
Under review as a conference paper at ICLR 2024

UNIFIED MIRROR DESCENT:
TOWARDS A BIG UNIFICATION OF DECISION MAKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Decision-making problems, encompassing single-agent, cooperative multi-agent,
competitive multi-agent, and mixed cooperative-competitive cases, are ubiquitous
in real-world applications. In the past several decades, substantial strides in theo-
retical and algorithmic advancements have been achieved within these fields. Nev-
ertheless, these fields have been predominantly evolving independently, giving
rise to a fundamental question: Can we develop a single algorithm to effectively
tackle all these scenarios? In this work, we embark upon an exploration of this
question by introducing a unified approach to address all types of decision-making
scenarios. First, we propose a unified mirror descent (UMD) algorithm which
synergistically integrates multiple base policy update rules. Specifically, at each
iteration, the new policy of an agent is computed by weighting the base policies
obtained through different policy update rules. One of the advantages of UMD is
that only minimal modifications are required when integrating new policy update
rules. Second, as the evaluation metric of the resulting policy is non-differentiable
with respect to the weights of the base policies, we propose a simple yet effective
zero-order method to optimize these weights. Finally, we conduct extensive ex-
periments on 24 benchmark environments, which shows that in over 87% (21/24)
games UMD performs better than or on-par with the base policies, demonstrating
its potential to serve as a unified approach for various decision-making problems.
To our knowledge, this is the first attempt to comprehensively study all types of
decision-making problems under a single algorithmic framework.

1 INTRODUCTION

Decision-making problems spanning from single-agent to multi-agent settings are ubiquitous in our
daily life (Rizk et al., 2018). In single-agent contexts, reinforcement learning (RL) has proved effec-
tive in real-world applications ranging from robotic navigation (Singh et al., 2022) to plasma control
in nuclear fusion research (Degrave et al., 2022), and substantial progress on theoretical underpin-
nings of policy optimization has been made in recent works (Mei et al., 2020; Zhan et al., 2023; Gaur
et al., 2023). Moving beyond single-agent RL, the challenge inherently becomes more intricate, and
various methods have been tailored to effectively tackle different multi-agent problems, especially
for multi-agent cooperative RL (Lowe et al., 2017; Foerster et al., 2018; Rashid et al., 2018; Son
et al., 2019; Wang et al., 2021) and zero-sum games (Bailey & Piliouras, 2018; Kangarshahi et al.,
2018; Wibisono et al., 2022; Kozuno et al., 2021; Lee et al., 2021; Jain et al., 2022; Ao et al., 2023;
Liu et al., 2023; Cen et al., 2023; Sokota et al., 2023). Nevertheless, these fields have been predom-
inantly evolving independently. Furthermore, it remains elusive and unexplored when venturing to
more complicated general-sum cases (Song et al., 2022) where the sum of agents’ payoffs is non-
zero and mixed cooperative-competitive cases (Xu et al., 2023) where agents in the same team need
to cooperate with each other. This motivates us to answer a fundamental question:

Can we leverage a single reinforcement learning algorithm with minimal mod-
ifications to handle the decision-making of single-agent, cooperative multi-agent,
competitive multi-agent, and mixed cooperative-competitive cases?

As one of the most popular algorithms, mirror descent (MD) (Vural et al., 2022) has demonstrated
its power in RL (Tomar et al., 2022) and game theory (Cen et al., 2023; Sokota et al., 2023). With

1

Under review as a conference paper at ICLR 2024

Kuhn_A
Kuhn_B

Leduc_A
Leduc_B

0.91
0.93

0.96

1.001.00

1.03
Single-Agent

Kuhn
Leduc

Goofspiel

Liars_Dice Hex

Dark_Hex
Blotto

Quoridor
0.91
0.93

0.96

1.001.00

1.03
Comp. Zero-Sum

Bargaining
Auction

Oh_Hell

Trade_Comm
0.997

1.0001.000

1.003

1.006

1.009
Comp. General-Sum

Tiny_Hanabi_A

Tiny_Hanabi_B

Tiny_Hanabi_C

Tiny_Hanabi_D
0.999

1.0001.000

1.002

1.003
Coop.

UMD (RS) vs KL UMD (RS) vs EU UMD (RS) vs ME UMD (RS) vs ML

MCC_Kuhn_A

MCC_Kuhn_B

MCC_Goofspiel_A

MCC_Goofspiel_B
0.997

1.0001.000

1.003

1.006

1.009
Mixed Coop.-Comp.

Figure 1: The Y-axis is the normalized improvement of UMD (RS) versus baselines: > 1 means
UMD (RS) outperforms the baselines, = 1 means UMD (RS) matches the baselines, and < 1 means
UMD (RS) lags behind the baselines. (i) In over 87% (21/24) games UMD (RS) outperforms or
matches the baselines. (ii) The numbers of games in which UMD (RS) significantly outperforms the
baselines are: 4 (KL), 11 (EU), 7 (ME), and 7 (ML). (iii) For the four baselines, none of them can
consistently outperform all the others across all types of decision-making problems.

different mirror maps such as the negative entropy and Euclidean norm, various policy update rules
have been induced in the literature. Despite their success in either theoretical convergence guarantee
or strong empirical performance, they are typically limited to single-agent RL (Tomar et al., 2022;
Zhan et al., 2023; Gaur et al., 2023) and zero-sum games (Bailey & Piliouras, 2018; Kangarshahi
et al., 2018; Wibisono et al., 2022; Kozuno et al., 2021; Lee et al., 2021; Jain et al., 2022; Ao et al.,
2023; Liu et al., 2023; Cen et al., 2023; Sokota et al., 2023). For general-sum (Bai et al., 2021;
Song et al., 2022) and mixed cooperative-competitive settings (Kurach et al., 2020; Xu et al., 2023),
the most straightforward idea is to directly apply contemporary MD methods to solve these more
complicated scenarios. However, there is no affirmative answer to the question of which one can con-
sistently outperform all the others when applying these MD methods to different decision-making
problems. Even under the tabular setting, a comprehensive empirical study of the performance of
contemporary MD methods in various types of decision-making problems is lacking.

In this work, we aim to develop a single reinforcement learning algorithm which will be individually
adopted by each agent (i.e., decentralized execution) while still effectively handling different types
of decision-making problems. As this is the first attempt, we focus on the tabular setting, which,
though has been often studied in single-agent and zero-sum games, yet unexplored for more com-
plicated general-sum and mixed cooperative-competitive settings. Our contributions are threefold.

• We propose a unified mirror descent (UMD) algorithm by synergistically integrating mul-
tiple policy update rules induced by different mirror maps (e.g., negative entropy and Eu-
clidean norm). More specifically, at each iteration, the new policy of an agent is computed
by weighting the base policies derived from the policy update rules. UMD is easy to extend
to integrate new policy update rules with only minimal modifications required.

• Optimizing the weights assigned to different base policies, unfortunately, is non-trivial as
the evaluation metric of the resulting policy (e.g., the return in single-agent settings) is non-
differentiable with respect to these weights. To address this issue, we propose a simple yet
effective zero-order hyperparameter optimization (HPO) method to optimize these weights.
Different from existing zero-order HPO methods, the performance improvement is used to
only determine the update direction of the weights rather than the update magnitude, which
is more effective when the evaluation metric converges relatively fast.

2

Under review as a conference paper at ICLR 2024

• We conduct extensive experiments on 24 benchmark games which are divided into 5 types
(Figure 1): single-agent, competitive zero-sum, competitive general-sum, cooperative, and
mixed cooperative-competitive. Experimental results show that in over 87% (21/24) games
UMD performs better than or on-par with all the base policies, demonstrating its potential
to serve as a unified approach for a wide range of decision-making problems. Moreover, to
our knowledge, our experiments also provide the first comprehensive empirical study of all
types of (tabular) decision-making problems under a single algorithmic framework.

2 RELATED WORK

Mirror descent (MD) (Vural et al., 2022) has demonstrated effectiveness in learning optimal poli-
cies in single-agent RL (Tomar et al., 2022) and proved the last-iterate convergence in learning
approximate equilibrium in zero-sum games (Bailey & Piliouras, 2018; Kangarshahi et al., 2018;
Wibisono et al., 2022; Kozuno et al., 2021; Lee et al., 2021; Jain et al., 2022; Ao et al., 2023; Liu
et al., 2023; Cen et al., 2023; Sokota et al., 2023). Moving beyond zero-sum games, the last-iterate
convergence of MD was established for several classes of games such as polymatrix and potential
games (Anagnostides et al., 2022). In this work, instead of theoretically comparing the policy update
rules induced by different mirror maps which could be difficult, particularly for general-sum (Bai
et al., 2021; Song et al., 2022) and mixed cooperative-competitive cases (Kurach et al., 2020; Xu
et al., 2023), we propose a unified mirror descent (UMD) algorithm which generalizes multiple
policy update rules. UMD is easy to extend to integrate new policy update rules with minimal modi-
fications required. Moreover, our experiments also provide the first comprehensive study of all types
of (tabular) decision-making problems under a single algorithmic framework.

Our work is also related to zero-order hyperparameter optimization (HPO) which can update the
parameters of interest without access to the true gradient, which has been extensively adopted in ad-
versarial robustness of deep neural networks (Ilyas et al., 2018), meta-learning (Song et al., 2020),
and transfer learning (Tsai et al., 2020). The most related work is (Wang et al., 2022), which applied
zero-order optimization methods to neural architecture search (NSA) and established the connec-
tion between gradient-based NAS and zero-order methods. In this work, we propose a simple yet
effective zero-order HPO method in which the performance improvement is used to only determine
the update direction of the weights rather than the update magnitude, which is more effective than
existing methods in (Wang et al., 2022) when the evaluation metric converges relatively fast.

3 PROBLEM STATEMENT

A decision-making problem, either single-agent, cooperative multi-agent, competitive multi-agent,
or mixed cooperative-competitive settings, can be described as a decentralized partially observ-
able Markov decision process (Dec-POMDP) (Oliehoek & Amato, 2016) formulated as a tuple
⟨N ,S,A,O,Ω, P,R, γ⟩. N is the set of agents. S is the (finite) set of the states. A = ×i∈NAi

and O = ×i∈NOi where Ai and Oi are the (finite) set of actions and observations of agent i, re-
spectively. We denote a ∈ A as the joint action of agents where ai ∈ Ai is the action of agent i.
Ω = ×i∈NΩi where Ωi : S × A → Oi is the observation function, which specifies the observation
oi ∈ Oi of agent i when agents take a ∈ A at the state s ∈ S . P : S × A × S → [0, 1] is the tran-
sition function which specifies the probability of transiting to s′ ∈ S when agents take a ∈ A at the
state s ∈ S. R = {ri}i∈N where ri : S ×A → R is the reward function of agent i and γ ∈ [0, 1) is
the discount factor. At time step t ≥ 0, each agent has an action-observation history (i.e., a decision
point) τ ti ∈ Ti where Ti = (Oi × Ai)

t and constructs its individual policy πi : Ti × Ai → [0, 1]
to maximize its own return. The joint policy of agents is denoted as π = (πi)i∈N . Then, the value
function of agent i is defined as Vi(π) = E[

∑∞
t=0 γ

trti |s0,π] where rti is the agent i’s reward at
time step t and s0 is the initial state. Moreover, at decision point τ ti , the action-value function of an
action a ∈ Ai is defined as Q(τ ti , a,π) = E[

∑∞
h=t+1 γ

hrhi |τ ti , ati = a,π].

We first introduce the solution concepts used in this work. A policy πi of agent i is said to be opti-
mal1 if it is optimal in every decision point belonging to the agent. In single-agent and cooperative
settings, this optimal policy achieves the maximum return for the agent/team. In (multi-agent) com-
petitive and mixed cooperative-competitive settings, we use Nash equilibrium (NE) as the solution

1Precisely, it is soft optimal (Sokota et al., 2023). We omit the prefix soft for brevity.

3

Under review as a conference paper at ICLR 2024

concept. A joint policy is an NE if each agent’s policy is optimal, given that other agents do not
change their policies. Formally, let π∗ = (π∗

i)i∈N be the NE. Then, agent i’s policy satisfies:

π∗
i (τ

t
i) = argmaxπi∈Πi

Ea∼πi(τt
i)
Q(τ ti , a, {πi,π

∗
−i}) + ϵH(πi), ∀τ ti , (1)

where Πi = ∆(Ai) is agent i’s policy space and ∆(·) is the action simplex, π∗
−i denote the joint

policy of all agents except agent i, ϵ is the regularization temperature, andH is Shannon entropy.

In single-agent and cooperative settings, the evaluation metric for a policy/joint policy is the ex-
pected return of the agent/team. In other cases, the evaluation metric for a joint policy is the distance
of the policy to the NE, called the NE-Gap. Formally, the NE-Gap of the joint policy π is defined as
NE-Gap(π) =

∑
i∈N [Vi(π

BR
i ,π−i)−Vi(π)] where πBR

i is the best response (BR) policy of agent i
against other agents. Note that in mixed cooperative-competitive cases, the BR policy should be the
team’s BR policy (see Appendix C.2 for more details on the evaluation protocol).

Many methods have been developed to solve the problem (1) for single-agent (Tomar et al., 2022)
and multi-agent settings (Sokota et al., 2023). However, for multi-agent settings, most of the existing
works typically focus on two-player zero-sum games, while little has been known for more compli-
cated cases including general-sum and mixed cooperative-competitive settings. Nevertheless, notice
that Eq. (1) provides a unified description for all the decision-making scenarios as it presents the
optimality condition from a single agent’s perspective. This motivates us to develop a unified policy
update rule, which, when individually adopted by each agent, offers an efficient method to solve the
problem (1), i.e., achieving optimal expected return in single-agent and cooperative settings while
finding approximate NE in competitive and mixed cooperative-competitive cases.

4 UNIFIED MIRROR DESCENT

As we aim to develop a unified policy update rule that will be individually adopted by each agent in
each decision point, we only focus on the policy learning of agent i in a single decision point τi ∈ Ti
and henceforth, the index i and τi are ignored as they are clear from the context, and with a slight
abuse of notation, we useA to represent the action setAi of agent i. Let π ∈ Π be the agent’s policy
and Q(a) be the action-value of an action a ∈ A. Note that the joint policy of other agents π−i is
also omitted in the action-value function. Then, we aim to solve the following problem:

π∗ = argmaxπ∈Π Ea∼πQ(a) + ϵH(π). (2)

In single-agent and two-player zero-sum (i.e., purely competitive) settings, the most commonly used
method to solve the problem (2) is mirror descent. Formally, the update rule takes the form

πk+1 = argmaxπ∈Π Ea∼πQk(a)− f(π, πk), (3)

where k ≤ K is the iteration, Qk is the action-value function induced by πk, f is called the regu-
larizer. As each choice of f induces a specific policy update rule, in Section 4.1, we present four
candidates and then propose a new update rule by integrating them with minimal modifications.

4.1 A UNIFIED POLICY UPDATE RULE

Let f(π, πk) = ϵBϕ(π, ρ) + 1
ηBϕ(π, πk). Then, we have

πk+1 = argmaxπ∈Π Ea∼πQk(a)− ϵBϕ(π, ρ)−
1

η
Bϕ(π, πk), (4)

where Bϕ denotes the Bregman divergence with respect to the mirror map ϕ, which is defined as
Bϕ(x; y) = ϕ(x) − ϕ(y) − ⟨∇ϕ(y), x − y⟩ with ⟨·⟩ being the standard inner product, ϵ > 0 is the
regularization temperature, ρ is the magnet policy (Sokota et al., 2023), and η > 0 is the stepsize
(i.e., learning rate). When the mirror map ϕ is taken to be the negative entropy ϕ(x) =

∑
j xj lnxj ,

the Bregman divergence is the well-known KL divergence, and hence, we have

πk+1 = argmaxπ∈Π Ea∼πQk(a)− ϵKL(π, ρ)− 1

η
KL(π, πk). (5)

It is easy to get that Eq. (5) possesses the closed-form solution in settings with discrete actions and
unconstrained domains as follows: ∀a ∈ A,

πKL
k+1(a) ∝

[
πk(a)ρ(a)

ϵηeηQk(a)
] 1

1+ϵη . (6)

4

Under review as a conference paper at ICLR 2024

We use superscript “KL” to indicate that Eq. 6 is induced with the KL divergence. The magnet
policy ρ is updated through ρk+1(a) ∝ ρk(a)

1−η̂πk+1(a)
η̂ . When ϕ(x) = 1

2∥x∥
2
2, the Bregman

divergence is the Euclidean distance. Then, we have

πk+1 = argmaxπ∈Π Ea∼πQk(a)−
ϵ

2
∥π − ρ∥22 −

1

2η
∥π − πk∥22. (7)

Similarly, we can derive the closed-form solution to Eq. (7) as follows (see Appendix B for details
on the derivation): ∀a ∈ A,

πEU
k+1(a) =

ϵρ(a) + 1
ηπk(a) +Qk(a)− 1

|A|
∑

a′∈A Qk(a
′)

(ϵ+ 1
η)

. (8)

We use superscript “EU” to indicate that Eq. 8 is induced with the Euclidean distance. In addition,
following (Bailey & Piliouras, 2018), we can consider the following optimization problem in each
decision point:

πk+1 = argmaxπ∈Π η
∑k

h=0
rh(π)− ϕ(π), (9)

where rh(π) is the (expected) reward of the agent taking π. Notice that the reward is determined by
the environment in single-agent settings while depends on both the environment and other agents’
policies in multi-agent settings. More precisely, in multi-agent settings, rh(π) = rh(π,π

−i
h). Then,

we have another two base policy update rules, Exponential Multiplicative Weight Update (MWUe,
ME for short) and Linear Multiplicative Weight Update (MWUl, ML for short), as follows: ∀a ∈ A,

πME
k+1(a) =

πk(a)e
ηvk(a)∑

a′∈A πk(a′)eηvk(a
′)
, πML

k+1(a) =
πk(a)(1 + (eη − 1)vk(a))∑

a′∈A πk(a′)(1 + (eη − 1)vk(a′))
, (10)

where vk(a) denotes the reward obtained by changing the policy πk to a single action a ∈ A.

With the above introduced four choices, we are ready to present a new policy update rule by integrat-
ing these base policies. To this end, we introduce a weight vector denoted by α = (α1, α2, α3, α4)

with
∑4

j=1 αj = 1 and αj ≥ 0, 1 ≤ j ≤ 4. Then, the new policy of the agent is computed by
weighting the four base policies using α: ∀a ∈ A,

πk+1(a) = α1π
KL
k+1(a) + α2π

EU
k+1(a) + α3π

ME
k+1(a) + α4π

ML
k+1(a). (11)

We call Eq. (11) the unified mirror descent (UMD), and the pseudo-code is shown in Algorithm 1.

The intuition behind UMD is twofold. First, although the four base policy update rules have been
widely employed to solve different decision-making problems, there is no affirmative answer to the
question of which one can consistently outperform all the others in terms of learning performance
across all types of decision-making problems. Most of the existing theoretical results are typically
limited to single-agent (Tomar et al., 2022) or two-player zero-sum games (Liu et al., 2023), and
only restricted classes of games such as polymatrix and potential games have been considered while
going beyond zero-sum games (Anagnostides et al., 2022). Instead of theoretically comparing these
base schemes which could be difficult (if not impossible), particularly for general-sum (Song et al.,
2022) and mixed cooperative-competitive settings (Xu et al., 2023), we propose a unified approach,
UMD, that generalizes the base policy update rules. Intuitively, as UMD could inherit the properties
of these algorithms, it could surpass or match these base methods in terms of learning performance.
Second, UMD can be reduced to any of these base policy update rules by adjusting their weights. For
example, when α1 = 1, UMD is reduced to MMD, the state-of-the-art method which unifies single-
agent RL and two-player zero-sum games. In this situation, UMD could inherit the convergence
guarantee of MMD in some cases such as two-player zero-sum games (Sokota et al., 2023).

4.2 ZERO-ORDER HYPERPARAMETER OPTIMIZATION

The key to UMD is to optimize α, which unfortunately, is a non-trivial task as the evaluation metric,
denoted by L(α) (the expected return or NE-Gap), is non-differentiable with respect to α. To
address this issue, we propose two zero-order methods to optimize α. We adopt two representative
techniques: random search follows the traditional gradient estimation algorithms (Liu et al., 2020)
while GradientLess Descent (Golovin et al., 2020) uses direct search.

5

Under review as a conference paper at ICLR 2024

Random Search (RS). When updating the hyperparameter α, we first sample M candidates {ui}Mi
from a spherically symmetric distribution ui ∼ q. Then, we compute the update as follows:

u∗ = −
∑M

i=1
Sgn

[
L(Proj(α+ µui))− L(Proj(α− µui))

]
ui, (12)

where Sgn(z) is defined as: Sgn(z) = 1 if z > 0, Sgn(z) = −1 if z < 0, otherwise, Sgn(z) = 0. µ
is the smoothing parameter determining the radius of the sphere. Proj(·) is the projection operation to
ensure that α is well-defined. Finally, α is updated as α ← Proj(α+ u∗). Note that the operation
Sgn(·) plays an important role and differentiates it from vanilla RS without this operation (Wang
et al., 2022). Intuitively, in the games where the performance L converges quickly, the magnitude of
L(Proj(α+µui))−L(Proj(α−µui)) would be too small to derive an effective update. In contrast,
by using the operation Sgn(·), the difference between the performance of α + µui and α − µui

only determines the update direction, not the update magnitude.

GradientLess Descent (GLD). Similar to RS, when updating the hyperparameter α, we first sample
M candidates {ui}Mi . However, instead of sampling from a fixed radius (µ in RS), we independently
sample the candidates on spheres with various radiuses uniformly sampled from the interval [r,R].
Then, we follow a similar rule to compute the update as follows:

u∗ = −
∑M

i=1
Sgn

[
L(Proj(α+ ui))− L(α)

]
ui. (13)

Finally, we have α← Proj(α+ u∗). In contrast, in vanilla GLD (Wang et al., 2022), α is updated
according to the comparison between L(α) and L(Proj(α + ui)): α steps to the one with the best
performance, or stays unchanged if none of them makes an improvement.

In addition, considering the trade-off between the learning performance and learning speed, instead
of updating α at each iteration, we update it every κ ≥ 1 iteration (a two-timescale manner).

Algorithm 1: Unified Mirror Descent (UMD)
1 Initialization: π1(a) = 1/|A|, ∀a ∈ A, α = (0.25, 0.25, 0.25, 0.25);
2 for iteration k = 1, 2, · · · ,K − 1 do
3 Compute πKL

k+1, πEU
k+1, πME

k+1, and πML
k+1 through Eq. (6), (8), and (10), respectively;

4 if k%κ = 0 then
5 Sample candidates {u}Mi=1, get u∗ through RS in Eq. (12) or GLD in Eq. (13);
6 Update the parameters α← Proj(α+ u∗);
7 end
8 end
9 Return: πK(a) = α1π

KL
K (a) + α2π

EU
K (a) + α3π

ME
K (a) + α4π

ML
K (a), ∀a ∈ A

5 EXPERIMENTS

In this section, we investigate our framework on a set of benchmark environments. We first present
the experimental setups, and then the results and analysis to provide insights into our framework.

5.1 EXPERIMENTAL SETUPS

We consider 24 games which are divided into 5 types: single-agent, cooperative, competitive zero-
sum, competitive general-sum, and mixed cooperative-competitive (MCC, for short). We construct
the single-agent and MCC environments by modifying some zero-sum games. All the games are im-
plemented in OpenSpiel (Lanctot et al., 2019). For single-agent and cooperative environments, we
use the return to measure the quality of the policy/joint policy. For other cases, we use NE-Gap as the
measure. In addition, to provide a clear overview of the results (Figure 1), we compute the normal-
ized improvement of UMD versus baselines (take KL as an example): V (πUMD)/V (πKL) for single-
agent and cooperative environments, (NE-Gap(πRandom) − NE-Gap(πUMD))/(NE-Gap(πRandom) −
NE-Gap(πKL)) for other environments. All methods we compare are UMD (RS), UMD (GLD), and
the four base policies: KL, EU, ME, and ML. For single-agent cases, we also include Q-learning as a
baseline. All experiments are performed on a machine with a 24-core Intel(R) Core(TM) i9-12900K
and NVIDIA RTX A4000, and the results are obtained with 3 random seeds. The full experimental
details on the games, evaluation protocol, and hyperparameters can be found in Appendix C.

6

Under review as a conference paper at ICLR 2024

5.2 RESULTS AND ANALYSIS

Figure 1 presents the normalized improvement of UMD (here, we refer to UMD (RS)) versus base-
lines (the results for UMD (GLD) can be found in Appendix D.1). Several conclusions can be drawn
from the results. (i) In over 87% (21/24) games UMD performs better than or on-par with baselines,
demonstrating its effectiveness in solving various types of decision-making problems. (ii) In zero-
sum games, UMD matches KL in all the games except Leduc. From the results, we hypothesize that
UMD inherits the convergence guarantee of KL in two-player zero-sum games (Sokota et al., 2023).
(iii) For some games beyond zero-sum settings, UMD can outperform the baselines. For example,
in Auction, Tiny_Hanabi_B, MCC_Kuhn_A, and MCC_Kuhn_B, UMD significantly outperforms
KL, which has not been observed in previous works. (iv) For the four baselines, none of them can
consistently outperform all the others across different types of games, which supports the motivation
of this work. For example, in Leduc, KL outperforms EU (KL > UMD > EU), while EU performs
better than KL (EU > UMD > KL) in MCC_Kuhn_B.

We present the learning curves of different methods in different types of games in Figure 2 to Fig-
ure 6 (the quantitative results are given in Appendix D.1). (i) In single-agent cases (Figure 2), all the
methods are comparable and outperform the vanilla Q-learning algorithm, showing that they can ef-
fectively solve single-agent problems. (ii) In cooperative settings (Figure 3), all the methods except
EU and UMD (GLD) in Tiny_Hanabi_A can converge to the optimal value of the game, showing that
they are effective in solving cooperative games. Surprisingly, in game B, C, and D, KL converges
slower than other methods. (iii) In competitive zero-sum games (Figure 4), KL outperforms other
methods in Kuhn and Leduc. For all the other games, UMD (RS) and KL can consistently converge
to the approximate NE (low NE-Gap), while other methods can struggle or even diverge in some of
the games. Typically, UMD (RS) performs better than UMD (GLD). In addition, although KL is the
state-of-the-art method in (two-player) zero-sum games, it converges slower than UMD and other
methods in some of the games. (iv) In competitive general-sum games (Figure 5), a surprising
observation is that both UMD (RS) and UMD (GLD) can consistently converge to approximate NE
in all the games, and in Auction, they significantly outperform KL and other methods. (v) In mixed
cooperative-competitive cases (Figure 6), UMD (RS) can consistently converge to the approximate
NE in all the games. In MCC_Kuhn_A and MCC_Kuhn_B, UMD (RS) significantly surpasses KL
both in terms of convergence speed and the final NE-Gap. In summary, UMD (RS) can effectively
solve all types of (tabular) decision-making problems, i.e., either achieving the optimal return in
single-agent and cooperative cases or finding approximate NE in other cases. Moreover, in some of
the games, UMD (RS)/UMD (GLD) can significantly outperform all the baselines.

0 20000 40000 60000 80000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

R
et

ur
n

Kuhn_A

UMD (RS)
UMD (GLD)
KL
EU
ME
ML
Q Learner

0 20000 40000 60000 80000
Iteration

0.1
0.0
0.1
0.2
0.3
0.4

Kuhn_B

UMD (RS)
UMD (GLD)
KL
EU
ME
ML
Q Learner

0 20000 40000 60000 80000
Iteration

0.5

0.0

0.5

1.0

1.5

2.0

Leduc_A

UMD (RS)
UMD (GLD)
KL
EU
ME
ML
Q Learner

0 20000 40000 60000 80000
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Leduc_B

UMD (RS)
UMD (GLD)
KL
EU
ME
ML
Q Learner

Figure 2: Experimental results for single-agent environments.

0 20000 40000 60000 80000
Iteration

8.6
8.8
9.0
9.2
9.4
9.6
9.8

10.0

R
et

ur
n

Tiny_Hanabi_A

UMD (RS)
UMD (GLD)
KL
EU
ME
ML
Optimal

0 20000 40000 60000 80000
Iteration

0.80

0.85

0.90

0.95

1.00

Tiny_Hanabi_B

UMD (RS)
UMD (GLD)
KL
EU
ME
ML
Optimal

0 20000 40000 60000 80000
Iteration

2.30

2.35

2.40

2.45

2.50

Tiny_Hanabi_C

UMD (RS)
UMD (GLD)
KL
EU
ME
ML
Optimal

0 20000 40000 60000 80000
Iteration

3.92
3.93
3.94
3.95
3.96
3.97
3.98
3.99
4.00

Tiny_Hanabi_D

UMD (RS)
UMD (GLD)
KL
EU
ME
ML
Optimal

Figure 3: Experimental results for multi-agent cooperative environments.

7

Under review as a conference paper at ICLR 2024

101 102 103 104 105

10 9

10 7

10 5

10 3

10 1

N
E-

G
ap

Kuhn

UMD (RS)
UMD (GLD)
KL
EU
ME
ML

101 102 103 104 105
10 4

10 3

10 2

10 1

100

Leduc

UMD (RS)
UMD (GLD)
KL
EU
ME
ML

101 102 103 104 105

10 9

10 7

10 5

10 3

10 1

Goofspiel

UMD (RS)
UMD (GLD)
KL
EU
ME
ML

101 102 103 104 105

10 8

10 6

10 4

10 2

100
Liars_Dice

UMD (RS)
UMD (GLD)
KL
EU
ME
ML

101 102 103 104 105

Iteration

10 9

10 7

10 5

10 3

10 1

N
E-

G
ap

Hex
UMD (RS)
UMD (GLD)
KL
EU
ME
ML

101 102 103 104 105

Iteration

10 9

10 7

10 5

10 3

10 1

Dark_Hex

UMD (RS)
UMD (GLD)
KL
EU
ME
ML

101 102 103 104 105

Iteration

10 8

10 6

10 4

10 2

100
Blotto

UMD (RS)
UMD (GLD)
KL
EU
ME
ML

101 102 103 104 105

Iteration

10 9

10 7

10 5

10 3

10 1

Quoridor
UMD (RS)
UMD (GLD)
KL
EU
ME
ML

Figure 4: Experimental results for multi-agent competitive zero-sum environments.

101 102 103 104 105

Iteration

10 7

10 5

10 3

10 1

101

N
E-

G
ap

Bargaining

UMD (RS)
UMD (GLD)
KL
EU
ME
ML

101 102 103 104 105

Iteration

10 8

10 6

10 4

10 2

100
Auction

UMD (RS)
UMD (GLD)
KL
EU
ME
ML

101 102 103 104 105

Iteration

10 8

10 6

10 4

10 2

100

Oh_Hell
UMD (RS)
UMD (GLD)
KL
EU
ME
ML

101 102 103 104 105

Iteration

10 9

10 7

10 5

10 3

10 1
Trade_Comm

UMD (RS)
UMD (GLD)
KL
EU
ME
ML

Figure 5: Experimental results for multi-agent competitive general-sum environments.

101 102 103 104 105

Iteration

10 4

10 3

10 2

10 1

100

N
E-

G
ap

MCC_Kuhn_A

UMD (RS)
UMD (GLD)
KL
EU
ME
ML

101 102 103 104 105

Iteration

10 3

10 2

10 1

100 MCC_Kuhn_B

UMD (RS)
UMD (GLD)
KL
EU
ME
ML

101 102 103 104 105

Iteration

10 10

10 8

10 6

10 4

10 2

100 MCC_Goofspiel_A

UMD (RS)
UMD (GLD)
KL
EU
ME
ML

101 102 103 104 105

Iteration

10 10

10 8

10 6

10 4

10 2

100 MCC_Goofspiel_B

UMD (RS)
UMD (GLD)
KL
EU
ME
ML

Figure 6: Experimental results for multi-agent mixed cooperative-competitive environments.

The key to UMD is the optimization of α. Intuitively, an effective HPO method should be able to
identify which one of the policy update rules performs best and then assign a larger weight to this
policy update rule. To verify that our proposed RS/GLD satisfies this requirement, we present the
performance of different methods along with the evolution of the weights of different baselines over
the learning process in Figure 7. In the left figure, we can see that when using vanilla RS/GLD (v-
RS/v-GLD), UMD cannot converge to the approximate NE of the game, showing that the proposed
RS/GLD is indispensable for the success of UMD. In the middle left figure, we can see that at the
early stage of learning, the NE-Gap of all four base policies decreases. However, at the latter stage,
EU converges to a high NE-Gap. In this situation, the weight assigned to EU should be decreased,
which was exactly observed in RS and GLD in the middle right figure, demonstrating that RS and
GLD can quickly adjust the weights assigned to the base policies. In the right figure, we can see that
the vanilla RS and GLD cannot efficiently leverage the performance difference between the base
policies to optimize the weights, leading to the failure of finding the approximate NE of the game.
In addition, RS typically performs better than GLD. We hypothesize that RS is more efficient in
exploring the parameter space as it uses more samples (α + µui and α − µui) to get the update

8

Under review as a conference paper at ICLR 2024

direction u∗ (2 times more than GLD which only involves α+ui). It is worth noting that although
RS uses more samples, it does not introduce much extra computational cost compared to GLD. In
Appendix D.3, we present the wall-clock time of one iteration of each method to support this claim.
In fact, UMD (RS) and UMD (GLD) are still computationally efficient even compared to the four
baselines. Figure 7 is obtained in Goofspiel, and more results can be found in Appendix D.2.

101 102 103 104 105

Iteration

10 9

10 7

10 5

10 3

10 1

N
E-

G
ap

Env: Goofspiel

UMD (RS)
UMD (v-RS)
UMD (GLD)
UMD (v-GLD)

101 102 103 104 105

Iteration

10 9

10 7

10 5

10 3

10 1

N
E-

G
ap

KL
EU
ME
ML

0.0

0.5

1.0

W
ei

gh
t RSKL

EU
ME
ML

0.0

0.5

1.0

W
ei

gh
t vanilla RS

101 102 103 104 105

Iteration

0.0

0.5

1.0

W
ei

gh
t GLD

101 102 103 104 105

Iteration

0.0

0.5

1.0

W
ei

gh
t vanilla GLD

Figure 7: Comparison between RS/GLD and v-RS/v-GLD.

We also perform some ablation studies on the parameters in RS/GLD: κ, M , and µ. Here, we only
focus on µ, and the results are shown in Figure 8: for single-agent and cooperative cases, µ has
very little influence on the learning performance, while for other settings, different games may have
different optimal µ. It is worth noting that though different games may require different µ, it is the
only hyperparameter that requires some effort for tuning, which is also one of the advantages of our
approach. For κ and M , the results can be found in Appendix D.2.

0 25000 50000 75000
Iteration

0.1
0.2
0.3
0.4
0.5

Kuhn_A

0.07
0.1
0.3
0.5

0 25000 50000 75000
Iteration

8.75
9.00
9.25
9.50
9.75

10.00
Tiny_Hanabi_A

0.07
0.1
0.3
0.5
Optimal

102 104

Iteration

10 9
10 7
10 5
10 3
10 1

Kuhn

0.1
0.3
0.5
0.7

102 104

Iteration

10 8
10 6
10 4
10 2
100

Auction

0.01
0.05
0.07
0.09

102 104

Iteration

10 4
10 3
10 2
10 1
100 MCC_Kuhn_A

0.03
0.05
0.07
0.09

Figure 8: Influence of µ on the learning performance.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we make the first attempt to develop a single algorithm to effectively handle all types
of decision-making problems under the tabular setting, including single-agent, cooperative, compet-
itive, and mixed cooperative-competitive cases. The contributions are threefold. First, we propose
a unified mirror descent (UMD) algorithm by weighting multiple base policies induced by different
mirror maps to compute the new policy of an agent at each iteration. UMD is easy to extend to
include new policy update rules with only minimal modifications required. Second, to optimize the
weights of different base policies, we devise a simple yet effective zero-order method in which the
improvement of learning performance is used to only determine the update direction of the weights
rather than the update magnitude, which is more efficient than existing zero-order methods. Finally,
we perform extensive experiments on 24 benchmark environments. The results show that in over
87% games UMD performs better than or on-par with baselines, demonstrating that UMD could
serve as an effective unified approach for all types of (tabular) decision-making problems. Last but
not least, our experiments, to our knowledge, also provide the first comprehensive empirical study
of all types of (tabular) decision-making problems under a single algorithmic framework.

In this work, we focus on the decision-making problems under the tabular setting. Thus, the envi-
ronments in our experiments are relatively small and simple. In future works, we may consider more
complex environments where tabular representation may be a struggle (e.g., high memory and time
requirements, impossible to enumerate the state space). In this situation, we need to consider a more
powerful representation of the policy such as a neural network-based policy (Mnih et al., 2015), and
thus, devising a single deep reinforcement learning (deep RL) algorithm to handle all types of (not
restricted to tabular but more complex) decision-making problems is necessary.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ioannis Anagnostides, Ioannis Panageas, Gabriele Farina, and Tuomas Sandholm. On last-iterate
convergence beyond zero-sum games. In ICML, pp. 536–581, 2022.

Ruicheng Ao, Shicong Cen, and Yuejie Chi. Asynchronous gradient play in zero-sum multi-agent
games. In ICLR, 2023.

Yu Bai, Chi Jin, Huan Wang, and Caiming Xiong. Sample-efficient learning of Stackelberg equilibria
in general-sum games. In NeurIPS, pp. 25799–25811, 2021.

James P Bailey and Georgios Piliouras. Multiplicative weights update in zero-sum games. In EC,
pp. 321–338, 2018.

Shicong Cen, Yuejie Chi, Simon Shaolei Du, and Lin Xiao. Faster last-iterate convergence of policy
optimization in zero-sum Markov games. In ICLR, 2023.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the StarCraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Mag-
netic control of tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414–
419, 2022.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In AAAI, pp. 2974–2982, 2018.

Jakob Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon Whiteson,
Matthew Botvinick, and Michael Bowling. Bayesian action decoder for deep multi-agent re-
inforcement learning. In ICML, pp. 1942–1951, 2019.

Mudit Gaur, Amrit Singh Bedi, Di Wang, and Vaneet Aggarwal. On the global convergence of natu-
ral actor-critic with two-layer neural network parametrization. arXiv preprint arXiv:2306.10486,
2023.

Daniel Golovin, John Karro, Greg Kochanski, Chansoo Lee, Xingyou Song, and Qiuyi Zhang. Gra-
dientless descent: High-dimensional zeroth-order optimization. In ICLR, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Chloe Ching-Yun Hsu, Celestine Mendler-Dünner, and Moritz Hardt. Revisiting design choices in
proximal policy optimization. arXiv preprint arXiv:2009.10897, 2020.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with
limited queries and information. In ICML, pp. 2137–2146, 2018.

Rahul Jain, Georgios Piliouras, and Ryann Sim. Matrix multiplicative weights updates in quantum
zero-sum games: Conservation laws & recurrence. In NeurIPS, pp. 4123–4135, 2022.

Ehsan Asadi Kangarshahi, Ya-Ping Hsieh, Mehmet Fatih Sahin, and Volkan Cevher. Let’s be honest:
An optimal no-regret framework for zero-sum games. In ICML, pp. 2488–2496, 2018.

Tadashi Kozuno, Pierre Ménard, Remi Munos, and Michal Valko. Model-free learning for two-
player zero-sum partially observable Markov games with perfect recall. In NeurIPS, pp. 11987–
11998, 2021.

Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt, Car-
los Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research
football: A novel reinforcement learning environment. In AAAI, pp. 4501–4510, 2020.

10

Under review as a conference paper at ICLR 2024

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Péro-
lat, David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforce-
ment learning. In NeurIPS, pp. 4190–4203, 2017.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay,
Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel
Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, János Kramár, Bart De
Vylder, Brennan Saeta, James Bradbury, David Ding, Sebastian Borgeaud, Matthew Lai, Julian
Schrittwieser, Thomas Anthony, Edward Hughes, Ivo Danihelka, and Jonah Ryan-Davis. Open-
Spiel: A framework for reinforcement learning in games. arXiv preprint arXiv:1908.09453, 2019.

Chung-Wei Lee, Christian Kroer, and Haipeng Luo. Last-iterate convergence in extensive-form
games. In NeurIPS, pp. 14293–14305, 2021.

Mingyang Liu, Asuman E. Ozdaglar, Tiancheng Yu, and Kaiqing Zhang. The power of regulariza-
tion in solving extensive-form games. In ICLR, 2023.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Signal Processing Magazine, 37(5):43–54,
2020.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. In NeurIPS, pp. 6382–6393, 2017.

H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the presence of cost
functions controlled by an adversary. In ICML, pp. 536–543, 2003.

Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global convergence
rates of softmax policy gradient methods. In ICML, pp. 6820–6829, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Frans A Oliehoek and Christopher Amato. A Concise Introduction to Decentralized POMDPs.
Springer, 2016.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. QMIX: Monotonic value function factorisation for deep multi-agent rein-
forcement learning. In ICML, pp. 4295–4304, 2018.

Yara Rizk, Mariette Awad, and Edward W Tunstel. Decision making in multiagent systems: A
survey. IEEE Transactions on Cognitive and Developmental Systems, 10(3):514–529, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Bharat Singh, Rajesh Kumar, and Vinay Pratap Singh. Reinforcement learning in robotic applica-
tions: A comprehensive survey. Artificial Intelligence Review, 55(2):945–990, 2022.

Samuel Sokota, Edward Lockhart, Finbarr Timbers, Elnaz Davoodi, Ryan D’Orazio, Neil Burch,
Martin Schmid, Michael Bowling, and Marc Lanctot. Solving common-payoff games with ap-
proximate policy iteration. In AAAI, pp. 9695–9703, 2021.

Samuel Sokota, Ryan D’Orazio, J Zico Kolter, Nicolas Loizou, Marc Lanctot, Ioannis Mitliagkas,
Noam Brown, and Christian Kroer. A unified approach to reinforcement learning, quantal re-
sponse equilibria, and two-player zero-sum games. In ICLR, 2023.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. QTRAN:
Learning to factorize with transformation for cooperative multi-agent reinforcement learning. In
ICML, pp. 5887–5896, 2019.

11

Under review as a conference paper at ICLR 2024

Xingyou Song, Wenbo Gao, Yuxiang Yang, Krzysztof Choromanski, Aldo Pacchiano, and Yunhao
Tang. ES-MAML: Simple Hessian-free meta learning. In ICLR, 2020.

Ziang Song, Song Mei, and Yu Bai. When can we learn general-sum Markov games with a large
number of players sample-efficiently? In ICLR, 2022.

Mingfei Sun, Sam Devlin, Jacob Beck, Katja Hofmann, and Shimon Whiteson. Trust region bounds
for decentralized PPO under non-stationarity. In AAMAS, pp. 5–13, 2023.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy
optimization. In ICLR, 2022.

Yun-Yun Tsai, Pin-Yu Chen, and Tsung-Yi Ho. Transfer learning without knowing: Reprogramming
black-box machine learning models with scarce data and limited resources. In ICML, pp. 9614–
9624, 2020.

Nuri Mert Vural, Lu Yu, Krishna Balasubramanian, Stanislav Volgushev, and Murat A Erdogdu.
Mirror descent strikes again: Optimal stochastic convex optimization under infinite noise vari-
ance. In COLT, pp. 65–102, 2022.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. QPLEX: Duplex dueling
multi-agent q-learning. In ICLR, 2021.

Xiaoxing Wang, Wenxuan Guo, Jianlin Su, Xiaokang Yang, and Junchi Yan. ZARTS: On zero-order
optimization for neural architecture search. In NeurIPS, pp. 12868–12880, 2022.

Andre Wibisono, Molei Tao, and Georgios Piliouras. Alternating mirror descent for constrained
min-max games. In NeurIPS, pp. 35201–35212, 2022.

Zelai Xu, Yancheng Liang, Chao Yu, Yu Wang, and Yi Wu. Fictitious cross-play: Learning global
Nash equilibrium in mixed cooperative-competitive games. In AAMAS, pp. 1053–1061, 2023.

Wenhao Zhan, Shicong Cen, Baihe Huang, Yuxin Chen, Jason D Lee, and Yuejie Chi. Policy
mirror descent for regularized reinforcement learning: A generalized framework with linear con-
vergence. SIAM Journal on Optimization, 33(2):1061–1091, 2023.

12

Under review as a conference paper at ICLR 2024

A MORE DISCUSSION

In this work, we focus on the tabular setting. The reasons are twofold. First, most of the existing the-
oretical and algorithmic results in single-agent RL and zero-sum games were established under the
tabular setting, while for more complicated general-sum and mixed cooperative-competitive cases,
to our knowledge, very few results have been achieved even under the tabular setting, except for
some classes of games such as polymatrix or potential games. Second, even under the tabular set-
ting, it remains elusive whether there is a policy update rule that can consistently outperform all the
others when applying different policy update rules to different decision-making problems. In view
of these facts, we believe it is worthy to investigate the performance of contemporary mirror descent
(MD) methods in solving various types of tabular decision-making problems before considering
more complex settings where tabular representation is a struggle.

Another possible concern is that there could be other efficient algorithms for general-sum and mixed
cooperative-competitive settings. In this work, we choose to adopt MD methods as they possess the
last-iterate convergence property, which could be the main advantage over other possible approaches
such as Double Oracle (McMahan et al., 2003) and PSRO (Lanctot et al., 2017) which show a time
average convergence in some games. Indeed, to quote from (Anagnostides et al., 2022): Last-iterate
convergence is also central in economics, and goes back to the fundamental question of what it really
means to “learn in a game”. Indeed, it is unclear how a time average guarantee is meaningful from
an economic standpoint. In addition, it could be cumbersome and non-trivial to get an average
policy when deep neural networks are employed to represent the policies, which could be inefficient
in solving complex problems such as the training of GAN (Goodfellow et al., 2020). Although the
last-iterate convergence may not be a universal phenomenon in games (Anagnostides et al., 2022),
our empirical results show that our proposed UMD algorithm works well across different types of
decision-making problems, including general-sum and mixed cooperative-competitive settings.

Last, as mentioned in Section 6, we could consider developing a single deep RL algorithm when
going beyond the tabular setting. This would be possible as MD has been connected to PPO (Schul-
man et al., 2017) and its different variants such as MDPO (Tomar et al., 2022) and KL-PPO (Hsu
et al., 2020), as given in (Sokota et al., 2023). Furthermore, independent PPO (de Witt et al., 2020;
Sun et al., 2023) has been shown to be effective in single-agent RL and cooperative multi-agent RL.
As a consequence, it is worth investigating whether independent PPO can be also applied to effec-
tively solve more complex decision-making problems including multi-agent competitive and mixed
cooperative-competitive settings, which we leave for future work.

B DERIVATION OF CLOSED-FORM SOLUTIONS

Here we present the derivation of the closed-form solution of πEU
k+1. For the closed-form solutions

of πKL
k+1, πME

k+1 and πML
k+1, please refer to (Sokota et al., 2023; Bailey & Piliouras, 2018).

Consider the problem (7), we need to optimize the following objective:∑
a∈A

π(a)Qk(a)−
ϵ

2

∑
a∈A

(π(a)− ρ(a))2 − β

2

∑
a∈A

(π(a)− πk(a))
2, (14)

with the constraint
∑

a∈A π(a) = 1, where β = 1
η for convenience. We can use Lagrange multiplier

to get the following objective:∑
a∈A

π(a)Qk(a)−
ϵ

2
||π − ρ||22 −

β

2
||π − πk||22 + λ(1−

∑
a∈A

π(a)). (15)

Taking the derivative of both π and λ, we have:
Qk(a)− ϵ(π(a)− ρ(a))− β(π(a)− πk(a))− λ = 0,∀a ∈ A, (16)∑
a∈A

π(a) = 1. (17)

Therefore from Eq. (16), we have:

π(a) =
ϵρ(a) + βπk(a) +Qk(a)− λ

(ϵ+ β)
. (18)

13

Under review as a conference paper at ICLR 2024

Substituting the above equation to Eq. (17), we have:∑
a∈A

ϵρ(a) + βπk(a) +Qk(a)− λ

(ϵ+ β)
= 1, (19)∑

a∈A
ϵρ(a) + βπk(a) +Qk(a) = (ϵ+ β) +

∑
a∈A

λ, (20)

λ =

∑
a∈A Qk(a)

|A|
. (21)

Note that
∑

a∈A ϵρ(a) + βπk(a) = ϵ+ β. Then we can compute the new policy as follows:

π(a) =
ϵρ(a) + βπk(a) +Qk(a)− 1

|A|
∑

a′∈A Qk(a
′)

(ϵ+ β)

=
ϵρ(a) + 1

ηπk(a) +Qk(a)− 1
|A|

∑
a′∈A Qk(a

′)

(ϵ+ 1
η)

.

(22)

Theoretically, we note that by choosing the suitable values for ϵ and η, we can always ensure that π
is well-defined, i.e., π(a) ≥ 0,∀a ∈ A. In experiments, we can use a projection operation to ensure
this condition (ξ = 1e− 10 is used to avoid division by zero):

πEU
k+1(a) =

max{0, π(a)}+ ξ∑
a′∈A max{0, π(a′)}+ ξ

. (23)

C EXPERIMENTAL DETAILS

In this section, we present the details of the games, evaluation methods, and hyperparameters.

C.1 GAMES

Table 1 gives an overview of all the games used in our experiments. For cooperative (coop.), compet-
itive zero-sum, and competitive general-sum (gene.-sum) settings, all the games are implemented in
OpenSpiel (Lanctot et al., 2019). For single-agent and mixed cooperative-competitive (coop.-comp.)
settings, we obtain the games by modifying the original games in OpenSpiel.

Single-Agent. Consider a two-player Kuhn poker game. To obtain a single-agent counterpart, we
fix one player’s policy as the uniform policy (the background player) while only updating the other
player’s policy (the focal player) at each iteration. In Kuhn_A, player 1 is selected as the focal
player while in Kuhn_B, player 2 is chosen as the focal player. Similarly, we can get Leduc_A and
Leduc_B in the same manner.

Cooperative. For cooperative environments, we focus on two-player tiny Hanabi games (Foerster
et al., 2019; Sokota et al., 2021). A suite of six games is available at https://github.com/
ssokota/tiny-hanabi. We chose four of the six games as our testing environments and re-
name them to A through D. The payoff matrices along with the optimal values of these games are
given in Figure 9. For implementation, these games are easy to obtain by setting the three parame-
ters: num_chance, num_actions, and payoff, in OpenSpiel. For num_chance, they are 2,
2, 2, and 1, respectively. For num_actions, they are 3, 2, 2, and 2, respectively.

Competitive Zero-Sum and General-Sum. All the zero-sum and general-sum games have been
implemented in OpenSpiel. The configurations of different games are given in the second column in
Table 1. Note that in contrast to most of the existing works which only focus on two-player (zero-
sum) settings, we set the number of players to more than two players in some of the games: Kuhn,
Goofspiel, and Oh_Hell are three-player games.

Mixed Cooperative-Competitive (MCC). Consider a three-player Kuhn poker game. To obtain an
MCC counterpart, we partition the three players into two teams: Team 1 includes two players while
Team 2 only consists of one player (i.e., two vs. one). When computing the rewards of the players,
in Team 1, each player will get the average reward of the team. Precisely, let rteam = r1 + r2 denote
the team reward which is the sum of the original rewards of the two team members. Then, the true

14

https://github.com/ssokota/tiny-hanabi
https://github.com/ssokota/tiny-hanabi

Under review as a conference paper at ICLR 2024

Table 1: The benchmark games used in experiments.

Type Name of Game w/ Configuration Shorthand

Single-Agent

single_agent_kuhn_2p_game_a Kuhn_A
single_agent_kuhn_2p_game_b Kuhn_B
single_agent_leduc_2p_game_a Leduc_A
single_agent_leduc_2p_game_b Leduc_B

Coop.

tiny_hanabi_game_a Tiny_Hanabi_A
tiny_hanabi_game_b Tiny_Hanabi_B
tiny_hanabi_game_c Tiny_Hanabi_C
tiny_hanabi_game_d Tiny_Hanabi_D

Zero-Sum

kuhn_poker(players=3) Kuhn
leduc_poker(players=2) Leduc
goofspiel(players=3) Goofspiel
liars_dice(dice_sides=4) Liars_Dice
hex(board_size=2) Hex
dark_hex(board_size=2,gameversion=adh) Dark_Hex
blotto(players=2,coins=4,fields=4) Blotto
quoridor(players=2,board_size=2) Quoridor

Gene.-Sum

bargaining(max_turns=2) Bargaining
first_sealed_auction Auction
oh_hell(players=3,num_suits=2,num_cards_per_suit=2) Oh_Hell
trade_comm(num_items=2) Trade_Comm

Mixed Coop.-
Comp.

mix_kuhn_3p_game_a MCC_Kuhn_A
mix_kuhn_3p_game_b MCC_Kuhn_B
mix_goofspiel_3p_game_a MCC_Goofspiel_A
mix_goofspiel_3p_game_b MCC_Goofspiel_B

rewards of the two players are r̃1 = r̃2 = rteam/2. In MCC_Kuhn_A, Team 1 includes players 1
and 2 (i.e., {1, 2} vs. 3), while in MCC_Kuhn_B, Team 1 includes players 1 and 3 (i.e., {1, 3} vs.
2). Similarly, we can get MCC_Goofspiel_A and MCC_Goofspiel_B in the same manner.

C.2 EVALUATION PROTOCOL

For Single-Agent cases, evaluating the performance of the focal player’s policy is easy as we only
need to estimate the expected return obtained by the focal player’s policy while regarding the other
agent as a part of the environment (i.e., from a single agent’s perspective). For Cooperative settings,
we can easily obtain the team return. For Competitive Zero-Sum and General-Sum settings, we
can easily compute the NE-Gap by using the built-in implementation in OpenSpiel.

For Mixed Cooperative-Competitive (MCC) settings, to compute the NE-Gap, we need to com-
pute the best response policy of the team, i.e., a joint policy of the team members, rather than the
policy of a single agent. This is incompatible with the built-in implementation in OpenSpiel, which
only computes the best response policy of a single agent. In other words, if we directly adopt
the built-in implementation, the NE-Gap will correspond to the original three-player game, not the
modified game. Unfortunately, computing the exact joint policy of the team members is not easy in
practice. Nevertheless, it is worth noting that from our experiments, we found that KL (and other
base policy update rules) can effectively solve cooperative decision-making problems. As a result,

15

Under review as a conference paper at ICLR 2024

Tiny_Hanabi_A Tiny_Hanabi_B

Opt: 1

Tiny_Hanabi_C

Opt: 2.5

Tiny_Hanabi_D

Opt: 4

Player 2 (acts second)

P
la

y
er

 1
 (

a
ct

s
fi

rs
t)

Opt: 10

10 0 0

4 8 4

10 0 0

0 0 10

4 8 4

0 0 10

0 0 10

4 8 4

0 0 0

10 0 0

4 8 4

10 0 0

1 2

3 4

1 0

1 0

0 1

0 0

0 1

0 0

1 0

1 0

3 0

1 3

3 1

3 0

3 2

0 2

0 1

0 0

Figure 9: Payoff matrices and optimal values of the four (cooperative) tiny Hanabi games.

we can apply KL (or other base policy update rules) to compute the approximate best response of
the team since it is a purely cooperative environment from the team’s perspective (the other team’s
policy is fixed when computing the best response of the team). For a team that only has a single
player, we use the built-in implementation in OpenSpiel to compute the exact best response policy
of the player. In summary, during the policy learning process, when evaluation of the current joint
policy is needed, we use KL as a subroutine to compute a team’s approximate best response while
using built-in implementation to compute a single player’s exact best response. In the KL subrou-
tine, the starting point of the best response is set to the current joint policy of the team members. In
experiments, to balance the accuracy of the best response and running time, the number of updates
in the KL subroutine is set to 100 (the returned joint policy can be also called a better response).

C.3 HYPERPARAMETERS

Table 2 provides the default values of hyperparameters used in different games. In RS, the spheri-
cally symmetric distribution q is a standard multivariate normal distribution N(0, I). The Proj(α) is
defined as αi = αi+ξ∑4

j=1 αj+ξ
, 1 ≤ i ≤ 4, where ξ = 1e − 10. In addition, in our experiments, we

perform ablation studies on µ, M , and κ, while all other parameters are kept constant.

16

Under review as a conference paper at ICLR 2024

Table 2: Hyperparameters.

Game K ϵ η η̂ µ r R M κ

Kuhn_A 100000 1 0.1 0.05 0.1 0.1 2 5 10
Kuhn_B 100000 1 0.1 0.05 0.1 0.1 2 5 10
Leduc_A 100000 1 0.1 0.05 0.1 0.1 2 5 10
Leduc_B 100000 1 0.1 0.05 0.1 0.1 2 5 10

Tiny_Hanabi_A 100000 1 0.1 0.05 0.1 0.1 2 5 10
Tiny_Hanabi_B 100000 1 0.1 0.05 0.1 0.1 2 5 10
Tiny_Hanabi_C 100000 1 0.1 0.05 0.1 0.1 2 5 10
Tiny_Hanabi_D 100000 1 0.1 0.05 0.1 0.1 2 5 10

Kuhn 100000 1 0.1 0.05 0.5 0.1 2 5 10
Leduc 100000 1 0.1 0.05 0.03 0.1 2 5 10
Goofspiel 100000 1 0.1 0.05 0.1 0.1 2 5 10
Liars_Dice 100000 1 0.1 0.05 0.05 0.1 2 5 10
Hex 100000 1 0.1 0.05 0.1 0.1 2 5 10
Dark_Hex 100000 1 0.1 0.05 0.1 0.1 2 5 10
Blotto 100000 1 0.1 0.05 0.1 0.1 2 5 10
Quoridor 100000 1 0.1 0.05 0.1 0.1 2 5 10

Bargaining 100000 1 0.1 0.05 0.01 0.1 2 5 10
Auction 100000 1 0.1 0.05 0.01 0.1 2 5 10
Oh_Hell 100000 1 0.1 0.05 0.3 0.1 2 5 10
Trade_Comm 100000 1 0.1 0.05 0.3 0.1 2 5 10

MCC_Kuhn_A 100000 1 0.1 0.05 0.07 0.1 2 5 10
MCC_Kuhn_B 100000 1 0.1 0.05 0.05 0.1 2 5 10
MCC_Goofspiel_A 100000 1 0.1 0.05 0.5 0.1 2 5 10
MCC_Goofspiel_B 100000 1 0.1 0.05 0.5 0.1 2 5 10

17

Under review as a conference paper at ICLR 2024

D MORE EXPERIMENTAL RESULTS

In this section, we provide more experimental results and analysis to support the conclusions of this
work and deepen the understanding of our approach. For ablation studies, we perform experiments
on some of the games (not all) as other games may require a relatively long running time (e.g., the
mixed cooperative-competitive environments), as shown in Appendix D.3.

D.1 LEARNING PERFORMANCE

Normalized Improvement. In Figure 1, we show the normalized improvement of UMD (RS) versus
baselines. Here, we provide some explanations of the magnitude of the quantitative values. Recall
that the normalized improvement is computed as (take KL as an example) (NE-Gap(πRandom) −
NE-Gap(πUMD))/(NE-Gap(πRandom)−NE-Gap(πKL)) (πRandom is the random initialized policy). In
some environments, NE-Gap(πUMD) and NE-Gap(πKL) could be very small, e.g., < 1e − 8. As a
result, the normalized improvement would only slightly deviate from 1 as the NE-Gap(πRandom) is
typically relatively large, e.g., > 1. However, it is worth highlighting that this does not mean that the
improvement is not significant. For example, in Auction, as shown in Figure 5 (the learning curves),
the final NE-Gap for UMD (RS) and KL are respectively 2.0340e-9 and 1.0000e-2, which shows
that UMD (RS) significantly outperforms KL in an order of 7 magnitude, even though the value of
the normalized improvement is 1.0081 (NE-Gap(πRandom)=1.2493).

In Figure 10, we present the normalized improvement of UMD (GLD) versus baselines. Compare
Figure 1 and 10, we can see that UMD (RS) typically performs better than UMD (GLD), demon-
strating that RS is more efficient than GLD in optimizing the weights of different base policies. For
example, in Tiny_Hanabi_A, MCC_Goofspiel_A, and MCC_Goofspiel_B, UMD (GLD) apparently
lags behind KL as shown in Figure 10, which is not the case shown in Figure 1 where UMD (RS)
matches KL. In Leduc, the normalized improvement of UMD (GLD) versus KL is 0.8557, while
it is 0.9809 for UMD (RS) versus KL. The quantitative values of the normalized improvement of
UMD (RS) (Figure 1) and UMD (GLD) (Figure 10) versus the baselines are provided in Table 3.

Note that for Dark_Hex, from Figure 4 (the learning curves), we can see that ME and ML diverge as
the learning process progresses. As a consequence, the final NE-Gap of ME/ML is even larger than
a random policy. In this case, the normalized improvement will be negative as NE-Gap(πRandom)−
NE-Gap(πUMD) > 0 while NE-Gap(πRandom) − NE-Gap(πME) < 0, which is inconvenient to draw
the bar for this game in Figure 1 and Figure 10. Without loss of generality, when computing the
normalized improvement of UMD (RS) and UMD (GLD) versus ME and ML for Dark_Hex, we
simply use a number greater than 1 (i.e., 1.10(*) in Table 3). Notice that this number does not stand
for the true normalized improvement, but is only used to indicate that UMD (RS) and UMD (GLD)
definitely outperform ME and ML as ME and ML diverge in this game.

In Table 4, we present the quantitative values of the converged performance of different methods
in different types of environments (Figure 2 to Figure 6). Numbers in bold indicate performance
ranking in the top three. From the results, we can see that UMD (RS) can effectively solve different
types of games, and in some games, it can significantly outperform the baselines.

18

Under review as a conference paper at ICLR 2024

Kuhn_A
Kuhn_B

Leduc_A
Leduc_B

0.91
0.93

0.96

1.001.00

1.03
Single-Agent

Kuhn
Leduc

Goofspiel

Liars_Dice Hex

Dark_Hex
Blotto

Quoridor
0.82

0.87

0.92

1.001.00
1.03

Comp. Zero-Sum

Bargaining
Auction

Oh_Hell

Trade_Comm
0.997

1.0001.000

1.003

1.006

1.009
Comp. General-Sum

Tiny_Hanabi_A

Tiny_Hanabi_B

Tiny_Hanabi_C

Tiny_Hanabi_D
0.980

0.988

0.996
1.000
1.004

Coop.

UMD (GLD) vs KL UMD (GLD) vs EU UMD (GLD) vs ME UMD (GLD) vs ML

MCC_Kuhn_A

MCC_Kuhn_B

MCC_Goofspiel_A

MCC_Goofspiel_B
0.980

0.990

1.0001.000

1.009
Mixed Coop.-Comp.

Figure 10: The Y-axis is the normalized improvement of UMD (GLD) versus baselines: > 1 means
UMD (GLD) outperforms the baselines, = 1 means UMD(GLD) matches the baselines, and < 1
means UMD (GLD) lags behind the baselines. The numbers of games in which UMD (GLD) out-
performs or matches the baselines are 20 for KL, 23 for EU, 19 for ME, and 18 for ML. On average,
in over 83% games, UMD (GLD) outperforms or matches the baselines. In addition, compared to
Figure 1, we found that UMD (GLD) typically lags behind UMD (RS) which performs better than
or on-par with the baselines in over 87% games.

19

Under review as a conference paper at ICLR 2024

Table 3: The quantitative values of the normalized improvement of UMD (RS) and UMD (GLD)
versus different baselines in different games, which correspond to Figure 1 and Figure 10. > 1
means UMD (RS)/UMD (GLD) outperforms the baselines, = 1 means UMD (RS)/UMD (GLD)
matches the baselines, and < 1 means UMD (RS)/UMD (GLD) lags behind the baselines.

Game
UMD (RS) UMD (GLD)

vs. vs.
KL EU ME ML KL EU ME ML

Kuhn_A 1.0002 0.9994 1.0010 1.0026 0.9988 0.9980 0.9996 1.0012
Kuhn_B 1.0032 1.0052 1.0073 1.0014 0.9996 1.0016 1.0037 0.9979
Leduc_A 0.9333 1.0846 0.9326 0.9318 0.9293 1.0800 0.9286 0.9278
Leduc_B 0.9335 1.1309 0.9359 0.9348 0.9264 1.1223 0.9287 0.9277

Tiny_Hanabi_A 1.0000 1.0976 1.0000 1.0000 0.9836 1.0796 0.9836 0.9836
Tiny_Hanabi_B 1.0004 0.9999 1.0000 1.0000 1.0004 0.9999 1.0000 1.0000
Tiny_Hanabi_C 1.0001 0.9998 1.0002 0.9999 0.9999 0.9996 0.9999 0.9996
Tiny_Hanabi_D 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Kuhn 1.0000 1.0001 1.1753 1.0878 0.9998 0.9999 1.1751 1.0876
Leduc 0.9809 1.2775 2.0907 3.3555 0.8557 1.1143 1.8237 2.9269
Goofspiel 1.0000 1.1224 1.0000 1.0000 1.0000 1.1224 1.0000 1.0000
Liars_Dice 1.0000 1.9443 1.6425 2.0867 1.0000 1.9443 1.6425 2.0867
Hex 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Dark_Hex 1.0000 1.0003 1.10(*) 1.10(*) 0.9999 1.0002 1.10(*) 1.10(*)
Blotto 1.0000 2.5510 1.0000 1.0000 1.0000 2.5510 1.0000 1.0000
Quoridor 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Bargaining 1.0000 2.0991 1.0000 1.0000 1.0000 2.0991 1.0000 1.0000
Auction 1.0081 2.2287 1.0080 1.0081 1.0081 2.2287 1.0080 1.0081
Oh_Hell 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Trade_Comm 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

MCC_Kuhn_A 1.0020 0.9999 1.1858 1.2091 1.0019 0.9999 1.1858 1.2090
MCC_Kuhn_B 1.0215 0.9984 1.0544 1.1266 1.0127 0.9898 1.0453 1.1169
MCC_Goofspiel_A 1.0000 1.0035 1.0000 1.0000 0.9989 1.0024 0.9989 0.9989
MCC_Goofspiel_B 1.0000 1.0035 1.0000 1.0000 0.9989 1.0024 0.9989 0.9989

20

Under review as a conference paper at ICLR 2024

Table 4: The quantitative values of performance of different methods, which corresponds to Figure 2
to Figure 6. For single-agent and cooperative cases, the larger the better, while it is the opposite for
other cases. Numbers in bold indicate performance ranking in the top three. The results clearly show
that UMD (RS) can effectively solve various types of (tabular) decision-making problems.

Game KL EU ME ML UMD
(GLD)

UMD
(RS)

Kuhn_A 0.4998 0.5002 0.4994 0.4986 0.4992 0.4999
Kuhn_B 0.4165 0.4156 0.4148 0.4172 0.4163 0.4178
Leduc_A 2.0855 1.7945 2.0869 2.0889 1.9504 1.9495
Leduc_B 2.6630 2.1981 2.6563 2.6593 2.5008 2.4274

Tiny_Hanabi_A 9.9987 9.1098 9.9988 9.9987 9.8346 9.9987
Tiny_Hanabi_B 0.9993 0.9997 0.9997 0.9997 0.9996 0.9997
Tiny_Hanabi_C 2.4995 2.5000 2.4993 2.5000 2.4991 2.4998
Tiny_Hanabi_D 3.9995 3.9997 3.9997 3.9997 3.9997 3.9997

Kuhn 2.034e-10 1.358e-04 3.077e-01 1.665e-01 3.465e-04 2.261e-07
Leduc 1.073e-04 5.510e-01 1.260e-00 1.680e-00 3.427e-01 4.540e-02
Goofspiel 3.246e-10 9.990e-02 2.068e-10 3.091e-10 1.501e-10 2.146e-10
Liars_Dice 3.631e-10 3.181e-01 2.562e-01 3.411e-01 6.605e-10 4.283e-10
Hex 2.000e-10 2.312e-10 3.000e-10 3.000e-10 3.000e-10 2.999e-10
Dark_Hex 1.007e-10 1.162e-04 9.809e-01 9.998e-01 5.320e-05 8.766e-11
Blotto 9.666e-10 2.779e-01 1.599e-09 1.599e-09 1.599e-09 1.599e-09
Quoridor 1.000e-10 8.461e-11 1.000e-10 1.000e-10 9.999e-11 9.999e-11

Bargaining 1.927e-08 2.618e-00 1.991e-08 1.979e-08 1.845e-08 1.854e-08
Auction 1.000e-02 6.887e-01 9.900e-03 1.000e-02 1.596e-07 2.034e-09
Oh_Hell 2.000e-09 1.047e-09 2.000e-09 2.000e-09 2.000e-09 2.000e-09
Trade_Comm 3.000e-10 9.565e-11 3.000e-10 3.000e-10 9.999e-11 9.999e-11

MCC_Kuhn_A 2.100e-03 6.794e-05 1.542e-01 1.701e-01 2.129e-04 1.591e-04
MCC_Kuhn_B 2.140e-02 6.562e-04 4.950e-02 1.053e-01 1.010e-02 2.100e-03
MCC_Goofspiel_A 1.261e-10 1.100e-03 1.375e-10 1.374e-10 3.423e-04 8.131e-11
MCC_Goofspiel_B 1.237e-10 1.100e-03 1.378e-10 1.379e-10 3.424e-04 8.033e-11

21

Under review as a conference paper at ICLR 2024

D.2 MORE ABLATION STUDIES

In this section, we present more ablation results to deepen the understanding of our approach.

D.2.1 EFFECTIVENESS OF RS/GLD

As mentioned in the main text, RS/GLD can quickly adjust the weights assigned to the base policies,
which is the key to the success of UMG (RS)/UMD (GLD) in solving various types of decision-
making problems. In Figure 11 to Figure 15, we present, in different types of games, the perfor-
mance of the four baselines (the first row) and the evolution of the weights (the second row for RS
and the last row for GLD). In addition, in Figure 7 in the main text, we also present the weights
obtained by the vanilla RS (v-RS) and vanilla GLD (v-GLD) in Goofspiel, which demonstrates that
RS and GLD are superior over their vanilla counterparts. In Figure 16, we present more results in
other games, which provides more evidence to support the conclusion.

In single-agent (Figure 11) and cooperative (Figure 12) cases, in most of the environments, since
the four baselines are comparable and can achieve the optimal return, their weights do not change
too much (around 1/4) over the learning process. In competitive zero-sum (Figure 13), competi-
tive general-sum (Figure 14), and mixed cooperative-competitive (Figure 15) cases, RS/GLD can
quickly adjust the weights of the baselines according to their performance over the learning process.

0.25

0.50

R
et

ur
n

Kuhn_A

KL
EU

ME
ML

0.1

0.2

0.3

R
S

W
ei

gh
t

0 50000
Iteration

0.2

0.3

G
LD

 W
ei

gh
t

0.00

0.25

Kuhn_B

KL
EU

ME
ML

0.2

0.3

0 50000
Iteration

0.2

0.3

1

2

Leduc_A

KL
EU

ME
ML

0.2

0.3

0 50000
Iteration

0.2

0.3

1

2

Leduc_B

KL
EU

ME
ML

0.2

0.3

0 50000
Iteration

0.20

0.25

Figure 11: Weights of base policies for single-agent environments.

5

10

R
et

ur
n

Tiny_Hanabi_A

KL
EU

ME
ML

0.00

0.25

R
S

W
ei

gh
t

0 50000
Iteration

0.2

0.4

G
LD

 W
ei

gh
t

0.5

1.0
Tiny_Hanabi_B

KL
EU

ME
ML

0.2

0.3

0 50000
Iteration

0.2

0.3

1.5

2.0

2.5
Tiny_Hanabi_C

KL
EU

ME
ML

0.2

0.4

0 50000
Iteration

0.2

0.3

3

4
Tiny_Hanabi_D

KL
EU

ME
ML

0.2

0.3

0 50000
Iteration

0.00

0.25

Figure 12: Weights of base policies for multi-agent cooperative environments.

22

Under review as a conference paper at ICLR 2024

10 5

N
E-

G
ap

Kuhn

KL
EU

ME
ML

0.0

0.5

R
S

W
ei

gh
t

102 104

Iteration

0.0

0.5

G
LD

 W
ei

gh
t

10 2

Leduc

KL
EU

ME
ML

0.0

0.5

102 104

Iteration

0.25

0.50

10 5

Goofspiel

KL
EU

ME
ML

0.0

0.5

102 104

Iteration

0.0

0.5

10 4

Liars_Dice

KL
EU

ME
ML

0.0

0.5

102 104

Iteration

0.0

0.5

10 5

N
E-

G
ap

Hex

KL
EU

ME
ML

0.0

0.5

R
S

W
ei

gh
t

102 104

Iteration

0.25

0.50

G
LD

 W
ei

gh
t

10 5

Dark_Hex

KL
EU

ME
ML

0.0

0.5

102 104

Iteration

0.00

0.25

10 4

Blotto

KL
EU

ME
ML

0.00

0.25

102 104

Iteration

0.0

0.5

10 5

Quoridor

KL
EU

ME
ML

0.0

0.5

102 104

Iteration

0.0

0.5

Figure 13: Weights of base policies for multi-agent competitive zero-sum environments.

10 3

N
E-

G
ap

Bargaining

KL
EU

ME
ML

0.0

0.2

R
S

W
ei

gh
t

102 104

Iteration

0.0

0.5

G
LD

 W
ei

gh
t

10 1

Auction

KL
EU

ME
ML

0.0

0.2

102 104

Iteration

0.0

0.5

10 4

Oh_Hell

KL
EU

ME
ML

0.00

0.25

102 104

Iteration

0.25

0.50

10 5

Trade_Comm

KL
EU

ME
ML

0.0

0.5

102 104

Iteration

0.00

0.25

Figure 14: Weights of base policies for multi-agent competitive general-sum environments.

23

Under review as a conference paper at ICLR 2024

10 2
N

E-
G

ap

MCC_Kuhn_A

KL
EU

ME
ML

0.0

0.5

R
S

W
ei

gh
t

102 104

Iteration

0.0

0.5

G
LD

 W
ei

gh
t

10 1

MCC_Kuhn_B

KL
EU

ME
ML

0.0

0.5

102 104

Iteration

0.0

0.5

10 5

MCC_Goofspiel_A

KL
EU

ME
ML

0.0

0.5

102 104

Iteration

0.0

0.5

10 5

MCC_Goofspiel_B

KL
EU

ME
ML

0.0

0.5

102 104

Iteration

0.0

0.5

Figure 15: Weights of base policies for multi-agent mixed cooperative-competitive environments.

101 102 103 104 105

Iteration

10 9

10 7

10 5

10 3

10 1

N
E-

G
ap

Env: Goofspiel

UMD (RS)
UMD (v-RS)
UMD (GLD)
UMD (v-GLD)

101 102 103 104 105

Iteration

10 9

10 7

10 5

10 3

10 1

N
E-

G
ap

KL
EU
ME
ML

0.0

0.5

1.0
W

ei
gh

t RSKL
EU
ME
ML

0.0

0.5

1.0

W
ei

gh
t vanilla RS

101 102 103 104 105

Iteration

0.0

0.5

1.0

W
ei

gh
t GLD

101 102 103 104 105

Iteration

0.0

0.5

1.0

W
ei

gh
t vanilla GLD

101 102 103 104 105

Iteration

10 8

10 6

10 4

10 2

N
E-

G
ap

Env: Blotto

UMD (RS)
UMD (v-RS)
UMD (GLD)
UMD (v-GLD)

101 102 103 104 105

Iteration

10 8

10 6

10 4

10 2

100

N
E-

G
ap

KL
EU
ME
ML

0.0

0.5

1.0

W
ei

gh
t RSKL

EU
ME
ML

0.0

0.5

1.0
W

ei
gh

t vanilla RS

101 102 103 104 105

Iteration

0.0

0.5

1.0

W
ei

gh
t GLD

101 102 103 104 105

Iteration

0.0

0.5

1.0

W
ei

gh
t vanilla GLD

101 102 103 104 105

Iteration

10 8

10 6

10 4

10 2

100

N
E-

G
ap

Env: Auction

UMD (RS)
UMD (v-RS)
UMD (GLD)
UMD (v-GLD)

101 102 103 104 105

Iteration

10 3

10 2

10 1

100

N
E-

G
ap

KL
EU
ME
ML

0.0

0.5

1.0

W
ei

gh
t RSKL

EU
ME
ML

0.0

0.5

1.0

W
ei

gh
t vanilla RS

101 102 103 104 105

Iteration

0.0

0.5

1.0

W
ei

gh
t GLD

101 102 103 104 105

Iteration

0.0

0.5

1.0

W
ei

gh
t vanilla GLD

101 102 103 104 105

Iteration

10 10

10 8

10 6

10 4

10 2

N
E-

G
ap

Env: MCC_Goofspiel_A

UMD (RS)
UMD (v-RS)
UMD (GLD)
UMD (v-GLD)

101 102 103 104 105

Iteration

10 9

10 7

10 5

10 3

10 1

N
E-

G
ap

KL
EU
ME
ML

0.0

0.5

1.0

W
ei

gh
t RSKL

EU
ME
ML

0.0

0.5

1.0

W
ei

gh
t vanilla RS

101 102 103 104 105

Iteration

0.0

0.5

1.0

W
ei

gh
t GLD

101 102 103 104 105

Iteration

0.0

0.5

1.0

W
ei

gh
t vanilla GLD

Figure 16: Comparison between RS/GLD and v-RS/v-GLD.

24

Under review as a conference paper at ICLR 2024

D.2.2 INFLUENCE OF PARAMETERS IN RS

In Figure 8 in the main text, we present the influence of µ on the learning performance. As µ has very
little influence in single-agent and cooperative cases, here, we provide more results in other cases
in Figure 17. The results again verify the fact that different games may require different optimal µ.
However, as mentioned in the main text, this may be the only parameter that requires some effort for
tuning in different games, which is one of the advantages of our approach.

102 104

10 1

100

N
E-

G
ap

Leduc

0.03
0.05
0.1
0.3

102 104

10 8
10 5
10 2

Goofspiel

0.05
0.1
0.2
0.3

102 104

10 7
10 4
10 1

Hex
0.05
0.1
0.3
0.5

102 104

10 8
10 5
10 2

Dark_Hex

0.05
0.1
0.3
0.5

102 104

10 8
10 6
10 4
10 2

Blotto

0.05
0.1
0.3
0.5

102 104

10 8
10 5
10 2

Quoridor
0.05
0.1
0.3
0.5

102 104

Iteration

10 6

10 3

100

N
E-

G
ap

Bargaining

0.01
0.05
0.1
0.3

102 104

Iteration

10 7
10 4
10 1

Oh_Hell
0.05
0.1
0.3
0.5

102 104

Iteration

10 8
10 5
10 2

Trade_Comm
0.05
0.1
0.3
0.5

Figure 17: The influence of µ on the learning performance.

In Figure 18, we investigate the influence of the update interval κ on the learning performance. For
single-agent and cooperative cases, κ has almost negligible influence on the learning performance of
UMD (RS). For other cases, κ may slightly influence the convergence speed but has little influence
on the final performance. As a result, in our experiments, we choose κ = 10 (a two-timescale man-
ner) as the default value to reduce the running time of the learning process (Table 5 in Appendix D.3)
while not incurring much loss on the learning performance.

In Figure 19, we investigate the influence of the number of samples M on the learning performance.
The results show a similar phenomena with κ. Therefore, to balance the learning speed and perfor-
mance, we choose a moderate number M = 5 as the default value.

Furthermore, we want to remark that we do not conduct thorough parameter sweeping in this work.
Consequently, the default values given in Table 2 may be not always optimal. Nevertheless, from
the experimental results, we can see that these default values work well across all types of (tabular)
decision-making problems. This may be partly due to the fact that we are focusing on the tabular
cases. For more complex settings where tabular representation is a struggle, more advancing learning
techniques (e.g., deep RL) are required, which we leave for future work.

25

Under review as a conference paper at ICLR 2024

0 25000 50000 75000
0.0

0.2

0.4
R

et
ur

n

Kuhn_A
1
3
5
7
10

0 25000 50000 75000

9.0

9.5

10.0
Tiny_Hanabi_A

1
3
5

7
10
Optimal

102 104

10 8
10 5
10 2

Kuhn
1
3
5
7
10

101 103 105

10 8
10 5
10 2

N
E-

G
ap

Goofspiel
1
3
5
7
10

102 104

10 7

10 4

10 1
Hex

1
3
5
7
10

102 104

10 8
10 5
10 2

Dark_Hex
1
3
5
7
10

102 104

Iteration

10 8
10 6
10 4
10 2

N
E-

G
ap

Blotto
1
3
5
7
10

102 104

Iteration

10 8
10 5
10 2

Quoridor
1
3
5
7
10

102 104

Iteration

10 8

10 5

10 2
Trade_Comm

1
3
5
7
10

Figure 18: The influence of update interval κ on the learning performance.

0 25000 50000 75000

0.2
0.3
0.4
0.5

R
et

ur
n

Kuhn_A

3
5
7
9

0 25000 50000 75000

9.0

9.5

10.0
Tiny_Hanabi_A

3
5
7
9
Optimal

102 104

10 8
10 5
10 2

Kuhn

3
5
7
9

102 104

10 8
10 5
10 2

N
E-

G
ap

Goofspiel

3
5
7
9

102 104

10 7

10 4

10 1
Hex

3
5
7
9

102 104

10 8
10 5
10 2

Dark_Hex

3
5
7
9

102 104

Iteration

10 8
10 6
10 4
10 2

N
E-

G
ap

Blotto

3
5
7
9

102 104

Iteration

10 8
10 5
10 2

Quoridor
3
5
7
9

102 104

Iteration

10 8

10 5

10 2
Trade_Comm

3
5
7
9

Figure 19: The influence of the number of samples M on the learning performance.

26

Under review as a conference paper at ICLR 2024

D.3 RUNNING TIME

In Table 5, we present the running time of one iteration of different methods in different types of
games under the default values of hyperparameters given in Table 2. Compared to the four baselines,
we can see that UMD (RS) and UMD (GLD) do not introduce much extra computational overhead
while achieving competitive or better performance in most of the games.

Table 5: The running time of one iteration of different methods in different games (second).

Game KL EU ME ML UMD
(RS)

UMD
(GLD)

Kuhn_A 0.0298 0.0301 0.0298 0.0313 0.0299 0.0309
Kuhn_B 0.0292 0.0311 0.0299 0.0325 0.0303 0.0309
Leduc_A 0.1623 0.1630 0.1631 0.1664 0.1988 0.1993
Leduc_B 0.1817 0.1861 0.1850 0.1839 0.2178 0.2173

Tiny_Hanabi_A 0.0271 0.0265 0.0262 0.0276 0.0280 0.0273
Tiny_Hanabi_B 0.0257 0.0261 0.0255 0.0269 0.0267 0.0263
Tiny_Hanabi_C 0.0261 0.0263 0.0253 0.0272 0.0269 0.0259
Tiny_Hanabi_D 0.0259 0.0266 0.0258 0.0265 0.0274 0.0258

Kuhn 0.0200 0.0203 0.0199 0.0196 0.0239 0.0233
Leduc 0.2692 0.2701 0.2658 0.2695 0.3445 0.3429
Goofspiel 0.0167 0.0167 0.0166 0.0166 0.0191 0.0189
Liars_Dice 0.2454 0.2284 0.2258 0.2228 0.3057 0.3302
Hex 0.0029 0.0029 0.0027 0.0027 0.0051 0.0051
Dark_Hex 0.0149 0.0153 0.0150 0.0149 0.0225 0.0227
Blotto 0.0154 0.0159 0.0158 0.0156 0.0162 0.0162
Quoridor 0.0016 0.0016 0.0016 0.0016 0.0028 0.0029

Bargaining 0.0785 0.0784 0.0778 0.0773 0.1026 0.1031
Auction 0.1467 0.1501 0.1480 0.1464 0.1484 0.1515
Oh_Hell 0.1448 0.1448 0.1440 0.1427 0.2272 0.2319
Trade_Comm 0.0082 0.0082 0.0082 0.0081 0.0100 0.0103

MCC_Kuhn_A 0.6381 0.6497 0.6493 0.6380 0.6385 0.6451
MCC_Kuhn_B 0.6773 0.6707 0.6715 0.6645 0.6604 0.6625
MCC_Goofspiel_A 0.5186 0.5123 0.5094 0.5029 0.5012 0.5042
MCC_Goofspiel_B 0.5172 0.5361 0.5295 0.5238 0.5246 0.5085

27

	Introduction
	Related Work
	Problem Statement
	Unified Mirror Descent
	A Unified Policy Update Rule
	Zero-order Hyperparameter Optimization

	Experiments
	Experimental Setups
	Results and Analysis

	Conclusions and Future Directions
	More Discussion
	Derivation of Closed-Form Solutions
	Experimental Details
	Games
	Evaluation Protocol
	Hyperparameters

	More Experimental Results
	Learning Performance
	More Ablation Studies
	Effectiveness of RS/GLD
	Influence of Parameters in RS

	Running Time

