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Abstract

Interactions between modalities—redundancy,
uniqueness, and synergy—collectively determine
the composition of multimodal information. Un-
derstanding these interactions is crucial for ana-
lyzing information dynamics in multimodal sys-
tems, yet their accurate sample-level quantifica-
tion presents significant theoretical and computa-
tional challenges. To address this, we introduce
the Lightweight Sample-wise Multimodal Inter-
action (LSMI) estimator, rigorously grounded in
pointwise information theory. We first develop
a redundancy estimation framework, employing
an appropriate pointwise information measure to
quantify this most decomposable and measurable
interaction. Building upon this, we propose a gen-
eral interaction estimation method that employs
efficient entropy estimation, specifically tailored
for sample-wise estimation in continuous distri-
butions. Extensive experiments on synthetic and
real-world datasets validate LSMI’s precision and
efficiency. Crucially, our sample-wise approach
reveals fine-grained sample- and category-level
dynamics within multimodal data, enabling prac-
tical applications such as redundancy-informed
sample partitioning, targeted knowledge distilla-
tion, and interaction-aware model ensembling.
The code is available at https://github.
com/GeWu-Lab/LSMI_Estimator.

1. Introduction
Multimodal data offer richer information sources, signifi-
cantly enhancing information acquisition capabilities. This
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richness largely derives from inter-modal interactions, the
harnessing of which is crucial for advancing multimodal
models. Traditionally, research has focused on capturing
redundant interactions by aligning modalities and extracting
consistent information among them (Rahate et al., 2022).
Such methods are particularly effective when information is
entirely shared across modalities, as in the case of images
paired with text captions (Radford et al., 2021). However,
modality inconsistency can also contain valuable informa-
tion. For instance, in video understanding, certain phe-
nomena (e.g., wind blowing) may provide limited or even
misleading information in the visual modality but can be
clearly discerned through the auditory modality. This high-
lights the importance of extracting modality-specific unique
information. Moreover, when individual modalities alone
are insufficient to convey information, their combination
can induce additional insights. For example, sarcasm can
be detected through a positive expression paired with a neg-
ative tone. In such cases, multimodal information emerges
from the collaboration of modalities, reflecting synergistic
interactions. In summary, multimodal interactions – en-
compassing redundancy, uniqueness, and synergy – play
critical roles in producing multimodal information and offer
credible perspectives for advancing multimodal learning.

To better characterize the dynamic interplay of these multi-
modal interactions, defining and quantifying interactions in
a principled manner is of significant importance. Initially,
Partial Information Decomposition (PID) (Williams & Beer,
2010) is proposed as a field dedicated to investigating the
nature of interactions from an information-theoretic perspec-
tive. Research on PID has primarily focused on providing
formal definitions of interactions (Lizier et al., 2018; Mages
& Rohner, 2023) within discrete distributions. Additionally,
several studies have extended the concept of interaction de-
composition to continuous Gaussian (Venkatesh et al., 2024)
and low-dimensional (Pakman et al., 2021) distributions.
Building on these foundations, Liang et al. (Liang et al.,
2023b) propose a distribution-optimization-based strategy
for interaction estimation. Their approach utilizes neural
estimation to achieve interaction quantification at the distri-
bution level, which has been successfully applied for dataset
evaluation and model selection (Liang et al., 2023a). These
advancements underscore the promising potential of inter-
action quantification in advancing multimodal research.
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Figure 1: A brief illustration of multimodal interactions
at the sample level, including redundancy (r), uniqueness
(u1, u2), and synergy (s), which collectively constitute mul-
timodal information i(x1, x2; y).

Beyond such quantifications, analyzing multimodal interac-
tions at the individual sample level is both important and
challenging. Given that interaction patterns can vary sub-
stantially across samples (Luppi et al., 2024), sample-level
analysis provides a more granular understanding of these
interaction patterns and enhanced interpretability for real-
world applications (Lizier et al., 2013). However, exist-
ing distribution-level approaches (Bertschinger et al., 2014;
Liang et al., 2023b) primarily quantify interaction informa-
tion for an entire dataset, lacking the capability for such
fine-grained, sample-level analysis. Although pointwise par-
tial information decomposition approaches (Finn & Lizier,
2018a) have been proposed for sample-level interaction esti-
mation, they struggle to provide efficient and practical solu-
tions for continuous distributions. This limitation highlights
the need for novel methods capable of realizing effective
sample-level interaction quantification.

To address this challenge, we propose the Lightweight
Sample-wise Multimodal Interaction (LSMI) estimation ap-
proach, which enables efficient and reliable quantification
of sample-level interactions. As illustrated in Figure 2, our
estimator aim to distinguish task-relevant information (cir-
cles) generated from two modalities, x1, x2, into redundant,
unique, and synergistic interaction. We define interactions
using pointwise information and further equip a lightweight
model for efficient and precise measurement. On the one
hand, we adopt a clear and credible definition of point-
wise information decomposition using redundancy-based
set-theoretic intuition. Given that pointwise mutual infor-
mation can be negative, adhering to set-theoretic intuition
remains a challenge. To overcome this, we partition mu-
tual information into target-related information components,
allowing for the measurement suitable for redundancy in
each component while preserving the set-theoretic intuition
of redundancy. On the other hand, we employ an efficient

sample-wise interaction estimation process based on this
definition. By leveraging lightweight entropy estimation
models (Pichler et al., 2022), we enable the efficient calcula-
tion of sample-wise redundancy interactions, as well as the
identification of uniqueness and synergy interactions. Ex-
tensive experiments confirm the high efficiency, precision,
and real-world applicability of our sample-level estimator.
Our method also uncovers interaction dynamics at both
sample and class levels. These insights not only enhance
interpretability but also enable practical applications such as
redundant data partitioning, interaction-guided knowledge
distillation, and targeted model ensemble that effectively
combine sub-models while preserving their specificity.

In summary, our contributions are as follows:

1. To the best of our knowledge, we are the first to explic-
itly quantifying multimodal interaction at the sample
level for real-world data.

2. We propose a sample-level interaction estimation ap-
proach that ensures both precision and efficiency.

3. Our method reveals the underlying interaction dynam-
ics within the data, facilitating a deeper understanding
and providing guidance for multimodal learning.

2. Related Work
2.1. Multimodal Interaction Learning

Multimodal learning paradigms aim to extract various types
of information embedded across different modalities. One
key strategy is to learn consistency, thereby exploiting redun-
dant (or shared) information. Consistency learning (Zhan
et al., 2018; Rahate et al., 2022; Yang et al., 2021) and con-
trastive learning (Radford et al., 2021; Yuan et al., 2021) are
common methods to capture this redundancy. Furthermore,
gradient-based modulation techniques (Peng et al., 2022;
Yang et al., 2025) can mitigate learning disparities across
modalities (Yang et al., 2024), bolstering consistency indi-
rectly and enhancing multimodal performance. Conversely,
inconsistencies can highlight unique or synergistic infor-
mation. Unique information arises when heterogeneous
modalities inherently contain different levels or types of in-
formation (Gat et al., 2020; Zhang et al., 2023b); approaches
here often enhance individual modality representations to
isolate modality-specific contributions (Tsai et al., 2018;
Wu & Goodman, 2018). Synergistic information emerges
when the combination of modalities generates new insights
not available from any single modality, especially when
individual modalities are insufficient for the task. Captur-
ing synergy typically involves more sophisticated fusion
mechanisms and dynamic integration strategies (Fukui et al.,
2016; Jayakumar et al., 2020). Understanding these fun-
damental interactions—redundancy, uniqueness, and syn-
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ergy—is crucial for guiding the design and selection of mul-
timodal learning methods. Therefore, this paper proposes an
efficient analytical framework to characterize multimodal
interactions, aiming to provide in-depth explanations and
guidance for the field.

2.2. Interaction Quantification

Data from multiple sources often interact to reveal how
information originates across these sources. Estimation
of the interactions provides valuable insights into neural
science (Wibral et al., 2017; Celotto et al., 2024). Par-
tial Information Decomposition (Williams & Beer, 2010)
serves as a foundational framework, describing three types
of interaction: redundancy, uniqueness, and synergy. Sub-
sequent work has provided different definitions of these
interactions for discrete distributions (Knuth, 2019; Mages
& Rohner, 2023), but these definitions are difficult to extend
to continuous distributions in real-world scenarios. Some
studies have extended these methods to continuous low-
dimensional (Pakman et al., 2021) or Gaussian (Venkatesh
et al., 2024) distributions. Additionally, Liang et al. (Liang
et al., 2023b) have measured interactions in more complex
real-world datasets by optimizing the distribution to deter-
mine uniqueness. However, measuring sample-wise multi-
modal interactions remains an open issue (Lizier et al., 2013;
Liang et al., 2023b), and addressing this challenge could
significantly enhance the fine-grained understanding of mul-
timodal data and the learning preferences across modalities.
To this end, this work proposes a practical approach for
quantifying sample-wise interaction estimation.

3. Method
In this section, we introduce a lightweight sample-wise
multimodal interaction estimation approach. We begin by
providing a detailed explanation of interaction estimation,
followed by a principled definition of sample-level inter-
actions from the perspective of redundancy. Subsequently,
we implement efficient interaction estimation at the sample
level for continuous distributions.

3.1. Preliminary

In this study, we primarily analyze the mutual informa-
tion between two modalities X1 and X2 with respect to
a target variable Y , where samples x1, x2 and target y
can be considered as events from the joint distribution.
Our framework can be naturally extended to handle mul-
tiple modalities (see Appendix subsubsection A.3.1 for
details). For information metrics, we use the subscript
i to indicate pointwise mutual information, calculated as
i(x; y) = log p(x,y)

p(x)p(y) . The superscript I denotes average
mutual information, I(X;Y ) = Ex,y[i(x; y)].

Interaction Estimation Interaction estimation, also re-
ferred to as Partial Information Decomposition, offers a
comprehensive framework for understanding the informa-
tion conveyed through multiple modalities. In the context of
multimodal information shared by X1 and X2 with the tar-
get Y , Interaction Decomposition classifies this information
based on its distribution across the different modalities. It
distinguishes between the information that is shared across
modalities (redundancy), that which is uniquely represented
within each modality (uniqueness), and the information that
emerges only when both modalities are present (synergy).
As a result, it decomposes the total information into four
distinct components: redundancy R between X1 and X2,
uniqueness U1 in X1, uniqueness U2 in X2, and synergy
S, which emerges only when both X1 and X2 are jointly
considered. It satisfies the following equation:

I(X1;Y ) = R+ U1, I(X2;Y ) = R+ U2,

I(X1, X2;Y ) = R+ U1 + U2 + S.
(1)

A widely recognized approach to interaction decomposition,
based on the concept of uniqueness (Bertschinger et al.,
2014; Liang et al., 2023b), determines interactions by iden-
tifying a base distribution that minimizes unique informa-
tion. This method, inspired by decision-making theory, then
leverages this base distribution to compute redundancy (R),
uniqueness (U ), and synergy (S). However, this distribution-
level optimization presents two primary challenges. First,
optimizing the distribution is computationally expensive.
Second, its design is restricted to calculating interactions
over the entire distribution, which impedes sample-wise
estimation and, consequently, limits its interpretability and
practical utility for fine-grained analyses.

3.2. Redundancy-based Interaction Framework

Compared with calculating interaction over the whole distri-
bution, sample-level interaction estimation enables details
information analysis towards each samples, which provide
in-depth knowledge for multimodal interaction (Lizier et al.,
2013). To achieve it, the multimodal information can be
denoted in a pointwise way, in order to inspect how each
event brings information about the target. Denote lower-
script r, u, s as pointwise interaction corresponding with
R,U, S, we can extend Equation 1 to event-level:

i(x1; y) = r + u1, i(x2; y) = r + u2,

i(x1, x2; y) = r + u1 + u2 + s.
(2)

This equation involves four unknown variables: r, u1, u2,
and s. Since the mutual information terms for unimodal-
ity i(x1; y), i(x2; y) and multimodality i(x1, x2; y) can be
estimated using discriminators or neural estimation meth-
ods, the key challenge lies in determining the value of the
remaining degree of freedom in Equation 2.
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Figure 2: Event-level redundancy information estimation framework. The proposed measure ensures that information
quantities monotonically decrease along the decomposition path (indicated by arrows), enabling precise quantification of
redundant information components.

To address this challenge, we investigate redundancy from
a pointwise perspective, aiming to provide a reliable and
intuitive quantification measure. Redundancy, as a funda-
mental interaction type, represents the shared information
across multiple data sources. By definition, it should not ex-
ceed the information present in any individual source. This
property enables us to derive redundant interactions through
a decomposition framework that eliminates non-redundant
information components. Building on this principle, we
develop an event-level decomposition framework for task-
related information based on lattice structure. Let α and
β represent two distinct events, where (α, β) denotes their
joint occurrence and (α;β) represents their shared compo-
nent. This formulation facilitates precise measurement of
inter-event relationships, forming the redundancy estimation
framework depicted in Figure 2. The framework systemati-
cally traces information flow through each lattice point to
identify redundant information components. An appropri-
ate measure that satisfies this framework would then allow
the information within the shared component, specifically
(x1;x2; y), to be quantified as redundancy.

With this framework, a significant challenge arises in apply-
ing a reasonable measure for the framework. The measure
should satisfy the monotonic decrease of redundancy de-
composition on each lattice (Figure 2 from left to right).
An intuitive approach is to apply the pointwise information
measure directly on this framework. However, as pointwise
mutual information i(x; y) can be negative (when x pro-
vides misleading information about y), monotonicity is not
always guaranteed. Concretely, according to the redundancy
framework, the following inequality should hold:

i(x1; y) ≤ i((x1; y), (x2; y)) ≤ i(x1; y) + i(x2; y). (3)

However, the pointwise mutual information i(x2; y) can
be negative, which would violate the inequality. Thus, the
monotonicity over the redundancy framework cannot be
consistently achieved directly under the information mea-

sure, which is highlighted by previous literature (Finn &
Lizier, 2018b). Note that this conclusion differs from the
results obtained when averaging over the entire distribution,
as the average information satisfies I(Xm;Y ) ≥ 0 and can
ensure monotonicity.

Hence, there is a need for an alternative feasible way for
determining redundancy. Inspired by (Ince, 2017; Finn &
Lizier, 2018a), we can apply redundancy on partial infor-
mation component, and obtain the redundant information.
In detail, we divide the information into two information
components i(x; y) = i+(x; y) − i−(x; y). This division
should be uniquely determined given x, y, and both compo-
nents should satisfy the monopoly condition and be positive.
Accordingly, we use the following division:

i+(x; y) = h(x) = − log p(x),

i−(x; y) = h(x|y) = − log p(x|y).
(4)

Therefore, given the positive property, each component
within this division adheres to monotonicity. As a result,
both measures, i+ and i−, are compatible with the lattice
on Figure 2. Consequently, we define the redundancies r+

and r− on each component for

r+(x1;x2; y) = min
(
i+(x1; y), i

+(x2; y)
)

r−(x1;x2; y) = min
(
i−(x1; y), i

−(x2; y)
)
.

(5)

With this definition, we integrate redundancy from both
components to obtain the event-level redundant interaction.

r(x1;x2; y) = r+(x1;x2; y)− r−(x1;x2; y), (6)

which uniquely determines the multimodal interaction. This
enables us to accurately determine the respective values of
u1, u2, and s using Equation 2. Furthermore, we can obtain
the average interaction values R, U1, U2, and S within the
dataset by averaging over these sample-level interactions.
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Task XOR OR XOR+NOT

Interaction R U1 U2 S R U1 U2 S R U1 U2 S

PID-CVX 0.000 0.000 0.000 0.692 0.210 0.001 0.000 0.342 0.000 0.000 0.338 0.346
PID-Batch 0.000 0.002 0.002 0.690 0.200 0.018 0.018 0.322 0.003 0.000 0.257 0.381

LSMI (ours) 0.000 0.001 0.001 0.691 0.215 0.001 0.000 0.345 0.000 0.000 0.336 0.347

GT 0.000 0.000 0.000 0.693 0.215 0.000 0.000 0.347 0.000 0.000 0.347 0.347

Table 1: Comparison of the proposed LSMI with previous interaction estimators on circuit logic (XOR, OR, and XOR+NOT).

Algorithm 1 Lightweight Sample-wise Multimodal Interac-
tion Estimation (LSMI) Algorithm

1: Input: Bimodal data x1, x2, target y; discriminative
models p(y|x1, x2), p(y|x1), p(y|x2).

2: Initialize: Entropy estimators hθ1(·), hθ2(·).
3: Train entropy estimators hθ1 , hθ2 using Equation 7 on

data from p(x1), p(x2) respectively.
4: Compute sample-wise h(x1), h(x2) using hθ1 , hθ2 ;

then compute h(x1|y), h(x2|y) via Equation 8.
5: Compute pointwise redundancy indicators r+, r− via

Equation 5; then redundancy r ← r+ − r−.
6: Compute pointwise i(x1; y), i(x2; y), i(x1, x2; y) us-

ing p(y|x1), p(y|x2), p(y|x1, x2); then derive interac-
tions u1, u2, s via Equation 2.

7: Output: Sample-wise interactions r, u1, u2, s.

3.3. Lightweight Interaction Estimation

Although we have defined the measure for redundancy de-
composition well, how to quantify this interaction over con-
tinuous distributions and real-world datasets remains a ques-
tion. In this work, we refer to the tool KNIFE (Pichler et al.,
2022) as the differential entropy estimation, which is effi-
cient and suitable for sample-wise estimation over complex
distributions. Denote hθ as entropy estimator,

E[hθ(x)] = E[h(x)] +DKL(p(x)||pθ(x)) ≥ H(X) (7)

serves as an upper bound for entropy, as the Kullback-
Leibler divergence (DKL) is inherently positive. Therefore,
the estimator can be optimized by tuning parameters θ to
minimize the DKL, thereby tightening this upper bound.
Consequently, we derive hθ1(x1) and hθ2(x2) as estima-
tions for the positive information component i+, as spec-
ified in Equation 4. Additionally, once the unimodal dis-
criminative models p(y|x1) and p(y|x2) are determined, the
negative component i− can be estimated as follows:

i−(xm; y) = hθm(xm)−h(y)−log p(y|xm),m ∈ [2]. (8)

Details are shown in Algorithm 1. By adopting this method,
we circumvent the necessity of modeling the base distribu-
tion to achieve interaction decomposition. Consequently,
our approach demands only a limited number of parameters

for entropy estimation, thereby reducing time consumption
typically associated with distribution modeling. Further-
more, our lightweight method facilitates the measurement
of pointwise interactions, a capability not extendable to the
sample level in previous approaches. Overall, this approach
enhances flexibility and scalability, thereby providing in-
sights and explanations for multimodal learning.

4. Experiment
4.1. Synthetic Experiment

4.1.1. SETUP

In synthetic experiments, we validate the precision of our es-
timation approach using two typical distributions: a bitwise
circuit system and a mixture of Gaussians, where interac-
tions can be explicitly calculated. We also conduct exper-
iments with manually controlled interactions to elucidate
the effects of different interaction patterns. To better adapt
to real-world data scenarios, additional noise is introduced
into these datasets, making their data distributions continu-
ous. The generation process of these datasets is illustrated
in subsection A.1. Our estimation method is compared
with the CVX (PID-CVX) estimator, designed for discrete
distributions (Liang et al., 2023b), and the batch-level (PID-
Batch) estimator, which is applicable to both discrete and
continuous distributions (Liang et al., 2023b).

4.1.2. CIRCUIT LOGIC

We first employ bitwise circuit logic systems validating
precision. We construct samples using fundamental logic
operations (e.g., OR, XOR, and a mixture of NOT and OR)
combined with small Gaussian noise. The crucial advan-
tage of this setup is its capacity to provide an objective and
verifiable benchmark: the deterministic nature of logic op-
erations allows for sound calculation of ground truth (GT)
interactions (Bertschinger et al., 2014). Consequently, a
closer alignment between predicted interactions and this
GT directly signifies a more accurate estimation. We com-
pare our method against PID-CVX and PID-Batch (Liang
et al., 2023b). The experimental results in Table 1 demon-
strate that our estimators accurately recover the correct in-
teractions, closely matching the ground truth and showing
favorable performance compared to these baseline methods.

5



Efficient Quantification of Multimodal Interaction at Sample Level

−1.0 −0.5 0.0 0.5 1.0
ρ

0.8

0.9

1.0

1.1

1.2

1.3

R

GT
LSMI
PID-Batch
PID-CVX

(a) Estimation on R.

−1.0 −0.5 0.0 0.5 1.0
ρ

0.0

0.2

0.4

0.6

0.8

1.0

S

GT
LSMI
PID-Batch
PID-CVX

(b) Estimation on S.

Figure 3: Comparison of estimators on data with a mixture
of Gaussian distributions.

4.1.3. MIXTURE OF GAUSSIAN

For the simulation of a continuous distribution, we design a
dataset based on a mixture of Gaussian distributions. Specif-
ically, for both x1 and x2, the distributions are defined as:

p(xm) =

K∑
y=1

π(y)N (x|µ(y),Σ(y)), (9)

where different modalities share the same mean µ(y) and
covariance Σ(y). This distribution can be approximated as
a K-way classification task, which is useful for measuring
the interaction between x1, x2 and y.

To manipulate interactions between modalities, we impose
constraints on the covariance of Gaussian distributions for
the two modalities. Specifically, we adjust the covariance
ρ(x1, x2|y) = {−1,−0.8,−0.4, 0, 0.4, 0.8, 1} to obtain
different joint distributions. The intended effect of these
adjustments is that they only influence the amplitude of the
synergy interaction, while the redundancy and uniqueness of
interactions remain unchanged, as outlined by (Bertschinger
et al., 2014). The experimental comparisons, detailed in Fig-
ure 3, begin with a ground truth (GT) calculated through a
mixture of Gaussian model. Our findings indicate that both
PID-CVX and PID-Batch fail to consistently estimate inter-
actions, showing divergence from the ground truth despite
exhibiting similar trends across different interaction types as
ρ changes. In contrast, our proposed method demonstrates a
high capacity to closely match the ground truth interactions,
showcasing the precision of our estimation approach.

4.1.4. PRESET INTERACTION

We also verify the precision of manually designed datasets
with controllable interactions. In this dataset, we ensure that
each sample contains one type of interaction—Redundancy,
Uniqueness, or Synergy—and adjust the proportion of each
sample to preset the interaction. Consequently, we mix
these data in certain proportions (e.g., 1

4U + 3
4S indicates

that 1
4 of the data follows Uniqueness while the remainder

exhibits Synergy). The experimental results are presented in
Figure 4. The ground truth of the radar is shown in Figure 4
(d), which is asymmetric due to our setting. Both PID-CVX
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Figure 4: Comparison of estimators with preset interactions.

(Figure 4 (a)) and PID-Batch (Figure 4 (b)) show discrep-
ancies in estimating Synergy interaction (within the green
lines), whereas our method (Figure 4 (c)) handles these
interactions effectively, enabling more precise estimations.

4.2. Validation on Real-world Datasets

We apply our LSMI approach to real-world datasets to
demonstrate its capability of efficiently estimating multi-
modal interactions at the sample level and providing valu-
able insights into interaction modeling. Additional experi-
ments, which include multiple modal analyses, architectural
comparisons, and distribution shifting evaluations, are de-
tailed in subsection A.3.

4.2.1. EXPERIMENTAL SETTING

Dataset We conduct experiments on extensive multimodal
datasets encompassing various tasks and modalities. These
include Food-101 (Bossard et al., 2014), which focuses
on food classification using text and image modalities;
CREMA-D (Cao et al., 2014), dedicated to emotion anal-
ysis with audio and visual modalities; Kinetic-Sounds
(KS) (Arandjelovic & Zisserman, 2017), an action recog-
nition task employing audio and visual modalities; UCF-
101 (Soomro et al., 2012), a multimodal action recognition
dataset utilizing RGB and optical flow modalities; CMU-
MOSEI (Zadeh et al., 2018), which addresses binary sen-
timent analysis through video (including audio and visual)
and text modalities; and UR-funny (Hasan et al., 2019),
aimed at humor detection using video and text.
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Dataset KS Food-101 UR-Funny CMU-MOSEI
Interaction R U1 U2 S R U1 U2 S R U1 U2 S R U1 U2 S

PID-Batch 3.16 0.02 0.19 0.01 4.23 0.24 0.00 0.14 0.02 0.03 0.01 0.06 0.18 0.34 0.02 0.03
LSMI 3.28 0.11 0.00 0.03 4.19 0.34 0.00 0.08 0.02 0.12 0.01 0.24 0.13 0.22 0.01 0.00

Human 2.32 1.61 1.45 0.48 4.06 0.92 0.05 0.00 2.30 2.73 2.33 2.50 3.27 3.37 2.87 1.03

Table 2: Comparison of average interaction over various real-world datasets.

Interaction Categories preferred by each interaction

r playing organ playing bagpipes playing keyboard playing accordion playing drums
uv pushing lawnmower shoveling snow shuffling cards dribbling ball bowling
ua blowing nose laughing tapping guitar playing guitar playing clarinet
s ripping paper tickling tap dancing blowing out -

Table 3: Demonstration of the categories that most prefer specific types of interactions on the KS dataset.

Method R U1 U2 S

Feature-level fusion
Joint 3.165 0.143 0.000 0.122
MMIB 3.284 0.113 0.000 0.030
Bilevel 2.604 0.552 0.000 0.277

Decision-level fusion
Additive 3.397 0.006 0.000 0.029
Weighted 3.399 0.010 0.000 0.024
QMF 3.400 0.002 0.000 0.032

Additional Regulation
Mod-drop 3.163 0.134 0.000 0.116
Alignment 3.372 0.015 0.000 0.040
Recon 2.984 0.311 0.000 0.139

Table 4: Comparison of interaction components across dif-
ferent multimodal learning methods on the KS dataset.

Baseline We adopt three primary types of multimodal
learning paradigms, details are shown in subsection A.2.

Feature-level fusion: Joint learning (Baltrušaitis et al.,
2018), MMIB (Mai et al., 2022), Bilinear (Fukui et al.,
2016). Decision-level fusion: Additive ensemble (Liang
et al., 2021), Weighted ensemble (Shao et al., 2024),
QMF(Zhang et al., 2023a). Additional Regulation: Mod-
drop (Hussen Abdelaziz et al., 2020), Alignment (Radford
et al., 2021), Rec (Tsang et al., 2020).

4.2.2. DATASET INTERACTIONS

Our LSMI-estimate method can be employed to uncover
the inherent multimodal interactions within datasets, which
varies significantly across diverse tasks and data domains.
Modeling the true data distribution of real-world datasets
is inherently complex. Accurate multimodal interaction
estimation requires models that faithfully capture the true
data distribution. Hence, we identify and utilize trained
models that approximate the underlying data distribution, as

evidenced by minimal generalization error. Unimodal and
multimodal information are then extracted by probing these
learned representations. The dataset-level interactions are
subsequently determined by averaging the sample-level in-
teractions obtained from these selected models. To validate
the reasonability of our approach, we compare our method
with continuous interaction estimation (PID-batch) and hu-
man judgment as references. Since there are no predefined
interaction values for real-world continuous datasets, we
follow previous literature that annotated several datasets,
including CMU-MOSEI and UR-Funny, and use the same
settings as those studies (Liang et al., 2023b) to construct
human judgment for interactions on the KS and Food-101
datasets. The comparison results are shown in Table 2. We
observe that our LSMI estimator is largely consistent with
the PID-Batch method. Furthermore, in KS, Food-101, and
MOSEI datasets, our method aligns with the top two highest
interactions in terms of redundancy and uniqueness, respec-
tively. Similarly, in the UR-Funny dataset, our method
exhibits strong correlations with the expected interaction
patterns. While human-annotated scores (on a 0-5 scale)
are not direct measures of information content, we observe
strong Pearson correlations between LSMI estimates and
human judgments: 0.98 for redundancy and 0.95 for text
uniqueness on Food-101 dataset, indicating significant align-
ment in interaction quantification.

4.2.3. CASE STUDY

Our proposed LSMI estimator enables us to observe interac-
tion variations at the sample level, providing insights into
interaction differences across groups or categories. Specifi-
cally, we compute the interaction preferences for each cat-
egory by averaging the interactions of the samples within
that category. We analyze the top categories with the high-
est estimated values for redundancy r, visual uniqueness
uv, auditory uniqueness ua, and synergy s. The results are
presented in Table 3. Notably, instruments, which are easily
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UR-Funny CMU-MOSEI CREMA-D KS UCF-101 Food-101

Number of classes 2 2 6 31 101 101
LSMI (s) 454.4 667.1 426.1 501.5 678.9 504.0

PID-Batch(s) 1700.5 3124.4 5876.5 21928.0 48576.6 59679.5

Table 5: Comparison of time cost (s) over real-world datasets.

distinguishable by both sound and image, exhibit a high
level of redundancy. Categories associated with visual ele-
ments (e.g., grass, snow) tend to prefer the visual modality.
In contrast, categories where auditory features are more dis-
tinctive (e.g., blowing nose) show greater uniqueness in the
audio modality. For tasks with more complex recognition
(e.g., tickling), single modalities may struggle to distinguish
the categories, leading these tasks to rely more on synergy.
This finding aligns with human cognition. Additionally,
we conduct sample-wise case studies to compare human
annotations with model-estimated interactions. The compar-
ison, shown in subsubsection A.3.4, demonstrates that our
interaction estimation aligns well with human recognition,
further validating its accuracy.

4.2.4. INTERACTION MODELING COMPARISON

Our LSMI framework reveals distinct capabilities of vari-
ous multimodal learning paradigms in modeling different
information interaction types, as demonstrated in Table 4.
Feature-level fusion methods exhibit comprehensive capa-
bilities for learning diverse interactions, while decision-level
fusion approaches specialize in capturing data redundancy.
Notably, specific regulation techniques show targeted ad-
vantages of interaction modeling: alignment-based meth-
ods effectively enhance redundant interaction learning, and
reconstruction-focused approaches improve modeling of
modality-specific unique information.

4.2.5. TIME EFFICIENCY

We compare the time cost of interaction estimation between
our method and the PID-Batch method. The key difference
lies in the way the two methods handle interaction mea-
surement. Our method is designed to measure entropy by
learning the mapping from samples within each individual
modality to pointwise entropy, i.e., Xm → Rn,m ∈ [2]. In
contrast, PID-Batch aims to model the entire distribution
X1 × X2 × Y → Rn, and then calculate the interaction
based on this joint distribution. As shown in Table 5, our
lightweight estimator demonstrates significantly higher ef-
ficiency in interaction estimation compared to PID-Batch.
Specifically, the computational cost of PID-Batch scales
with the number of classes, resulting in substantial time
complexity when the category space is large (e.g., UCF-101
and Food-101). In contrast, our LSMI estimator avoids joint
distribution modeling, ensuring consistent time efficiency
across tasks, regardless of the number of classes.

Data KS CREMA-D

V+A V A V+A V A

All 0.854 0.818 0.727 0.795 0.684 0.725
Low 0.850 0.805 0.729 0.782 0.702 0.715
High 0.877 0.824 0.726 0.801 0.688 0.728

Table 6: Performance comparison of ImageBind model fine-
tuned on complete dataset (All), low-redundancy subset
(Low), and high-redundancy subset (High) across unimodal
and multimodal settings.

4.3. Application

As our LSMI estimator has demonstrated both accuracy
and efficiency, how such interaction estimation can offer
novel perspectives and tangible benefits remains critical. In
this section, we demonstrate how sample-level multimodal
interaction estimation can be applied to downstream tasks to
boost multimodal performance. Specifically, we explore its
utility in two main directions: (1) On the learning side, we
investigate how interactions can improve dataset partitioning
and enable targeted model distillation; (2) On the inference
side, we explore the design of efficient ensemble strategies
leveraging interaction patterns.

4.3.1. TARGETED DATA PARTITION

Effective multimodal learning depend on the nature of train-
ing data, with data interactions playing a crucial role. Our
LSMI method addresses this by explicitly measuring these
interactions and providing a quantifiable metric. This met-
ric enables data partitioning based on interaction patterns
suitable for specific frameworks, allowing models to learn
from more tailored data subsets and ultimately boosting
their performance. In this work, we employ the ImageBind
model (Girdhar et al., 2023), which aligns different modali-
ties into a common space. Since this alignment process nat-
urally maximizes shared information—reflecting redundant
interactions—we categorize samples into high-redundancy
(High) and low-redundancy (Low) subsets based on their
modal redundancy. We fine-tune ImageBind on these dis-
tinct subsets using its contrastive loss. To validate learn-
ing quality, we use simple linear layers on the extracted
ImageBind features for task performance evaluation. The
results in Table 6 show performance across multimodal
and unimodal settings. Our experiments demonstrate that
fine-tuning on the high-redundancy subset enhances multi-
modal feature quality through improved modality alignment
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Figure 5: Validation on LSMI-based distillation approach.
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Figure 6: Comparison between LSMI ensemble and
weighted ensemble with various datasets.

facilitated by redundant interactions. This alignment pri-
marily benefits information-rich modalities (e.g., Vision in
KS, Audio in CREMA-D), enabling more effective learn-
ing while preventing misalignment with information-poor
modalities. Conversely, the low-redundancy subset allows
more thorough exploration of information-poor modalities
(e.g., Audio in KS, Vision in CREMA-D), leading to their
relatively stronger performance. These findings highlight
the distinct roles of different data interactions in training
and demonstrate the practical value of our sample-level
interaction estimation for data partitioning.

4.3.2. INTERACTION-GUIDED DISTILLATION

Beyond its utility in interaction-based data partitioning, our
method also offers valuable insights into model learning
dynamics. LSMI can reflect how a multimodal model cap-
tures dynamic interaction patterns unique to each sample,
enabling targeted interaction adjustment. To leverage these
insights, we introduce an efficient knowledge distillation
framework that utilizes sample-level interaction patterns -
estimated by a high-performing teacher model - as infor-
mative signals to determine which knowledge components
should be distilled into a student model trained from scratch.
In particular: For redundancy (r) and uniqueness (u), we
distill informative unimodal features. For synergy (s), we
employ output-level distillation to capture cross-modal com-
plementary effects. The distillation process is weighted
by the relative magnitudes of r, u, and s. As a baseline
comparison, we also evaluate a method that directly distills
features from each individual modality, as illustrated in Fig-
ure 5. Our experimental results demonstrate that our method
learns more effectively and acquires a greater amount of

informative knowledge compared to direct distillation. This
indicates that our targeted distillation approach facilitates
the learning of specific and distinctive information, enhanc-
ing the model’s overall performance.

4.3.3. INTERACTION-GUIDED MODEL ENSEMBLE

When several well-trained models are available, an impor-
tant question arises: how can we leverage interaction metrics
to exploit the strengths of different models? Sample-level in-
teractions can serve as indicators to measure the differences
in how models extract information from individual sam-
ples, shedding light on a more reliable ensemble approach.
In this study, we conduct experiments with several well-
trained, yet diverse, multimodal approaches. We compute
the interaction for each sample by averaging the interac-
tions across different approaches and then ensemble each
unimodal model with the corresponding interaction, which
we call the LSMI-based ensemble. For comparison, we
also implement a weighted ensemble and provide details on
the unimodal accuracy. As shown in Figure 6, we demon-
strate that even when the added models have lower accuracy
than the original model, they still contribute significantly
to performance improvements. This is because different
models tend to focus on different interaction patterns, and
ensembling based on interaction results in capturing more
accurate interactions. This explains why LSMI-based en-
semble methods outperform simple weighted ensembles.

5. Conclusion
This work aims to estimate the multimodal interaction of
each sample, clarifying the quantities of interaction in redun-
dancy, uniqueness, and synergy. We propose a lightweight
entropy-based multimodal interaction estimation approach
for efficient and precise sample-wise interaction measure-
ment across various continuous distributions. We demon-
strate the precision and efficiency of our estimation, as well
as the utility of this sample-level estimation for guiding and
improving multimodal learning. Our estimation more ac-
curately reveals the information generation within the data,
offering finer-grained insights that empower data-driven
dataset construction and sample-specific algorithm design.

Future work This work on estimating sample-level inter-
actions opens several avenues for future research, including:
(1) investigating how models dynamically capture interac-
tions within complex fusion mechanisms to elucidate adap-
tive learning and synergistic information generation; (2)
uncovering relationships between training strategies and
learned modal interactions to optimize multimodal learning
systems; and (3) exploring how interaction estimation can
enhance multimodal representation learning and modality-
specific information acquisition, thereby enabling more fine-
grained and dynamic interactive learning.
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A. Experiments
A.1. Synthetic Data Generation

In subsection 4.1, we employ three types of synthetic datasets to support our study. The first type is a circuit logic dataset,
described in subsubsection 4.1.2, which is based on Boolean logic operators. The second type is a mixture of Gaussians
with varying correlation coefficients (ρ), designed to simulate scenarios where unimodal distributions remain constant while
multimodal distributions change, as detailed in subsubsection 4.1.3. The third type is a preset interaction dataset, where
each dataset is constructed to include one or two predefined types of interactions, enabling the study of specific interaction
dynamics, as outlined in subsubsection 4.1.4. Since the interactions in logic data can be easily determined (Bertschinger
et al., 2014), this dataset provides a reliable ground truth for precision validation.

The circuit logic dataset, the first type in our study, is based on three fundamental Boolean logic operations: OR, XOR, and
NOT. Each sample contains only one type of logic operation. For cases involving multiple logic operations (e.g., XOR+NOT),
each logic type is equally represented in the dataset. To increase complexity, we add noise to each input dimension, requiring
the evaluation model to denoise the input variables before estimating the corresponding logical relationships. As interactions
in logic data can be precisely determined (Bertschinger et al., 2014), this dataset provides a reliable ground truth for
validating our approach’s precision.
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Figure 7: Illustration of bivariate Gaussian distributions with different correlation coefficients (ρ). From left to right: negative
correlation (ρ = −0.5), no correlation (ρ = 0), and positive correlation (ρ = 0.5). These visualizations demonstrate how
varying correlation affects the joint distribution while keeping marginal distributions constant.

The second type of dataset, a mixture of Gaussians, is designed to reflect variations in interactions when unimodal
distributions remain constant while multimodal distributions change. Specifically, each individual modality follows a
mixture of Gaussian distributions:

p(xm) =

K∑
y=1

π(y)N (x|µ(y),Σ(y)), (10)

where the unimodal distributions are identical across modalities. To simulate different interaction patterns, we adjust the
joint distribution by setting the covariance ρ(x1, x2|y) to {−1,−0.8,−0.4, 0, 0.4, 0.8, 1}. For illustration, we use a two-
component Gaussian mixture model to compute the means and variances (see Figure 7). We then apply PID decomposition
(Bertschinger et al., 2014) to estimate the ground truth. When the unimodal distributions are held constant, the redundant
(R) and unique (U ) components remain unchanged, while only the synergistic (S) component varies, as demonstrated in the
results of Figure 3.

For the third type, the dataset contains preset interactions, allowing for selective design of interactions to evaluate the
capabilities of different methods under varying interaction patterns. In this synthetic data, each sample exhibits only a
specific type of interaction, requiring the interaction estimation model to model the underlying distribution of each sample.
As illustrated in Figure 4, each dataset is composed of samples exhibiting one or two types of interactions. The proportion
of each interaction type is quantified using fractional notation, such as 1

4U + 3
4R. This indicates that 1

4 of the samples
display Unique interactions, while the remaining samples demonstrate Redundant interactions. The data generation
process is executed in two sequential steps. First, the type of interaction for each sample is determined. Next, different
interactions are mapped into high-dimensional data through linear transformations. For redundancy, both modalities are
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UCF-101 Dataset
Modality Pair R U1 U2 S

Visual–OF 2.111 2.483 0.000 0.000
Visual–Diff 3.474 1.121 0.000 0.000
OF–Diff 1.998 0.003 1.476 0.239

CMU-MOSEI Dataset
Modality Pair R U1 U2 S

Vision–Text (V–T) 0.121 0.000 0.163 0.005
Vision–Audio (V–A) 0.116 0.010 0.000 0.012
Audio–Text (A–T) 0.127 0.000 0.248 0.002

Table 7: Pairwise interaction analysis on the UCF-101 and CMU-MOSEI datasets, with different modality combinations.

mapped simultaneously. For uniqueness, the non-informative modality is replaced with Gaussian noise. For synergy, an
XOR-like construction is employed, ensuring that information is only effective when both modalities are present. To align
with real-world scenarios, additional Gaussian noise is introduced into the high-dimensional data. This setup facilitates the
experimental comparisons presented in Figure 4.

A.2. Baseline

We adopt three primary types of multimodal learning paradigms:

Feature-level fusion: Integration of multiple modalities at the feature level. This includes: Joint learning (Baltrušaitis
et al., 2018): A traditional paradigm where features from different modalities are concatenated and jointly mapped into the
target space. MMIB (Multimodal Information Bottleneck) (Mai et al., 2022): Application of the variational information
bottleneck principle to feature fusion. Bilinear (Fukui et al., 2016): Incorporation of dynamic interactions with learnable
weights.

Decision-level fusion: Integration of unimodal predictions from different modalities. This approach includes: Addi-
tive (Liang et al., 2021): Ensemble of predictions by averaging. Weighted (Shao et al., 2024): Ensemble of predictions with
pre-learned weights. QMF(Zhang et al., 2023a): Dynamic learning for each unimodality and learning weights.

Additional Regulation: Implementation of supplementary regulations to enhance multimodal learning: Mod-
drop (Hussen Abdelaziz et al., 2020): Application of dropout to partial modalities to prevent overfitting. Alignment (Radford
et al., 2021): Introduction of contrastive loss to align modalities. Rec (Tsang et al., 2020): Application of unimodal recon-
struction loss to strengthen unimodal capabilities.

A.3. Additional Experiments

A.3.1. EXTENSION TO MULTIPLE MODALITIES

Analyzing interactions involving more than two modalities presents considerable challenges in quantifying their complex
relationships, such as the mutual information shared by three or more sources concerning a target task. A significant barrier
is that established theoretical PID frameworks, designed for decomposing two-way interactions into synergistic, redundant,
and unique components, do not directly or uniquely extend to these higher-order scenarios (Mages & Rohner, 2023; Williams
& Beer, 2010). This is primarily because the information among more than three variables (including the various modalities
and the target) become substantially more intricate.

Given the theoretical limitations in decomposing interactions beyond two modalities (Mages & Rohner, 2023; Williams &
Beer, 2010), we adopt the pairwise interaction analysis strategy, as detailed in Appendix C.4 of (Liang et al., 2023b). This
method systematically examines interactions between each pair of modalities. We applied this approach to the UCF-101
dataset (comprising Vision, frame difference (Diff), and optical flow (OF)) and the CMU-MOSEI dataset (Vision, Audio,
and Text). The quantitative results of these pairwise interactions are presented in Table 7.

For the UCF-101 dataset, the analysis in Table 7 reveals several key patterns. Vision emerges as the most informative
modality in terms of unique contributions (U1 = 2.483 when paired with OF, and U1 = 1.121 when paired with Diff). A
strong redundant relationship is observed between Vision and Diff (R = 3.474). In contrast, the OF–Diff pair exhibits
notable synergy (S = 0.239). This synergy is likely due to OF and Diff individually conveying less task-relevant unique
information (UOF = 0.003 and UDiff = 1.476 in their pair, as U1 and U2 respectively), thus benefiting from combining their
complementary aspects.

On the CMU-MOSEI dataset, Table 7 indicates that Text is the primary modality, consistently showing the highest unique
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Clean Label Noisy Label

Sample r u1 u2 s Total r̂ û1 û2 ŝ Total

#1 4.615 -0.005 0.000 0.005 4.615 -13.719 5.495 0.000 -5.582 -13.806
#2 0.048 4.567 0.000 -0.001 4.614 -1.856 -11.036 0.000 -0.581 -13.473
#3 2.466 0.000 2.148 0.001 4.615 -13.806 2.933 0.000 -2.933 -13.806

Table 8: Comparison of LSMI interaction estimation between samples with clean and noisy label.

Dataset Distribution R U1 U2 S Total

UCF ID 3.319 1.289 0.000 0.006 4.614
OOD 2.511 0.504 0.053 0.698 3.766

KS ID 2.371 0.031 0.730 0.300 3.432
OOD 1.864 0.083 0.386 0.559 2.892

Table 9: Comparison of LSMI-estimated multimodal interactions between In-Domain (ID) and Out-of-Distribution (OOD)
data across different datasets.

information (U2 = 0.163 in the Vision–Text pair, and U2 = 0.248 in the Audio–Text pair). Vision and Audio generally
exhibit lower unique contributions (e.g., UVision (V–T) = 0, UAudio (A–T) = 0). However, we observe synergistic effects in
certain modality pairs, most notably between Vision and Audio (V–A, S = 0.012), indicating that despite their relatively
weak individual contributions, these modalities can provide complementary information when effectively combined.

A.3.2. INTERACTION ESTIMATION ON DOMAIN SHIFTING

Previous experiments primarily involved datasets under stable domain conditions. A critical aspect, however, is to understand
how these interactions behave under domain shifts. We investigate this under two primary settings: (1) label noise, where
the ground-truth labels of multimodal samples are deliberately corrupted, and (2) a comparison of interactions in In-Domain
(ID) versus Out-of-Distribution (OOD) scenarios.

Introducing label noise, which directly modifies the task definition, significantly alters the measured multimodal information
dynamics, as detailed in Table 8. This alteration can even cause an inversion of the informational roles of different interaction
components. For instance, an interaction component (e.g., redundancy or unique information from a modality) that was
highly informative under clean labels might yield substantial negative information (i.e., become misleading) when labels are
noisy. This occurs because the learned associations from clean data become counterproductive for the task defined by noisy
labels, where original samples may now provide detrimental evidence.

When comparing In-Domain (ID) and Out-of-Distribution (OOD) scenarios (Table 9), OOD samples inherently provide
less directly usable information. This is because models are typically not adequately trained on such data, leading to a
diminished capacity to establish a robust mapping between the OOD inputs and the target task. Notably, we observe that
synergistic information (S) tends to be more crucial for OOD performance. This suggests that when confronted with
unfamiliar data, particularly when individual modalities alone are insufficient for the task, the model increasingly relies on
the complementary strengths derived from combining different modalities. This underscores the heightened importance of
synergy for better generalization, as the model must effectively integrate potentially weaker or less familiar signals from
individual modalities to achieve the desired outcome.

A.3.3. IMPACT OF FUSION STAGE ON LEARNED INTERACTIONS

To investigate how the fusion strategy affects learned multimodal interactions, we applied LSMI to a Hierarchical Multimodal
Transformer architecture (Xu et al., 2023) on KS dataset. The specific model variant employed in our experiments features
unimodal branches, each consisting of four Transformer layers. In such architectures, modalities are typically processed
through these separate unimodal pathways, with each modality undergoing l layers of dedicated processing before their
representations are fused. In our experiments, we systematically varied the fusion point by adjusting l, the number of these
unimodal layers preceding the first cross-modal interaction. A smaller l (e.g., l = 0, indicating fusion at the input level)
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Unimodal Layers R U1 U2 S Total

0 1.238 0.737 0.000 1.445 3.420
1 1.844 1.011 0.000 0.566 3.421
2 1.975 1.093 0.000 0.355 3.423
3 2.299 0.870 0.000 0.250 3.419
4 2.335 0.907 0.000 0.181 3.423

Table 10: LSMI-based interaction analysis in a Hierarchical Multimodal Transformer (Xu et al., 2023), varying the fusion
stage. l denotes the number of unimodal layers processed before cross-modal fusion is introduced. l = 0 represents the
earliest fusion (at input), and l = 4 represents the latest fusion (after 4 unimodal layers).

(a) r = 4.6, ut = 0, ui = 0, s = 0 (b) r = −1.5, ut = 6.1, ui = 0, s = 0 (c) r = 4.2, ut = 0.4, ui = 0, s = 0

Figure 8: Case studies on the Food-101 dataset showing different interaction patterns between visual and textual modalities.

corresponds to earlier fusion, while a larger l (e.g., l = 4, signifying fusion after all 4 unimodal layers) represents later
fusion.

The results, presented in Table 10, demonstrate a clear trend in the nature of learned interactions. While the total
information captured remains relatively consistent across different fusion stages, the composition of interaction patterns
varies significantly. Early fusion strategies (i.e., smaller l) tend to foster greater synergy. For instance, when fusion occurs at
the input (l = 0), the learned synergy (S = 1.445) is more prominent than redundancy (R = 1.238). Conversely, as the
fusion point is delayed to later stages (i.e., larger l), the model increasingly learns redundant information. With fusion after
4 unimodal layers (l = 4), redundancy (R = 2.335) significantly outweighs synergy (S = 0.181). These findings suggest
that introducing cross-modal connections early in the architecture encourages the model to identify and combine novel,
complementary information from different modalities, thereby capturing synergy. In contrast, later fusion appears to focus
more on integrating information that has already been extensively processed within each modality, leading to a higher focus
on redundant and overlapping information.

A.3.4. CASE STUDY

To validate the effectiveness of our pointwise method, we evaluate interaction metrics at the sample level by selecting several
representative samples and models. We conduct experiments on the Food-101 dataset and present a few illustrative cases in
Figure 8. As shown in Figure 8, distinct interaction patterns are observed: In Figure 8 (a), a strong redundancy is evident,
where the image and text consistently describe a sandwich. In Figure 8 (b), the image information is missing, and only
the text provides meaningful information. In Figure 8 (c), partial redundancy is observed, with the text containing richer
information than the image. These observations align with our interaction assessments, demonstrating the capability of our
method to capture nuanced multimodal interactions.
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