Furthermore, ManiSkill3 provides an easy-to-use object-oriented API for building all kinds of GPU
simulated tasks, democratizing access to scalable robot learning. Finally, demonstrations and RL/IL
baselines with clearly defined metrics are open sourced for users to use. We believe that our compre-
hensive approach to building the open-osurce ManiSkill3 will encourage the research community to
tackle manipulation challenges more extensively through compute-scalable simulation.
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A ENVIRONMENTS AND ROBOTS LIST

Figure 14: A sample of 16 of the robots supported in ManiSkill3 on both CPU and GPU simulation.

This section covers key implementation and optimization details of the general supported task cat-
egories. For videos of soft body and vision-tactile tasks we refer readers to the ManiSkill2 pa-
per. A sample of 16 of the supported robots, which include mobile manipulators, floating grippers,
quadrupeds, etc. is displayed in Figure 14. Videos of some tasks and how they are solved are
attached in the supplemental.
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We emphasize here that while ManiSkill3 may not have the most distinct number of tasks compared
to some benchmarks, the core contribution is supporting a diverse array of possible tasks with open-
sourced code that users can reference and use to easily build more tasks.

A.1 TABLE TOP MANIPULATION

Figure 15: Example table-top manipulation task showing the start state and the solved state. The
robot arm must grasp the white-orange peg and insert it into the box.

Table-top manipulation is primarily related to controlling one or more robot arms to manipulate an
object on a table. Robots like Franka Emika Panda and Universal Robots 5 fall under this cate-
gory. Typical tasks may include picking up objects, inserting a peg, assembling a structure, pushing
objects, etc. An example task is shown in Figure 15.

Implementation Details: All robot arms are modified to have certain impossible self-collisions
disabled and some have their collision meshes modified for faster simulation.

A.2 MOBILE MANIPULATION

Mobile manipulation here refers to tasks in which a robot arm has a mobile base. Robots like Fetch
and Stretch fall into this category. Typical tasks may include placing objects on surfaces, opening
cabinet doors/drawers, picking up objects off the ground, etc. Example task is shown in Figure 16.

Implementation Details: The default robot supported is Fetch. The mobile base in particular is
not simulated by driving the wheels, and is modeled similarly to AI2-THOR (Kolve et al., 2017)
and Habitat (Szot et al., 2021) with one joint controlling forward/backward movement and another
controlling rotation of the base. The Fetch robot definition and collision meshes have further been
tuned to be simpler for faster simulation. Several impossible self-collisions between some links have
been explicitly ignored to speed up simulation.

A.3 ROOM SCALE ENVIRONMENTS

ManiSkill3 provides out-of-the-box code to build the ReplicaCAD environment from Habitat (Szot
et al., 2021), all AI2-THOR environments (Kolve et al., 2017) using assets compiled by the authors
of the Habitat Synthetic Scenes Dataset (Khanna et al., 2023), and the RoboCasa scenes dataset
(Nasiriany et al., 2024). Photo-realism is also possible by turning on the ray-tracing shader options
when creating the environment.

AI2-THOR (Kolve et al., 2017) and Habitat (Szot et al., 2021) have long-horizon mobile manipula-
tion tasks but rely on slow CPU simulation / slow rendering systems, and do not support contact-rich
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Figure 16: Example mobile manipulation task showing the start state and the solved state. The
mobile robot arm must grasp the handle indicated by the green sphere and pull it open.

physics for manipulation (only magical grasp) and do not look photorealistic. Robocasa (Nasiriany
et al., 2024) has contact-rich long-horizon mobile manipulation tasks in photorealistic room-scale
environments. However, Robocasa simulates and renders these scenes at around 25FPS as it does
not use GPU parallelized simulation and rendering. In contrast ManiSkill3 can simulate the complex
ReplicaCAD environment up towards 2000+ FPS with rendering.

Implementation Details: We further make several modifications to ReplicaCAD to make it com-
pletely interactive as some of the collision meshes for articulations were modelled incorrectly and
thus did not support low-level grasping. Via CoACD (Wei et al., 2022) we run convex decomposi-
tion on objects in AI2-THOR scenes to generate simulatable non-convex collision meshes so those
objects can e.g. be grasped and moved around correctly. Via manual annotation by ManiSkill3 au-
thors, certain categories of objects in AI2-THOR are made to be kinematic so they cannot be moved
around (e.g. tables, TVs, clocks, paintings) with the rest allowed to be dynamic to be fully simulated
(e.g. apples, baseball bat, cups) to optimize simulation speed.

A.4 LOCOMOTION

Locomotion here refers to controlling robot joints to move a robot from one location to another.
Quadrupeds such as AnyMAL-C and humanoids such as Unitree-H1 fall into this category. Example
task is shown in Figure 17.

Implementation Details: Similar to Isaac Lab, quadruped robots in locomotion tasks are modified
such that the large majority of collision meshes are removed, leaving behind just the feet, ankles,
and the body visualized in Figure 18. Moreover following Isaac Lab, joint limits are significantly
constrained such that random actions do not easily cause the robot to fall over.

A.5 HUMANOID / BI-MANUAL MANIPULATION

Tasks here refer to the use of a humanoid embodiment such as the Unitree H1 robot or bi-manual
robot embodiments for manipulation tasks. Example task shown in 19.

This type of task can be found in benchmarks like RoboCasa and BiGym, although we note that
RoboCasa and BiGym do not reliably support working RL setups and are not GPU parallelized.
Isaac Lab currently does not have these types of tasks out of the box.

Implementation Details: For some tasks where the robot has legs, to simplify the task the legs are
fixed in place so that robot learning methods can focus on manipulation only and train faster. Tasks
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Figure 17: Example humanoid manipulation task showing the start state and the solved state. The
humanoid must use both arms to grasp the box and transport it to the other table.

Figure 18: Comparison of the visual and collision mesh of one of the robot quadruped models,
AnyMAL-C.

still have the option to swap a version of the robot where all joints are controlled although they are
much harder.

A.6 MULTI-AGENT ROBOTS

Multi-Agent robots refer to support for controlling multiple different robots in the same simulation
to perform a task. Setups such as multiple quadrupeds or robot arms fall into this category. A
common task is the handover of objects. Example task shown in Figure 20.

This type of task can be found in Robosuite. Isaac Lab supports this type of task, but not out of
the box. Past environments based on older versions of Isaac have example tasks with multiple robot
arms/hands running on GPU simulation (Chen et al., 2022).

Implementation Details: By default the action space is a dictionary action space in multi-agent
environments with a dictionary key for each controllable agent, which follows the standard Petting-
Zoo API Terry et al. (2021). PettingZoo is currently the most popular interface for multi-agent RL
environments. For users who do not wish to do multi-agent RL they can flatten the action space into
a single vector if necessary via a environment wrapper provided by ManiSkill3.
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Figure 19: Example humanoid manipulation task showing the start state and the solved state. The
humanoid must use both arms to grasp the box and transport it to the other table.

Figure 20: Example multi-agent robotics task showing the start state and solved state. The left robot
must push a cube over to the other robot to pick up.

A.7 DRAWING/CLEANING

Drawing/Cleaning refers to tasks for dynamically ”adding/removing” objects to simulate the effect
of drawing or cleaning. A task could be to draw the outline of a shape on a canvas or clean dirty
spots on a table surface. Example task shown in Figure 21.

ManiSkill3 is the only framework that supports this kind of task out of hte box with GPU paral-
lelization and rendering.

Implementation Details: The drawing/cleaning effect is achieved by building ahead of time 1000s
of small thin cylinders that represent “ink” or dirty spots. For a drawing task, all of these cylinders
are hidden away from the camera view. When a robot moves a drawing tool close to a surface/canvas,
the cylinders have their pose set to be on top of the surface right under where the drawing tool
is. For a cleaning task, all the cylinders/dirty spots are visible and removed once the cleaning tool
moves over the dirty spot. Currently the drawing/cleaning environments in ManiSkill3 do not require
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Figure 21: Example drawing/cleaning task showing the start state and solved state. The robot must
draw a given SVG file (which describes a set of lines), in this case the letter A.

intricate grasping (nor is it the focus) of the drawing/cleaning tool, so the solver position/velocity
iteration values are tuned down.

A.8 DEXTROUS MANIPULATION

Figure 22: Example dextrous manipulation robotics task showing the start state and solved state.
The robot hand must rotate the object in place to a desired orientation.

Dextrous Manipulation refers to tasks often involving multi-fingered hands and dense/rich contacts
occurring during manipulation. An example task is in-hand rotation. Example task shown in Figure
22.

This type of task has been heavily explored and exists in Isaac Lab and ManiSkill3 with GPU
parallelization.

Implementation Details: Not many special optimizations are made here. Tactile sensing is further
provided in environments via touch sensors placed on the dextrous hand at various points.
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Figure 23: Example task of a key insertion task in simulation (top left), the real world equivalent
(top right), and plots of the tactile feedback data (bottom).

A.9 VISION TACTILE MANIPULATION

Vision Tactile Manipulation refers to tasks that rely on processing tactile information like images to
solve manipulation tasks. Tasks could include key insertion which require tactile inputs to solve due
to visual occlusions. Example task shown in Figure 23

Implementation Details: The vision-tactile, sim2real, manipulation environments are ported over
from the 2024 ManiSkill Vision-based-Tactile Manipulation Skill Learning Challenge (Chen et al.,
2024).

A.10 CLASSIC CONTROL

Figure 24: Example control environments: CartPoleBalance, Hopper, and Ant.

Classic control is quite broad but in this context refers to fake robots tasked with achieving some
stable pose or moving in a direction at desired speeds. Tasks include cartpole balancing, hopper etc.
Examples are shown in Figure 24
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DM-Control (Tunyasuvunakool et al., 2020) has the most implemented control tasks and Isaac Lab
has a few GPU parallelized variants. ManiSkill3 has GPU parallelized simulation+rendering vari-
ants of the most control tasks.

Implementation Details: ManiSkill3 uses its MJCF loader to load the MJCF robot definitions from
the original DM-Control repository and tunes robot pd joint delta position controllers to align as
closely as possible to the behavior seen in DM-Control/Mujoco.

A.11 DIGITAL TWINS

Digital twins have two variants included, environments for real2sim and environments for sim2real.
The distinction here is real2sim environments simply need to be designed so that a model trained on
a real world equivalent of the simulation environment achieves similar success rates when evaluated
in simulation. Sim2real digital twins are environments designed so that models trained on simulation
data can be more easily used for real world deployment.

For real2sim, ManiSkill3 ports over and GPU parallelizes some environments from SIMPLER (Li
et al., 2024), which enables efficient evaluation of policies trained on real world data like the gen-
eralist RT-X and Octo models. The primary tricks include green-screening a real world image and
texture matching which have been copied over and parallelized. We ensured the GPU parallelized
port of SIMPLER achieves similar results/behaviors as the original CPU simulated environments as
shown in Figure 25.

Figure 25: Evaluated success rates of generalist robotics models like Octo and RT-1X on 4 different
tasks. The correlation and MMRV metrics are close to that of the original paper. MMRV is Mean
Maximum Rank Violation (lower the better), which assess the accuracy of the consistency of the
rankings of real and sim policy evaluations.

For sim2real, we provide tools useful for training policies in simulation and directly deploying into
the real-world. Given the number of details involved in sim2real, we explain the implementation
details of vision-based sim2real in detail in Appendix B.
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A.12 SOFT BODY MANIPULATION ENVIRONMENTS

Soft body manipulation refers to the manipulation of soft body objects that can deform and morph
in shape. Tasks include excavating sand particles, pouring water etc.

ManiSkill3 soft body manipulation environments are the same as ManiSkill2 which uses 2-way
coupled rigid-MPM simulation that enables rigid body objects to interact with soft body objects.
We point readers to the ManiSkill2 paper for more details on soft body simulation.
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B VISION-BASED SIM2REAL

We describe how one can use ManiSkill3 to perform end-to-end vision-based sim2real by train-
ing with PPO a RGB-based manipulation policy in simulation and zero-shot deploying it in
the real world. Past work such as TRANSIC-Envs (Jiang et al., 2024) provide reproducible
sim2real digital twin setups but rely on state estimation via ArUco markers for sim2real trans-
fer and does not support visual feedback. Dextreme (Handa et al., 2023) provides a realistic
in hand cube rotation environment but also does not support efficient visual feedback and re-
lies on accurate state estimation. ManiSkill3 on the other hand has fast visual data generation
that enable mimicing real-world cameras inputs for training at scale and fast. We note how-
ever the example setup here is a task less complex than that of e.g. Dextreme but point out
that our reproducible setup is easily extendable and could be the start of opening a new av-
enue of sim2real research with efficient and fast large-scale simulation training on image in-
puts. The final evaluation videos as well as reset distribution videos can be found on our
demo gallery page: https://maniskill.readthedocs.io/en/latest/user guide/demos/gallery.html#vision-
based-zero-shot-sim2real-manipulation

B.1 HARDWARE

We use the low-cost $300 Koch v1.1. robot arm and the LeRobot library for a simple accessible
python interface to control the robot arm. Due to the simple but accessible hardware, it is generally
harder to deploy policies on this robot as the motors are less precise compared to more expensive
robot arms. Thus the vision-based sim2real demonstrated here can easily work on other robot arms.
Apart from the robot we also setup one third view iPhone camera (any LeRobot compatible camera
can work) to record RGB observation data.

B.2 CONTROLLER / ACTION SPACE

We use a target delta joint position controller in both simulation and the real-world at a control
frequency of 30Hz. At timestep t = 0 after an (real or simulation) environment reset we save an
initial target joint position value q̄t = qt where qt is the joint position of the robot arm at timestep t.
Given an action at at timestep t, we set q̄t+1 = q̄t + at.

At each timestep t, we drive the robot’s joint positions to q̄t. In simulation this is equivalent to
setting target joint position values in the PhysX physics engine and the behavior is defined by a PD
controller. In the real world this is equivalent to setting the next joint position of the robot arm to
be q̄t, and most robot arms have APIs that enable this functionality and will internally run their own
control loop to reach the set joint position.

The actual action space of the environment is normalized to a range of -1 to 1 for each joint. Given
a predicted action from a policy ât we clip it first to the range of [−1, 1] and then unnormalize
it to obtain at = ât(h−l)

2 , which is the delta action applied to the q̄t. For the Koch robot arm
l = −0.05, h = 0.05, which represent a maximum change of 0.05 radians in either direction of each
joint.

We choose the target delta joint position controller as the sim2real dynamics gap for quasi-static
tasks (tasks where objects only move when the robot manipulate them) is minimized. In both sim-
ulation and real-world in quasi-static settings with small enough action sizes as long as within the
timeframe of one control step the real world robot and simulated robot reach q̄t at timestep t then
the simulation and real-world are aligned well. We note that we leave it to future work to explore
controller and sim2real design for addressing more dynamic tasks such as catching a thrown object
which require higher control frequencies.

B.3 OBSERVATION SPACE

The observation space follows that of all visual RL baselines, which contains both proprioceptive
data and the camera input RGB data. For the simulated tasks the prioprioceptive data contains both
the current robot joint positions qt as well as the target joint positions q̄t which is required to make
the problem markov and more easily solvable via RL. The RGB data is a 128 × 128 RGB image
captured during each control step of the environment.

26

https://maniskill.readthedocs.io/en/latest/user_guide/demos/gallery.html#vision-based-zero-shot-sim2real-manipulation
https://maniskill.readthedocs.io/en/latest/user_guide/demos/gallery.html#vision-based-zero-shot-sim2real-manipulation


Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

We further include a binary label of whether or not the robot is grasping something, which is a
simple check of whether the joint position of the gripper joint is within 0.02 radians of the target
joint position of the gripper joint. If the joint position of a robot cannot reach the target joint position
this indicates something is blocking that joint, e.g. an object being grasped. Empirically we find
that due to occlusions that occur once the cube is grasped due to the camera angle and the gripper
link covering the cube, the trained policy has difficulty discerning whether or not it has grasped a
cube. The binary is grasped feature generated from qt, q̄t values is sufficient to overcome the issue
of occlusions.

All of these observation data points are easily obtained in the real world without needing to set up
perception stacks to observe e.g. object poses. No observation delays are added but can be useful
for higher frequency tasks.

B.4 ENVIRONMENT SETUP AND DOMAIN RANDOMIZATIONS

Figure 26: Sample images of the start states of the simulated environment and real-world environ-
ments, showing the reset distribution. Videos of the reset distribution can be found on our website.

The simulated environment contains 4 objects, the floor, the table, the cube, and the robot arm. A
visualization of the reset distribution can be found in Figure 26. We perform the following random-
izations at each timestep of the environment:

• Camera pose is randomized by randomly shifting the camera position up to 2.5 cm in x,
y, and z axes in the world frame. This randomization scale sufficiently covers possible
misalignments between simulated and real-world cameras.

We perform the following randomizations each time the environment is reset:

• The initial robot joint positions q0 are sampled from N (qR, 0.02), where qR represents the
joint positions we set for the real Koch v1.1 robot at each reset.

• The position of the cube is uniformly sampled within a 10cm2 square in front of the robot
arm, and the cube’s z-axis rotation is randomized completely.

We perform the following randomizations each time the environment is reconfigured, which permit
the environment to use different object assets, materials, camera settings. This occurs only during
environment resets, but typically is done less often as it slows down reset times.

• Cube side lengths are sampled uniformally in the range [1.5, 2.25] cm
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• Cube frictions are sampled from N (0.3, 0.025)

• Cube color is sampled uniformally from all possible RGB values.
• Robot chassis color is sampled from N (c, 0.05), where c is the base robot chassis RGB

color scaled from 0 to 1.
• Robot motor color is sampled from N (m, 0.05), where m is the base robot motor color

scaled from 0 to 1.

B.5 REWARD

Igrasped indicates whether the robot is grasping the cube. Itouch table indicates if the robot is robot’s
gripper is colliding with the table. Itcp close indicates whether the tool center point, the point between
the robot’s two gripper fingers xtcp

t , is within a half of the cube’s side length from the cube’s position,
xcube
t . We also define the vector from the first gripper finger to the second as g⃗ and the cube size as

c. The reward function, for a state s and action a is:

rt(s, a) = rdist(x
tcp
t , xcube

t , 15) + rorient(g⃗)

+ 2Itcp closerdist(||⃗g||, c, 40)

+ Igrasped
(
1 + 3rdist(qt, qR,

4

π
)

)
− 2Itouch table

rdist is a common distance reward function used in ManiSkill3, where rdist(x, y, z) = 1− tanh(z ∗
||x − y||). rorient(g⃗) = 1 − (u⃗ · g⃗

||g⃗|| ), where u⃗ is the up vector. Intuitively, this means rewarding
the agent with a value of one for keeping g⃗ perpendicular to the table normal and a value of zero if it
is parallel instead. qt and qR represent the joint positions at timestep t and upon environment reset,
respectively.

We find that action magnitude, ||a||, does not need to be considered within the reward, as the con-
troller’s restrictions of l and h are appropriately tuned for safe deployment and for the realistic
maximum joint acceleration magnitudes for each real robots’ motors.

B.6 TRAINING

PPO with RGB inputs is used for training, details on the overall RL implementation is discussed
in Appendix C. Specific to this task we use a reconfiguration frequency of 10 to ensure the RL
policy sees a sufficiently diverse set of randomizations over object geometry and materials while
also ensuring we are not performing slow reconfiguration resets too often. Ultimately training takes
about 1 hour on a 4090 GPU. The final training curves can be found in the main paper in Figure 13.
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C REINFORCEMENT LEARNING BASELINES

We most comprehensively test PPO and TD-MPC2 as reinforcement learning baselines, which rep-
resent two ongoing sides of RL research, walltime efficient RL and sample efficient RL. SAC is
also provided but is not heavily benchmarked as of now. When possible RL baselines have sample-
efficient and wall-time efficient hyperparameters. These baselines are implemented with PyTorch
(Ansel et al., 2024).

C.1 PROXIMAL POLICY OPTIMIZATION (PPO)

Neural Network Architecture: For state based tasks the actor and critic networks are separated
and are comprised of a MLP with three 256 unit hidden layers followed by Tanh activation. For
vision based tasks the actor and critic share a feature processing backbone, namely a NatureCNN
following the default setup that the popular Stable Baselines 3 RL library (Raffin et al., 2021) uses.

Training Details and Hyperparameters: The key hyperparameters that were tuned per environ-
ment were largely the discount factor, GAE lambda factor, the max episode steps/horizon, as well
as the number of parallel environments. Typically we try to use up to 4096 parallel environments
when possible for state based training and about 256 to 1024 environments for RGB based training.
Discount factor by default is kept at a low value of 0.8 which empirically works well for most tasks
and increased up to 0.99 if 0.8 does not work. Episode horizon is tuned such that the task can be
solved within that horizon and the horizon is not much longer than the optimal solve time. We fur-
ther tune the number of steps sampled from each parallel environment in each rollout. Generally a
value of 16 or 32 is used and is tuned down if possible. However, we observe most tasks cannot be
solved with low number of steps sampled per parallel environment like PegInsertionSide, likely due
to long horizon temporal dependencies that are harder to model.

For all experiments we always turn partial resets on, which enables environments to reset early upon
reaching a fail or success state if there are any. Partial resets generally enable faster training by
reducing the time spent sampling the environment in irrelevant states.

ManiSkill environments support setting environment reconfiguration freqencies, which control how
often during an environment reset we will also permit resetting/randomizing simulation properties
that are not changeable after starting simulation (such as the object shape as done in the PegIn-
sertionSide task). By default all experiments have a reconfiguration frequency of 0 for training
environments as generally with sufficiently high number of parallel environments there is enough
diversity in the training data. For more advanced use-cases like training robust sim2real policies as
done in Appendix B, we use a non-zero reconfiguration frequency to better randomize the object
geometries and other properties.

Due to the number of hyperparameters and environments we do not include them in the
paper itself. All training runs are included on a Weights and Biases dashboard here:
https://wandb.ai/stonet2000/ManiSkill/reports/On-Policy-RL-Results–VmlldzoxMDQzNDMzOA.

C.2 TEMPORAL DIFFERENCE LEARNING FOR MODEL PREDICTIVE CONTROL 2 (TD-MPC2)

Neural Network Architecture: For tasks with state-based observations, we used the original TD-
MPC2 architecture from the original paper. For vision-based tasks, we modified the encoder to
handle larger 128×128 input images and additional external state information (e.g., joint position,
goal position). In particular, we introduced an additional convolutional layer to the RGB encoder, as
well as a separate MLP (composed of one 256-unit and one 512-unit layer-normed, linear layer) to
process the extra state data. The outputs from the RGB encoder and state encoder are then combined
via a 512-unit linear layer. All other network components (e.g., actor and critic) remain unchanged
from the original implementation.

Training Details and Hyperparameters: We evaluate TD-MPC2 with the wall-time-efficient
mode (using 32 parallel GPU environments). Due to the number of hyperparameters and envi-
ronments we do not include them in the paper itself. All training runs are included on a Weights
and Biases dashboard here: https://wandb.ai/stonet2000/ManiSkill/reports/Off-Policy-RL-Results–
VmlldzoxMTE2ODk2NA.
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We only tune two parameters, the replay buffer size and the environment control mode. For all
vision-based tasks, we use a smaller replay buffer size of 200K, while for state-based tasks we
use 1M. Generally, we employ the delta joint position control mode for wall-time-efficient runs
as the environment runs faster relative to IK-based end-effector control; However, for tasks like
PickCube-v1, in which the robotic arm cannot easily remain static at the goal, we use the delta
end-effector position control mode to achieve better performance. TD-MPC2 baseline also has
both a sample-efficient set of environment configurations. The sample-efficient setting uses 1 CPU
environment whereas the wall-time efficient setting uses 32 GPU parallelized environments. Less
parallel environments relative to the number of updates per frame of data sampled generally lead to
better sample efficiency.
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D IMITATION LEARNING BASELINES

D.1 BEHAVIOR CLONING BASELINES

We evaluate three offline imitation learning baselines on PickCube, PushCube, StackCube, and Pe-
gInsertionSide using state and RGB observations. The baselines are Behavior Cloning (BC), Dif-
fusion Policy (DP), and Action Chunking Transformer (ACT). Motion planning is used for the data
sources. Table 2 and 3 show the best success rates obtained during training on different tasks for
state and RGB observations, respectively. Overall we find that Diffusion Policy performs the best,
especially when there are few demonstrations.

PickCube-v1 PushCube-v1 StackCube-v1 PegInsertionSide-v1
Demos Success Demos Success Demos Success Demos Success

BC 1000 0.03 1000 0.81 1000 0.00 1000 0.00

ACT 1000 1.00 1000 0.97 1000 0.97 1000 0.43

DP 1000 1.00 1000 0.96 1000 0.99 1000 0.66

BC 100 0.00 100 0.69 100 0.00 100 0.00

ACT 100 0.70 100 0.99 100 0.50 100 0.14

DP 100 1.00 100 0.95 100 0.90 100 0.38

Table 2: Comparison of imitation learning baselines on different tasks using state observations with
varying number of demonstrations.

PickCube-v1 PushCube-v1 StackCube-v1 PegInsertionSide-v1
Demos Success Demos Success Demos Success Demos Success

BC 1000 0.03 1000 0.81 1000 0.00 1000 0.00

ACT 1000 0.98 1000 0.89 1000 0.80 1000 0.00

DP 1000 1.00 1000 0.86 1000 0.81 1000 0.00

BC 100 0.00 100 0.00 100 0.00 100 0.00

ACT 100 0.28 100 0.30 100 0.33 100 0.00

DP 100 0.76 100 0.41 100 0.61 100 0.00

Table 3: Comparison of imitation learning baselines on different tasks using RGB observations with
varying number of demonstrations.

D.2 VISION-LANGUAGE ACTION (VLA) MODEL BASELINES

We support training and/or evaluation of various vision-language action (VLA) model baselines. For
evaluation, we support Octo and RT-x via the GPU parallelized version of the SIMPLER (Li et al.,
2024) project. For RDT-1B, we support fine-tuning RDT-1B on a few ManiSkill3 demonstrations to
then be evaluated on various tasks.

For both training and evaluation, a more classical sense-plan-act style method PerAct (Shridhar et al.,
2022) is provided as a baseline in ManiSkill3. Different from RGB-based baselines like Octo and
RT-x, PerAct operates on voxelized inputs. Our implementation follows the original PerAct design
with modifications to demonstration generation and action execution: We obtain demonstrations
by replaying trajectories with point cloud observations, which are voxelized directly during infer-
ence. This approach eliminates the need to explicitly convert RGBD observations to point clouds,
as required in the original implementation. We hard-coded text descriptions for each task based
on ManiSkill3 task cards. During inference, the end-effector pose-based actions are converted into

31



Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

joint position sequences using MPlib, which are then executed under ManiSkill3’s joint-position
(pd joint pos) control mode.

We trained PerAct on PushCube-v1 and StackCube-v1 using 50 demonstration trajectories and eval-
uated over 100 episodes. The results are presented in Table 4 and Figure 27.

Figure 27: Success rate curves of PerAct over 80k training steps on PushCube-v1 and StackCube-v1

D.2.1 MULTI-VIEW AND SE(3) AUGMENTATION

We also reported ablation results under multi-view and SE(3) augmentation settings: The multi-
view settings include 4 cameras: a base camera, a left shoulder camera on the left of the arm, a right
shoulder camera on the right, and a wrist camera mounted on the arm. Figures 28 and 29 illustrate
that multi-view cameras provide finer voxelization details. Yet the difference for StackCube-v1 is
marginal since the cubes and their surroundings are already visible via the hand and base cameras.
Table 5 details the cameras used for each experiment.

(a) Default-view voxelized scene. (b) Multi-view voxelized scene.

Figure 28: Comparison between default-view and multi-view voxelized images in StackCube-v1.
The red dot indicates the predicted action.

The SE(3) augmentation follows the PerAct approach, perturbing point clouds and actions with
random translations ([±0.025m ±0.025m ±0.025m]) and rotations ([±0◦ ±0◦ ±5◦]).
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(a) Default-view RGBD observations. Cam-
eras from left to right: hand camera,
base camera

(b) Multi-view RGBD observations. From left to
right: hand camera, base camera, left shoulder camera,
right shoulder camera

Figure 29: Comparison between default-view and multi-view RGBD observations in StackCube-v1.
Each column shows one camera’s observations.

Setting PushCube-v1 StackCube-v1
No aug., no m.v. 0.96 0.38
aug., no m.v. 0.98 0.47
aug., m.v. 1.00 0.55

Table 4: Best success rates of PerAct over 80k training steps for different tasks and settings. aug.:
demo augmentation. m.v.: multi-view

Task Default Cameras Multi-View Cameras
PushCube-v1 base base, l shldr, r shldr, wrist
StackCube-v1 base, wrist base, l shldr, r shldr, wrist

Table 5: Camera configurations for each task and setting. l shldr = left shoulder, r shldr =
right shoulder.

To summarize the observations and results: (1) SE(3) augmentation helps improve the success rate,
though making convergence slower. (2) Multi-view observations can speed up convergence and
enhance success rates by providing a more comprehensive 3D scene understanding. (3) As the
number of cameras increases, the point cloud size grows. However, voxelized inputs help maintain
consistent GPU memory consumption despite the increased data size.
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E SIMULATION AND RENDERING BENCHMARKING

We carefully analyze the performance of ManiSkill3’s parallel simulation and simulation+rendering
performance compared to Isaac Lab. Currently we only have accurate results for a simple cartpole
environment. While one can try and compare more complex environments it is difficult to align
things perfectly. We compare against the Isaac Lab v1.2.0 which was first version with parallel
rendering support that was released a few months after we initially released our framework.

E.1 SETUP

To keep things as fair as possible as both Isaac Lab and ManiSkill3 use PhysX, we ensure the
following simulation configurations are the same:

• Simulation frequency: 120

• Control frequency: 60

• Solver Position Iterations: 4

• Solver Velocity Iterations: 0

We further try to ensure the objects in the scene are as similar as possible. Finally, re-
ward/termination computations are explicitly removed to not factor in benchmark timings. Tests
were conducted on a RTX 4090 GPU.

Figure 30: Simulation FPS against number of parallel environments without rendering. Annotated
numbers on top of data points indicate the GPU memory usage. ManiSkill speed for this task is on
par with Isaac Lab.

E.2 SIMULATION ONLY BENCHMARK RESULTS

Testing on the cart pole task, we see that ManiSkill3 runs a little faster and uses about 1.5x to 2x less
GPU memory in Figure 30. We note that while ManiSkill3 appears faster here, one could make many
simulation specific optimizations (simplified collisions meshes, tuned physics solver configurations
etc.) to increase simulation speed and trade off simulation accuracy. We further note it is difficult
to make truly apples-to-apples comparisons between simulators and that this is simply just one data
point and may not extend to other environments. We specifically create documentation/tutorials on
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the various tricks/optimizations a user can perform to improve simulation speed and/or fidelity from
the environment object/robot models to simulation configurations.

E.3 SIMULATION+RENDERING BENCHMARK RESULTS

We ablate on a number of aspects of visual data collection where we simulate and render an environ-
ment. We record the FPS of taking 1000 random actions in the environment and fetching the 1000
visual observations. Overall Isaac Lab shows about 2-4x higher GPU memory usage compared to
ManiSkill3, with the minimum amount of GPU memory taken up by just environments with cameras
enabled being 4.8GB compared to 1.7GB in ManiSkill3.

E.3.1 ABLATION ON REALISTIC CAMERA SETTINGS

We test on two realistic camera resolutions/setups based on the setup of the Open-X dataset (Col-
laboration et al., 2023) and the Droid dataset (Khazatsky et al., 2024). Many datasets in Open-X
like the Google RT datasets have a single 640x480 resolution RGB camera, and the Droid dataset
uses three 320x180 resolution RGB cameras. The results are shown in Figures 31 and 32. In both
cases ManiSkill3 has about 2-4x better GPU memory efficiency and runs about 2x faster. Note that
Isaac Lab’s rendering output is a bit different from ManiSkill3, we share some qualitative examples
in Appendix E.4. We further note that both ManiSkill3 and Isaac Lab support more photorealistic,
high quality renders with full ray-tracing that is not parallelized. Example ManiSkill3 high-quality
ray-traced renders can be seen in Figure 1.

Figure 31: Simulation+Rendering of RGB or Depth FPS against number of parallel environments
with 1x640x480 camera. Annotated numbers on top of data points indicate the GPU memory usage.

E.3.2 ABLATION ON CAMERA SIZE

We ablate on square camera sizes from a large 512x512 resolution to a small 128x128 resolution
shown in Figures 33 34 35. We observe that Isaac Lab runs at most about 1.25x faster when there are
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Figure 32: Simulation+Rendering of RGB or Depth FPS against number of parallel environments
with 3x320x180 cameras. Annotated numbers on top of data points indicate the GPU memory usage.

a high number of parallel environments with small camera resolutions compared to ManiSkill3. At
larger camera resolutions ManiSkill3 outperforms up to 2x in speed and 4x in GPU memory usage.
Notably, ManiSkill3 always outperforms about 2-4x in speed and 2-3x in GPU memory usage for
smaller number of parallel environments. While Isaac Lab is fast at smaller resolutions, we note
that some manipulations tasks are fairly impractical and impossible to solve at small resolutions.
Moreover memory efficiency is absolutely critical for RL applications that can remain fast by keep-
ing large replay buffers on the GPU instead of using CPU memory. For this reason all visual RL
baselines in ManiSkill3 typically do not use more than 256 to 1024 parallel environments as RL
rollouts only run marginally faster with more environments beyond that point (for both Isaac Lab
and ManiSkill3) but GPU memory use worsens a lot more.

Figure 33: Simulation+Rendering (RGB) FPS against number of parallel environments 1x512x512
camera. Annotated numbers on top of data points indicate the GPU memory usage.
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Figure 34: Simulation+Rendering (RGB) FPS against number of parallel environments 1x256x256
camera. Annotated numbers on top of data points indicate the GPU memory usage.

Figure 35: Simulation+Rendering (RGB) FPS against number of parallel environments 1x128x128
camera. Annotated numbers on top of data points indicate the GPU memory usage.

E.4 QUALITATIVE RENDERING RESULTS

To the best of our capabilities we try to make the benchmarked environments look as similar as
possible in terms of visuals. It is not possible to keep everything the same given fundamental dif-
ferences in the parallel rendering system of Isaac Lab compared to ManiSkill3 or easily quantify
the rendering differences. Section 3.2 details a little bit about the differences. Figure 3 in the main
paper shows the cartpole RGB+Depth rendering results. Figures 36 and 37 shows RGB renders of a
environment with a Franka Panda arm with different resolutions.

Figure 36: Comparison of ManiSkill3 (Top row) and Isaac Lab (Bottom Row) parallel rendering
128x128 RGB+Depth image outputs of the Franka Panda arm.
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Figure 37: Comparison of ManiSkill3 (Top row) and Isaac Lab (Bottom row) parallel rendering
640x480 RGB+Depth image outputs of the Franka Panda arm.
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F VR TELEOPERATION

ManiSkill3 provides VR support for all mainstream VR devices by implementing the OpenVR client
protocol designed by Steam. Specifically, ManiSkill3 receives camera intrinsic and extrinsic param-
eters of the head-mounted display, VR controllers’ poses, and the operator’s hand and wrist poses if
supported by the hardware; and it sends stereo video streams at 4K resolution for OpenVR to display
in the headset. Under the hood, OpenVR communicates with SteamVR and ALVR which translate
hardware-dependent VR implementation into the unified OpenVR client protocol.

The VR feedback loop runs at 60 Hz which is crucial for smooth user experience, while an asyn-
chronous action translator translates sensed VR poses to robot actions at 20 Hz, so we can tolerate
computationally intensive translation algorithms.

Teleop 

modules

Human 

operator

stream stereo video

60 Hz

Figure 38: Overview of our VR teleoperation system. The operator controls the robot’s arm and
hand through real-time tracking of wrist and hand poses, while receiving stereo video feedback. The
VR devices stream human pose data to a server, which retargets and sends joint commands to the
robot.

Overview for our VR teleoperation system is shown in Figure 38. In a simulation setup, the stereo
video is rendered based on simulated environments. For real-world robot teleoperation, the stereo
video is generated from point clouds captured by depth cameras. We utilize the SAPIEN engine
to achieve high-speed rendering of these high-resolution stereo videos. To simplify the complex
SteamVR setup, we provide a Docker image for a smoother and faster setup process for users.

F.1 CONTROL

The human-motion-to-robot-action conversion system consists of three main modules:

1) Arm Control Module, which converts human wrist poses into robot arm joint positions. How-
ever, directly mapping the absolute orientation and position of wrist poses to robot’s end-effector
poses can lead to strange behaviors. For example there can be a mismatch between the coordi-
nate frames of human wrist poses and the robot’s end-effector frame as illustrated in Figure 40. To
address this, we provide configurations out-of-the-box for the most common robotics arms. Addi-
tionally, we offer a GUI and tools to assist users in quickly computing the transformation matrix for
their customized robots.
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Figure 39: Demonstration of VR teleoperation across various tasks and robotic setups. Top row: Se-
quential images of a Panda arm performing precise insertions – charging connector insertion (left)
and peg insertion (right) – showcasing accurate teleoperation for tasks requiring high precision. Mid-
dle row: Sequence of dual XArm7 robots with grippers demonstrating the grasping and unscrewing
of a bottle, highlighting multi-arm coordinated teleoperation. Bottom row: Various teleoperation
setups and manipulations, including (from left to right) XArm7 with a gripper, a floating Delto 3-
finger hand, XArm7 with Inspire hand, dual XArm7 with Ability hand, a floating Allegro hand, and
real-time teleoperation of an XArm7 with a gripper grasping objects.

Our system utilizes a modified version of the Closed-loop Inverse Kinematics (CLIK) algorithm,
implemented with the Pinocchio library (Carpentier et al., 2015–2021; 2019), to calculate the joint
angles of the robot’s arm.

The approach uniquely addresses the problem of inverse kinematics (IK) for two coupled end-
effectors simultaneously, which is critical in dual-arm robots with a sliding joint at the shoulders.

For a robot with n joints and two coupled end-effectors EEi, we aim to find joint position q that
minimizes the pose error for both end-effectors relative to their respective target poses Ti. Solving
IK independently for two end-effectors suffers from large errors. Alternatively, iterative approaches
usually result in slow convergence. Our solution extends the standard CLIK by computing a con-
catenated Jacobian that accounts for both end-effectors simultaneously. This enables faster and more
accurate optimization of dual-arm configurations.

Additionally, the system allows users to control the movement of specific joints during coordinated
motion. Instead of using a binary mask (0 for no movement, 1 for full movement) to constrain
joints, we employ a soft mask with values between 0 and 1. A lower mask value reduces motion
in the corresponding joint, leading to a solution that minimizes undesired movement. To ensure
smooth arm motions, we apply an SE(3) group filter to the input end-effector poses before the IK
computations.

2) Hand Control Module, which translates human finger poses into corresponding robot hand joint
positions. Following (Qin et al., 2023; Cheng et al., 2024a; Ding et al., 2024), we formulate the hand
motion retargeting process as an optimization problem. The objective function for this optimization
is defined as follows:

min
qt

N∑
i=0

∥αivit − fi(qt)∥2 + β∥qt − qt−1∥, (1)

where qt denotes the robot hand joint positions at time t, vit is the i-th keypoint vector of human
hand, and fi(qt) gives the corresponding i-th keypoint vector of robot hand using forward kinematics
with joint positions qt. The scaling factor αi compensates for the differences in hand size between
the human and robot hands and treat each i-th keypoint differently as thumb finger size and pinky
finger size can vary a lot, β weights the regularization term to ensure temporal consistency between
consecutive joint positions. The optimization is implemented by NLopt solver Qin et al. (2023).

For dexterous robot hands, we map vectors from human hand fingertips to palm base to corre-
sponding vectors on the robot hand. In certain cases, such as with the Inspire hand, additional
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vector mappings are used to improve motion accuracy–for example, an extra vector from the thumb
metacarpophalangeal joint to the thumb tip is employed. For grippers, we use a single vector opti-
mization between the human thumb and index fingertips, which corresponds to the gripper’s upper
and lower ends. This allows intuitive control over the gripper’s opening and closing motions through
simple pinching gestures with the operator’s index finger and thumb (Cheng et al., 2024a).

We fine-tune configurations for several common robots and provide calibration tools to assist users
in adapting the system to their custom robots.

3) Controller Control Module, which is also used to control gripper motion, allowing simple and
effective control of grippers. Though Apple Vision Pro does not include a physical controller, our
system still supports controller-based input. By clipping the controller, users can trigger the closing
action of the gripper, enabling intuitive and responsive control during operation.

Figure 40: Illustration of frame mismatch between human wrist poses and the robot’s end-effector
frame. Left: human wrist frame, Right: Inspire hand frame as an example.

F.2 SIM-TO-REAL INTERFACE

Our system employs a unified interface for both simulation and real-world setups by aligning the
robot’s end-effector with the absolute position of human hand. This alignment helps teleoperators
better understand spatial information. Previous approaches (Qin et al., 2023; Cheng et al., 2024a;
Ding et al., 2024) struggled to achieve spatial alignment between the human hand and the robot
hand, forcing operators to compensate for parallax effects, which made the teleoperation experience
less intuitive.

A key challenge arises when attempting to align the human hand with the robot hand inside a VR
headset, especially since the real robot may be spatially displaced in the physical world. To solve
this, we project the point clouds captured by depth cameras positioned around the real robot into the
VR headset. The camera poses are calibrated using EasyHec (Chen et al., 2023).

This setup ensures that both the simulation environment and the real-world point cloud are aligned
in a ”digital twin” manner as illustrated in Figure 41. Though we do not require the visual textures to
match the real world, critical elements such as the robot’s position, forward and inverse kinematics,
and control interface must be aligned. This alignment allows the same human control signals to
produce identical robot actions in both the simulator and the real-world environment. Consequently,
teleoperation in the real world becomes as intuitive and consistent as it is in simulation.
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Figure 41: Illustration of spatial alignment of simulation and real-world environments. Left: sim-
ulation environment, where robot control are tested, Middle: real-world teleoperation setup, Right:
point cloud captured from the depth cameras accurately aligned with the virtual robot in the simula-
tion, demonstrating a ”digital twin” setup.
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