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Abstract

Contrastive Language-Image Pretraining (CLIP) has demonstrated strong zero-shot
performance across diverse downstream text-image tasks. Existing CLIP meth-
ods typically optimize a contrastive objective using negative samples drawn from
each minibatch. To achieve robust representation learning, these methods require
extremely large batch sizes and escalate computational demands to hundreds or
even thousands of GPUs. Prior approaches to mitigate this issue often compromise
downstream performance, prolong training duration, or face scalability challenges
with very large datasets. To overcome these limitations, we propose AMORLIP,
an efficient CLIP pretraining framework that amortizes expensive computations
involved in contrastive learning through lightweight neural networks, which sub-
stantially improves training efficiency and performance. Leveraging insights from
a spectral factorization of energy-based models, we introduce novel amortization
objectives along with practical techniques to improve training stability. Exten-
sive experiments across 38 downstream tasks demonstrate the superior zero-shot
classification and retrieval capabilities of AMORLIP, consistently outperforming
standard CLIP baselines with substantial relative improvements of up to 12.24%.

1 Introduction

Contrastive language-image pretraining methods,
such as CLIP [51, 136] and ALIGN [38]], have
emerged as powerful paradigms for learning general-
purpose vision-language representations from large-
scale image-text pairs sourced from the web. By
optimizing a contrastive objective, these approaches
effectively align representations from image and
text modalities within a shared embedding space,
thereby facilitating robust zero-shot transfer to di-
verse downstream tasks, such as image classification
and cross-modal retrieval [55] 23] 169 [14].

In practice, training CLIP models typically involves
optimizing a ranking-based Noise Contrastive Esti-
mation (NCE) objective [47, 28], 29], where negative
pairs are sampled from within each minibatch. This
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Figure 1: AMORLIP consistently delivers

performance gain over CLIP across various
tasks. The bar plot represents the absolute per-
formance improvements (%) over CLIP [51] in
ImageNet classification, retrieval, and overall
across the 38 DataComp tasks [23]].

minibatch-based negative sampling inherently requires very large batch sizes (e.g., 32K samples
or larger [36]) to ensure sufficient diversity among negatives for effective representation learning.
A limited number of negative samples can introduce noisy gradient estimates and result in slower
convergence and suboptimal downstream task performance. Consequently, CLIP-based models often
require significant computational resources, typically involving hundreds or even thousands of GPUs
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or TPUs [511 136} [71]], thus severely limiting accessibility for practitioners with constrained resources.
Moreover, the CLIP objective requires computing similarity scores between all combinations of
samples within minibatches before evaluating the loss for each sample pair. This inherent dependency
prevents parallel per-sample computations and further hinders training efficiency.

To mitigate these computational barriers, existing works have explored memory-efficient techniques
such as unimodal pretraining [72| 36], image masking and rescaling [43| 22| 163} 42]], and gradient
accumulation methods [[L1} 36} [12| [16]. Though reducing memory consumption, these methods
typically compromise downstream performance or prolong training. Alternatively, recent approaches
approximate a larger negative sample set via non-parametric estimation with offline buffers [[70, 150,
60, 164]. However, these approaches face scalability challenges, as maintaining buffers comparable to
the entire training dataset becomes increasingly impractical when training with billions of samples.

We propose AMORLIP, an efficient CLIP pretraining framework that introduces amortization to alle-
viate the need for large sets of negative samples and significantly enhance training efficiency [2} 58]].
We reformulate the CLIP training from an energy-based model perspective and derive an efficient
representation for the partition function using spectral factorization. Motivated by this formulation,
AMORLIP employs lightweight neural networks to amortize partition functions effectively. We
optimize AMORLIP via a two-stage process, alternating updates between lightweight amortiza-
tion networks and backbone encoders. Through continuous amortization over rolling minibatches,
AMORLIP progressively incorporates richer sample information across batches and enables efficient
training with minimal overhead. Additionally, we introduce and thoroughly analyze two amortization
objectives, accompanied by practical techniques to further enhance training stability and efficiency.

Extensive experiments conducted across 38 downstream tasks demonstrate the robust zero-shot
classification and retrieval performance of AMORLIP, achieving substantial relative improvements of
up to 12.24% over CLIP. As illustrated in Figure[I] these performance gains are consistent across
diverse evaluation settings. Furthermore, comprehensive ablation studies confirm the effectiveness of
the proposed representation parameterization for partition functions and validate the impact of our
training techniques.

We summarize our main contributions as follows: (1) We propose AMORLIP, an efficient CLIP
pretraining framework that amortizes costly computations from CLIP learning via lightweight neural
networks, which substantially enhances training efficiency and improves model performance. (2)
Leveraging an efficient representation derived from a spectral factorization perspective, AMORLIP
effectively approximates partition functions, thereby alleviating the large-batch requirement inherent
in CLIP training. (3) Extensive empirical evaluations demonstrate that AMORLIP consistently and
significantly outperforms existing CLIP-based methods across diverse downstream tasks.

2 Preliminaries

CLIP as energy-based learning In this section, we formulate the CLIP objective with energy-based
model (EBM) learning. Given a dataset D = { (u(Il), u(T1 )) . (ugn), ugl )) } consisting of paired
images uy) and corresponding textual descriptions ugf) , we pretrain two modality-specific encoders
¥r(+) and 7 (+) to generate representations within a shared embedding space. Let 17 (u;) € R?
and Y7 (ur) € R? denote the £o-normalized embeddings for images and texts. For notation simplicity,
we let I € {I, T} represent an arbitrary modality of either image (I) or text (T). Given modality
[, we denote the complementary modality as I’ # [. We also use u;, uy € {ur,ur} to denote the
corresponding input. Specifically, both encoders are jointly optimized using the CLIP objective

to align representations of matching pairs (ul(i), ul(,l )) while pushing apart representations of non-
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matching pairs (Uz 7“1/. ), where j # i. Generally, the CLIP model fits the conditional distributions

P(w;|uy ). We adopt an energy-based parameterization of these conditional distributions as:
P (uifuy) =P (u) exp (Twl (w) " by (up) —log Zy (ul/)> , (1
Zo (ur) = Boguy [exp (rin () v ()], W€ {1,T}, @)

where P(-) denote certain negative sampling distributions from the dataset D, and 7 is a learnable
temperature parameter commonly adopted in CLIP-like models [51} [71166]]; Z;/ (u;) is the partition



function to ensure P (u;|uy ) is a valid distribution. The ranking-based NCE objective [47} 28] 29]
employed by CLIP can be formulated as follows:

2T " G T a 1 i A\ T G
INcE = —— Zwl (ul()) Yy (ul(,>) + — Z Zlog Z exp (7'1/}1 <ul(’)) Uy (ul(,>)) . (3)
n “ n ;
i=1 le{1,T} i=1 u;j)wp(uﬁ
Existing CLIP implementations [36, |51] typically adopt in-batch negative sampling by contrasting
each positive pair against all sample combinations (ul(’), ul(,] )> within each minibatch B C D.

Notably, the NCE objective inherently requires large batch sizes to ensure a sufficiently diverse set of
negative samples, thereby facilitating effective representation learning.

f-divergence Let p and g denote two probability distributions. Given a convex function f : RT —
R satisfying f(1) = 0 and strict convexity around 1, the f-divergence between ¢ and p is defined as:

Dy (4.p) = Epwy | (45)] - o
which measures the discrepancy between the distributions ¢ and p [1]]. Many widely used divergences
fall under this framework through specific choices of f(-). For instance, the Kullback-Leibler (KL)
divergence corresponds to f(t) = tlogt, and the Jensen-Shannon (JS) divergence corresponds to

f(t) =3 (tlogt — (t+ 1)log L£1).
3 AMORLIP: Efficient Amortizations for Partition Functions

In this section, we introduce AMORLIP, an efficient contrastive language-image learning framework
that employs lightweight amortization of the partition functions. We briefly outline the proposed
framework and defer some detailed derivations and proofs of the preceding statements to Appendix [B]

3.1 AMORLIP Framework

Despite its widespread adoption, the CLIP objective in Eq. (3) presents two significant challenges:
i) Estimation bias: /xcg in Eq. (3) is estimated using only the limited number of negative samples
from each minibatch, which potentially results in biased gradients, particularly in small-batch
scenarios [111[70]. Consequently, CLIP models employing Eq. (3] require large batch sizes to achieve
good contrastive learning performance. ii) Inter-sample dependency: The nonlinear logsumexp
operation in Eq. (3)) needs computation over all negative samples prior to evaluating the loss for each
individual pair. This inherent inter-sample dependency prevents parallel computations of /ncg and
restricts computational efficiency.

To address these challenges, we reformulate the representation learning objective from an EBM
perspective. One straightforward approach is Maximum Likelihood Estimation (MLE) on P (uy/ |u;):

I = — 2TEp(y,; ;) {dn ()" (W)} + Z Ep(y,) [log Z; (w)]

1e{I1,T} 5
xp (T (ur) T Yy (uyr)
& — 27Ep(uy 0,0 {M (w) " Yy (uu)} + Z Ep(u,)p(u;) [e Z,Eopfg(rgi(zl‘(m;) ) ;
1e{1,1}

where P (u;, uyr) denotes the joint sampling distribution; stop_grad (-) stands for the stop-gradient
operation; the "<" indicates gradient equivalence between the two formulations for encoder updates.

While the MLE objective in Eq. (3) effectively models the target conditional distribution P(uy |u;),
the computation of the partition function Z; (u;) involves summation over all possible samples
u;, making MLE optimization computationally intractable. To make Eq. () practical, we aim to
construct a learnable representation g, (u;) to approximate Z; (u;) and offload its computation from
the MLE optimization. We refer to this strategy as amortization, as we amortize the estimation cost
of Z; (u;) by separately optimizing Mg, (u;) over training steps, rather than recomputing it during
each forward pass. Concretely, instead of directly optimizing Eq. (3)), we decompose the optimization
into a modular two-stage training pipeline:

Stage I (Amortization) We first optimize a designed amortization objective £ymor to train Mg, (u;)
in approximating Z; (u;), i.e., ming, £ymer (Ag, (1;)). In the following section, we explore several
design choices for the amortization loss with bias-variance trade-offs.



Stage II (Representation Learning) We substitute the optimized Ag, (u;) for Z; (u;) in (3):

amor xp (71 ( )w,( )
giALE) = —27Ep(u, uyr) ) | W (ul) Y ul/] Z Ep(y, YP(uy) l:e . lz\zzl(m)l - ) (6)

le{1,T}
During training, we alternate optimizations of Stage I and Stage II within each minibatch, with
P(uy, uy) and P(u;) set to the joint and marginal sampling from each minibatch. Since amortization
progresses concurrently with representation learning, Ag, (u;) continuously aggregates information
across rolling minibatches. This design alleviates the computational burden of repeated partition
function calculations executed at each optimization step, thereby mitigating gradient bias during
representation learning.

3.2 Amortization with Efficient Representation

To establish effective learning objectives for the amortization stage, we first develop an efficient
representation of the amortization target Z; (u;) from a kernel-based perspective. Recognizing
the substantial variance introduced by the learnable temperature scalar 7 , we further propose two
amortization objectives with the bias-variance trade-off.

Spectral representation for Z; (u;) The EBM parameterization in Eq. (I)) naturally leads to a
spectral representation of the partition function Z; (u;). Specifically, interpreting Eq. (I)) as a Gaussian
kernel and employing random Fourier features [52} [18| 73], we obtain:

Pu|wr) o< P (w) (¢ (1 (w)) , b (Y (Uw))*>p(w) , (N
where w ~ N (0,1,) are the d-dimensional random features and the corresponding transform
bu (U1 (w)) = exp (iy/Tw ¢y (w)) exp (7/2) € R? (Detailed derivation in Appendix .
Proposition 1. The partition function is linearly representable by ¢, (V) (u;)), i.e

Zy (ur) = (b (V1 (w)) s v0) (o) -

Proof. From Eq. (7), there exists a vector v; € R4 such that

Zy (w) = Ep(u,,) {(% (P (w)) s G (1 (Ul'))*>p(w)} = (w (1 (w) Eeuy) [6 (v (wr)']) ) -
O

v

Motivated by Proposition [T} we introduce lightweight multi-layer perceptrons (MLPs) denoted
as MLPy, (1;(u;)) € R, on top of each feature representation 1/, (v;) to approximate v, @, (1 (uy)).
Additionally, the amortization target Z; (u;) can exhibit substantial variance across minibatches due
to the learnable temperature scalar 7, which varies considerably during training and may increase
up to 100 [51]. To mitigate this numerical instability, we further adopt a log-space parameteriza-
tion: log Mg, (u;) = MLPy, (¢;(u;)). Specifically, log Ag, (u;) learns a scalar within a numerically
stable (float32-representable) range, and the actual estimate for Z; (u;) is subsequently recovered
via Ag, (u;) = exp (MLPy, (¢; (u;))). As demonstrated later in Sectlon the proposed small-scale
MLPs effectively approximate Z; (u;) with negligible computational overhead during training. In the
following, we discuss two design choices for the amortization objective.

Divergence objective for amortization The learnable function Ay, (u;) amortizes the effect of
the partition function Z; (u;) and defines an amortized conditional distribution analogous to Eq. (T)),

i.e., Qp, (uy|uy) = P (u;) exp (Twl (w) " Yy (ur) — log A, (ul)) We formulate an f-divergence
objective based on Eq. (@) to minimize the discrepancy between Qg, (uy |u;) and P (uy |uy):
minal éamor, f-div = IE]P’(uz,) [Df (Q (ul' ‘ul) P (ul' |ul))}
=Ep(u)p(uy) [GXP (Wz (w) " Yy (upy) — log Z, (Ul)) f (i’l({ﬁl))ﬂ :
The divergence objective introduces an unbiased estimator for f-divergence. With a proper choice
of f, this objective potentially improves numerical stability. For example, we can write the KL
divergence with f(t) = tlogt:
Lamor, ki-div = Ep(uy)P(uy) {GXP (qu)z (w) " Y (urr) —log A, (w)) <log )\Zgll(&))ﬂ : )

Alternatively, JS divergence is another suitable choice with inherent boundedness that may help
further mitigate numerical issues.

®)




Algorithm 1: AMORLIP Framework

Input: Dataset D; Initial encoders ’(/Jl( and amortization networks )\( ) forl € {I,T};

Number of epochs: T'; Number of steps per epoch: K'; Number of )\gl update per batch: TY;
Update interval for )\91 Tontine; Update interval for )\ * Tlarget-

) (1)

Maintain target networks )\((;O)7 )\él Ay,
L 1
fort=1,...,T do
Update )\(t D )\( ) and re-initialize )\é ), )\(t)

for k = 1 , K do

Sample Bk from D and get Zl(c)omb (u;) via Eq. foreachu; € By and ! € {I,T}
/* Stage I: Amortization */

if £ = 0 (mod Tyuine) then Optimize A}, via Eq. (T0) or Eq. (8) for T} iterations
if t =0 (mod Tjurer) then Update )\gj) via Eq. (TI)

/* Stage II: Representation Learning */

Optimize encoders ’(/Jl(t) via Eq. (6) for each u; € By andl € {I,T}.

12-log objective for amortization Observing that each Ag, (v;) is a unary function w.r.t. u;, we can
also directly fit Ag, (u;) by matching its log-value at each input point ;:

mitg, Camo, 2105 = $Ep(ur) | 108 Ao, (ur) — log Zi (wn)°] (10)

where Lamor, 12-10g COtresponds to the family of Lamor, f-aiv described in Eq. (8)), with the specific choice
of f(t) = 1(logt)? (see Appendixfor details).
Remark (Connection between (umor, ki-div aNd Lamor, 12-10g):  Empirically, Eq. (I0) introduces a
biased estimator for the KL divergence with potentially reduced variance compared to the Monte-
Carlo approximation £ymer, k-div in Eq. (O). This variance reduction arises because the optimization
in Eq. (I0) occurs entirely in log-space log Ay, (u;), mitigating potential numerical issues caused
by the exponential operation exp(-) presented in Eq. (9). Additionally, £ymor, 12-log €xhibits relatively
low bias, as it closely approximates the KL divergence up to second order under mild conditions
(see Appendix for details). Overall, both lanor, k-giv and Lamor, 12-10¢ €ffectively enhance numerical
stability. Thus, we adopt both formulations as design choices for amortization objectives.

3.3 Training Techniques for AMORLIP

Training stability The training procedure of AMORLIP involves stochastic approximations at two
distinct time scales, alternating optimization between the encoders 1); () and the partition function
estimator \g, (). Consequently, the optimization frequencies of these components are crucial for
stable training. To improve training stability, we introduce a target network A (+) that slowly updates

its parameters towards the online network [48] [26, 9]]. Within each training epoch, we update )\él ()
every Tiager Steps using an exponential moving average (EMA) of the online model parameters [44]:

O 0™ 4 (1 — )™, (11)
where « denotes the EMA decay factor, and k represents the current update step. We then substitute
Ag, () into Eq. (@) in place of the online network Ag, (u;). Additionally, the rapidly increasing

temperature 7 elevates the variance of Z; (u;) in the amortization objectives. Denote )\ét) () and
1

Z l(t) (+) as the target amortization network and the partition function at the ¢-th epoch, respectively.
We assume the outputs from the target network at the previous epoch, /\étfl) (+), have a magnitude
1

similar to those of the current online network )\((,f) (+). Thus, we naturally introduce the following
weighted combination to replace Z, ) (w;) in Eq. () and Eq. (T0):

2D () = BT () + (1= 827 (), (12)
where [; is initialized with a small value when 7 is low and gradually increased up to Bp as 7
grows larger. Empirically, we employ a cosine scheduling strategy similar to that in [660]: £, =

Br—0.5-Br (1 + cos Zt). The resulting weighted estimate Z () uy) is thus effectively "flattened"
T l,comb

by the target amortization predictions, thus facilitating the optlmlzation of amortization objectives.



Table 1: Performance comparison (%) across (1) top-1 accuracy of zero-shot classification tasks on
ImageNet and six distribution shifts, (2) recall@1 of retrieval tasks on Flickr30k and MS-COCO,
and (3) overall performance on all 38 DataComp tasks. The results are reported for two training
scales. Highest scores are highlighted in bold, and second-best scores are underlined. The proposed
AMORLIP consistently outperforms baseline methods across all evaluated tasks.

Tasks (—) ImageNet & Dist. Shifts Retrieval Avg. 38
Method (J) IN-1k IN-Sk IN-V2 IN-A IN-O IN-R ObjN Avg. Flickr COCO Avg. Tasks
ResNet-50 Pretrained on CC3M

CLIP [51] 16.84 10.30 13.96 3.69 21.70 20.71 11.00 14.03 25.79 13.93 19.86 21.48
SigLIP [71] 17.74 1034 1543 3.88 23.10 22.96 12.01 15.07 26.73 14.86 20.80 21.32
SogCLR [70]  19.91 11.91 17.90 4.27 26.05 25.69 13.51 17.03 27.51 16.57 22.04 21.47
FastCLIP [66]  20.58 13.03 18.09 4.15 27.10 27.22 14.04 17.74 3431 19.80 27.06 23.46
AMORLIP ;gy) 21.16 13.57 1830 4.99 27.65 28.45 14.34 18.35 35.30 19.91 27.61 24.08
AMORLIP (15100 21.50 1430 19.45 520 28.10 29.22 14.64 18.92 35.01 19.67 27.34 24.11

ViT-B/32 Pretrained on CC12M

CLIP [51] 2526 15.70 21.30 4.36 29.95 33.88 12.67 20.45 34.32 17.89 26.10 27.65
SigLIP [71] 2542 16.60 22.08 4.79 30.90 33.85 13.00 20.95 3291 17.86 25.39 2691
SogCLR [70] 27.59 18.28 23.01 4.83 30.45 35.43 14.14 21.96 33.01 17.33 25.17 26.97
FastCLIP [66]  27.74 18.33 2251 4.72 32.45 35.72 13.77 22.18 36.64 20.78 28.71 29.00
AMORLIP (y4y 29.21 19.80 24.55 5.29 34.25 39.24 15.59 23.99 37.93 22.11 30.02 29.91
AMORLIP (2.105) 29.93 20.11 24.70 5.51 34.90 39.38 15.10 24.23 38.70 21.47 30.09 30.66

Training efficiency Unlike the encoders v/; requiring optimization at each minibatch, we optimize
Ao, every Tonine encoder optimization steps. Furthermore, the proposed AMORLIP inherently
supports efficient multi-GPU training via distributed data parallelism (DDP). Conventional CLIP
models [36, [72]] require invoking all_gather(-) operations af every step when optimizing the NCE
loss in Eq. (3). In contrast, AMORLIP triggers the gathering operation only during the amortization
stage, executed merely 1/Tonine times as frequently as CLIP. During the contrastive learning stage,
AMORLIP computes the amortized partition function using lightweight MLPs independently on
each device without calling all_gather(-). Consequently, with a suitably large Toqline, AMORLIP
effectively reduces computational overhead and enhances overall training efficiency. We summarize
the proposed AMORLIP in Algorithm ]

4 Evaluation

Training setups We compare AMORLIP against widely adopted language-image baselines, includ-
ing CLIP [51]], SigLIP [71], SogCLR [70], and FastCLIP [66]. We use the OpenCLIP [36] codebase
and original implementations for these models. Following the experimental setups from [66]], we pre-
train models at two scales: a medium-scale experiment using ResNet-50 [31]] trained on Conceptual
Captions 3M (CC-3M; [57]]) with a batch size of 1024 for 30 epochs, and a large-scale experiment
using ViT-B/32 trained on Conceptual Captions 12M (CC-12M; [10]) with a batch size of 2048 for 33
epochs. Due to expired source links, our downloaded datasets contain 2,274,566 samples for CC-3M
and 8,059,642 samples for CC-12M. All experiments are conducted using NVIDIA H100 GPUs
with 80GB VRAM. Additional training details can be found in Appendix [C] Our implementation is
available at https://github.com/haotiansun14/AmorLIP.

AMORLIP implementation In AMORLIP, we implement g, using a three-layer MLP for each
modality [ € {I, T}, operating in parallel to the respective text and image encoders. Each MLP
takes the corresponding encoder’s d-dimensional feature as input and outputs a scalar representing
the amortized partition function. We control the network’s width through a dimension factor fy,
setting the intermediate layer dimension as fj - d. Specifically, we choose f; = 0.5 for the medium-
scale setting and f; = 1.0 for the large-scale setting. For amortization hyperparameters detailed
in Algorithm [I} we set T\ = 3 and Tiyeer = 2 for both training scales, while Toyjine 1S set to 8 for
medium-scale and 1 for large-scale experiments. Regarding techniques described in Section 3.3} the
EMA factor « is set to 0.999 for medium-scale and 0.92 for large-scale training. The parameter 57 is
universally fixed at 0.8.
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Figure 2: Breakdown of absolute improvement (%) made by AMORLIP over CLIP model on all 38
DataComp Tasks [23]] under large scale setting.

Evaluation metrics We evaluate AMORLIP and baseline methods using the DataComp bench-
mark [23], comprising 38 widely used text-image tasks. Specifically, we report top-1 zero-shot classi-
fication accuracy on ImageNet (IN-1K; [55]) and six of its distribution-shifted variants: ImageNet-
Sketch (IN-Sk; [65]), ImageNet-V2 (IN-V2; [53]), ImageNet-A (IN-A; [33]]), ImageNet-O (IN-O;
[33]), ImageNet-R (IN-R; [32]), and ObjectNet (ObjN; [4]). Additionally, we evaluate retrieval
performance via recall@1 on Flickr30k (Flickr; [69]) and MSCOCO (COCO; [[14]). Finally, we
report average performance across all 38 DataComp tasks (Avg.38). To assess the training efficiency
of AMORLIP, we also measure per-step training time and GPU memory (VRAM) usage.

4.1 Main Results

Table [T] presents the performance of text-image models across the 38 downstream tasks of Dat-
aComp [23]. Consistently, across different encoder architectures and dataset scales, AMORLIP
outperforms all baselines in most zero-shot classification and retrieval tasks. Specifically, AMORLIP
achieves improvements in top-1 accuracy of up to 4.67% on ImageNet zero-shot classification tasks
and up to 4.32% on its distribution-shifted variants. In retrieval tasks, AMORLIP surpasses other
methods by an average of 7.75% for the medium-scale experiments and 3.92% for the large-scale
experiments. Overall, AMORLIP exhibits substantial relative improvements over CLIP, with 12.24%
in the medium-scale setting and 10.89% in the large-scale setting. Additionally, AMORLIP using
the 12-log objective demonstrates slightly more consistent performance gains compared to the f-div
objective, while the f-div objective achieves comparable or even superior performance in retrieval
tasks. Figure [2] further illustrates that both AMORLIP objectives can achieve up to a 20% abso-
lute improvement on 30 out of the 38 evaluated tasks. These results collectively highlight that the
amortization of AMORLIP can effectively enhance multimodal representation pertaining.

4.2 Learning Efficiency 2 » o
Faster training convergence Figure [3]illustrates the evolu- 5\0;15 /

tion of model performance (reflected by classification accu- % S

racy) over training epochs. In both evaluated settings, AMOR- & cLP FastCLIP

LIP consistently achieves higher final performance than the =" / e 2”‘”3?‘“"9)
baseline models. In the medium-scale setting shown in Fig- ’ [
ure [3a] AMORLIP surpasses the best baseline performance " ramngEpash
(20.58% by FastCLIP) using only 26 epochs, and achieves

convergence around 13.3% faster than all baselines. Further (a) ResNet-50 on CC3M
training up to 30 epochs improves the accuracy to 21.50%. % e
In the large-scale setting depicted by Figure b AMORLIP & P

extends this training speed advantage significantly, reaching 5% //

comparable performance about 10 epochs earlier and equiv- % /

alently at least 30.3% faster than all baselines. The AMORLIP 520 ) gi“flp T Zanj;‘it'l';
ultimately achieves a 7.89% relative performance gain over ~ sfgCLR AmorLIPZ‘f:‘,l:?)
the best-performing baseline. Notably, the efficiency benefit

becomes more pronounced in the large-scale scenario, as the ’ " JI'?ainingzlgpoch Lo
increased number of iterations and samples better facilitates (b) VIT-B/32 on CC12M

amortization optimization. Additionally, AMORLIP initially
trails some baselines, such as SogCLR, but begins to outper-

Figure 3: ImageNet classification ac-
curacy (%) of models at two scales.



Table 2: Performance (%) and relative training overhead (%) of AMORLIP at medium-scale under
different amortization settings, evaluated on one H100 GPU. The relative overhead is depicted by
per-step training time and total VRAM usage (including encoders and amortization), relative to CLIP.

(a) Online update frequency Tnnlme (b) Dimension factors fy
To;lme IN&Shifts Retrieval Avg. 38  ATime fa  IN&Shifts Retrieval Avg. 38 AVRAM
1 18.28 2797 2333  447% 2 18.78 28.29 2397  0.60%
172 18.59 28.03 2340 4.06% 1 18.61 2838 2325 042%

1/8 18.92 28.10 2411 2.16% 0.5 18.92 28.10 2411 0.33%
1/32 18.83 2839 2425  0.23% 0.25 18.56 27.65 2409 0.26%

CLIP 14.03 19.86  21.48 844.48 ms CLIP  14.03 19.86 2148 7591 GiB

form them around 60K encoder training iterations for both scales. We hypothesize that after this point,
the encoder’s output features stabilize sufficiently, thereby enhancing amortization optimization and
enabling AMORLIP to exhibit superior performance gains. Overall, AMORLIP demonstrates faster
convergence and increased relative efficiency at larger scales.

Lightweight amortization Table[2]further quantifies the additional time and memory overhead of
AMORLIP relative to CLIP by examining critical overhead-related factors. Specifically, when the
amortization network is updated less frequently (lower onhne) and utilizes fewer parameters (smaller
dimension factor fy), the extra GPU time and memory overhead become effectively minimized
and eventually negligible (with only 0.26% higher memory usage and 0.23% additional training
time), all while consistently outperforming the baseline in downstream tasks. Interestingly, reduced
amortization network complexity or update frequency generally corresponds to improved model
performance compared to larger amortization networks. A potential explanation is that smaller
networks may mitigate overfitting during the amortization stage. Furthermore, this highlights
that AMORLIP provides an effective representation for partition functions, thus achieving robust
performance even with lightweight amortization implementations.

4.3 Ablation Studies

In the ablation studies, we evaluate the impact of several key factors associated with amortization.
Unless otherwise specified, we adopt the medium-scale setting with the 12-log objective as in Table[T]

Impact of stability techniques Figure [4] evaluates the
impact of the two stability techniques introduced in Sec-
tion[3.3] As shown in Figure[a] using a larger EMA factor
for the target model generally enhances both classification
and overall performance. A larger EMA factor smooths
updates of the target model parameters, which effectively
preserves valuable information from previous batches. Fig-
ure bl further examines the effect of different combination
weights (87) for amortization based on previous-epoch infor- (a) Target EMA factor o in Eq. (TT)
mation. A moderately high value of S, such as S = 0.8,
facilitates amortization learning and particularly improves

IN & Shifts Retrieval Avg. 38 Tasks
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retrieval performance. However, excessively large values g% e % Retie o |
(e.g., Br = 1.0) hinder effective updates from new batches 8
and negatively affect overall performance. The ablations £ 28 &
presented in Figure [4b] suggest that 57 = 0.8 provides the ¢
best balance with optimal overall performance. & . % 2

Br=0.2 Br=0.8 mmm Br=1.0

Amortization objective We compare two proposed amor-
tization objectives in Section @ As shown in Table |I| (b) Combination weight S in Eq. (T2)
and Figure [3] the 12-log objective exhibits slightly better

performance and smoother training dynamics than the f- Figure 4: Performance (%) of AMOR-

divergence objective at both scales. As discussed in Sec- LIP with Qifferer}tlvalues Of parameter
« and S in stability techniques.



tion[3.2] although the 12-log objective introduces bias, it effectively reduces variance. This indicates
that the proposed parameterization of AMORLIP can successfully amortize the target partition func-
tion even under a biased objective. Additionally, the reduction in variance contributes to improved
training performance.

Amortization target By default, the amortization ob- Table 3: Performance (%) with amortiz-
jective targets the entire partition function, incorporating ing only negative samples (Neg.) vs. the
both positive and negative samples from each minibatch. entire batch (Pos.+Neg.).
Table|3|ablates the effect of amortizing only the partition
functions computed from negative samples while using ~ Amor. Target IN&Shifts Ret. Avg. 38
positive samples dlrecFl}.f from the current batch. Results Nee. 1302 2792 2317
demonstrate that amortizing the full partition function con-

. . Pos. + Neg. 18.92  28.10 24.11
sistently leads to improved performance across all three
task groups. This outcome likely arises because positive samples typically yield higher similarity
scores and may significantly influence the magnitude of the partition function.

4.4 Empirical Guidelines for Hyperparameter Setup

Based on our empirical evaluation above, we summarize concise and practical guidelines for instanti-
ating hyperparameters:

Amortization loss: We proposed two amortization loss variants: f-divergence (unbiased) and
12-log (biased but with reduced variance). We recommend the 12-log objective when the learnable
temperature varies significantly during training (as in standard CLIP pretraining, temperature from
14.27 to 100 [51]]). In scenarios with stable temperature (e.g., fine-tuning), the unbiased f-divergence
objective may perform better.

EMA decay factor o: The EMA decay factor o determines how much past model information is
retained. Theoretically, a larger « stabilizes model training by smoothing gradient estimation noise
and effectively preserving information from previous batches. Based on the empirical results in
Figure 4al we recommend using a relatively large «, typically 0.999, which achieves the best results
in small or medium scales.

Combination weight 57: Empirically, a moderately high value of 57, such as S = 0.8, facilitates
amortization learning and particularly improves retrieval performance. However, excessively large
values (e.g., S = 1.0) may hinder effective updates from new batches and negatively affect overall
performance. Figure 4b| suggests that S = 0.8 provides the best balance with optimal overall
performance.

Update frequency 7\ : The amortization network should be updated less frequently than the

online *

encoder models (Table . Empirically, a frequency of To_nl}ne < é offers an optimal balance between

performance and computational overhead for small and medium scales.

Capacity (f;) of the amortization network: Reduced network complexity (smaller f;) mitigates
potential overfitting and minimizes memory overhead. Based on empirical results, we recommend
setting fy to 0.5 or even 0.25 to achieve the best balance between efficiency and performance.

Finally, we emphasize that AMORLIP consistently outperforms baseline methods even with subopti-
mal hyperparameter settings. The effectiveness of AMORLIP helps reduce the necessity for extensive
hyperparameter tuning.

5 Related Work

Efficient CLIP training In response to the rapid growth of data and model scales in CLIP train-
ing [39, 16l 162], several studies aim at improving training efficiency. Methods such as LiT [72],
FLIP [43]], and CLIPA [42] aim to lower computational complexity through strategies like model
freezing, token masking, or resolution rescaling. Other approaches have modified the contrastive loss,



including the decoupled softmax loss in DCL [68]], pairwise sigmoid loss in SigLIP [71]], or aggregat-
ing local losses computed on subsets of each minibatch [[11}136} 12, |16]]. However, these techniques
often compromise downstream task performance or extend training durations. Another group of
work leverages non-parametric estimation of the partition function, such as DeCL [[11], SogCLR [70],
iSogCLR [50], and NuCLR [64]. Furthermore, system-level approaches, such as modifications to
gradient implementations [59} 149, [25]] and distributed parallel training frameworks [63} 136} [151561[16],
have attempted to scale CLIP models with larger batch size or across large clusters of GPUs or TPUs.
Nevertheless, these two types of approaches generally suffer from substantial overhead either in
space (e.g., maintaining large offline buffers) or time (e.g., inter-device communication), potentially
limiting their practical scalability and efficiency.

Amortization in self-supervised learning In general self-supervised learning (SSL), many promi-
nent methods reuse or approximate computationally expensive operations, such as computing large-
scale similarity matrices or offload these tasks to auxiliary models. We refer to this overarching
strategy as amortization. One common approach involves maintaining a memory buffer to store
representations of previously encountered samples, thereby reducing per-batch computation and
alleviating large batch size requirements [12]. Such memory banks are widely employed in contrastive
and clustering-based SSL frameworks [67, [7, 3l]. For instance, the MoCo family [30\ [13], along
with other related methods [61} 8], utilizes a queue-based buffer to amortize negative representation
computations effectively. More recently, several methods [70} 50, 64] have adopted larger memory
buffers that span the entire training set, amortizing the expensive partition function computation at a
per-sample granularity. Another amortization strategy involves a momentum encoder updated slowly
via an EMA model of the online encoder parameters 30, (13, 27]. The EMA model is also central
to negative-sample-free methods such as BYOL [27]]. Additionally, recent work [37] has proposed
amortizing reconstruction tasks via meta-learning to further enhance SSL performance across multiple
modalities. Unlike most existing methods with nonparametric amortization, the proposed AMORLIP
directly learns the amortization targets by optimizing lightweight neural networks. This parametric
amortization ensures greater flexibility while free of maintaining a large memory buffer.

EBM Learning. Energy-based models (EBMs)[41] flexibly represent probability distributions
using an energy function defined over data points. Specifically, a conditional EBM takes the form:
exp(—f(z,y))

where the energy function f(x,y), typically parameterized by deep neural networks, assigns lower
energy values to more probable data points; the partition function Z(z) ensures P(y|x) to be valid
probability distributions. Training EBMs generally involves several techniques[60]], such as MLE
via MCMC sampling [34, [21]], score matching [35}46], and NCE [47, 28} 29]]. To further improve
efficiency, amortization techniques have been introduced into EBM training: SteinGAN[45]] amortizes
negative sample generation for MLE with a jointly trained sampler; ADE [17] leverages a primal-dual
perspective on MLE to learn an efficient sampling strategy for exponential family distributions; and
ALOQOE [19] introduces an amortized sampler inspired by local search to estimate gradients for EBMs
on discrete structured data efficiently. Recently, CLIP-JEM [24] introduces an image-text joint-energy
function in the CLIP representation space to enable text-to-image generation capabilities.

6 Conclusion

In this paper, we proposed AMORLIP, a novel amortization framework that effectively decouples
the estimation of partition functions from minibatch-level optimization through lightweight neural
networks. Extensive experimental results demonstrated that AMORLIP consistently outperforms
existing CLIP-like baselines across 38 diverse downstream tasks, achieving substantial relative
improvements of up to 12.24%. AMORLIP significantly enhances training efficiency and leads to
more resource-efficient contrastive language-image pretraining.
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A Limitations and Broader Impacts

A.1 Limitations and Future Work

In this work, we proposed AMORLIP, a novel amortization paradigm to enhance CLIP training
efficiency. Despite demonstrating effectiveness and efficiency, our proposed method exhibits several
limitations:

Resource constraints Due to computational resource limitations, our evaluations of AMORLIP
and baseline methods were constrained to datasets with up to ten million samples and models up to
the scale of ViT-B/32. Although experimental results at these scales consistently demonstrate the
advantages of our method, further evaluation at billion-scale datasets and larger backbone models
could better highlight AMORLIP’s scalability and efficiency. We plan to address this in our future
work.

Data privacy and licensing We pretrained and evaluated AMORLIP using publicly available
datasets in compliance with their respective licenses and intended use policies. Nevertheless, given
the extensive scale of these datasets comprising millions of text-image pairs collected from the
web, there remains a potential risk of encountering unintended or unfiltered content. This could
inadvertently lead to privacy concerns or inadvertent exposure of sensitive information.

A.2 Broader Impacts

Potential positive societal impacts The proposed AMORLIP addresses an important challenge
in contrastive language-image pretraining, i.e., the extensive computational resource requirements
that have limited accessibility and scalability. As demonstrated both theoretically and empirically,
AMORLIP significantly reduces reliance on large batch sizes through efficient amortization techniques.
Consequently, AMORLIP facilitates effective and efficient pretraining of vision-language models and
enables a wider range of individuals and organizations to develop and deploy high-quality multimodal
models across diverse downstream tasks, including cross-modal retrieval, zero-shot classification,
and text-to-image synthesis.

Potential negative societal impacts However, the proposed method may also lead to misleading
results in downstream applications. Despite achieving superior representation performance compared
to baselines, AMORLIP does not guarantee perfect accuracy or recall in downstream tasks. For
example, when deployed in text-to-image retrieval scenarios, AMORLIP could potentially return
mismatched or inappropriate images, leading to unintended consequences such as privacy leakage or
exposure to harmful content. We therefore recommend deploying AMORLIP alongside robust data
privacy protection and content moderation tools to effectively mitigate these risks.

A.3 Ethical statements

When conducting research presented in the paper, we have fully conformed with the NeurIPS Code
of Ethics. Additionally, our use of all models and datasets strictly adheres to their corresponding
licenses and usage guidelines.
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B Theoretical Derivations

B.1 Derivation of Random Features in Eq.

We begin by rewriting with the following equivalent energy-based parameterization [54, [73]]:
Since each 1) (u;) is £-normalized, we have ||¢; (u;)]|” = 1. Then, one can write:

P(up|urr) oc P (u;) exp (ng (w) " Uy (Wf))
— P (u) exp (T [ (w)]|? LT 2w (W)HZ) . <_ /T (w) — /7w (Ul/)||2>

2 2 2

_P(u) exp (_ 7o (u) = e (ur)| ) exp (7).

where exp (— VT — /T H2 / 2) is the Gaussian kernel and induces the spectral decomposition
by applying random Fourier features. Denote 8, = (/71 — /Tt1) € R? for notation simplicity.

One can write:
2
exp (_ IV7o = Vi >

2
T
o (22700

. 5 12 s 112
_ (2m)~ exp <_|| ul ) [ e (_uw | ) i
2
:(271')_%/ exp <a; +in517l/> dw
Rd

=Eun(o,1,) [exp (iw ' 0,)]

P
=Euno.1,) [exp (ivTw ) exp (—ivTw yr)],
which leads to Eq. (7).

B.2 Derivation of Divergence Objective in Eq. (8)

With the definition of Dy (-, -) in Section[2} one can write:

Eamor, f-div
=Ep(u,) [Df (Q (wr[wr) , P (wrrur))]

Ep /]P’ - exp (71/21 ()" Wy (uw)) s exp <71/11 (u) T (ul/)> /Ao, ()

dp(uy)
Zy (uy) exp (Ti/}z (w) " Yy (Ul/)) /21 (w) o
exp (Twl (ul)T Py (Ul/)) Zy (uy)
:]EP(uz)lP’(uzf) Z; (w) f ()\01 (w))

where p is a base measure for u;/.
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B.3 Connection between (amor, f-aiv and Lamor, 12-10g

We show that Eq. (T0) can be included into the family of f-divergence in Eq. (8) with f(¢) =
5 (logt)*:

Ep(u,)p(uy) [eXp (71/)1 (w)" Yy (w) —log Z; (ul)) f ( Zy (w) ﬂ

Ao, (ur)
" Ep(u,) {exp (ﬂ/}z ()" (ul'))] o (21
g Bw) Zy (w) HO (/\91 (w) )H

1
:iEP(ul) [Hlog Ao, (ur) —log Z; (UZ)HZ} ,

which recovers Eq. (T0).

B.4 Connection between (amor, ki-aiv and Lamor, 12-log

We demonstrate that £umor, 12-10g closely approximates the KL divergence up to second order within the
general f-divergence framework. For simplicity of notation, we denote Py () as the fixed probability
distribution and Qg () as the distribution parameterized by 6. We assume Qyg, closely approximates
Py at 0 = 6y, i.e., Py = Qp,. Additionally, we define the score function sg(x) and the Fisher
information matrix Gy for Qy, as:

so(z) = Vglogge(x), Go=E, [se(m)s(;(x)T] .
Considering D ;(Qq, Py) as a scalar function of 6 that is at least twice continuously differentiable in
a neighborhood around the point 6y, we apply the second-order Taylor expansion to obtain:
1
Dy (6) = Dy(8) + (0 = 00) "V Dy(80) + 5 (0 = 00) " [ViDs(60)] (6 — bo) + O(ll)*)- (13)

Here, the first term vanishes since Df(6y) = f (%%) = f(1) = 0. Then, we show that the first-order

gradient in Eq. (T3) is also zero at 6. Specifically, one can write:

VoeDs(Qg,Po) = Ve/po(ﬂ?)f (qgggg;) dp(z)
0

(
(5

Evaluating Eq.(T4) at 6, yields:
VoDy(6o) = f' (1) - Eq, [s0(2)]

PR GG
=1 @) [ ao) 2

-9 ([ w@ant) <o

Similarly, we derive the Hessian matrix in Eq. (I3):

V2D, (Qo, Po) = /[f (M ;) ()< 00(2) s0(2)) (g0(a) sa(2))"

7 (20 (o) (sfa)solo)” +V989(x))]du(56) as

//q qo T
= ) ogps) + s9sy + Vs
[ (p)p oo f<po)(“ 0s)
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Evaluating Eq. (T3) at 6y yields:
VZDf(QO) — f”(l)qug [Soosgo} + f/(l) (]qu0 [Sgosg—o] +quo {V@Sglgo})
= f"(1)Go, + ['(1) (Go, — Go,) = f"(1)Ga,,
where quo {V939| 90} = —Gy, due to Bartlett’s second identity [5]]. Therefore, for any variant
within the f-divergence family, Eq. (13) simplifies to:

Dy(0) = %f”(l)((? —60) T Go, (6 — 60) + O(|16]°). (16)

For fuaiv(t) = tlogt and fie(t) = %(log t)2, it is straightforward to verify that £/ ; (1) =
fl’z’_log(l) = 1. Thus, the 12-log estimator closely approximates the KL divergence up to second order.

C Detailed Experimental Setup

For training the encoders, we employ the AdamW optimizer [40] with a learning rate of 1 x 1073
for the medium-scale setting and 4 x 10~* for the large-scale setting. For updating the amortization
network, we use the Adam optimizer [40] universally set at a learning rate of 1 x 1072, Following
the temperature scaling technique proposed in [66], we rescale the contrastive loss and adopt an
additional regularizer p, i.e., /NCE, rescaled = ¢NcE/Stop_grad(7) + p/7. Consistent with [66], we
set p = 6.5 for the medium-scale setting and p = 8.5 for the large-scale setting. Additionally, we
introduce temperature annealing to further improve learning efficiency. Specifically, we reset p
to —8.0 during the last quarter of epochs in the medium-scale setting and to —8.5 during the last
third of epochs in the large-scale setting. For AMORLIP ¢_giy, we add 12-log loss as regularizer with
coefficient of 0.1 and sweep between two divergence formulations {kl, js} and report the best results
in Table[Tl
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Figure 5: Breakdown of absolute improvement (%) made by AMORLIP over CLIP model on all 38
DataComp Tasks [23]] under medium scale setting.

D More DataComp Results Breakdown

Figure[5]showcases the absolute improvement delivered by AMORLIP over CLIP across all Datacomp
tasks in the medium setting.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: To comprehensively demonstrate the effectiveness and efficiency of the pro-
posed AMORLIP, we provide detailed theoretical derivations (Sections [3.1] [3.2] 3.3} Ap-
pendix [B) alongside extensive empirical validations (Section [} Appendices|C|and D).

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Appendix [A] we discuss the limitations of this work, including the method-
ological scope, potential societal impacts, and computational efficiency considerations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide detailed proofs and clearly stated assumptions in Appendix [B]to
support the theoretical claims presented in the main text rigorously.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detail the proposed algorithm in Section |3| and provide comprehensive
disclosures of hyperparameter settings, training configurations, evaluation metrics, and an
in-depth analysis of experimental results in Section ] and Appendix [C]

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We open-sourced our codebase with the paper. In the meantime, we have
provided a detailed description of the proposed algorithm in Section [3] We have also
described hyperparameter settings, training configurations, evaluation metrics, and an in-
depth analysis of experimental results in Sectiond]and Appendix [C]

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided a detailed description of the experimental settings, such
as hyperparameter settings, training configurations, evaluation metrics, and an in-depth
analysis of experimental results in Section ] and Appendix[C]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Though error bars are not explicitly reported in our evaluations, we have
assessed our method across multiple training scales, diverse evaluation metrics, and a
broad range of downstream tasks in Section 4] to reduce the variability in supporting the
effectiveness and efficiency of the proposed method.
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8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We detail the compute resources in Section @ and Appendix [C]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

 The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper fully conforms with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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11.

12.

Answer: [Yes]

Justification: We have discussed both potential positive societal impacts and negative societal
impacts in Appendix [A]

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The algorithm described in this paper primarily targets text-image represen-
tation learning and thus does not inherently bear significant risks of misuse. Nonetheless,
we acknowledge potential indirect societal impacts related to large-scale vision-language
models in Appendix

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All models and datasets employed in this paper, including ResNet [31]],
ViT [20], and the Conceptual Captions datasets [57, [10], are publicly accessible and utilized
in full compliance with their respective licenses.
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13.

14.

15.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper primarily contributes a methodology enhancement in text-image
representation learning and does not rely on the release of any specific new assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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