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Abstract—Cross-silo federated learning (FL) enables multiple institutions (clients) to collaboratively build a global model without sharing
private data. To prevent privacy leakage during aggregation, homomorphic encryption (HE) is widely used to encrypt model updates, yet
incurs high computation and communication overheads. To reduce these overheads, packed HE (PHE) has been proposed to encrypt
multiple plaintexts into a single ciphertext. However, the original design of PHE assumes all clients share a single private key, making
the system vulnerable to security threats of ciphertexts being intercepted and decrypted by honest-but-curious clients. Also, it does not
consider the heterogeneity among different clients, resulting in undermined training efficiency with slow convergence and stragglers.
To address these challenges, we propose FedPHE, a secure and efficient FL framework with PHE by jointly exploiting contribution-
aware secure aggregation and straggler-resistant client selection. Using CKKS with sparsification and blinding, FedPHE achieves
efficient secure aggregation that allows clients to only provide obscured encrypted updates while the server can perform aggregation by
accounting for contributions of local updates. To mitigate the straggler effect, we devise a perturbed sketch-based selection to cherry-
pick representative clients with heterogeneous models and computing capabilities in a communication-efficient and privacy-preserving
manner. We show, through rigorous security analysis and extensive experiments, that FedPHE can efficiently safeguard clients’ privacy,
achieve 2.45−6.56× training speedup, cut the communication overhead by 1.32−24.85×, and reduce straggler effects by 1.89−2.78×.

Index Terms—Federated learning, packed homomorphic encryption, secure aggregation, client heterogeneity, client selection

✦

1 INTRODUCTION

C ROSS-SILO federated learning (FL) [2], [3] is an emerg-
ing distributed learning paradigm that enables mul-

tiple institutions (e.g., banks, companies), referred to as
clients, to collaboratively train a global model without shar-
ing their private data [4], [5]. In a typical cross-silo FL
system, a central parameter server (PS) orchestrates many
clients to aggregate local updates (e.g., gradients, model
parameters) in multiple rounds of synchronization. Although
this system does not reveal the clients’ raw data in the clear,
it has been shown that adversaries can still infer a client’s
private information from its updates [6], [7], [8].
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To avoid privacy leakage during aggregation, many
privacy-preserving techniques have been employed for
FL [9], [10]. Among them, homomorphic encryption (HE)
is particularly attractive to cross-silo FL, as it provides
stronger privacy guarantees without compromising the
learning accuracy [11], [12], [13]. With HE, aggregation can
be performed directly on ciphertexts, without decrypting
them first. However, HE incurs significant computation
and communication overheads as it performs computa-
tionally intensive cryptographic operations (e.g., modular
multiplications and polynomial reductions) and generates
ciphertexts that are much larger to transfer than the input
plaintexts [14], [15]. A promising approach to address this
problem is packed HE (PHE), which packs and encrypts
multiple plaintext values into a single ciphertext [16]. By
facilitating parallel encryption/decryption operations on
multiple plaintexts, PHE dramatically reduces the encryp-
tion and communication overheads.

Though effective, existing PHE solutions [1], [17] com-
monly adopt single-key HE like Paillier and CKKS, with the
assumption that all clients share the same encryption and
decryption keys. Typically, each client encrypts local updates
using the shared encryption key before submitting them to
PS, ensuring that neither the PS nor external adversaries can
learn any information. Nevertheless, since all clients apply
the same decryption key, an honest-but-curious client has the
ability to intercept and decrypt the data from others. Hence,
PHE can be secure when all clients fully trust each other, yet
it is hard to guarantee in practice, particularly in cross-silo
FL scenarios. Without addressing these security challenges,
the potential of PHE cannot be fully unleashed.

Also, the original design of PHE largely ignores client
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heterogeneity [18], [19], an intrinsic problem of cross-silo FL,
making them hard to deploy in practice. On one hand, data
are distributed in an unbalanced fashion across clients (i.e.,
statistical heterogeneity), which often leads to discrepancies
in local models and adversely impacts convergence behav-
ior. This way, additional encrypted communications will be
implemented, undermining the training efficiency of FL. On
the other hand, clients may have varying computing capaci-
ties and communication bandwidth (i.e., system heterogene-
ity). This results in a prominent straggler problem, which
can be further exacerbated by computationally intensive en-
cryption/decryption operations, significantly slowing down
the training progress. A large body of works have been
proposed to address the heterogeneity issues [20], [21]. One
common approach is weighted aggregation [22]. As datasets
held by clients may have different contributions to model
performance, vanilla aggregation often causes serious bias
to the global model that hinders convergence. It is thus
desirable to differentiate between the contributions of local
updates during aggregation. Another popular approach is
to judiciously select a subset of clients to participate into
training, as not all clients are equally important [18], [23].
By identifying fast clients with quality data and involving
them in the training process, the straggler issue can be
effectively addressed without compromising model accu-
racy. Although many efforts have been devoted to weighted
aggregation and client selection, they were largely explored
separately and designed for plaintext data without any
encryption protection. In general, weighted aggregation is
performed based on client selection to collect clients’ con-
tributions, meanwhile, the aggregated global model also af-
fects local model training and, in turn, determines the client
selection. It is hence imperative to handle these problems to
achieve efficient PHE for heterogeneous FL.

To build a secure and efficient cross-silo FL system,
we have to cope with three major challenges. First, many
efforts have been devoted to mitigating the security issues
associated with single-key HE [24], [25]. Multi-key HE,
which allows clients to encrypt their local updates with
different encryption keys, has been recognized as an effec-
tive approach [26]. Despite advances, it results in unduly
high computation overheads, especially when deploying large-
scale FL. Consequently, training efficiency will be severely
impeded by cryptographic computations, underscoring the
necessity for achieving secure and lightweight aggregation
for FL. Second, existing HE solutions [17] often rely on
homomorphic addition for secure weighted aggregation,
where clients directly weigh their local updates based on
data size and encrypt the weighted updates for aggregation.
However, this approach becomes infeasible under client
heterogeneity, as the amount of local data on a client does
not reflect its potential contribution to the global model. Be-
sides, an accurate evaluation of client contribution generally
necessitates collecting all the local updates from clients,
which can only be accessed by the PS. As such, it is
desired to employ homomorphic multiplication on ciphertext
for weighted aggregation on the PS side. This introduces
potential communication bottlenecks as homomorphic multi-
plication typically requires a large ciphertext space for en-
cryption [27]. Third, existing client selection approaches [18]
are mainly carried out in plaintext and require direct access

to local model updates, raising privacy concerns in FL.
Accurately measuring clients’ contributions to the global
model is challenging due to client heterogeneity, which
is further exacerbated by privacy protection requirements.
Even if achieved, the selection efficiency will be significantly
compromised as data encryption demands many extra oper-
ations (e.g., communications and computations), which can
be overly expensive. Thus, we have to carefully navigate the
tradeoff between security and efficiency in client selection.

In this paper, we propose FedPHE, a secure and effi-
cient PHE-based FL framework to tackle challenges associ-
ated with security threats and client heterogeneity. FedPHE
develops a contribution-aware secure aggregation scheme
using the packed CKKS techniques, which supports ho-
momorphic multiplication. In a nutshell, the PS aggregates
the encrypted local updates from the selected clients with
encrypted weights accounting for their contributions to the
global model, facilitating the model to quickly incorporate
new knowledge and thus accelerating training convergence.
Given that vanilla CKKS often generates substantially en-
larged ciphertexts, we use a pack-based sparsification ap-
proach to optimize data transfer efficiency during periodical
encrypted FL synchronizations. To enhance privacy against
honest-but-curious adversaries, we employ a secret sharing-
based blinding technique to obscure the individual updates
with the random factor, later to be recovered and removed
to obtain the correct aggregated result. This way, the en-
crypted local updates are transmitted and aggregated in
the blinded form. To mitigate the straggler effect, FedPHE
devises a sketch-based client selection scheme to judiciously
select clients that host diverse models with fast training
capability. The key insight is that different clients might
send similar or redundant model updates to the PS, incurring
unnecessary communication costs. We propose to measure
the similarity of local updates using the sketching technique
which maps high-dimensional model updates to a lower
dimension through entry hashing. To further avoid potential
privacy leakage from such sketching, clients perturb the
computed sketches of their model updates before sending to
PS. The PS then removes these perturbations in the received
sketches, clusters clients with similar sketches together and
only selects the fastest client from each cluster. This ensures
that clients are selected in a communication-efficient and
privacy-preserving manner. We provide rigorous security
analysis for FedPHE and also validate its efficiency through
empirical studies.

We summarize our main contributions as follows:
• We propose FedPHE, a secure and efficient cross-silo

FL framework with PHE. To our knowledge, this is the
first attempt that enables both contribution-aware secure
aggregation and sketch-based straggler-resistant client se-
lection to effectively address the security threats and
heterogeneity challenges, thus closing the gap between
privacy-preserving FL and its practical implementation.

• Building upon CKKS’s homomorphic encryption, Fed-
PHE achieves efficient encrypted weighted aggregation
that accounts for contributions of local updates to the
global model. To enhance both efficiency and security
of data transfer, the pack-level sparsification, and se-
cret sharing-based blinding schemes are jointly imple-
mented, addressing the issues of increased ciphertext
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size using vanilla CKKS and ciphertext being decrypted
by honest-but-curious clients.

• FedPHE leverages perturbed sketches of local updates to
facilitate a communication-efficient client selection in a
privacy-preserving manner. By jointly considering data
distributions and resource availability, FedPHE clusters
similar clients together and then cherry-picks the fastest
client from each cluster, effectively mitigating the strag-
gler problem without compromising model accuracy.

• Rigorous security analysis demonstrates that FedPHE
is secure against honest-but-curious adversaries. Ex-
tensive experiments on real-world datasets show that
compared to the state-of-the-art approaches, FedPHE
accelerates the training speed by 2.45-6.56×, cuts the
communication overhead by 1.32-24.85×, and mitigates
the straggler effect by 1.89-2.78×, with a slight degra-
dation of model accuracy (1.45% only).

2 PRELIMINARIES AND MOTIVATION

We start by introducing the basics of cross-silo FL and the
HE technique. We then motivate the design of FedPHE.

2.1 Cross-Silo Federated Learning
Consider a cross-silo FL system consisting of a central PS
and a set of N clients N = {1, · · · , N} that collaboratively
train a machine learning model without sharing their raw
data. Each client i holds a local dataset Di containing Di =
|Di| data samples. Let fi(w, ξi) be the loss value computed
from the training sample ξi ∈ Di with parameters w. The
local loss function of client i is computed as

fi(w) ≜
1

Di

∑
ξi∈Di

fi(w, ξi). (1)

The goal of clients is to jointly solve the following optimiza-
tion problem, under the coordination of the PS:

min
w
L(w) ≜ min

w

∑
i∈N

pifi(w), (2)

where L(w) is the global loss function, and pi is client i’s
aggregation weight, where pi ≥ 0 and

∑
i∈N pi = 1. To

solve Eq. (2), clients perform a synchronous update (gi =
∇fi(w)) that proceeds in rounds of communication.

A key requirement for cross-silo FL is to provide a
strong privacy guarantee, as there is increasing evidence
that adversaries can extract private information from client
updates even when training data are kept locally [6], [8].

2.2 Homomorphic Encryption
HE is a powerful cryptographic primitive that enables com-
putations to be performed directly on the encrypted data
without decrypting them in advance [28], [29]. HE ensures
that the calculations performed on ciphertexts, when de-
crypted, give identical results of that obtained by directly
operating on the plaintexts. More formally, an encryption
scheme E(·) is said to be an additive HE scheme if E(m1)⊕
E(m2) = E(m1 +m2) for any plaintext messages m1 and
m2, where ⊕ is an addition operation. Similarly, a scheme is
a multiplicative HE scheme if E(m1)⊙E(m2) = E(m1 ·m2),
where ⊙ is a multiplication operation. Popular HE schemes
include Paillier [30], BFV [31], and CKKS [32], where Paillier

Fig. 1: Comparisons of weighted and unweighted aggregation.

only allows the addition operation to be performed on
ciphertexts, whereas BFV and CKKS support both additions
and multiplications.

While HE allows the computation to be securely del-
egated to an untrusted third party, it suffers from critical
inefficiency associated with encryption operations and ci-
phertext transmissions. Many efforts have been devoted to
improving HE efficiency [14], [15], [33]. Among them, a
promising approach is PHE which packs and encrypts mul-
tiple plaintext values into a single ciphertext, allowing for
parallel encryption/decryption operations [17]. However,
current (packed) homomorphically encrypted FL solutions
either often assume all clients use a single encryption key, or
largely ignore the intrinsic client heterogeneity in a cross-silo
FL, substantially limiting their practical applications.

2.3 Motivation
The need for weighted aggregation on ciphertexts. In real-
world FL systems, the training datasets owned by clients
often have different contributions to the global updates,
a phenomenon known as the statistical heterogeneity. In
this case, simply performing unweighted aggregation, i.e.,
gt+1 =

∑
i∈N

1
N gt

i where pi =
1
N , results in an undesirable

bias to the global updates that hinder the training conver-
gence. A more appropriate approach is to perform weighted
aggregation, in which clients are assigned different weights
for aggregation based on their contributions (e.g., data size
or quality). Taking FedAvg [34] as an example, the weighted
aggregation based on data size is performed to minimize the
loss in Eq. (2), i.e.,

gt+1 =
∑
i∈N

pig
t
i =

∑
i∈N

Di∑
i∈N Di

gt
i , (3)

where gt
i and gt are the local and global updates. To il-

lustrate the significance of weighted aggregation, we refer
to Fig. 1. Compared to the unweighted approach, weighted
aggregation (weight set based on the data size) results in
much-improved accuracy loss and faster convergence. How-
ever, existing HE solutions [17] employ either unweighted
aggregation or homomorphic addition-based aggregation,
making them infeasible to support general weighted aggrega-
tion. It is hence desired to employ homomorphic multiplication
on ciphertext for secure weighted aggregation.
The need for efficient secure aggregation. HE-based FL
methods offer strong privacy guarantees, albeit at the ex-
pense of efficiency. Table 1 shows the comparison results of
Paillier, BFV, and CKKS as well as their packed implemen-
tation with plaintext size 109.89KB. Specifically, Paillier gen-
erates a ciphertext close to 205× larger than the plaintext,
while consuming considerable computation time. BFV and
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TABLE 1: Comparisons of different (packed) HE schemes.

(Packed) HE scheme Ciphertext
size

Encryption
time (s)

Decryption
time (s)

Paillier 21.97 MB 63.46 39.63

PackedPaillier 264.96 KB 3.18 2.60

BFV Memory out

PackedBFV 22.68 MB 0.04 0.02

CKKS Memory out

PackedCKKS 4.54 MB 0.06 0.04

TABLE 2: Breakdown of training iteration time for normal
clients and stragglers.

Clients

Time (s)
Training Encryption Idle Decryption

Normal clients 3.24 6.68 8.25 4.65

Stragglers 6.19 ↑ 12.24 ↑ 2.00 ↓ 9.69 ↑

CKKS produce larger ciphertexts than Paillier and even lead
to memory overflow. Though the PHE technique can address
these issues, the yielded communication overheads remain
too high, resulting in an inflation of 2.4× for Paillier, 211.3×
for BFV, and 42.3× for CKKS. Moreover, existing PHE
solutions commonly adopt single-key HE like Paillier and
CKKS, where all clients are assumed to share a single private
key, making the system vulnerable to security threats of
ciphertexts being intercepted and decrypted by honest-but-
curious clients. Thus, it is imperative to jointly address these
two issues for achieving efficient secure aggregation for FL.
The need for straggler resistance. In synchronous cross-silo
FL systems, client heterogeneity inevitably results in strag-
glers, i.e., slow clients. This problem is further exacerbated
with computationally intensive HE operations. Waiting for
these stragglers significantly prolongs FL training. Although
it seems feasible to set a staleness bound by directly ignoring
stragglers, deriving the optimal bound is challenging. Ta-
ble 2 illustrates the straggler effect, which extends the train-
ing time by 91.0% and the encryption/decryption time by
93.6%. Moreover, normal clients, except for stragglers, ex-
perience an extra 36.2% waiting time. Therefore, stragglers
cause high latency and hinder synchronization efficiency,
necessitating the straggler-resistant solutions for FL.
The need for client selection. One possible remedy for
stragglers is to select a subset of clients to participate in
FL. As shown in Fig. 2, a simple approach that randomly
chooses 80% of clients can significantly decrease the de-
lay without sacrificing model accuracy. Although random
selection expedites convergence by reducing the selection
probability of stragglers, it fails to tackle the straggler issue
at its core. Moreover, existing client selection methods are
carried out in plaintext, which is susceptible to privacy
leakage [35]. Hence, how to achieve efficient and privacy-
preserving client selection remains challenging for mitigat-
ing the straggler effect.

3 DESIGN OF FEDPHE
In this section, we describe FedPHE, a secure and efficient
PHE-based FL framework designed to address challenges
associated with security threats and client heterogeneity. We

(a) MNIST (b) FMNIST

Fig. 2: Comparisons of FullSelection and RandomSelection.

begin with a system overview and then elaborate on how
FedPHE co-designs contribution-aware secure aggregation
and sketch-based straggler-resistant client selection, fol-
lowed by its security analysis.

3.1 Overview

Our proposed system consists of three types of entities: a
key distribution center (KDC), a central PS and a set of N
clients. The main job of KDC is generating and dispatching
keys, vectors and local blinding factors to clients/PS via
secure channels. During collaborative model training, data
exchanges are carried out between clients and PS through
insecure channels.
Threat model. In our system, the KDC is regarded as
fully trusted. The PS and clients are assumed to be honest-
but-curious, which is commonly adopted in most existing
works on privacy-preserving FL [26], [36]. That is, they will
honestly follow the protocol design, yet are curious about
the private data of each client. In our threat model settings,
honest-but-curious clients may try to eavesdrop and decrypt
the encrypted local updates to obtain a particular client’s
private data, but they do not launch poisoning attacks.
Design goals. Our design goal is to develop a secure and
efficient FL framework with PHE. Specifically, the following
desirable objectives should be achieved.

• Privacy. It should protect the privacy of local datasets
against honest-but-curious PS and clients. Specifically,
the PS cannot access the private training data of any
particular client, while clients cannot infer any private
information about other clients’ datasets, even when
eavesdropping attacks are launched.

• Efficiency. It is expected to be efficient for encrypting lo-
cal updates and transferring ciphertexts since high com-
putation and communication overheads make PHE-
based FL difficult to implement in practice. Further-
more, it should effectively mitigate the negative impact
of stragglers under client heterogeneity, accelerating the
training process without sacrificing model accuracy.

Architecture. We propose FedPHE to attain the above two
objectives by jointly designing contribution-aware secure ag-
gregation and sketch-based straggler-resistant client selection.
Fig. 3 shows the main architecture, where FedPHE proceeds
in rounds of communication as described below.

1⃝ Key Distribution. KDC generates and dispatches keys
and vectors to clients in secure channels every τ rounds.

2⃝ Local Training. At the beginning of each round t, every
client i ∈ N runs E steps of local stochastic gradient
descent in Eq. (2) to compute local update gt

i ;
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Fig. 3: A snapshot of FedPHE architecture.

3⃝ Sketching Local Updates with Perturbation. Using vectors
Vc,Vs,i received from KDC, client i ∈ N computes and
sends the perturbed sketch h̃t

i of local update gt
i to PS;

4⃝ Client Selection via Clustering Sketches. The PS recovers
the original sketches by removing personalized pertur-
bations and clusters them to select a subset of clients
St as participants, where the aggregation weight pti for
each selected client is derived based on its contribution;

5⃝ Packed Encryption with Sparsification and Blinding.
KDC computes and dispatches local blinding factors
{∆i}i∈St to selected clients. Each selected client i ∈ St
performs sparsification by packing local updates gt

i into
{P1

i , · · · ,PK
i }, and blinds the sparsely packed local up-

dates with ∆i; After that, it encrypts the blinded packed
local updates and sends the ciphertext Cti along with
mask M t

i to PS for aggregation; Finally, it collaborates
with other selected clients to retrieve blinding factor R
and sends it to unselected clients within the cluster.

6⃝ Encrypted Weighted Aggregation. The PS aggregates the
received encrypted local updates along with encrypted
weights, and then computes and dispatches the en-
crypted global updates Ct and mask M t to all clients;

7⃝ Decryption and Model Update. Every client decrypts, un-
blinds and unpacks the encrypted global updates, and
then performs the local model updates.

The details of FedPHE are illustrated in Alg. 1. KDC
distributes the updated keys and perturbation vectors to
clients every τ rounds (lines 3–6). During each global round
t, clients execute local training and send perturbed sketches
of the local updates to PS (lines 18-22). The PS then selects a
subset of clients St as participants by clustering sketches
(lines 11-12). Given local blinding factors received from
KDC, the selected clients perform PHE with sparsification
and blinding, and transmit the blinded encrypted model
updates and masks to PS (line 25). Taking into account
clients’ contributions, the PS conducts secure aggregation
and sends the results to all clients (lines 13-14). Finally,
clients decrypt the encrypted global updates and update
their local models (lines 29-31).

3.2 Contribution-Aware Efficient Secure Aggregation

Building upon PHE with sparsification and blinding, FedPHE
conducts an efficient secure aggregation on the ciphertexts
received from selected clients as illustrated in Alg. 2. In
particular, the aggregation weights are adjusted based on

Algorithm 1: FedPHE
Input: Clients N , global round T , local steps E,

learning rate η, update frequency τ
Output: Global model wT

1 Initialize models {wi}i∈N ;
// KDC

2 for each round t ∈ {0, · · · , T − 1} do
3 if t mod τ = 0 then
4 Generate keys {sk, pk}, vectors Vc, {Vs,i}i∈N ;
5 Dispatch {sk, pk,Vc,Vs,i} to client i ∈ N ;
6 Dispatch {Vs,i}i∈N to the PS;

7 Compute and send {rd, ri,∆i} to client i ∈ St;
// PS

8 for each round t ∈ {0, · · · , T − 1} do
9 if t mod τ = 0 then

10 Receive {Vs,i}i∈N from KDC;

11 Receive perturbed sketches {h̃t
i}i∈N from clients;

12 Run client selection by Alg. 3, send St to clients;
13 Receive {Cti ,M t

i } from selected clients i ∈ St;
14 Run secure aggregation by Alg. 2, send Ct, M t

to selected clients;
// Client i ∈ N

15 for each round t ∈ {0, · · · , T − 1} do
16 if t mod τ = 0 then
17 Receive {sk, pk,Vc,Vs,i} from KDC;

18 for each step j ∈ {0, · · · , E − 1} do
19 gi(w

t
i,j)← ▽fi(wt

i,j);
20 wt

i,j+1 ← wt
i,j − η · gi(wt

i,j);

21 gt
i ← gi(w

t
i,E);

22 Compute and send perturbed sketch h̃t
i to the PS;

23 Receive selection set St from the PS;
24 if i ∈ St then
25 Run secure aggregation by Alg. 2, send

Cti ,M t
i to the PS and R to unselected clients;

26 else
27 Receive R from the selected client;

28 Receive encrypted global updates Ct, mask M t;
29 Decrypt and unblind to get P ←D(Ct, sk)−R;
30 gt ← Unpack P to obtain global updates;
31 wt+1

i ← wt
i − η · gt;

the contributions of local updates to global updates so as to
accommodate client heterogeneity.
CKKS-based PHE. To improve the efficiency of general HE
schemes, PHE [16] is proposed by packing and encrypting
multiple plaintext values {g1, g2, · · · , gB} into a single ci-
phertext, where B is the packing size. By facilitating parallel
encryption/decryption operations on multiple plaintexts,
PHE can greatly reduce computation and communication
overheads. In this work, we choose CKKS as the basis of
PHE, providing several advantages over Paillier and BFV.
On one hand, CKKS allows direct encryption of real numbers
on vectors, while Paillier and BFV are limited to encrypting
integer plaintexts, which requires quantizing floating-point
numbers and introduces the risk of overflow or loss of pre-
cision. In contrast, CKKS improves the efficiency of encryp-
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Fig. 4: Illustration of CKKS packing mode.

Fig. 5: Top-k sparsification. (a) shows the conventional packing
method for HE, which is incompatible with sparsification when
applied to ciphertexts; (b) presents an alternative approach to
resolving this issue by packing prior to sparsification.

tion and decryption operations by packing multiple vector
elements into a single polynomial directly, thus enhanc-
ing the overall effectiveness of cryptographic procedures.
Fig. 4 illustrates this packing process concisely. On the other
hand, CKKS supports homomorphic multiplication, making
it suitable for achieving secure weighted aggregation under
heterogeneous cross-silo FL. On the contrary, Paillier only
enables homomorphic addition, and BFV may encounter
overflow issues when multiplying the quantized integers
after encryption. Hence, CKKS is deemed more viable to
directly multiply the encrypted parameters with encrypted
weights on the PS side during aggregation. This way, it is
equivalent to performing weighted aggregation first, fol-
lowed by encryption of the aggregated result.

Despite the potential advantages, CKKS-based PHE still
incurs high communication overheads and also suffers
from the risk of ciphertexts being decrypted by honest-but-
curious clients. To further enhance its efficiency and security,
the pack-level sparsification and secret sharing-based blind-
ing schemes are jointly implemented.
Pack-level sparsification. Sparsification is a promising ap-
proach for reducing the communication traffic in FL train-
ing [37]. In top-k sparsification, each client can sparsify its
model updates by only selecting the top-k model updates
to send to the PS. However, sparsification is mainly im-
plemented at the scalar level, and becomes infeasible once
the data is packed and encrypted. The reason is that if
sparsification is conducted before encryption, the PS can-
not perform alignment on ciphertexts due to inconsistent
coordinate masks [33], Fig. 5 provides a clear visualization
of this process. An alternative method is packing first and
then sparsifying the packs. In this case, the PS can align the
ciphertexts based on the packs’ masks, i.e., the sparsification
granularity is at the packing level.

Each selected client starts by flattening and packing
the local model, and then determines the mask given the
sparsification ratio ζ . The mask will be set to 1 for those
packs with the top ζ ratio largest L2-norm values, and the
masked packs are blinded and encrypted accordingly. The
ciphertext Cti along with the corresponding mask M t

i are
sent to the PS. Notice that such sparsification techniques for
CKKS can be further applied to enhance the efficiency of
Paillier and BFV in heterogeneous scenarios, where clients’
model updates are weighted locally.
Secret sharing-based blinding. While HE allows comput-
ing on encrypted data, it still suffers from security threats
of ciphertexts being intercepted and decrypted by honest-
but-curious clients. To address these security issues, we
propose a Shamir secret sharing-based blinding mechanism
that splits a secret blinding number into multiple shares and
distributes these shares to clients, thereby securely blinding
the sparsely packed local updates before sending to PS.
When enough clients with blinding shares work together,
the secret can be correctly reconstructed.

To realize this, a Shamir (th, |St|) threshold secret shar-
ing protocol is employed using polynomial interpolation.
Specifically, each selected client i receives a blinding number
ri (secret) and constructs a polynomial Fi(x) of degree
th− 1 whose constant term is ri (i.e. Fi(0) = ri) and whose
remaining coefficients are randomly chosen from the finite
field p, denoted as a1, a2, · · · , ath. That is,

Fi(x) = ri + a1x+ a2x
2 + · · ·+ athx

th−1 (mod p) , (4)

where th < |St| is called the threshold. Then the client
splits ri into |St| shares {ri,j}j∈St according to Fi(x),
and exchanges them with others. Upon decrypting global
updates, each client performs an unblinding operation to
compute r̃i =

∑|St|
j=1 rj,i, and then collaboratively recovering∑

i∈St ri as r through Lagrange interpolation, i.e.,

r =
∑
i∈St

ri =
th∑
i=1

r̃i ·
th∏

j=1,j ̸=i

x− xj

xj − xi
(mod p) . (5)

This allows clients to construct the original polynomial and
cumulative blinding values r provided at least th shares
are known, all without disclosing their individual blinding
numbers to each other.

To mitigate the risk of privacy leakage when exchanging
secret shares among clients, KDC further generates a unique
blinding number rd and employs a lightweight additive secret
sharing protocol to securely dispatch local blinding factors
{∆i}i∈St to clients. When preparing to blind data, client i
combines its unique blinding factor ∆i provided by KDC.
After decrypting the global updates, it subtracts the global
blinding factor R = r + rd to unblind the result. This dual-
layer blinding scheme provides a strong safeguard against
unauthorized data access and enhances the privacy of the
distributed secret sharing system.
Contribution-aware weighted aggregation. To accommo-
date client heterogeneity, the PS aggregates encrypted lo-
cal updates from selected clients with encrypted weights
accounting for their contributions to the global model.
Here the contribution of client i is quantified based on
the similarity of its sketches in the last round and current
round, {ht−1

i , ht
i}. Locality-Sensitive Hashing (LSH) [38] has
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Algorithm 2: Efficient Secure Aggregation

Input: Selected clients St, round t, number of packs
K , sparsification ratio ζ , public key pk

Output: Encrypted global updates Ct and mask M t

// KDC

1 Generate rd, {ri}i∈St and {rd,i}i∈{1,··· ,|St|−1};

2 rd,|St| ← (rd −
∑|St|−1

i=1 rd,i) mod p;
3 Receive {pti}i∈St from PS;
4 Compute {∆i ← (ri + rd,i)/p

t
i}i∈St ;

5 Dispatch {rd, ri,∆i} to selected client i ∈ St;
// PS

6 Receive {Cti ,M t
i }i∈St from selected clients;

7 Ct ←
∑

i∈St E(pti, pk) · Cti , M t ←
∑

i∈St pti ·M t
i ;

8 Dispatch Ct and M t to all clients;
// Client i ∈ St

9 Receive {rd, ri,∆i} from KDC;
10 Pi := {P1

i · · · PK
i } ← Flatten and pack with gt

i ;
11 Decide masks M t

i for threshold ζ largest in Pi;
12 for M t

i [l] ∈M t
i do

13 Pi[l]← Pi[l] + ∆i;
14 Cti ← Append E(Pi[l], pk);

15 Send Cti ,M t
i to the PS;

16 {rij}j∈St ← Split ri into |St| shares by Eq. (4);
17 Exchange ri,j with client j ∈ St\i;
18 Exchange r̃i =

∑|St|
j=1 rj,i with clients j ∈ St\i;

19 Recover r from {r̃j}j∈St by Eq. (5);
20 Compute blinding factor R← r + rd, and send it to

unselected clients;

been widely employed in many applications to approximate
Jaccard Similarity, i.e., JS(X,Y ) = |X ∩ Y |/|X ∪ Y |. The
PS calculates the probability of sketch collision to estimate
the Jaccard similarity of two local updates denoted by
JS(gt−1

i , gti), i.e.,

PrH(ht−1
i = ht

i) = JS(gt−1
i , gti). (6)

According to [39], lower similarity implying higher infer-
ence loss is likely to achieve better performance and thus
should be assigned a larger aggregation weight pti. That is,

pti =
exp(−β · JS(gt−1

i , gti))∑
j∈St exp(−β · JS(gt−1

j , gtj))
, (7)

where β is a positive number used to modify the exponential
function’s curve.

After receiving ciphertexts {Ct1, · · · , Ct|St|} and masks
{M t

1, · · · ,M t
|St|} from selected clients St, the PS performs

encrypted weighted aggregation to get global updates, i.e.,

E(gt+1) =
∑

i∈St
E

(
pti
)
×E

(
gt
i +∆i

)
=

∑
i∈St

E
(
pti
)
×E

(
gt
i + (ri + rd,i)/p

t
i

) (8)

which E (pti) is the encrypted weight assigned to client
i. Building upon CKKS’s homomorphic multiplication, the

Algorithm 3: Sketch-Based Client Selection
Input: Clients N , round t, cluster threshold γ, seed

s, dimension k, random vectors Vc,Vs,i
Output: Selected clients St
// PS

1 Receive perturbed sketches {h̃t
i}i∈N from clients;

2 h
t

i ← h̃t
i − Vs,i,∀i ∈ N ;

3 C← min(G({ht

1, · · · ,h
t

N}), γN );
4 Cluster {ht

i}i∈N into classes At := {At
1 · · · At

C};
5 St ← Select clients from At by Eq. (12);
6 Send St to all clients;
7 Send weights {pti}i∈St to KDC based on Eq. (7);
// Client i ∈ N

8 gt
i ← Flatten local updates gt

i;
9 M← Generate mapping matrix G(s, k);

10 ht
i ← Sketching H(gt

i ,M);
11 h̃t

i ← ht
i + Vc + Vs,i;

12 Send perturbed sketch h̃t
i to the PS;

aggregation in Eq. (8) is equivalent to performing weighted
aggregation on plaintexts and encrypting the result, i.e.,

E(gt+1) = E
(∑

i∈St
pti × gt

i +
∑

i∈St
ri +

∑
i∈St

rd,i
)

= E
(∑

i∈St
pti × gt

i + r + rd
)

= E
(∑

i∈St
pti × gt

i +R
)

(9)

where R = r + rd is referred to as global blinding factor.
The encrypted global updates Ct =

∑
i∈St E(pti) · Cti and

mask M t =
∑

i∈St pti ·M t
i are subsequently dispatched to

all clients for decryption and model update. We summarize
how FedPHE conducts contribution-aware efficient secure
aggregation in Alg. 2.

3.3 Sketch-Based Straggler-Resistant Client Selection

We employ client selection to address the straggler is-
sue arising from client heterogeneity. In practice, different
clients might have similar or redundant model updates,
causing unnecessary communication costs. Existing client
selection approaches are largely conducted on plaintext,
which contradicts the principles of privacy-preserving FL.
To this end, we leverage the similarity of local updates
to facilitate a sketch-based client selection in a privacy-
preserving manner. Specifically, in each round, clients com-
pute and send perturbed sketches of their model updates
to the PS. After removing the personalized perturbations
from sketches, the PS clusters similar sketches together and
selects the fastest client from each cluster. The main steps
are summarized in Alg. 3.
Sketching local updates with perturbation. After decryp-
tion and model updates, each client i first flattens the
local model updates gti to a d element tensor gti and then
generates a k × d matrix called M, which is made up of
k d-dimensional vectors, using the shared seed s. By lever-
aging the LSH technique, the client achieves dimensionality
reduction on gti and obtains a sketch ht

i. In particular, LSH
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Fig. 6: A toy example of perturbed sketching with ϵ = 0.1.

is a family F of functions H: Rd → S, with the property
that if two inputs are similar in the original data space, they
will also have a high similarity after being converted by the
hash [40], [41]. For any two clients’ model updates, gm and
gn, any hash function h chosen uniformly at random from
F should satisfy

• If d(gm, gn) < R, then PrH(h(gm) = h(gn)) ≥ p1;
• If d(gm, gn) ≥ cR, then PrH(h(gm) = h(gn)) ≤ p2.

Here, c is an approximation ratio for the nearest neighbor
search, R is the distance from the nearest neighbor, and
p1, p2 denote the probabilities such that p1 > p2. This
definition ensures that if gm and gn are close, they are
hashed to the same bucket (collision) with a high probability
(≥ p1), whereas they are hashed to the same bucket with
a low probability (≤ p2). We exploit the properties of LSH
functions to signify higher similarity during collisions when
two inputs’ hash codes are highly similar.

Accordingly, local updates are quantized into a binary
matrix M{0,1}. The m-th element of sketch ht

i corresponds
to the m-th row in matrix Mk×d, pinpointing where the
first 1 appears in M{0,1}. Despite the limited information
involved in sketches, there is a risk of privacy leakage
when sketches are transferred to the PS or intercepted by
honest-but-curious clients. To prevent the PS from deducing
sketches, each client adds a shared vector Vc to its sketch
ht
i, yielding a perturbed sketch h

t

i. The addition of Vc is
carefully calibrated to be minimal, ensuring that it does not
interfere with the accuracy of operations such as Jaccard
Similarity or clustering. Moreover, the security of ht

i is
maintained since the PS is not privy to Vc. To further shield
against potential interception of sketches, a personalized
vector Vs,i, exclusively known to the PS and client i, is also
added into the sketch before transmission. Consequently,
even if the perturbed sketch h

t

i + Vs,i is intercepted by
honest-but-curious clients, they won’t be able to learn any
meaningful information in the absence of Vs,i. An illustra-
tive example of this secure perturbed sketching process is
depicted in Fig. 6.
Clustering sketches. After receiving the sketches of local
updates from clients, the PS removes personalized pertur-
bations {Vs,i}i∈St and computes the number of clusters
C = min(G({ht

1, · · · , h
t

N}), γN), where G(·) denotes the
gap statistic, a standard technique to determine the optimal
cluster number [42]. Gap statistic compares the actual intra-
cluster variation to the expected values based on a null

reference distribution, which is generated using Monte Carlo
simulations. Here, γ is the threshold that limits the maxi-
mum number of clusters. For any given k = 1, · · · , kmax, the
gap statistic is defined as

Gn(k) = E∗
n(log Wk)− log Wk, (10)

where Wk denotes the dispersion within the cluster,
by comparing to its expectation E∗

n under a sam-
ple size n from the reference distribution. To correct
the error in Monte Carlo sampling, the correction fac-
tor sk can be calculated from B copies of the refer-
ence datasets. Let w = 1

B

∑B
b=1 log (Wkb∗). The stan-

dard deviation denoted by sd(k) can be derived, i.e.,

sd(k) =
√

1
B

∑B
b=1(log Wkb∗ − w)2. Define sk = sd(k) ×√

(1 +B)/B. We finally choose the smallest k as the num-
ber of clusters such that

Gk ≥ Gk+1 − sk+1. (11)

Following that, clients can be clustered into C classes
{At

1 · · · At
C} by K-means, where those clients in the same

class share similar sketches. Based on the assumption that
LSH hashes similar input items into the same buckets with a
high likelihood, similar sketches mean similar local updates.
Selecting clients. Instead of randomly selecting a client
from a cluster, the PS prioritizes selecting one representative
client having the ability to train quickly. Denote T t

i as the
order of client i’s local update received by the PS in round
t. Given the participation history T 0

i , · · · , T
j−1
i , the priority

Ft
i of being selected can be determined by

Ft
i =

1

αδt−1
i + (1− α)× T t

i

, (12)

where α ∈ (0, 1) is the influencing factor, and δt−1
i =

1
t

∑t
j=0 T

j
i represents the historical engagement perfor-

mance of client i. If the cluster consists of only one client,
we directly add this client to the selection set St.

Compared to traditional similarity determination tech-
niques like cosine similarity, adopting the perturbed
sketches of local updates as a cluster feature is not only
communication-efficient but also privacy-preserving. This
advantage becomes particularly pronounced when applied
to more sophisticated machine learning models.

3.4 Security Analysis
In this section, we analyze the security of FedPHE. Our
analysis is based on the assumption that KDC is completely
trustworthy and dispatches keys/blinding factors to clients
via secure channels. Generally, there are two main threats
to clients’ data. First, data leakage can occur on honest-but-
curious PS during aggregation and client selection. Second,
an honest-but-curious client may decrypt the individuals’
encrypted local updates by launching eavesdropping at-
tacks. We next show that FedPHE is secure against both
honest-but-curious PS and clients.

Theorem 1. Security against the honest-but-curious PS: In
FedPHE, the honest-but-curious PS cannot infer any private
information about clients’ datasets.

Proof. In FedPHE, the PS is responsible for aggregation and
client selection. In the aggregation phase, the PS can only
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have access to ciphertexts since the local updates received
from selected clients are encrypted via PHE before trans-
mission. This prevents the PS from accessing any individual
client’s update during aggregation.

While in client selection phase, the perturbed sketch
technique is employed for communication efficiency and
privacy preservation. The sketches of local updates are
dependent on a seed s or mapping matrix M, both of
which are opaque to PS. Without the seed s, PS can only
infer the matrix M through guesswork, which yet is inef-
fectual for launching model inversion attacks or deducing
updates since guessing cannot reliably create a collision
with a client’s sketch. Additionally, PS cannot obtain any
client’s random vector Vc, which is transmitted from KDC
via a secure channel. Consequently, the transmission of
these sketches does not compromise client privacy, and any
reverse engineering attempts to extract information from
sketches are destined to fail.

Therefore, the honest-but-curious PS cannot infer any
particular client’s dataset information.

Theorem 2. Security against honest-but-curious clients: In
FedPHE, an honest-but-curious client capable of launching eaves-
dropping attacks cannot infer any private information about other
clients’ datasets.

Proof. An honest-but-curious client j may attempt to eaves-
drop and decrypt the ciphertexts of any other client i’s
updates, denoted as Cti = E(Pi[l]+∆i, pk) = E(Pi[l]+(ri+
rd,i)/p

k
i , pk). However, the adversary cannot have access

to client i’s local updates due to the unawareness of the
personalized blinding number ri, blinding share rd,i and
aggregation weight pki . Even if it can recover ri by inter-
cepting all shares {ri,k}k∈St distributed to selected clients,
the blinding share rd,i and weight pki are stored in KDC and
remain unknown. Thus, the client cannot obtain any other
client’s private data through eavesdropping ciphertexts.

Similarly, if an honest-but-curious client attempts to
eavesdrop on the sketch h̃t

i = h̃t
i + Vc + Vs,i during the

client selection phase, although the client possesses Vc, he
is unaware of the personalized perturbation vector Vs,i,
which is securely transmitted via the KDC. Thus, the client
is unable to obtain any private information by intercepting
others’ sketches.

Therefore, an honest-but-curious client cannot infer any
private training data of other clients.

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of FedPHE,
including contribution-aware efficient secure aggregation
and sketch-based straggler-resistant client selection.

4.1 Evaluation Setup
Platform and parameters. Evaluations are conducted with 3
NVIDIA GeForce RTX 4090 GPUs using Pytorch. Consider
a cross-silo FL scenario where N = 10 clients collabora-
tively train a model. We implement BFV and CKKS with
TenSEAL [43], and their poly modulus degrees are set to
8192. To mimic the presence of stragglers, we randomly
select 25% of clients as stragglers and introduce an artificial

delay of 3−5 rounds’ training time. The batch size is B = 64
and the learning rate is η = 1e − 3 (1e − 2 for CIFAR-100).
The packing size and the number of LSH hash functions are
set to 4096 and 200, respectively.
Datasets and models. We evaluate the results on four real
datasets: MNIST [44], FMNIST [45], CIFAR-10 and CIFAR-
100 [46]. In particular, we partition MNIST and FMNIST
into 60, 000 training data and 10, 000 test data. For CIFAR-
10 and CIFAR-100, we use 50, 000 and 10, 000 images as the
training data and test samples, respectively. We study the
client heterogeneity of the Dirichlet Non-IID data setting
(α = 1), similar to [47]. The client data distributions under
such non-iid setting are visualized in Fig. 7. We see that
datasets are highly imbalanced with different clients holding
unequal amounts of samples, which closely mirrors real-
world data distributions. A straightforward LeNet-5 neural
network architecture [44] is employed for MNIST. For FM-
NIST, a CNN model with 2 convolutional layers and 1 fully
connected layer is utilized. The ResNet-20 and ResNet-32
models [48] are applied respectively to conduct experiments
on the CIFAR-10 and CIFAR-100 datasets.
Baselines. To validate the proposed FedPHE, we introduce
the following FL algorithms for comparison.

• Plaintext: an ideal upper bound for computation and
communication overheads, where parameter transmis-
sion and aggregation are conducted in plaintext.

• BatchCrypt: Paillier-based PHE [17], where clients quan-
tize first, then pack and encrypt the model updates,
while the PS performs aggregation on the ciphertext.

• PackedBFV: BFV-based PHE [31], where model updates
are quantized and weighted on the client side before
encryption, as BFV only supports integer operations.

• PackedCKKS: CKKS-based PHE [32], which leverages
the ciphertext multiplication of CKKS to facilitate en-
crypted weighted aggregation on the PS side.

• FedAvg: federated averaging [34], where the PS ran-
domly selects the subset of clients for aggregation.

• FLANP: straggler-resilient FL with adaptive client selec-
tion [49], which starts the training process with faster
clients and gradually involves slower clients once the
accuracy of current participants’ data is reached.

4.2 Evaluations on Efficient Secure Aggregation

We evaluate the efficiency of the proposed FedPHE by
examining the test accuracy, network traffic and training
time under different datasets, compared to the baselines,
including plaintext training (no encryption), BatchCrypt,
PackedBFV, and PackedCKKS. The experiments were con-
ducted until reaching convergence.
Accuracy. Fig. 8 illustrates the training process of the global
model on different datasets, i.e., MNIST, FMNIST, CIFAR-
10 and CIFAR-100. Basically, the accuracy curves of the
plaintext and other baselines almost overlap with each other,
signifying that the PHE technique does not lead to a reduc-
tion in accuracy. While for FedPHE, the accuracy fluctuates
within an acceptable range of 0.26% − 1.45%, which arises
from pack-level sparsification and client selection.
Network traffic and training time. We present the network
traffic and training time of FedPHE and the baselines on
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(a) MNIST (b) FMNIST (c) CIFAR-10 (d) CIFAR-100

Fig. 7: Client data distributions under the non-IID setting (α = 1), where color intensity indicates the data volume of each class.

(a) MNIST (b) FashionMNIST (c) CIFAR-10 (d) CIFAR-100

Fig. 8: Accuracy versus global rounds of FedPHE and the baselines on different datasets.

TABLE 3: Network traffic, test accuracy, and training time of FedPHE and the baselines on different datasets.

Dataset Metric Plaintext BatchCrypt PackedBFV PackedCKKS FedPHE

MNIST

Traffic (MB) 55 133 1996 1763 150

Accuracy 96.64% 95.14% 95.13% 95.10% 95.15%

Time (s) 622.84 3314.79 1371.73 1235.21 623.03

FMNIST

Traffic (MB) 53 103 1938 1371 78

Accuracy 89.31% 87.72% 87.81% 87.26% 87.11%

Time (s) 636.64 1690.23 750.68 923.88 690.65

CIFAR-10

Traffic (MB) 347 619 11330 9776 3815

Accuracy 72.46% 71.19% 70.08% 72.64% 71.17%

Time (s) 770.97 6845.01 1622.70 2863.77 1044.04

CIFAR-100

Traffic (MB) 906 1450 24128 18650 9057

Accuracy 50.32% 49.55% 49.22% 49.50% 48.53%

Time (s) 981.56 11006.16 2648.26 3594.59 2410.07

different datasets in Table 3. We observe that FedPHE re-
duces the network footprint for MNIST, FMNIST, CIFAR-10
and CIFAR-100 by up to 11.75×, 17.58×, 2.56×, and 2.06×,
respectively, compared to PackedCKKS. Moreover, it out-
performs PackedBFV for 2.66−24.85× across four datasets.
It is worth noting that the ciphertext size is only 1.13×,
0.76×, 6.16×, and 6.25× compared to the BatchCrypt. This
indicates the efficiency of FedPHE in reducing the ciphertext
generated by CKKS to the level of BatchCrypt encryption
with Paillier. This achievement is truly remarkable. Ad-
ditionally, the ciphertext size, which was previously in a
”memory out” state as shown in Table 1, has been reduced to
only 1.47−10.99× larger than the plaintext baseline, making
FedPHE applicable to FL in practice. In conclusion, FedPHE
achieves communication overhead reduction ranging from
1.32× to 24.85× compared to these baselines.

As shown in Table 3, BatchCrypt requires 2.65− 11.21×
more training time compared to plaintext. In contrast, Fed-
PHE incurs only 1.00− 2.46× training time of the plaintext
baseline, greatly enhancing the efficiency of model training.

Furthermore, leveraging sparsification and client selection,
FedPHE achieves a training acceleration of 2.45−6.56×. With
an apt sparsification ratio, FedPHE does not adversely affect
the trained model quality. Instead, it achieves significant
compression while maintaining high performance.

Sparsification policies. Table 4 presents a comparison of
three commonly used sparsification policies under vary-
ing non-IIDness levels for the MNIST dataset, provided
sparsification ratio ζ = 70%. Obviously, FedPHE without
sparsification achieves the slowest convergence and highest
network traffic. By randomly selecting ζ of packed updates,
random sparsification reduces convergence time and commu-
nication volume by 1.06 − 1.10× and 1.30 − 1.35×. This,
however, results in a drastic accuracy drop of 6.65%, since
essential data may be discarded indiscriminately. Average-
based sparsification, which chooses the top-ζ packed updates
by mean value, outperforms random sparsification in terms
of reducing convergence time and network traffic, yet it still
fails to precisely select crucial data, resulting in a 2.41%
accuracy decline. In contrast, L2 norm-based sparsification,
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TABLE 4: Convergence rounds, accuracy, training time, and
network traffic of different sparsification policies under varying
levels of non-IIDness.

α Sparsification Rounds Accuracy Time(s) Traffic(MB)

1

✗ 45 72.64% 2763.77 9756

Random 50 65.99% 2595.50 7492

Average 45 70.25% 1527.68 6744

L2 norm 31 71.19% 1044.14 4645

5

✗ 44 72.78% 2714.49 9538

Random 49 67.05% 2537.20 7341

Average 46 70.51% 1605.95 6894

L2 norm 30 71.45% 1162.54 4495

10

✗ 42 72.88% 2581.40 9110

Random 45 66.34% 2355.27 6743

Average 42 70.47% 1422.46 6292

L2 norm 28 71.89% 938.14 4194

Fig. 9: Impact of sparsification ratios and non-IIDness levels on
test accuracy across the CIFAR-100 dataset.

targeting the top-ζ packed updates by L2 norm magnitude,
cuts down convergence time by 2.33 − 2.75× and network
traffic by 2.10− 2.17×, while keeping the accuracy fluctua-
tion within a modest 1.45%. By considering the cumulative
impact of packed updates, especially the smaller ones, on
model performance, this approach offers a more promising
strategy to navigate the trade-off between convergence and
accuracy, compared to solely relying on average values.
Impact of sparsification ratios and non-IIDness levels.
Fig. 9 provides a visual analysis of how sparsification ratios
and non-IIDness levels impact the test accuracy. For a given
sparsification ratio ζ , the accuracy tends to increase as the
sample distribution becomes more uniform (i.e., larger α).
As expected, under a specific non-IID setting, an increase in
sparsification ratio is consistently associated with improved
accuracy. It is worth noting that setting ζ too low may lead to
a drastic reduction in model accuracy, particularly when the
sample distribution is highly imbalanced. This highlights
the necessity of carefully calibrating the sparsification ratio
to strike a balance between enhancing communication effi-
ciency and maintaining satisfactory accuracy.

4.3 Evaluations on Sketch-Based Client Selection
We show FedPHE with client selection alone has superior
performance over two baselines, i.e., FedAvg and FLANP.
Accuracy. Fig. 10 shows that FedPHE consistently out-
performs the baselines in terms of test accuracy. FLANP
exhibits faster convergence compared to FedAvg since it

TABLE 5: Convergence rounds, accuracy, training time, and
network traffic of different selection policies under varying levels
of non-IIDness.

α Selection Rounds Accuracy Time(s) Traffic(MB)

1

✗ 49 95.15% 1737.21 1718

Random 45 94.58% 1005.37 1197

Weighted 35 95.14% 823.03 929

Fastest 37 95.10% 654.49 986

5

✗ 44 95.15% 1708.44 1543

Random 39 95.03% 1182.41 1044

Weighted 32 95.09% 1050.62 855

Fastest 35 95.10% 829.77 940

10

✗ 49 95.17% 1743.18 1718

Random 40 94.98% 809.32 1142

Weighted 34 95.16% 703.33 947

Fastest 35 95.18% 589.74 978

selects fewer stragglers to participate. Moreover, FedPHE
achieves accelerated convergence compared to FedAvg and
FLANP. This is because FedPHE employs sketch-based
client selection to cherry-pick representative clients hosting
diverse models and having the capability to train quickly.
Selection policies. After clustering similar sketches to-
gether, PS selects a representative client from each cluster.
We evaluate different selection policies under varying non-
IIDness levels for the MNIST dataset, as shown in Table 5.
Compared to the baseline (no selection), random selection re-
duces convergence time and network traffic by 1.44−2.15×
and 1.44−1.50×, respectively. However, randomly choosing
clients may still involve some stragglers as participants.
Weighted selection, which prioritizes clients with higher ag-
gregation weights, achieves superior performance in reduc-
ing convergence time and communication overhead. Yet,
blindly selecting a client with the maximum weight may
potentially select less responsive clients due to a lack of
awareness of stragglers. In contrast, fastest selection cherry-
picks the fastest client, effectively mitigating the straggler
effect. This accelerates training by 2.06− 2.96× and reduces
network traffic by 1.64 − 1.76× compared to the baseline.
Hence, it is effective for FedPHE to select the fastest client
from each cluster to participate in the training.
Number of clusters. From Fig. 11 (a), we can see that
the cluster number fluctuates between 1 and 10, where
the cluster threshold is set to γ = 1. A decrease in the
cluster number suggests a higher similarity between local
models. This means that similar sketches of local models
are clustered together, resulting in a reduction in the cluster
number. Throughout the process, the cluster number is
dynamically determined based on the similarity of sketches
sent by clients. There is no need for the PS to specify the
exact number of clusters, making the model more robust.
Client selection efficiency. We record the number of normal
clients and stragglers of FedPHE and the baselines. As
depicted in Fig. 11 (b) with γ = 0.625, we observed that the
proportions of selected stragglers are 25%, 17%, 12% for Fe-
dAvg, FLANP and FedPHE, respectively. FedAvg randomly
selects a subset of clients to participate, which reduces the
overall number of clients. However, many stragglers are still
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(a) MNIST (b) FMNIST (c) CIFAR-10 (d) CIFAR-100

Fig. 10: Accuracy versus clock time of FedPHE and the baselines on different datasets.

(a) Number of Clusters (b) Number of Selected Clients

Fig. 11: Number of clusters in each round and number of
selected clients of FedPHE and the baselines.

TABLE 6: Ablation results for varying sparsification ratios.

Dataset ζ Accuracy Time(s) Traffic(MB)

MNIST

10% 95.10% 1345.56 182

20% 95.13% 1600.85 402

100% 95.14% 1730.89 1543

FMNIST

10% 87.5% 903.81 132

20% 87.53% 1258.42 305

100% 87.9% 1335.21 1371

CIFAR-10

50% 60.02% 1393.23 4945

70% 71.19% 2469.59 6556

100% 72.64% 2763.77 9756

CIFAR-100

50% 36.51% 1907.52 9851

70% 48.78% 3055.26 13071

100% 49.57% 3864.72 18651

involved in the selection process. FLANP initially selects
normal clients, but stragglers will join in the final rounds
of training. In contrast, FedPHE can efficiently ensure the
minimal inclusion of stragglers and decrease the overall
number of clients without accuracy loss. It can reduce the
straggler effect by up to 1.89−2.78× compared to baselines.
Our client selection scheme does not compromise model
accuracy. That is, selecting a subset of representative clients
to participate during aggregation can dramatically mitigate
the straggler effect caused by client heterogeneity.

4.4 Ablation Study

We continue to validate FedPHE through the ablation study.
Sparsification ratios. Table 6 illustrates the test accuracy,
convergence time and network traffic with varying spar-
sification ratios across four different datasets. For MNIST
and FMNIST datasets, employing a sparsification ratio of
10% is desirable as it reduces the network footprint by

TABLE 7: Ablation results for client selection.

Dataset Client selection Accuracy Time(s) Traffic(MB)

MNIST
✗ 95.2% 1937.21 1718

✓ 95.1% 632.03 929

FMNIST
✗ 88.2% 1335.21 1371

✓ 87.9% 739.04 861

CIFAR-10
✗ 72.6% 3063.77 9756

✓ 72.5% 1244.04 6771

CIFAR-100
✗ 49.5% 3864.72 18651

✓ 48.8% 2790.99 14547

8.48× and 10.39×, respectively, with only negligible impact
on model accuracy. While for CIFAR-10 and CIFAR-100
datasets, a 50% sparsification ratio leads to unacceptable ac-
curacy losses of 12.62% and 13.06%, despite achieving high
communication efficiency. In contrast, a more moderate 70%
sparsification ratio appears to be feasible, reducing network
traffic by 1.49× and 1.43×, while maintaining a tolerable
accuracy reduction of only 1.45%. These suggest that more
complex datasets typically require a less aggressive sparsi-
fication approach to preserve satisfactory accuracy. Hence,
the sparsification ratio should be carefully determined by
accounting for dataset characteristics in order to strike a
balance between efficiency and model performance.
Client selection. Table 7 presents the performance com-
parisons with or without client selection across four dif-
ferent datasets. Notably, our client selection scheme en-
ables a 1.38 − 3.07× faster convergence while incurring a
negligible maximum accuracy decline of only 0.7%. Also,
by excluding stragglers during aggregation, it achieves a
remarkable reduction in network traffic by 1.28 − 1.85×.
These results corroborate the effectiveness of our proposed
selection scheme in mitigating the negative effects caused
by stragglers, making it a favorable choice for efficient PHE-
based FL training.

5 RELATED WORK

We briefly survey the related works below.
HE-based FL. HE is a widely used privacy-preserving
technique for FL to avoid privacy leakage during aggre-
gation [10], [50], yet leads to significant inefficiency in
computation and communication. To address this, Zhang
et al. design BatchCrypt to achieve a substantial decrease
in encryption overhead and ciphertext volume by packing
multiple plaintexts into a long integer [17]. Jiang et al.
propose FLASHE, an additively symmetric HE in double



LI et al.: FEDPHE: A SECURE AND EFFICIENT FEDERATED LEARNING VIA PACKED HOMOMORPHIC ENCRYPTION 13

masking to address the compatibility issues with sparsifi-
cation [33]. Nevertheless, these methods rely on Paillier and
fail to support weighted aggregation on ciphertexts. There is
still ample scope for improving communication efficiency. In
a similar vein, Smart et al. design a ciphertext-packing tech-
nique based on polynomial-CRT [15], and Brakerski et al.
further extend SIMD to the standard LWE to achieve nearly
optimal homomorphic evaluation [14]. However, existing
HE solutions either suffer from the risk of ciphertexts being
decrypted by honest-but-curious clients, or largely neglect
the intrinsic client heterogeneity in a cross-silo FL.

HE-based secure aggregation. Traditional HE schemes
mostly assume all clients share a secret key, making the
system suffering from the risk of ciphertexts being inter-
cepted and decrypted by honest-but-curious clients. To mit-
igate these security issues, various approaches have been
proposed. Zheng et al. present a lightweight encryption
and aggregation protocol that enables clients to submit
obfuscated updates [24]. Cai et al. propose SecFed, which
adopts multi-key HE to preserve client privacy and del-
egates some operations to TEE [26]. Shi et al. develop a
secure aggregation framework built upon cryptographic
schemes, ensuring aggregator obliviousness [25]. Despite
these advances, current solutions remain resource-intensive
for practical FL applications.

Weighted aggregation. A key challenge posed to FL is
heterogeneity in the clients’ local datasets and computation
speeds, which drastically slows down the training process.
Many efforts have been devoted to addressing such chal-
lenge. Among them, weighted aggregation is a promising
technique to accelerate convergence. Zeng et al. present a
contribution-aware aggregation scheme, considering higher
loss values are indicative of more substantial performance
improvements [39]. Wu et al. adaptively assign aggrega-
tion weights based on clients’ contributions, measured by
the angle between local and global gradient vectors [51].
Deng et al. propose FAIR to quantify each client’s learning
quality and automatically determine the optimal weights to
enhance the global model quality [22]. Nonetheless, existing
aggregation solutions are mainly conducted on plaintexts,
rendering them inapplicable in HE-based FL scenarios.

Client selection. Client selection is widely adopted to ac-
celerate convergence and mitigate the straggler effect [10].
FedAvg [34] employs random selection, acting as a common
and general setting in FL. Reisizadeh et al. propose FLANP
to start training by exchanging models with fast clients and
gradually include slower clients over time [49]. Fraboni et al.
introduce clustered sampling based on similarity for client
selection. However, directly transmitting gradients to the
PS raises privacy concerns and substantial communication
overheads[35]. Kollias et al. utilize the sketches of local mod-
els to select clients that are similar to ours at a high level [52].
However, it can not be applied to HE-based FL since after
encrypting with HE, the PS cannot calculate the sketch
of the global model based on the ciphertext. In contrast,
FedPHE conducts sketch-based client selection to cherry-
pick representative clients that host diverse models with
fast training capability, greatly reducing the communication
overheads, without sacrificing model accuracy.

6 CONCLUSION

In this paper, we present FedPHE, a secure and efficient
PHE-based FL framework to tackle challenges associated
with security threats and client heterogeneity. By adopting
CKKS-based PHE with sparsification and blinding, FedPHE
achieves efficient secure aggregation that allows clients to
only provide obscured encrypted updates while PS can still
perform the aggregation by accounting for contributions of
local updates to the global model. To mitigate the straggler
effect posed by client heterogeneity, a perturbed sketch-
based client selection is conducted to cluster similar clients
together and then cherry-pick the fastest client from each
cluster in a communication-efficient and privacy-preserving
manner. We provide rigorous security analysis for FedPHE
and verify its efficiency through extensive experiments.
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