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Abstract001

Large Language Models (LLMs) excel at pro-002
viding information acquired during pretraining003
on large-scale corpora and following instruc-004
tions through user prompts. However, recent005
studies suggest that LLMs exhibit biases fa-006
voring Western native English speakers over007
non-Western native speakers. Given English’s008
role as a global lingua franca and the diversity009
of its dialects, we extend this analysis to exam-010
ine whether non-native English speakers also011
receive lower-quality or factually incorrect re-012
sponses more frequently. We compare three013
groups—Western native, non-Western native,014
and non-native English speakers—across classi-015
fication and generation tasks. Our results show016
that performance discrepancies occur when017
LLMs are prompted by the different groups018
for the classification tasks. Generative tasks, in019
contrast, are largely robust to nativeness bias,020
likely due to their longer context length and op-021
timization for open-ended responses. Addition-022
ally, we find a strong anchoring effect when the023
model is made aware of the user’s nativeness024
for objective classification tasks, regardless of025
the correctness of this information. Our analy-026
sis is based on a newly collected dataset with027
over 12,000 unique annotations from 124 an-028
notators, including information on their native029
language and English proficiency.030

1 Introduction031

English, as the global lingua franca, is predominant032

in large-scale text corpora used to train Large Lan-033

guage Models (LLMs) (Ziems et al., 2023; Zhang034

et al., 2023), including widely used datasets like035

CommonCrawl. These datasets are primarily tai-036

lored to an English-speaking audience located in037

the United States, and are mainly composed of priv-038

ileged English dialects from wealthier educated ur-039

ban zones (Talat et al., 2022; Ziems et al., 2023;040

Ryan et al., 2024; Gururangan et al., 2022). This041

biased training dataset composition permeates the042
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In this task, you are given an impractical statement. You are also
given three reasons (associated with "A", "B", "C") explaining why

this statement doesn't make sense. You must choose the most
corresponding reason explaining why this statement doesn't make

sense.

We eat many people
[Annotator Prompt]

Understood!

A. It is phyiscally impossible to eat people.
B. We only eat one person, not many.

C. Humans do not eat other humans as that
would be cannibalism.

A. We are not hungry.
B. People can't be eaten.

C. Eating people is a crime
B

C

🧑

🧑 🤖

👍

👎

Figure 1: An example prompt of a native and non-native
English speaker and the corresponding output given by
GPT4o, where Annotator Prompt represents the place-
holder for the annotations. The desired output is C. The
model selects the wrong answer for the non-native En-
glish speaker, while semantically the same message was
conveyed. Sentence B is a direct translation from the
non-native speaker’s native language and expresses the
same idea as Sentence A from the native speaker.

LLM, resulting in models tailored to these English 043

dialects (Santy et al., 2023; Hall et al., 2022). This 044

highlights underlying design biases in LLMs, a 045

phenomenon where design choices result in im- 046

proved downstream performance for specific sub- 047

populations (Santy et al., 2023). Consequently, 048

their effectiveness considerably decreases when 049

prompted in other languages or in underrepresented 050

English dialects (Lai et al., 2023; Zhang et al., 051

2023; Bang et al., 2023; Ziems et al., 2023; Ryan 052

et al., 2024). 053

LLMs are highly sensitive to prompt formula- 054

tions (Beck et al., 2024; Chakraborty et al., 2023). 055

Ryan et al. (2024) show how models’ responses 056

are tailored to Western English dialects, with 057

prompt selection impacting LLMs’ preference tun- 058

ing. Therefore, prompting models in other dialects 059

can result in performance differences due to these 060

design biases. Ziems et al. (2023) even provide a 061

dataset covering multiple English dialects. How- 062

1



ever, unlike those studies focusing only on English063

dialects from native English-speaking countries,064

our research also incorporates participants from065

countries where English is not an official language.066

We assess if word sensitivity in prompts dispro-067

portionately benefits native English speakers, lead-068

ing to better model performance. In this case, the069

model has an inherent native language bias.070

In this paper, we examine performance differences071

when LLMs are prompted by speakers from three072

groups: Western native (WN), non-Western native073

(NWN), and non-native (NN) English speakers.074

We find performance differences when LLMs are075

prompted by both NWN and NN versus WN speak-076

ers. More specifically, some models generate inac-077

curate responses for non-native speakers and rate078

the WN prompts more positively than intended. We079

also highlight how LLMs are more robust against080

this native bias on generative tasks. Moreover, we081

uncover deeply embedded bias within models to-082

wards native speakers for the classification tasks, as083

explicitly stating that a prompt writer is non-native084

leads to lower model performance compared to085

stating that the writer is native regardless of the cor-086

rectness of this information. We collect a dataset087

comprising over 12,000 unique prompts from na-088

tive and non-native English speakers worldwide089

and demonstrate how different prompt formulations090

can lead to worse performance despite conveying091

the same message. An example prompt from our092

dataset is shown in Figure 1.093

Our contributions are as follows: 1) We quantita-094

tively and qualitatively analyze how LLM perfor-095

mance differs between native — both Western and096

non-Western— and non-native English speakers097

on objective and subjective classification tasks1,098

as well as generative tasks. 2) We investigate the099

impact of explicitly stating user nativeness. 3) We100

publish our multilingual instruction-tuning dataset101

and code used for the experiments2 containing over102

12,000 unique prompts from diverse native and non-103

native English speakers, with translations into eight104

languages.105

2 Related work106

Model Positionality and Design Bias. Model po-107

sitionality, coined by Cambo and Gergle (2022),108

1By subjective tasks, we mean classification tasks where
the correct answer depends on the subjective interpretation as
explained in Beck et al. (2024)

2https://anonymous.4open.science/r/native_en_
bias-EDC5/README.md

refers to the social and cultural position of a model, 109

influenced by the stakeholders involved in its devel- 110

opment, such as annotators and developers. This 111

positionality affects the inclusivity of LLMs, as 112

they evolve with certain biases that may disadvan- 113

tage specific populations (Cambo and Gergle, 2022; 114

Santy et al., 2023). Design biases arise when re- 115

searchers make choices that improve model perfor- 116

mance for specific sub-populations (Santy et al., 117

2023). A notable example is the overrepresenta- 118

tion of English pretraining corpora, which leads 119

to disproportionate performance improvements in 120

English compared to other languages (Qin et al., 121

2023; Blasi et al., 2022; Joshi et al., 2020). 122

Effect of demographic background on LLM per- 123

formance. Recent literature suggests that LLM 124

performance on subjective tasks is influenced by 125

the demographic attributes of the user (Beck et al., 126

2024; Santy et al., 2023). Moreover, when assigned 127

a persona, LLMs reveal deep inherent stereotypes 128

against various socio-demographic groups (Cheng 129

et al., 2023; Gupta et al., 2023; Deshpande et al., 130

2023). For example, Gupta et al. (2023) show how 131

ChatGPT3.5, when asked to solve a math ques- 132

tion while adopting the identity of a physically 133

disabled person, generates that it cannot answer 134

the question, as a physically disabled person. Fur- 135

thermore, Barikeri et al. (2021) demonstrate that 136

LLMs can infer demographic attributes from dialog 137

interactions. Additionally, research shows biases 138

in favor of Western populations (Santy et al., 2023; 139

Durmus et al., 2023). In model alignment liter- 140

ature, Ryan et al. (2024) show this similar bias 141

within preference models and Gururangan et al. 142

(2022) illustrate that even within a Western coun- 143

try like the US, GPT3 prefers the more privileged 144

dialects. Furthermore, Hofmann et al. (2024) il- 145

lustrate how models show covert biases towards 146

African American English speakers. Additionally, 147

Kantharuban et al. (2024) show how LLMs express 148

racially stereotypical recommendations regardless 149

of whether the user explicitly or implicitly revealed 150

their identity. Finally, Ziems et al. (2023) have pro- 151

vided a cross-dialectal English dataset for countries 152

with English as an official language. Building on 153

these findings, we extend the research to include 154

non-native English speakers, who use English di- 155

alects influenced by their native languages. Further- 156

more, while Gupta et al. (2023) assign a persona to 157

the model, we analyze performance differences of 158

LLMs both with and without explicitly informing 159

the model about the user’s native language and thus 160
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with and without assigning a persona to the prompt161

writer. However, note that models providing differ-162

ent answers based on demographic background is163

not always problematic as noted in Jin et al. (2024).164

3 Methodology165

Given the sensitivity of LLMs to prompt formula-166

tion (Beck et al., 2024; Chakraborty et al., 2023),167

the diversity of English dialects (Ziems et al., 2023;168

Ryan et al., 2024), and alignment of models to-169

wards Western native English speakers (Ryan et al.,170

2024; Santy et al., 2023; Gururangan et al., 2022),171

we investigate whether LLMs exhibit bias in favor172

of native English speakers over non-native speakers.173

More specifically, we aim to answer the following174

research questions:175

1. Do LLMs perform differently when prompted176

by native vs. non-native English speakers?177

And is there a performance difference for dif-178

ferent groups of native English speakers?179

2. Are certain tasks more prone to performance180

disparities between native and non-native181

speakers?182

3. Which tasks, if any, remain robust to these183

differences?184

4. Are these trends consistent across models, or185

do they vary by architecture?186

5. Does explicitly providing information about187

a speaker’s nativeness amplify performance188

gaps?189

To answer these research questions, we collected190

a new dataset containing both classification and191

generation tasks, along with information about the192

native languages of the annotators, as this is lacking193

in existing literature. An overview of our method-194

ology and experimental setup is shown in Figure 2.195

196

3.1 Dataset197

Our dataset was constructed including samples198

from ten diverse task datasets from various natural199

language instruction tasks3 (Mishra et al., 2022;200

Wang et al., 2022), covering classification (subjec-201

tive and objective) and generation tasks. These202

tasks, representing typical LLM interactions, fol-203

low a standard instruction pattern and should not204

3https://github.com/allenai/
natural-instructions

inherently favor native speakers. The tasks include 205

paraphrasing, article generation based on a sum- 206

mary or title, sentiment analysis, natural language 207

understanding, multiple-choice answering, and re- 208

view writing. This last task is the subjective classi- 209

fication task in our experiments. 210

From each original dataset, we randomly selected 211

100 examples, manually ensuring they were cor- 212

rectly annotated and free of offensive language. 213

Additionally, one extra example per dataset served 214

as a tutorial for the annotator to get used to the task. 215

More information about the different tasks in- 216

cluded in our dataset can be found in Appendix A. 217

3.2 Annotations 218

We required all annotators to have a minimum En- 219

glish proficiency level equivalent to a high school 220

or university-level proficiency to establish a base- 221

line, ensuring that performance differences stem 222

primarily from dialectal variation rather than over- 223

all language proficiency. Each annotator worked 224

on 20 to 240 examples. We gathered them through 225

direct recruitment, opting for an open annotation 226

process rather than an existing annotation platform 227

to ensure high-quality annotations. All annotators 228

were reimbursed at a minimum rate of 12.11 euros 229

per hour. 230

In addition to gathering self-reported linguistic 231

data—such as native language, English proficiency, 232

and frequency of English use—we also collected in- 233

formation from native English speakers about how 234

they acquired the language. This allows us to com- 235

pare three groups: the non-native speakers (NN), 236

Western native speakers (WN), and non-Western 237

native speakers (NWN). The term Western native 238

here refers to native English speakers who learned 239

English from native speakers from countries like 240

the UK, US, Australia, or Canada. 241

Annotators performed different tasks depending 242

on the assigned datasets. An example annotation is 243

shown in Figure 1, where a task definition is pro- 244

vided together with an impractical statement. The 245

annotator has to provide the [Annotator PROMPT] 246

based on the task definition and the desired out- 247

put, which is C in this example. We identified the 248

[Annotator PROMPT] per example depending on 249

the dataset. More details about the annotation setup 250

including information about the annotator prompts 251

per dataset can be found in Appendix B. 252

The authors manually validated the annotations 253

before including them in the final dataset, deeming 254

one invalid if it met any of the following criteria: 1) 255
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Dataset collection

✅ Valid
❌Invalid Authors

Task definition🧑
Understood!🤖

Instruction
[Annotator Prompt] 🧑

Desired Output🤖

Instruction Tuning Datasets:

Validation

Annotation

Classification Generation

Evaluation
Score Selection

Classification

Generation

Fluency
Coherence
Relevance

Accuracy

LLM-as-a-judge

Based on desired 
output

Response gathering

Response

🤖

Non-Native SpeakersNative Speakers

Western Native
annotations

Not Western Native
annotations

Non Native
annotations

Figure 2: Methodology and experimental setup. The left part shows the data collection steps. After gathering the
different datasets, study participants annotated the examples. Then we validated them and used them as input to
generate LLM responses. The right part of the figure shows the evaluation phase, where we gathered the respective
scores depending on the task.

The response was unrelated to the task, i.e. "I don’t256

know / understand", or a response for a different257

topic or question. 2) The response contained (part258

of) the answer. 3) The response did not follow the259

required format or task definition. 4) The annotator260

misunderstood the task. Examples per validation261

criterion are included in Appendix C.262

After validation, we removed instances with263

more than 50% rejected annotations to ensure the264

quality of the dataset. In total, we removed 12265

examples entirely and a total of 162 individual an-266

notations. Our final dataset contains 12,519 anno-267

tations from 124 annotators. More information on268

the dataset statistics can be found in Appendix D4.269

4 Experimental setup270

4.1 Gathering LLM responses271

Using gathered annotations, we conducted exper-272

iments with the chat-versions of well-established273

LLMs, as these are used in daily life. An274

overview of the checkpoints per model is shown275

in Appendix F. We included GPT3.55, GPT4o6,276

Haiku (Anthropic, 2024), Sonnet (Anthropic,277

2024), using the appropriate APIs, and Qwen1.5278

7B7 (Bai et al., 2023) in line with the provided279

licenses and all consistent with the intended use.280

This set includes models of varying sizes, different281

performances, and from different developers, en-282

4Due to the nature of the tasks, we did not calculate inter-
annotator agreement scores, as annotators were providing
prompts, and invalid prompts were filtered out.

5https://openai.com/index/
gpt-3-5-turbo-fine-tuning-and-api-updates/

6https://openai.com/index/hello-gpt-4o/
7We ran the experiments for Qwen using A100 GPUs.

suring a diverse representation. Moreover, Qwen, 283

developed by Chinese researchers, provides an in- 284

teresting comparison in terms of design bias. 285

To answer our predefined research questions 286

mentioned in Section 3, we first ran our experi- 287

ments for all models without any additional infor- 288

mation. Next, to answer the last research question, 289

we provided information about the nativeness of the 290

prompt writer to the LLM. To see whether the LLM 291

entails an inherent bias against native speakers, we 292

included both correct and incorrect information. 293

4.2 Evaluation 294

To measure the bias within the models, we look 295

into the performance difference between the the na- 296

tive and non-native speaking groups. We measure 297

these performance differences across classification 298

tasks and generative tasks. Concretely, native bias 299

measured for the classification tasks is defined as 300

follows: 301

∆native = ϕ (M (T | xnative) , ψ) 302

∆non-native = ϕ (M (T | xnon-native) , ψ) 303

with native bias discriminative = ∆native − 304

∆non-native, template T , user prompt x, model M, 305

accuracy ϕ, and original ground truth ψ. The native 306

generative bias is defined as follows: 307

∆native = ϕ (M (T | xnative)) 308

∆non-native = ϕ (M (T | xnon-native)) 309

with native bias generative = ∆native −∆non-native, 310

template T , user prompt x, model M, and perfor- 311

mance metric ϕ. The Western native bias can be 312
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similarly inferred by splitting the native group into313

a Western native and non-Western native group.314

Classification tasks. When assessing classification315

tasks, we focus on the accuracy of the predictions.316

We only consider classifications as correct if they317

follow the instructions correctly or if the correct318

classification can be determined automatically.319

Generative tasks. In assessing the generative tasks,320

we include the following metrics: fluency, coher-321

ence, and relevance (Bavaresco et al., 2024). All322

metrics were evaluated using a Likert scale: fluency323

was rated on a 3-point scale. Coherence and rele-324

vance were scored on a 5-point scale. Fluency is325

defined as the quality of the generated text in terms326

of grammar, spelling, etc. Coherence assesses the327

collective quality of the sentences. Finally, rele-328

vance refers to the inclusion of important content329

in the generated text. These definitions are based330

on the ones used in Bavaresco et al. (2024). The331

prompt templates used are shown in Appendix G.332

All results were rescaled to a range of 0 to 1 to333

ensure clarity.334

We evaluated the performance of the generative335

tasks using an LLM-as-a-judge approach, specifi-336

cally leveraging Llama-3.3-70B-Instruct to assess337

each prompt’s output. To ensure reliability of the338

LLM-generated responses, we manually annotated339

100 examples and observed a correlation of 81.3%340

with the model’s evaluations.341

5 Results342

Below, we analyze the results from our experi-343

ments answering each of the research questions.344

Throughout the next paragraphs, we analyze the345

performance of the native speakers— consisting346

of Western native speakers (WN) and native speak-347

ers that are non-Western (NWN)— and non-native348

English speakers (NN).349

The WN group performs best for the objective350

classification tasks, outperforming both NWN351

and NN. This is shown in Figure 3, where the352

average performance per group on the objective353

classification tasks is displayed on the left. WN354

speakers achieve the highest overall performance355

in objective classification tasks, reinforcing find-356

ings from previous research (Hofmann et al., 2024;357

Ryan et al., 2024) that models favor Western priv-358

ileged dialects. In contrast, NWN and NN En-359

glish speakers perform similarly, with the NN360

group slightly outperforming NWN speakers. How-361

ever, this difference is minimal and not substantial362

objective subjective
Metric

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Metrics
Western Native (WN)
Non-Western Native (NWN)
Non-Native (NN)

Figure 3: This figure shows the average performance per
group and task type. You can see how for the objective
tasks, the (western) native group performs slightly better
then the not western or non-native group. For the sub-
jective classification task, this distinction becomes more
pronounced, with the non-native and western native
groups outperforming the other groups. These results
are the average results for all models and runs. We ad-
justed the y-axis to range from 0.65 to 1 for clarity.

enough to draw strong conclusions. The perfor- 363

mance gap between WN and the other groups, how- 364

ever, suggests the advantage of Western dialects. 365

The WN group performs worst for the subjec- 366

tive classification task as models predict their 367

rating more positively than actually intended. 368

The right part of Figure 3 shows this opposite ef- 369

fect for the subjective classification tasks. For these 370

tasks, both the NN and NWN show again similar 371

performance and are now outperforming the WN 372

group. This finding is remarkable, as it contra- 373

dicts the results in the subjective classification lit- 374

erature (Santy et al., 2023; Durmus et al., 2023). 375

When further analyzing the results, we find that 376

for the Western native English-speaking group, we 377

find that the models often predict the rating more 378

positively than actually intended. While for the NN 379

and NWN groups, GPT4o predicted around 50% 380

of all wrongly predicted annotations to be more 381

positive than intended, this was around 70% for the 382

WN English-speaking group for GPT4o indicating 383

cultural differences. Appendix H includes more 384

information on the different answer distributions 385

per model. 386

The generation tasks are more robust against 387

(Western) native bias. Figure 4 shows the aver- 388

age performance scores for all models and groups. 389

The figure shows that no clear performance dif- 390

ference exists among de groups compared to the 391

classification results. A slight performance differ- 392

ence favoring the WN group is found for coherence, 393

with the NWN and NN groups performing simi- 394
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fluency coherence relevance
Metric

0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
e

Metrics
Western Native (WN)
Non-Western Native (NWN)
Non-Native (NN)

Figure 4: This figure shows the overall performance
across the three groups: (western) native speakers and
non-native speakers. However, when looking into the
coherence metric, we do see a preference for the western
native group. The results show how there is no differ-
ence regarding fluency and only a slight performance
difference when comparing the native categories with
the non-native category for relevance. We rescaled the
results so that they range from 0 to 1.

larly. Nevertheless, the performance differences395

are not substantial. Therefore, we conclude that396

generation tasks are rather robust against (Western)397

native bias. Nevertheless, when zooming in on the398

results, we find discrepancies depending on the spe-399

cific task at hand. These are shown in Appendix L.400

For two of the datasets, namely Story Cloze and401

Paraphrase, we find differences in terms of the co-402

herence scores. More specifically, the WN group is403

here outperforming both the NWN and NN groups.404

Interestingly, these two tasks also include the small-405

est written annotations by the prompt writer and406

generated text by the model. Additionally, the407

CODA19 dataset comprises medical articles that408

utilize specialized medical terminology. Given that409

most annotators were unfamiliar with this vocab-410

ulary, native English speakers (WN and NWN)411

did not have a specific advantage over non-native412

speakers. Additionally, research articles are com-413

monly written in English by authors from various414

backgrounds. Therefore, this specific task might415

be robust against the native versus non-native pref-416

erence.417

(Western) Native bias is model-dependent for418

the classification tasks. Figure 5 illustrates that419

the preference for WN speakers over NWN speak-420

ers in objective classification tasks varies by model.421

Notably, this trend is pronounced in GPT-3.5 and422

GPT-4o, while Qwen and Claude models show lit-423

tle to no performance difference between WN and424

NWN speakers. Interestingly, OpenAI’s models425

even appear to favor NN speakers over NWN speak- 426

ers. Moreover, it is interesting to see how the Qwen 427

model, developed by Chinese researchers shows al- 428

most on par results between both native groups. Ad- 429

ditionally, within a model family, the performance 430

disparity increases with model size and overall ca- 431

pability. This aligns with prior research showing a 432

positive correlation between model size and biases, 433

such as gender bias (Tal et al., 2022). Furthermore, 434

Sclar et al. (2023) demonstrate that prompt sensi- 435

tivity does not decrease as models scale, suggest- 436

ing that larger models may reinforce rather than 437

mitigate biases. Also for the subjective classifica- 438

tion tasks, the results are strongly model-dependent. 439

However, all models do provide the lowest perfor- 440

mance for the WN group. For the generative results, 441

on the other hand, all models show similar trends 442

as is shown in Appendix L. 443

Objective classification tasks are largely affected 444

by adding information about the nativeness of 445

the prompt writer. Figure 6 shows the effect 446

of providing the model with (in)correct informa- 447

tion about the nativeness of the annotator on model 448

performance. This figure clearly shows how the ad- 449

ditional information of the nativeness highly affects 450

the results. Adding correct information about the 451

nativeness results in a clear performance preference 452

for the native group, while adding incorrect infor- 453

mation results in a preference for the non-native 454

group. Moreover, it not only shows how the per- 455

formance is influenced by this information, but it 456

also reveals deeply embedded bias towards non- 457

native speakers. Adding this information results 458

in a different performance, where the model fo- 459

cuses more on the initial given information than 460

on the prompt itself. This phenomenon is called 461

anchoring.This term is used for human cognitive 462

bias indicating that a person might insufficiently 463

change its estimates away from an initially pro- 464

vided value (Jones and Steinhardt, 2022; Tversky 465

and Kahneman, 1974). This effect is demonstrated 466

in LLMs by Jones and Steinhardt (2022), who 467

found that code generation models modify their 468

outputs to align with related solutions included in 469

the prompt. Moreover, also Nguyen (2024) shows 470

how LLM responses are highly influenced by pre- 471

viously given information. Our results reveal a 472

similar anchoring effect, where the model focuses 473

on the additional information about the nativeness 474

of the prompt writer, regardless of whether or not 475

this information is correct. This anchoring effect 476
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Qwen
GPT3.5

GPT4o
Haiku

Sonnet

Model

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Sc

or
e

Objective

Group
Western Native (WN)
Non-Western Native (NWN)
Non-Native (NN)

Qwen
GPT3.5

GPT4o
Haiku

Sonnet

Model

Subjective
Group

Western Native (WN)
Non-Western Native (NWN)
Non-Native (NN)

Figure 5: This figure shows the average performance for the different classification tasks per model and group. We
see how both GPT models clearly prefer the Western native group, while the other models show similar preference
for both native groups for the objective classification task. For the subjective classification tasks, the Western native
group is the worst performing group for all models. We adjusted the y-axis to range from 0.65 to 1 for clarity.

objective subjective
Task Type

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Group
Correct-Native
Wrong-Native
Correct-NonNative
Wrong-NonNative

Figure 6: This figure shows the average performance
per group and task type when the model is (in)correctly
informed about the nativeness of the annotator. You can
see how the information about the nativeness plays a
significant role in the performance, whether the infor-
mation was correct or not for the objective classification
tasks. For the subjective classification tasks, however,
this does not play a role. These results are the average
results for all models and runs. We adjusted the y-axis
to range from 0.65 to 1 for clarity.

was most clearly present for Sonnet. We find that477

Sonnet answered several questions in languages478

other than English, such as Spanish, French, or In-479

donesian, when responding as if interacting with480

non-native speakers. This resulted in a clear drop481

in performance as is also shown in Figure 11 in482

Appendix K. Note that this occurred both for native483

and non-native speakers. From the other models,484

we see that Qwen and GPT4o seem to be most485

robust against this added information. GPT3.5486

and Haiku did show performance differences, how-487

ever, not as pronounced as Sonnet. We manu-488

ally analyzed examples for GPT3.5 and Haiku to489

gather more insight into the performance differ-490

ence. GPT3.5 makes more mistakes when informed491

fluency coherence relevance
Metric

0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
e

Metrics
Correct-Native
Wrong-Native
Correct-NonNative
Wrong-NonNative

Figure 7: This figure shows a similar trend to the origi-
nal experiments where no information was added. How-
ever, we do see that when adding information that the
prompt writer was a native English speaker, the per-
formance is slightly higher than when adding that the
prompt writer is a non-native English speaker. We
rescaled the results so that they range from 0 to 1.

about the prompt writer being non-native, due to 492

repetition of the instructions, rather than answering 493

the question. Haiku explains the answers, arguing 494

why one option is better than another, thereby fail- 495

ing to follow the instructions. If both answers are 496

mentioned, we classify the response as inaccurate. 497

The subjective classification tasks and gener- 498

ation tasks are more robust against this addi- 499

tional information about the prompt writer’s na- 500

tiveness. In the subjective classification tasks, we 501

observed only slight performance differences, with 502

the non-native group consistently outperforming 503

the native group. These experiments appear largely 504

unaffected by the addition of information, as the 505

non-native group remains the best-performing re- 506

gardless of whether accurate or inaccurate details 507
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about nativeness are introduced. Also for the gen-508

erative tasks, the addition of information about the509

prompt writer’s nativeness does not impact perfor-510

mance ranking, as shown in Figure 7. All different511

groups continue to perform similarly, regardless512

of the additional information provided.These find-513

ings suggest that models are more robust to native-514

ness cues in generative and subjective classification515

tasks than in objective classification tasks. This is516

likely due to their primary optimization for gener-517

ation rather than classification, particularly given518

that we use the chat-based versions. Additionally,519

the longer context in both the initial prompt and520

generated output may reduce the impact of the an-521

choring effect.522

6 Discussion523

In our experiments, we define native bias as the524

model’s performance disparity when prompted by525

native versus non-native English speakers. Ad-526

ditionally, we also further split the native speak-527

ers into two groups: Western Natives (WN) and528

Non-Western Natives (NWN). In general, we find529

that there are performance differences when530

the model is prompted by people from different531

backgrounds.532

More specifically, we find an interesting over-533

all preference towards the WN group, where the534

NWN group is performing similarly as the NN535

group. This aligns with literature showing how536

models are tuned towards western native English537

dialects. The subjective classification tasks on the538

other hand, favor the western native group the least,539

across all different models, contradicting findings540

from (Santy et al., 2023; Durmus et al., 2023). This541

is explained by the models interpreting the (west-542

ern) native results more positively than intended.543

When analyzing the generative results, we find544

that this task type is more robust and performing545

similarly for all evaluated groups. This is probably546

due to the longer context length in both input and547

generated output, which seems to help the models548

to perform similarly across different groups. Ad-549

ditionally, the model checkpoints used were also550

optimized for these generative tasks rather than551

classification tasks.552

We show how the performance ranking of the553

three groups are also model-dependent for the clas-554

sification tasks. More specifically, the two GPT555

models are even preferring the NN group over the556

NWN group on objective classification tasks. The557

other models show similar performance for both 558

native groups, for the objective classification tasks. 559

Also for the subjective tasks, we see how group 560

preference depends on the model. Nevertheless, 561

all models perform worst for the WN group. The 562

generative tasks on the other hand seem to perform 563

similarly across all models. 564

Finally, we show how a strong anchoring effect 565

occurs when the model is made aware of the native- 566

ness of the prompt writer for the objective classi- 567

fication tasks. The bias is so deeply engraved that 568

informing the models about the nativeness of both 569

groups results in a preference towards the group 570

that was indicated as native, regardless of the cor- 571

rectness of this information, being led by this addi- 572

tional information rather than by the prompt itself. 573

However, we find differences between the models. 574

GPT4o appears most resistant to this anchoring ef- 575

fect, while Sonnet on the other hand even changes 576

the language of the response based on this anchor. 577

Furthermore, this anchoring effect is not clearly 578

present for the generative results, probably due to 579

the optimization of these models towards genera- 580

tive tasks compared to classification tasks, given 581

that we used chat-versions. 582

7 Conclusion 583

In this work, we analyze bias in LLMs towards 584

native English speakers. We analyze if models per- 585

form better for native compared to non-native En- 586

glish speakers and whether the models are even fur- 587

ther tuned towards Western native English speakers. 588

We find that there are performance differences be- 589

tween native and non-native prompts. More specif- 590

ically, models are most accurate for the Western- 591

native English speakers on objective classification 592

tasks. A slightly lower performance is shown for 593

the NWN group compared to the NN, nevertheless, 594

we show that this is mostly model-dependent. Both 595

GPT models seem even to prefer NN over NWN, 596

while the other models in our analysis show similar 597

performance for both native groups. Furthermore, 598

we find a strong anchoring effect when informa- 599

tion about the user’s nativeness is added for objec- 600

tive classification tasks. Generative tasks seem to 601

be in general more robust against this native bias, 602

probably due to the longer context length and the 603

optimization of the used models towards these gen- 604

erative tasks. For our experiments, we used a newly 605

collected dataset consisting of over 12,000 unique 606

prompts from a diverse set of annotators. 607
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8 Limitations608

Our dataset contained a very diverse set of annota-609

tors. Nevertheless, it would be interesting to have610

more study participants for every sub-population,611

such that general findings at sub-population level612

could be made as well. Furthermore, our experi-613

ments contained mostly annotators having a self-614

reported level of English of C1 and C2. It would be615

very interesting to analyze the effects on the perfor-616

mance of LLMs when prompted by people having617

different levels of English as this will probably also618

be impactful. Additionally, our results were only619

gathered for five different models. It would be620

insightful to extend this analysis to more models,621

as every model is trained differently and therefore622

these design choices might lead to different biases623

within the model. An important limitation of us-624

ing LLMs and especially the closed-source variant625

thereof, is the lack of reproducibility of the results.626

We make available a multilingual dataset, however,627

have only analyzed the English answers. We leave628

the analysis of bias in the multilingual dataset for629

future research. Finally, we acknowledge how the630

LLM-as-a-judge implementation for gathering gen-631

erative results might be suboptimal to human anno-632

tators due to model-specific biases. Therefore, we633

chose a different LLM than the ones we will evalu-634

ate to serve as a judge to avoid self-preference bias635

and we manually validated a sample. Given the636

high correlation between the manual annotations637

and the LLM annotations, we assume that the LLM638

annotations are representative.639

9 Ethical considerations640

We included human annotators in this study. All641

annotators were paid for the provided annotations642

and the annotations were done on a voluntary base.643

Moreover, our paper shows some of the conse-644

quences of unfair design choices when develop-645

ing models. We think this work is important to646

highlight the necessity of taking into account mul-647

tiple English dialects, as these models should work648

equally well for everyone. In this paper, we focus649

on the English language. We wanted to point out650

that even in English, this problem of not having651

enough diversified training data might also result652

in performance differences among certain popu-653

lations. However, this does not mean that other654

languages do not require the same attention.655

References 656

AI Anthropic. 2024. The claude 3 model family: Opus, 657
sonnet, haiku. Claude-3 Model Card. 658

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, 659
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei 660
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, 661
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, 662
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, 663
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong 664
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang 665
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian 666
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi 667
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, 668
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jin- 669
gren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023. 670
Qwen technical report. Preprint, arXiv:2309.16609. 671

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen- 672
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei 673
Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, 674
and Pascale Fung. 2023. A multitask, multilingual, 675
multimodal evaluation of ChatGPT on reasoning, hal- 676
lucination, and interactivity. In Proceedings of the 677
13th International Joint Conference on Natural Lan- 678
guage Processing and the 3rd Conference of the Asia- 679
Pacific Chapter of the Association for Computational 680
Linguistics (Volume 1: Long Papers), pages 675–718, 681
Nusa Dua, Bali. Association for Computational Lin- 682
guistics. 683

Soumya Barikeri, Anne Lauscher, Ivan Vulić, and Goran 684
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A Dataset overview873

We used the datasets as they were assembled874

by Mishra et al. (2022) and Wang et al. (2022).875

Table 1 shows an overview of the selected datasets,876

together with their task ID in the original instruc-877

tions dataset. The task definition given in the table878

is the one we used when prompting the models. For879

CNN Dailymail and CODA19, this differs from the880

original task definition in the dataset because we881

Figure 8: Screenshot of the landing page of the annota-
tion platform.

Figure 9: An annotation example of the Abductivenli
dataset.

flipped the task. Instead of letting our annotators 882

write the article, we asked them to write the sum- 883

mary or title respectively. Datasets Abductivenli, 884

Timetravel, Amazonfood, McTaco, TweetQA, and 885

Commonsense are thus classification tasks, while 886

datasets StoryCloze, CNN Dailymail, CODA19, 887

and Paraphrase are generation tasks. 888

B Annotation set-up 889

We have set up an annotation platform to gather 890

the annotations. The annotators first get informa- 891

tion about the task. They will get a task definition, 892

a prompt where part of the answer is marked out 893

with the placeholder [YOUR PROMPT], and the 894

desired output of the LLM. The annotators should 895

complete the prompt such that the desired output 896

would be generated by the LLMs. Figure 8 shows 897

a screenshot of the landing page of the annotation 898

platform together with annotation instructions. An 899

example of an annotation that had to be annotated 900

is shown in Figure 9. An example of the different 901

[Annotator PROMPT] per dataset is shown in Ta- 902

ble 2. We have anonymized all annotations by only 903

providing the self-reported linguistic information 904

in the dataset along with the user ID number. 905

C Annotation validation 906

Examples for each of the criteria of an invalid an- 907

notation are shown in Table 3. 908
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Task ID Name Task Definition

task069 Abductivenli In this task, you will be shown a short story with a beginning, two potential middles, and an ending. Your job is to choose the middle statement that
makes the story coherent / plausible by writing 1̈ör 2̈ïn the output. If both sentences are plausible, pick the one that makes most sense.

task105 Story Cloze In this task, you’re given four sentences of a story written in natural language. Your job is to complete the end part of the story by predicting the
appropriate last sentence which is coherent with the given sentences.

task065 Timetravel In this task, you are given a short story consisting of exactly 5 sentences where the second sentence is missing. You are given two options and you
need to select the one that best connects the first sentence with the rest of the story. Indicate your answer by ’Option 1’ if the first option is correct,
otherwise ’Option 2’. The incorrect option will change the subsequent storyline, so that at least one of the three subsequent sentences is no longer
consistent with the story.

task588 Amazonfood rating In this task, you’re given a review from Amazon’s food products. Your task is to generate a rating for the product on a scale of 1-5 based on the
review. The rating means 1: extremely poor, 2: poor, 3: neutral or mixed, 4: good, 5: extremely good.

task020 Mctaco The answer will be ’yes’ if the provided sentence contains an explicit mention that answers the given question. Otherwise, the answer should be ’no’.
Instances where the answer is implied from the sentence using ïnstinctör c̈ommon sense(̈as opposed to being written explicitly in the sentence)
should be labeled as ’no’.

task241 TweetQA In this task, you are given a context tweet, a question and the corresponding answer of the given question. Your task is to classify this question-answer
pair into two categories: (1) "yes" if the given answer is right for question, and (2) "no" if the given answer is wrong for question.

task1553 CNN Dailymail In this task, you are given highlights ,i.e., a short summary, in a couple of sentences, of news articles and you need to generate the news article with a
maximum length of 2 paragraphs.

task1161 CODA19 In this task, you’re given a title from a research paper and your task is to generate a paragraph for the research paper based on the given title. Under
10 lines is a good paragraph length.

task177 Paraphrase This is a paraphrasing task. In this task, you’re given a sentence and your task is to generate another sentence which express same meaning as the
input using different words.

task295 Commonsense In this task, you are given an impractical statement. You are also given three reasons (associated with Ä,̈ B̈,̈ C̈)̈ explaining why this statement doesn’t
make sense. You must choose the most corresponding reason explaining why this statement doesn’t make sense.

Table 1: Overview of the different datasets used for the experiments in this paper.

Dataset Example Prompt

Abductivenli Beginning: Mike was in the car on the highway. Middle 1 : [Annotator Prompt]. Middle 2: A deer
never ran in front of his car. Ending: When he got to the hospital, they saw that it had been broken

Story Cloze Sentence1: [Annotator Prompt] Sentence2: Suddenly, there was an announcement. Sentence3:
The school was on a lockdown. Sentence4: The kids sat quietly, and waited.

Timetravel Sentence 1: Little Charlie and his dad were painting the garage. Sentence 3: His dad turned around
and started to laugh Sentence 4: Charlie had paint on him from head to toe Sentence 5: His dad
rinsed him off with water from the hose Option 1: [Annotator Prompt] Option 2: Charlie had some
trouble controlling the brush.

AmazonFood rating This is [Annotator Prompt]
McTaco Sentence: The legitimization of gambling led to its increased legalization across the US. Question:

[Annotator Prompt]
TweetQA Context: Praying for everyone here in Vegas. I witnessed the most unimaginable event tonight. We are

okay. Others arent. Please pray. –Jake Owen (@jakeowen) October 2, 2017 Question: [Annotator
Prompt] Answer: people were not okay

CNN DailyMail [Annotator Prompt]
CODA19 [Annotator Prompt]
Paraphrase [Annotator Prompt]
Commonsense I walk under the park. [Annotator Prompt]

Table 2: Example of a prompt to annotate per dataset. [Annotator Prompt] indicates where the prompt of that the
annotator should come up with, should fit in the text.

Criteria Dataset Example Desired Answer

The response is unrelated to the task or it includes a response for a
different topic or question

TweetQA Context: I lost the role in 50 Shades of Grey so you won’t be hearing
from me for awhile— Lena Dunham (@lenadunham) September 2,
2013 Question: which countries are next to France? Answer: liverpool
and everybody.

no

The response contains (part of) the answer. Amazonfood These are Amazon fish fingers, 5 stars from me - extremely good! 5
The response does not follow the required format or task definition. TweetQA Context: Kasich’s daughter on his dance moves: "You’re not going to

go on ’Dancing with the Stars’" #KasichFamily CNN Politics (@CN-
NPolitics) April 12, 2016 Question: no, as he is terrible at dancing
Answer: dozen

no

The person misunderstood the task. Commonsense He is wearing a green car choose an alphabet rating for this sentence,
"A" for unreasonable meaning, otherwise "B"

A

Table 3: Examples for the criteria of an invalid annotation.
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Native
language

Number of
annotators Languages Validation rate

Other 36 BG, SL, RU, SW, ML, HU, FA, VI, BE, EL, TN, ID,PL,
MR, TR, PT, T, RO, FIL, UR, SQ

0.83

NL 23 0.80

EN 28 0.83

ZH 11 0.82

EN, other 9 PA, JA, SW, UR, VI, MR, EL 0.86

EN, ZH 1 0.88

ES 5 0.77

FR 4 0.94

IT 3 0.94

HI 2 0.93

AR 1 0.94

ES, Other 1 CA 0.84

Table 4: Overview of the native languages of the anno-
tators and the validation rate per native language.

Set ids Native or not Western native or not Total
Native Non-native Western Not Western

10 7 16 5 18 23
20 7 12 4 15 19
30 7 10 4 13 17
40 4 8 3 9 12
50 4 9 2 11 13
60 5 14 3 16 19
70 5 11 4 12 16
80 3 10 3 10 13
90 4 10 4 10 14
100 6 5 4 7 11

Table 5: Overview of the number of annotators per
group and set.

For the annotations that did not follow the re-909

quired format, we tried to change it into the correct910

format without changing the content of the prompt,911

if possible (i.e. removing Question: ). If this was912

not possible, the annotation was rejected.913

D Dataset Statistics -Annotations914

The native-bias dataset consists of 12,519 anno-915

tations from 124 annotators. Our dataset initially916

contained 1,000 different examples. After deleting917

the examples that were not validly annotated by at918

least 50 % of annotators, we retained 988 examples919

for 10 different tasks.920

The annotators have varying native languages921

as shown in Table 4. The languages are shown in922

isocode format. Moreover, per native language, we923

have also included the average validation rate, that924

is the amount of annotations per person that were925

valid over the total number of annotated examples.926

927

Table 5 shows an overview of the number of an-928

notators per group and set-id. All annotators were929

given sets of examples that had to be annotated.930

Every example has a unique set-id.931

Furthermore, the annotators have reported their932

level of English proficiency and the frequency of933

which English was spoken. We provide this infor-934

English proficiency level Number of non-native
annotators

C2 31

C1 41

B2 13

B1 1

Table 6: Overview of the self-reported English profi-
ciency of the non-native annotators.

English usage frequency Number of non-native
annotators

Daily 60

A few times per week 21

Once a week 4

Less than once a week 1

Table 7: Overview of the self-reported frequency of
English usage of the non-native annotators.

mation for the non-native speakers in Tables 6 and 935

7. 936

D.1 Prompt length 937

Table 8 shows the average prompt length per 938

dataset and per group. It is interesting to note 939

the large difference for the CNN dailymail dataset, 940

where the non-native English speakers have pro- 941

vided on average longer summaries. For the West- 942

ern native English group versus the not Western 943

native English group, the summaries for the latter 944

are on average 10 words longer than for the former. 945

946

947

D.2 Time analysis annotators 948

Table 9 shows an overview of the average duration 949

of annotating one example per group in minutes. 950

Table 10, on the other hand, shows the average time 951

for annotating the given set in hours. 952

Dataset ids Native or not Western native or not

native non-native not Western native Western native

0 11.08 10.17 11.52 10.14
1 9.15 8.94 8.31 9.26
2 9.40 9.71 9.73 9.58
3 14.95 13.00 14.8 13.39
4 7.56 7.57 7.41 7.61
5 7.53 7.74 6.91 7.93
6 59.32 66.14 56.48 66.41
7 12.09 11.74 12.04 11.77
8 11.28 11.38 11.38 11.34
9 25.91 28.30 24.65 28.66

Table 8: Average prompt length per group and dataset.
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group duration (in min)

native 2.07
non native 3.27
Western native 1.87
not Western native 3.25

Table 9: Average duration of annotating 1 example per
group, in minutes

Set-ids Native or not Western native or not

native non-native Western native not Western native
10 2.70 3.06 2.33 3.12
20 3.22 4.01 3.72 3.71
30 3.05 5.95 3.68 5.09
40 3.31 5.12 2.95 5.04
50 4.82 4.68 2.98 5.04
60 1.30 3.37 1.33 3.10
70 1.39 3.66 1.45 3.46
80 2.39 4.54 2.39 4.54
90 4.63 7.14 4.63 7.14
100 2.79 3.39 2.03 3.65

Table 10: Average overall duration of annotating all
annotations in set per group, in hours

E Prompt templates953

General954

system prompt:You are a helpful assistant.955

chat history:956

User: task definition,957

Assistant:’Understood’,958

User: Full English Prompt959

960

Add Native961

system prompt:You are a helpful assistant. Re-962

spond as if you are interacting with a native En-963

glish speaker964

chat history:965

User: [task definition],966

Assistant:Understood,967

User: [Full English Prompt]968

969

Add Non-Native970

system prompt:You are a helpful assistant. Re-971

spond as if you are interacting with a non-native972

English speaker973

chat history:974

User: [task definition],975

Assistant:Understood,976

User: [Full English Prompt]977

978

Since we found that some of the models were not979

following the task definitions correctly for some980

of the tasks, we added extra instructions as to how981

the model should reply. Table 11 shows the instruc-982

Task Task definition

StoryCloze Only respond with the predicted
last sentence.

AmazonFood Only respond with the rating.
McTaco Only respond with "yes" or "no".
TweetQA Only respond with "yes" or "no".
CNN Dailymail Only respond with the news article.
CODA19 Only respond with the paragraph.
Paraphrase Only respond with the paraphrased

sentence.
Commonsense Only respond with the letter indi-

cating the most corresponding rea-
son.

Table 11: Overview of the added instructions per dataset
to ensure consistent answers from the LLMs.

tions that were added to the task definition for the 983

different datasets. 984

F Checkpoints models 985

We used the following checkpoints of the different 986

models: 987

GPT 3.5 was made by OpenAI8. We used gpt-3.5- 988

turbo-0125. 989

GPT 4o was made by OpenAI9. We used gpt-4o- 990

2024-05-13. 991

Haiku was made by Anthropic (Anthropic, 2024). 992

We used claude-3-Haiku-20240307. 993

Sonnet was made by Anthropic (Anthropic, 2024). 994

We used claude-3-Sonnet-20240229. 995

Qwen 7B is an open source model made by 996

the Alibaba group (Bai et al., 2023). We used 997

Qwen/Qwen1.5-7B-Chat 998

G Evaluation metrics 999

All generative performance metrics were gathered 1000

using Llama-3.3-70B-Instruct. Below, the prompts 1001

for the different metrics were given. These are 1002

based on the ones used for the Summeval dataset 1003

by Bavaresco et al. (2024). Depending on the gen- 1004

erative task, the prompts differ slightly. we use the 1005

following structure: Final prompt= ""start_prompt 1006

+ doc_gen: [model generated reply] + metric"" 1007

where the start prompt for fluency is: 1008

’You will be given a doc_gen generated based 1009

on a doc_comp. Your task is to rate the doc_gen 1010

on one metric. Please make sure you read and un- 1011

derstand these instructions carefully. Please keep 1012

this document open while reviewing, and refer to it 1013

as needed. 1014

8https://openai.com/index/
gpt-3-5-turbo-fine-tuning-and-api-updates/

9https://openai.com/index/hello-gpt-4o/
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and the start prompt for the other metrics is: You1015

will be given a doc_gen and a doc_comp. Your task1016

is to rate the doc_gen on one metric. Please make1017

sure you read and understand these instructions1018

carefully. Please keep this document open while1019

reviewing, and refer to it as needed.1020

doc_gen and doc_comp depend on the dataset.1021

They are a ’closing sentence’ and a ’story’ for Story1022

Cloze; a ’news article’ and a ’summary’ for CNN1023

Dailymail; an ’article’ and a ’title’ for CODA19;1024

and a ’paraphrased sentence’ and a ’sentence’ for1025

Paraphrase.1026

The metric is one of the following:1027

Fluency:1028

Evaluation Criteria: Fluency (1-3): the quality of1029

the doc_gen in terms of grammar, spelling, punctu-1030

ation, word choice, and sentence structure. Assign1031

a score on a scale of 1 to 3 where: - 1: Poor.1032

The doc_gen has many errors that make it hard1033

to understand or sound unnatural.- 2: Fair. The1034

doc_gen has some errors that affect the clarity or1035

smoothness of the text, but the main points are still1036

comprehensible.- 3: Good. The doc_gen has few1037

or no errors and is easy to read and follow. Evalu-1038

ation Form (scores ONLY):- Fluency:1039

Coherence.1040

The definition depends on the dataset. For CNN1041

Dailynews and CODA19 it is as follows:1042

Evaluation Criteria: Coherence (1-5) - the col-1043

lective quality of all sentences. We align this di-1044

mension with the DUC quality question of struc-1045

ture and coherence whereby the doc_gen should be1046

well-structured and well-organized. The doc_gen1047

should not just be a heap of related information,1048

but should build from sentence to a coherent body1049

of information about a topic. Evaluation Steps:1050

1. Read the doc_comp carefully and identify the1051

main topic and key points.2. Read the doc_gen and1052

compare it to the doc_comp. Check if the doc_gen1053

covers the main topic and key points of the doc_gen,1054

and if it presents them in a clear and logical or-1055

der.3. Assign a score for coherence on a scale of 11056

to 5, where 1: Very low coherence ; 2: Low coher-1057

ence; 3: Mediocre coherence ; 4: High coherence ;1058

5: Very high coherence. Evaluation Form (scores1059

ONLY):- Coherence:1060

For Paraphrase it is as follows:1061

Evaluation Criteria: Coherence (1-5) - The overall1062

quality of the paraphrased sentence in terms of log-1063

ical flow, structure, and alignment with the original1064

sentence. A coherent paraphrase should preserve1065

the meaning of the original sentence, avoid redun-1066

dancy, and introduce variation without altering 1067

the main idea. The paraphrased sentence should 1068

not feel disjointed or incomplete but should read 1069

smoothly as a standalone sentence. Evaluation 1070

Steps: 1. Read the doc_comp carefully and identify 1071

the main topic and key points. 2. Read the doc_gen 1072

and compare it to the doc_comp. 3. Assign a score 1073

for coherence on a scale of 1 to 5, where 1: Very 1074

low coherence ; 2: Low coherence; 3: Mediocre 1075

coherence ; 4: High coherence ; 5: Very high 1076

coherence. Evaluation Form (scores ONLY): - Co- 1077

herence: 1078

For Story Cloze it is as follows: 1079

Evaluation Criteria: Coherence (1-5) - the col- 1080

lective quality of all sentences. We align this di- 1081

mension with the DUC quality question of struc- 1082

ture and coherence whereby the sentences should 1083

be well-structured and well-organized. The sen- 1084

tences should not just be a heap of related in- 1085

formation, but should build from sentence to a 1086

coherent story.Evaluation Steps: 1. Read the 1087

doc_comp carefully and identify the main topic 1088

and key points. 2. Read the doc_gen and com- 1089

pare it to the doc_comp. Check if the sentences are 1090

clear and in a logical order. 3. Assign a score for 1091

coherence on a scale of 1 to 5, where 1: Very low 1092

coherence ; 2: Low coherence; 3: Mediocre coher- 1093

ence ; 4: High coherence ; 5: Very high coherence. 1094

Evaluation Form (scores ONLY): - Coherence: 1095

Relevance. 1096

The definition depends on the dataset. For Story 1097

Cloze it is as follows: 1098

Evaluation Criteria: Relevance (1-5) - The degree 1099

to which the generated doc_gen effectively reflects 1100

the main themes and purpose of the doc_comp. A 1101

relevant closing sentence should provide a mean- 1102

ingful and appropriate conclusion, aligning with 1103

the tone and key points of the narrative. Evaluation 1104

Steps: 1. Read the doc_comp and the doc_gen care- 1105

fully. 2. Compare the doc_gen to the doc_comp and 1106

identify the main points of the doc_comp. 3. As- 1107

sess how well the doc_gen concludes the doc_comp, 1108

and how much irrelevant or redundant information 1109

it contains. 4. Assign a relevance score from 1 to 5 1110

where 1: Very low relevance ; 2: Low relevance; 3: 1111

Mediocre relevance ; 4: High relevance ; 5: Very 1112

high relevance. Evaluation Form (scores ONLY): - 1113

Relevance: 1114

For all other datasets it is as follows: 1115

Evaluation Criteria: Relevance (1-5) - inclusion 1116

of important content from the doc_comp. The 1117

doc_gen should include all important information 1118

15



from the doc_comp. Evaluation Steps: 1. Read the1119

doc_comp and the doc_gen carefully. 2. Compare1120

the doc_gen to the doc_comp and identify the main1121

points of the doc_comp. 3. Assess how well the1122

doc_gen covers the main points of the doc_comp,1123

and how much irrelevant or redundant information1124

it contains. 4. Assign a relevance score from 1 to 51125

where 1: Very low relevance ; 2: Low relevance; 3:1126

Mediocre relevance ; 4: High relevance ; 5: Very1127

high relevance. Evaluation Form (scores ONLY): -1128

Relevance:1129

H Distribution Amazon food reviews1130

Figure 10 shows an overview of the wrong predic-1131

tions of the AmazonFood review dataset for the1132

different groups and models for one of the three1133

runs. This shows the distribution between what was1134

predicted and what should be predicted. We only1135

consider here the cases where the model predicted1136

one of the given ratings, and excluded cases where1137

no prediction was given. As shown, for both the1138

native and Western native group, we find a large1139

amount of misclassification for the highest rating.1140

Additionally, neutral is not often predicted for these1141

classes compared to the other groups.1142

I Results Sonnet different languages1143

When adding that the model is interacting with a1144

non-native English speaker, we find that Sonnet1145

starts to answer in different languages. We find1146

that for 668 prompts the model answers in Spanish,1147

for 25 sentences in French, and for 5 sentences in1148

Indonesian. There were a couple of other languages1149

that also occurred sporadically. An overview is1150

shown in Table 12. However, these answers were1151

not related to the native language of the prompt1152

writer. This phenomenon was encountered mainly1153

for the Timetravel dataset. Interestingly, this effect1154

was not seen for the other models, not even for1155

Haiku.1156

J Example Paraphrase1157

As said, there are differences between native and1158

non-native speakers as to how they perceived the1159

paraphrasing task. For example given this desired1160

output: At this time of rapid change, those who lag1161

behind fall into irrelevance. Native speakers came1162

up with very freely paraphrased sentences, such1163

as: If you are not adapting to the quick changes of1164

the world, you will not succeed. while non-native1165

Language Times Occurring

es 668
fr 25
id 5
it 2
lt 1
sw 1
ru 1

Table 12: Occurrences of different languages in Sonnet

speakers stuck to In this fast changing ages, who- 1166

ever is lagging becomes irrelevant. When giving 1167

these different sentences to the model to paraphrase, 1168

the result for the more freely paraphrased sentences 1169

might cause the model to shift away further from 1170

the initial sentence or gold answer. 1171

K Classification results 1172

Figure 11 shows the accuracy scores for the objec- 1173

tive and subjective classification tasks per model 1174

when information about the nativeness of the 1175

prompt writer is added. We see how sonnet clearly 1176

performs differently than the other models. 1177

L LLM as a judge: Generative results 1178

Figure 12 shows how similar behavior is found 1179

across all three performance metrics per model. 1180

Moreover, Figure 13 shows the results per dataset 1181

for the generative results. 1182

M Additional Analysis 1183

In this section, we include some extra analyses on 1184

the performance of the different groups within the 1185

non-native English speakers. More specifically, we 1186

add the results per level of English proficiency, as 1187

well as per frequency of English. We see that there 1188

are differences in performance across the different 1189

groups. 1190

M.1 Classification results 1191

For the classification results, we see a clear connec- 1192

tion between performance and level of English, and 1193

frequency of usage of English. The groups with the 1194

highest levels of English also obtain better results. 1195

This is shown in Figures 14 and 15. 1196

As we saw a performance difference, in terms 1197

of levels of English, we also compare the results 1198

when only taking into account level C1 and C2 1199

non-native English speakers. The results are shown 1200
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(a) Overview of the predictions for the Western native
English speakers.
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(b) Overview of the predictions for the non-native English
speakers.
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(c) Overview of the predictions for the native English
speakers that are not western native.

Figure 10: Overall classifications for Western native, native that are not Western native, and non-native English
speakers

in Figure 16. Here, we still see the same order in1201

performance as in Figure 3 was shown. However,1202

now there is a clearer performance difference be-1203

tween the natives that are not western native and1204

the non-native group.1205

M.2 Generative Results1206

For the generative tasks, however, we do not see1207

clear differences in terms of frequency of English1208

usage and performance, as shown in 17 and 18.1209

Only the people with the lowest level of English1210

proficiency perform better in terms of coherence,1211

which is unexpected.1212

When analyzing the performance differences1213

only for the groups with highest proficiency (C21214

and C1), as shown in Figure 19, we see similar1215

findings to Figure 4.1216
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Figure 11: Classification results per model and classification task when information about the nativeness of the
prompt writer was added. We clearly see how Sonnet is highly influenced by this additional information.
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Comparison of Fluency, Coherence, and Relevance Across Models

Figure 12: This Figure shows the performance of (western) native speakers and non-native speakers. We see how
the highest performance for Coherence and is obtained for the western native group across all different models. The
relevance scores show slightly less difference between groups, but the non-native and not western native group
performs worse overall. The fluency scores are similar for all groups. We rescaled the results so that they range
from 0 to 1.

18



Story Cloze

CNN Dailymail
CODA19

Paraphrase

Dataset

0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
e

Fluency Score
Category

Western Native (WN)
Non-Western Native (NWN)
Non-Native (NN)

Story Cloze

CNN Dailymail
CODA19

Paraphrase

Dataset

Coherence Score

Category
Western Native (WN)
Non-Western Native (NWN)
Non-Native (NN)

Story Cloze

CNN Dailymail
CODA19

Paraphrase

Dataset

Relevance Score

Category
Western Native (WN)
Non-Western Native (NWN)
Non-Native (NN)

Figure 13: This figure shows the overall performance across the three groups: (western) native speakers and
non-native speakers. However, when looking into the coherence metric, we do see a preference for the western
native group. The results show how there is no difference regarding fluency and only a slight performance difference
when comparing the native categories with the non-native category for relevance.
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Figure 14: This figure shows the performance of English
non-native speakers per self-reported level of English
for the classification tasks.We adjusted the y-axis to
range from 0.65 to 1 for clarity.
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Figure 15: This figure shows the performance of En-
glish non-native speakers per self-reported frequency of
English usage for the classification tasks. We adjusted
the y-axis to range from 0.65 to 1 for clarity.
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Figure 16: This figure shows the performance of the
three groups only including C2 and C1 level English
speakers. We adjusted the y-axis to range from 0.65 to
1 for clarity.
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Figure 17: This figure shows the performance of English
non-native speakers per self-reported level of English
for the generative tasks. We rescaled the results so that
they range from 0 to 1.
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Figure 18: This figure shows the performance of En-
glish non-native speakers per self-reported frequency of
English usage for the generative tasks. We rescaled the
results so that they range from 0 to 1.
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Figure 19: This figure shows the generative results only
for the C2 and C1-level speakers per group.We rescaled
the results so that they range from 0 to 1.
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