
Published in Transactions on Machine Learning Research (02/2024)

On the Convergence of Adaptive Gradient Methods
for Nonconvex Optimization

Dongruo Zhou∗ dz13@iu.edu
Indiana University

Jinghui Chen∗ jzc5917@psu.edu
The Pennsylvania State University

Yuan Cao∗ yuancao@hku.hk
The University of Hong Kong

Ziyan Yang zy47@rice.edu
Rice University

Quanquan Gu qgu@cs.ucla.edu
University of California, Los Angeles

Reviewed on OpenReview: https: // openreview. net/ forum? id= Gh0cxhbz3c

Abstract

Adaptive gradient methods are workhorses in deep learning. However, the convergence guar-
antees of adaptive gradient methods for nonconvex optimization have not been thoroughly
studied. In this paper, we provide a fine-grained convergence analysis for a general class
of adaptive gradient methods including AMSGrad, RMSProp and AdaGrad. For smooth
nonconvex functions, we prove that adaptive gradient methods in expectation converge to a
first-order stationary point. Our convergence rate is better than existing results for adaptive
gradient methods in terms of dimension. In addition, we also prove high probability bounds
on the convergence rates of AMSGrad, RMSProp as well as AdaGrad, which have not been
established before. Our analyses shed light on better understanding the mechanism behind
adaptive gradient methods in optimizing nonconvex objectives.

1 Introduction

Stochastic gradient descent (SGD) (Robbins & Monro, 1951) and its variants have been widely used in
training deep neural networks. Among those variants, adaptive gradient methods (AdaGrad) (Duchi et al.,
2011; McMahan & Streeter, 2010), which scale each coordinate of the gradient by a function of past gradients,
can achieve better performance than vanilla SGD in practice when the gradients are sparse. An intuitive
explanation for the success of AdaGrad is that it automatically adjusts the learning rate for each feature
based on the partial gradient, which accelerates the convergence. However, AdaGrad was later found to
demonstrate degraded performance especially in cases where the loss function is nonconvex or the gradient
is dense, due to rapid decay of learning rate. This problem is especially exacerbated in deep learning due
to the huge number of optimization variables. To overcome this issue, RMSProp (Tieleman & Hinton,
2012) was proposed to use exponential moving average rather than the arithmetic average to scale the
gradient, which mitigates the rapid decay of the learning rate. Kingma & Ba (2014) proposed an adaptive
momentum estimation method (Adam), which incorporates the idea of momentum (Polyak, 1964; Sutskever
et al., 2013) into RMSProp. Other related algorithms include AdaDelta (Zeiler, 2012) and Nadam (Dozat,
2016), which combine the idea of the exponential moving average of the historical gradients, Polyak’s heavy

∗Equal Contribution

1

https://openreview.net/forum?id=Gh0cxhbz3c

Published in Transactions on Machine Learning Research (02/2024)

ball (Polyak, 1964) and Nesterov’s accelerated gradient descent (Nesterov, 2013). Recently, by revisiting
the original convergence analysis of Adam, Reddi et al. (2018) found that for some handcrafted simple
convex optimization problem, Adam does not even converge to the global minimizer. In order to address
this convergence issue of Adam, Reddi et al. (2018) proposed a new variant of the Adam algorithm named
AMSGrad, which has guaranteed convergence in the convex setting. The update rule of AMSGrad is as
follows1:

xt+1 = xt − αt
mt√
v̂t + ϵ

, v̂t = max(v̂t−1, vt), (1.1)

where αt > 0 is the step size, ϵ is a small number to ensure numerical stability, xt ∈ Rd is the iterate in the
t-th iteration, and mt, vt ∈ Rd are the exponential moving averages of the gradient and the squared gradient
at the t-th iteration respectively: 2

mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2)g2
t . (1.2)

Here β1, β2 ∈ [0, 1] are algorithm hyperparameters, and gt is the stochastic gradient at xt.

Despite the successes of adaptive gradient methods for training deep neural networks, the convergence
guarantees for these algorithms are mostly restricted to online convex optimization (Duchi et al., 2011;
Kingma & Ba, 2014; Reddi et al., 2018). Therefore, there is a huge gap between existing online convex
optimization guarantees for adaptive gradient methods and the empirical successes of adaptive gradient
methods in nonconvex optimization. In order to bridge this gap, there are a few recent attempts to prove
the nonconvex optimization guarantees for adaptive gradient methods. More specifically, Basu et al. (2018)
proved the convergence rate of RMSProp and Adam when using deterministic gradient rather than stochastic
gradient. Li & Orabona (2018) proved the convergence rate of AdaGrad, assuming the gradient is L-Lipschitz
continuous. Ward et al. (2018) proved the convergence rate of AdaGrad-Norm where the moving average of
the norms of the gradient vectors is used to adjust the gradient vector in both deterministic and stochastic
settings for smooth nonconvex functions. Nevertheless, the convergence guarantees in Basu et al. (2018);
Ward et al. (2018) are still limited to simplified algorithms. Another attempt to obtain the convergence rate
under stochastic setting is prompted recently by Zou & Shen (2018), in which they only focus on the condition
when the momentum vanishes. Chen et al. (2018a) studies the convergence properties of adaptive gradient
methods in the nonconvex setting, however, its convergence rate has a quadratic dependency on the problem
dimension d. Défossez et al. (2020) proves the convergence of Adam and Adagrad in nonconvex smooth
optimization under the assumption of almost sure uniform bound on the L∞ norm of the gradients. In
this paper, we provide a fine-grained convergence analysis of the adaptive gradient methods. In particular,
we analyze several representative adaptive gradient methods, i.e., AMSGrad (Reddi et al., 2018), which
fixed the non-convergence issue in Adam and the RMSProp (fixed version via (Reddi et al., 2018)), and
prove its convergence rate for smooth nonconvex objective functions in the stochastic optimization setting.
Moreover, existing theoretical guarantees for adaptive gradient methods are mostly bounds in expectation
over the randomness of stochastic gradients, and are therefore only on-average convergence guarantees. In
practice, however, the optimization algorithm is usually only run once, and therefore the performance cannot
be guaranteed by the in-expectation bounds. To deal with this problem, we also provide high probability
convergence rates for AMSGrad and RMSProp, which can characterize the performance of the algorithms
on a single run.

1.1 Our Contributions

The main contributions of our work are as follows:
1With slight abuse of notation, here we denote by √vt the element-wise square root of the vector vt, mt/

√vt the element-
wise division between mt and √vt, and max(v̂t−1, vt) the element-wise maximum between v̂t−1 and vt.

2We denote by g2
t the element-wise square of the vector gt.

2

Published in Transactions on Machine Learning Research (02/2024)

• We prove that the convergence rate of AMSGrad to a stationary point for stochastic nonconvex
optimization is

O

(
d1/2

T 3/4−s/2 + d

T

)
, (1.3)

when ∥g1:T,i∥2 ≤ G∞T s. Here g1:T,i = [g1,i, g2,i, . . . , gT,i]⊤ with {gt}T
t=1 being the stochastic gradi-

ents satisfying ∥gt∥∞ ≤ G∞, and s ∈ [0, 1/2] is a parameter that characterizes the growth rate of
the cumulative stochastic gradient g1:T,i.

• Our result implies that the worst case (i.e., s = 1/2) convergence rate for AMSGrad is

O

(√
d

T
+ d

T

)
,

which has a better dependence on the dimension d and T than the convergence rate proved in Chen
et al. (2018a), i.e.,

O

(
log T + d2
√

T

)
.

• We also establish high probability bounds for adaptive gradient methods. To the best of our knowl-
edge, it is the first high probability convergence guarantees for AMSGrad and RMSProp for non-
convex stochastic optimization.

Notations: scalars are denoted by lower case letters, vectors by lower case bold face letters, and matrices
by upper case bold face letters. For a vector x = [xi] ∈ Rd, we denote the ℓp norm (p ≥ 1) of x by
∥x∥p =

(∑d
i=1 |xi|p

)1/p, the ℓ∞ norm of x by ∥x∥∞ = maxd
i=1 |xi|. For a sequence of vectors {gj}t

j=1,
we denote by gj,i the i-th element in gj . We also denote g1:t,i = [g1,i, g2,i, . . . , gt,i]⊤. With slightly abuse
of notation, for any two vectors a and b, we denote a2 as the element-wise square, ap as the element-wise
power operation, a/b as the element-wise division and max(a, b) as the element-wise maximum. For a matrix
A = [Aij] ∈ Rd×d, we define ∥A∥1,1 =

∑d
i,j=1 |Aij | and ∥A∥∞,∞ = maxd

i,j=1 |Aij |. Given two sequences
{an} and {bn}, we write an = O(bn) if there exists a constant 0 < C < +∞ such that an ≤ C bn. We use
notation Õ(·) to hide logarithmic factors.

2 Related Work

Here we review other related work that is not covered before.

Adaptive gradient methods: Mukkamala & Hein (2017) proposed SC-Adagrad and SC-RMSprop, which
derives logarithmic regret bounds for strongly convex functions. Chen et al. (2018b) proposed SADAGRAD
for solving stochastic strongly convex optimization and more generally stochastic convex optimization that
satisfies the second order growth condition. Zaheer et al. (2018) studied the effect of adaptive denominator
constant ϵ and minibatch size in the convergence of adaptive gradient methods. Zou et al. (2019) presented
an easy-to-check sufficient condition to guarantee the convergences of Adam and AMSGrad in the non-
convex stochastic setting. Chen et al. (2020) proposed a partially adaptive gradient method and proved
its convergence in nonconvex settings. Alacaoglu et al. (2020) proposed a new framework to derive data-
dependent regret bounds with a constant momentum parameter in various settings.

Nonconvex Stochastic Optimization: Ghadimi & Lan (2013) proposed a randomized stochastic gradient
(RSG) method, and proved its O(1/

√
T) convergence rate to a stationary point. Ghadimi & Lan (2016)

proposed an randomized stochastic accelerated gradient (RSAG) method, which achieves O(1/T + σ2/
√

T)
convergence rate, where σ2 is an upper bound on the variance of the stochastic gradient. Motivated by

3To be precise, Li & Orabona (2020) studies a delayed AdaGrad algorithm with momentum.

3

Published in Transactions on Machine Learning Research (02/2024)

Table 1: Comparison of convergence rate of AMSGrad and AdaGrad in terms of the convergence types
and assumptions by different works in the nonconvex smooth setting. Here T denotes the total number of
iterations and d is the dimension.

Conv. Rate Conv. Type Assumptions
AMSGrad

Chen et al. (2018a) O

(
log T +d2

√
T

)
in-expectation smoothness, bounded gradient

Alacaoglu et al. (2020) O

(
d log T√

T

)
in-expectation smoothness, bounded gradient

Ours (worst case, i.e., s = 1/2) O

(√
d
T + d

T

)
in-expectation smoothness, bounded gradient

Ours (worst case, i.e., s = 1/2) O

(√
d
T + d

T

)
high probability smoothness, bounded gradient,

∇f(x, ξ) − ∇f(x) is a sub-
Gaussian vector

AdaGrad

Défossez et al. (2020) O

(
1√
T

+ d√
T

)
in-expectation smoothness, bounded gradient

Li & Orabona (2020)3 O

(
d√
T

)
high probability smoothness, ∥∇f(x, ξ) −

∇f(x)∥2 is sub-Gaussian

Ours (worst case, i.e., s = 1/2) O

(√
d
T + d

T

)
in-expectation smoothness, bounded gradient

Ours (worst case, i.e., s = 1/2) O

(√
d
T + d

T

)
high probability smoothness, bounded gradient,

∇f(x, ξ) − ∇f(x) is a sub-
Gaussian vector

the success of stochastic momentum methods in deep learning (Sutskever et al., 2013), Yang et al. (2016)
provided a unified convergence analysis for both stochastic heavy-ball method and the stochastic variant
of Nesterov’s accelerated gradient method, and proved O(1/

√
T) convergence rate to a stationary point for

smooth nonconvex functions. Reddi et al. (2016); Allen-Zhu & Hazan (2016) proposed variants of stochastic
variance-reduced gradient (SVRG) method (Johnson & Zhang, 2013) that is provably faster than gradient
descent in the nonconvex finite-sum setting. Lei et al. (2017) proposed a stochastically controlled stochas-
tic gradient (SCSG), which further improves convergence rate of SVRG for finite-sum smooth nonconvex
optimization. Recently, Zhou et al. (2018) proposed a new algorithm called stochastic nested variance-
reduced gradient (SNVRG), which achieves strictly better gradient complexity than both SVRG and SCSG
for finite-sum and stochastic smooth nonconvex optimization.

High Probability Bounds: There are only a few works on the high probability convergence results. Kakade
& Tewari (2009) proved high probability bounds for the PEGASOS algorithm via Freeman’s inequality.
Harvey et al. (2019a;b) proved convergence bounds for non-smooth, strongly convex case via generalized
Freeman’s inequality. Jain et al. (2019) makes the last iterate of SGD information theoretically optimal by
providing a high probability bound. Li & Orabona (2020) presented a high probability analysis for Delayed
AdaGrad algorithm with momentum in the smooth nonconvex setting.

For the ease of comparison, we summarize the convergence rates of adaptive gradient methods derived in
different works in Table 1, along with the convergence types and corresponding assumptions.

3 Algorithms

We mainly consider the following three algorithms: AMSGrad (Reddi et al., 2018), a corrected version of
RMSProp (Tieleman & Hinton, 2012; Reddi et al., 2018), and AdaGrad (Duchi et al., 2011).

4

Published in Transactions on Machine Learning Research (02/2024)

Algorithm 1 AMSGrad (Reddi et al., 2018)
Require: Initial point x1, step size {αt}T

t=1, adaptive gradient parameters β1, β2, ϵ.
1: m0 ← 0, v̂0 ← 0, v0 ← 0
2: for t = 1 to T do
3: gt = ∇f(xt, ξt)
4: mt = β1mt−1 + (1− β1)gt

5: vt = β2vt−1 + (1− β2)g2
t

6: v̂t = max(v̂t−1, vt)
7: xt+1 = xt − αtV̂−1/2

t mt with V̂t = diag(v̂t + ϵ)
8: end for

Ensure: Choose xout from {xt}, 2 ≤ t ≤ T with probability αt−1/
∑T −1

i=1 αi.

The AMSGrad algorithm is originally proposed by Reddi et al. (2018) to fix the non-convergence issue in
the original Adam optimizer (Kingma & Ba, 2014). Specifically, in Algorithm 1, the effective learning rate
of AMSGrad is αtV̂−1/2

t where V̂t = diag(v̂t), while in original Adam, the effective learning rate is αtV−1/2
t

where Vt = diag(vt). This choice of effective learning rate guarantees that it is non-increasing and thus
fix the possible convergence issue. In Algorithm 2, we present a variant of RMSProp (Tieleman & Hinton,
2012) (adding the max step according to Reddi et al. (2018)) where the effective learning rate is also set as
αtV̂−1/2

t .

Algorithm 2 RMSProp (Tieleman & Hinton, 2012) (modified according to Reddi et al. (2018))
Require: Initial point x1, step size {αt}T

t=1, adaptive gradient parameters β, ϵ.
1: v̂0 ← 0, v0 ← 0
2: for t = 1 to T do
3: gt = ∇f(xt, ξt)
4: vt = βvt−1 + (1− β)g2

t

5: v̂t = max(v̂t−1, vt)
6: xt+1 = xt − αtV̂−1/2

t gt with V̂t = diag(v̂t + ϵ)
7: end for

Ensure: Choose xout from {xt}, 2 ≤ t ≤ T with probability αt−1/
∑T −1

i=1 αi.

Algorithm 3 AdaGrad (Duchi et al., 2011)
Require: Initial point x1, step size {αt}T

t=1, adaptive gradient parameter ϵ.
1: v̂0 ← 0
2: for t = 1 to T do
3: gt = ∇f(xt, ξt)
4: v̂t = v̂t−1 + g2

t

5: xt+1 = xt − αtV̂−1/2
t gt with V̂t = diag(v̂t + ϵ)

6: end for
Ensure: Choose xout from {xt}, 2 ≤ t ≤ T with probability αt−1/

∑T −1
i=1 αi.

In Algorithm 3 we further present the AdaGrad algorithm (Duchi et al., 2011), which adopts the summation
of past stochastic gradient squares instead of the running average to compute the effective learning rate.

4 Convergence Results in Expectation

In this section, we present our main results on the convergence of AMSGrad, RMSProp and AdaGrad. We
study the following stochastic nonconvex optimization problem

min
x∈Rd

f(x) := Eξ

[
f(x; ξ)

]
,

5

Published in Transactions on Machine Learning Research (02/2024)

where ξ is a random variable satisfying certain distribution, f(x; ξ) : Rd → R is a L-smooth nonconvex
function. In the stochastic setting, one cannot directly access the full gradient of f(x). Instead, one can
only get unbiased estimators of the gradient of f(x), which is ∇f(x; ξ). This setting has been studied in
Ghadimi & Lan (2013; 2016).

Assumption 4.1 (Bounded Gradient) f(x) = Eξf(x; ξ) has G∞-bounded stochastic gradient. That is,
for any ξ, we assume that ∥∇f(x; ξ)∥∞ ≤ G∞.

It is worth mentioning that Assumption 4.1 is slightly weaker than the ℓ2-boundedness assumption
∥∇f(x; ξ)∥2 ≤ G2 used in Reddi et al. (2016); Chen et al. (2018a). Since ∥∇f(x; ξ)∥∞ ≤ ∥∇f(x; ξ)∥2 ≤√

d∥∇f(x; ξ)∥∞, the ℓ2-boundedness assumption implies Assumption 4.1 with G∞ = G2. Meanwhile, G∞
will be tighter than G2 by a factor of

√
d when each coordinate of ∇f(x; ξ) almost equals to each other.

Assumption 4.2 (L-smooth) f(x) = Eξf(x; ξ) is L-smooth: for any x, y ∈ Rd, we have∣∣f(x)− f(y)− ⟨∇f(y), x− y⟩
∣∣ ≤ L

2 ∥x− y∥2
2.

Assumption 4.2 is a standard assumption in the analysis of gradient-based algorithms. It is equivalent to
the L-gradient Lipschitz condition, which is often written as ∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2.

We are now ready to present our main result.

Theorem 4.3 (AMSGrad) Suppose β1 < β
1/2
2 , αt = α and ∥g1:T,i∥2 ≤ G∞T s for t = 1, . . . , T, 0 ≤ s ≤

1/2. Then under Assumptions 4.1 and 4.2, the iterates xt of AMSGrad satisfy that

1
T − 1

T∑
t=2

E
[
∥∇f(xt)∥2

2
]
≤ M1

Tα
+ M2d

T
+ αM3d

T 1/2−s
, (4.1)

where {Mi}3
i=1 are defined as follows:

M1 = 2(G∞ +
√

ϵ)∆, M2 = 2G2
∞(G∞ +

√
ϵ)ϵ−1/2

1− β1
+ 2G∞(G∞ +

√
ϵ),

M3 = 2LG∞(G∞ +
√

ϵ)
ϵ1/2(1− β2)1/2(1− β1/β

1/2
2)

(
1 + 2β2

1
1− β1

)
,

and ∆ = f(x1)− infx f(x).

Note that in Theorem 4.3 we have a condition that ∥g1:T,i∥2 ≤ G∞T s. Here s characterizes the growth rate
of g1:T,i, i.e., the cumulative stochastic gradient (Liu et al., 2019). In the worse case where the stochastic
gradients are not sparse, we have s = 1/2, while in practice when the stochastic gradients are sparse, we
have s < 1/2.

Remark 4.4 If we choose α = Θ
(
d1/2T 1/4+s/2)−1

, then (4.1) implies that AMSGrad achieves

O

(
d1/2

T 3/4−s/2 + d

T

)
convergence rate. In the worst case when s = 1/2, this result matches the convergence rate of nonconvex
SGD (Ghadimi & Lan, 2016). For the dimension dependence, it is not directly comparable since they made
a different stochastic noise assumption (they assumed the stochastic gradient is σ-subGaussian w.r.t. the ℓ2
norm of the gradient). By directly translating their assumption to ours (to replace σ with

√
dG∞), we can

obtain a
√

d/T dominant term in their convergence result, which matches our convergence rate. Note that
Chen et al. (2018a) also provided a similar bound for AMSGrad that

1
T − 1

T∑
t=2

E
[
∥∇f(xt)∥2

2
]

= O

(
log T + d2
√

T

)
.

6

Published in Transactions on Machine Learning Research (02/2024)

It can be seen that the dependence of d in their bound is quadratic, which is worse than the linear dependence
suggested by (4.1). A recent work (Défossez et al., 2020) discussed the convergence issue of Adam by showing
that the bound consists of a constant term and does not converge to zero. In comparison, our result for
AMSGrad does not have such a constant term and converges to zero in a rate O(d1/2/T 3/4−s/2). This
suggests that the convergence issue of Adam is indeed fixed in AMSGrad.

Corollary 4.5 (A variant of RMSProp) Under the same conditions of Theorem 4.3, if αt = α and
∥g1:T,i∥2 ≤ G∞T s for t = 1, . . . , T, 0 ≤ s ≤ 1/2, then the iterates xt of RMSProp satisfy that

1
T − 1

T∑
t=2

E
[
∥∇f(xt)∥2

2
]
≤ M1

Tα
+ M2d

T
+ αM3d

T 1/2−s
,

where {Mi}3
i=1 are defined as follows:

M1 = 2(G∞ +
√

ϵ)∆, M2 = 2G2
∞(G∞ +

√
ϵ)ϵ−1/2 + 2G∞(G∞ +

√
ϵ), M3 = 6LG∞(G∞ +

√
ϵ)

ϵ1/2(1− β)1/2 ,

and ∆ = f(x1)− infx f(x).

Corollary 4.6 (AdaGrad) Under the same conditions of Theorem 4.3, if αt = α and ∥g1:T,i∥2 ≤ G∞T s

for t = 1, . . . , T, 0 ≤ s ≤ 1/2, then the the iterates xt of AdaGrad satisfy that

1
T − 1

T∑
t=2

E
[
∥∇f(xt)∥2

2
]
≤ M1

Tα
+ M2d

T
+ αM3d

T 1/2−s
,

where {Mi}3
i=1 are defined as follows:

M1 = 2(G∞ +
√

ϵ)∆, M2 = 2G2
∞(G∞ +

√
ϵ)ϵ−1/2 + 2G∞(G∞ +

√
ϵ), M3 = 6LG∞(G∞ +

√
ϵ)ϵ−1/2,

and ∆ = f(x1)− infx f(x).

Corollaries 4.5 and 4.6 imply that RMSProp and AdaGrad achieve the same rate of convergence as AMSGrad.
In worst case where s = 1/2, both algorithms achieve O(

√
d/T + d/T) convergence rate, which matches the

convergences rate of nonconvex SGD given by Ghadimi & Lan (2016).

Remark 4.7 Défossez et al. (2020) gave a bound O(α−1T −1/2 + (1 + α)dT −1/2) for AdaGrad, which gives
the following rate

O

(
1√
T

+ d√
T

)
when α = 1. Our result gives a faster rate in terms of the dependency in dimension d.

5 Convergence Results with High Probability

In the previous section, we provide convergence results of the three adaptive gradient methods in expectation.
These bounds can only guarantee the average performance of a large number of trials of the algorithm, but
cannot rule out extremely bad solutions. What’s more, for practical applications such as training deep neural
networks, we often perform a single run of the algorithm since the training time can be fairly large. Hence, it
is helpful to get high probability bounds which guarantee the performance of the algorithm on a single run.
To overcome this limitation, in this section, we further establish high probability bounds on the convergence
rate for AMSGrad, RMSProp and AdaGrad. We make the following additional assumption.

Assumption 5.1 The stochastic gradients are sub-Gaussian random vectors (Jin et al., 2019):

Eξ[exp(⟨v,∇f(x, ξ)−∇f(x)⟩)] ≤ exp(∥v∥2
2σ2/2)

for all v ∈ Rd and all x.

7

Published in Transactions on Machine Learning Research (02/2024)

Assumption 5.1 is commonly considered when studying high probability bounds (Li & Orabona, 2020). It
is weaker than Assumption B2 in Li & Orabona (2020): for the case when ∇f(x, ξ)−∇f(x) is a standard
Gaussian vector, σ2 defined in Li & Orabona (2020) is of order O(d), while σ2 = O(1) in our definition.

Theorem 5.2 (AMSGrad) Suppose β1 < β
1/2
2 , αt = α ≤ σ−2ϵ/2 and ∥g1:T,i∥2 ≤ G∞T s for t =

1, . . . , T, 0 ≤ s ≤ 1/2. Then for any δ > 0, under Assumptions 4.1, 4.2 and 5.1, with probability at least
1− δ, the iterates xt of AMSGrad satisfy that

1
T − 1

T∑
t=2
∥∇f(xt)∥2

2 ≤
M1

Tα
+ M2d

T
+ αM3d

T 1/2−s
, (5.1)

where {Mi}3
i=1 are defined as follows:

M1 = 4(G∞ +
√

ϵ)∆ + C ′(G∞ +
√

ϵ) log(2/δ),

M2 = 4G2
∞(G∞ +

√
ϵ)ϵ−1/2

1− β1
+ 4G∞(G∞ +

√
ϵ),

M3 = 4LG∞(G∞ +
√

ϵ)
ϵ1/2(1− β2)1/2(1− β1/β

1/2
2)

(
1 + 2β2

1
1− β1

)
,

and ∆ = f(x1)− infx f(x).

Remark 5.3 Similar to the discussion in Remark 4.4, we can choose α = Θ
(
d1/2T 1/4+s/2)−1

, to achieve
an O(d1/2/T 3/4−s/2 + d/T) convergence rate.

We also have the following corollaries providing the high probability bounds for RMSProp and AdaGrad.

Corollary 5.4 (A variant of RMSProp) Under the same conditions of Theorem 5.2, if αt = α ≤ σ−2ϵ/2
and ∥g1:T,i∥2 ≤ G∞T s for t = 1, . . . , T, 0 ≤ s ≤ 1/2, then for any δ > 0, with probability at least 1 − δ, the
iterates xt of RMSProf satisfy that

1
T − 1

T∑
t=2
∥∇f(xt)∥2

2 ≤
M1

Tα
+ M2d

T
+ αM3d

T 1/2−s
, (5.2)

where {Mi}3
i=1 are defined as follows:

M1 = 4(G∞ +
√

ϵ)∆ + C ′(G∞ +
√

ϵ) log(2/δ),
M2 = 4G2

∞(G∞ +
√

ϵ)ϵ−1/2 + 4G2
∞,

M3 = 4LG∞(G∞ +
√

ϵ)
ϵ1/2(1− β)1/2 ,

and ∆ = f(x1)− infx f(x).

Corollary 5.5 (AdaGrad) Under the same conditions of Theorem 5.2, if αt = α ≤ σ−2ϵ/2 and ∥g1:T,i∥2 ≤
G∞T s for t = 1, . . . , T, 0 ≤ s ≤ 1/2, then for any δ > 0, with probability at least 1 − δ, the iterates xt of
AdaGrad satisfy

1
T − 1

T∑
t=2
∥∇f(xt)∥2

2 ≤
M1

Tα
+ M2d

T
+ αM3d

T 1/2−s
, (5.3)

where {Mi}3
i=1 are defined as follows:

M1 = (G∞ +
√

ϵ)(4∆ + C ′ log(2/δ)),
M2 = (G∞ +

√
ϵ)(4G2

∞ϵ−1/2 + 4G∞),

M3 = 4LG∞(G∞ +
√

ϵ)
ϵ1/2 ,

and ∆ = f(x1)− infx f(x).

8

Published in Transactions on Machine Learning Research (02/2024)

6 Proof Sketch of the Main Results

In this section, we provide a proof sketch of Theorem 4.3 and Theorem 5.2, and the complete proofs as well
as proofs for other corollaries and technical lemmas can be found in the supplemental materials. Compared
with the analysis of standard stochastic gradient descent, the main difficulty of analyzing the convergence
rate of adaptive gradient methods is caused by the stochastic momentum mt and adaptive stochastic gradient
V̂−1/2

t gt. To address this challenge, following Yang et al. (2016), we define an auxiliary sequence zt: let
x0 = x1, and for each t ≥ 1,

zt = xt + β1

1− β1
(xt − xt−1) = 1

1− β1
xt −

β1

1− β1
xt−1. (6.1)

The following lemma shows that zt+1 − zt can be represented by mt, gt and V̂−1/2
t . This indicates that by

considering the sequence {zt}, it is possible to analyze algorithms which include stochastic momentum, such
as AMSGrad.

Lemma 6.1 Let zt be defined in (6.1). Then for t ≥ 2, we have the following expression for zt+1 − zt.

zt+1 − zt = β1

1− β1

[
I−

(
αtV̂−1/2

t

)(
αt−1V̂−1/2

t−1
)−1

]
(xt−1 − xt)− αtV̂−1/2

t gt.

We can also represent zt+1 − zt as the following:

zt+1 − zt = β1

1− β1

(
αt−1V̂−1/2

t−1 − αtV̂−1/2
t

)
mt−1 − αtV̂−1/2

t gt.

For t = 1, we have z2 − z1 = −α1V̂−1/2
1 g1.

With Lemma 6.1, we have the following two lemmas giving upper bounds for ∥zt+1 − zt∥2 and ∥∇f(zt) −
∇f(xt)∥2 , which are useful for the proof of the main theorem.

Lemma 6.2 Let zt be defined in (6.1). For t ≥ 2, we have

∥zt+1 − zt∥2 ≤
∥∥αV̂−1/2

t gt

∥∥
2 + β1

1− β1
∥xt−1 − xt∥2.

Lemma 6.3 Let zt be defined in (6.1). For t ≥ 2, we have

∥∇f(zt)−∇f(xt)∥2 ≤ L
(β1

1− β1

)
· ∥xt − xt−1∥2.

We also need the following lemma to bound ∥∇f(x)∥∞, ∥v̂t∥∞ and ∥mt∥∞. Basically, it shows that these
quantities can be bounded by G∞.

Lemma 6.4 Let v̂t and mt be as defined in Algorithm 1. Then under Assumption 4.1, we have ∥∇f(x)∥∞ ≤
G∞, ∥v̂t∥∞ ≤ G2

∞ and ∥mt∥∞ ≤ G∞.

Lastly, we need the following lemma that provides upper bounds on ∥V̂−1/2
t mt∥2 and ∥V̂−1/2

t gt∥2. More
specifically, it shows that we can bound ∥V̂−1/2

t mt∥2 and ∥V̂−1/2
t gt∥2 with

∑d
i=1 ∥g1:T,i∥2. The bound of∥∥V̂−1/2

t mt

∥∥2
2 is essential for us to obtain a tighter dependency in terms of d.

Lemma 6.5 Let β1, β2 be the weight parameters, αt, t = 1, . . . , T be the step sizes in Algorithm 1. We
denote γ = β1/β

1/2
2 . Suppose that αt = α and γ ≤ 1, then under Assumption 4.1, we have the following two

results:
T∑

t=1
α2

t

∥∥V̂−1/2
t mt

∥∥2
2 ≤

T 1/2α2
t (1− β1)

2ϵ1/2(1− β2)1/2(1− γ)

d∑
i=1
∥g1:T,i∥2,

9

Published in Transactions on Machine Learning Research (02/2024)

and
T∑

t=1
α2

t

∥∥V̂−1/2
t gt

∥∥2
2 ≤

T 1/2α2
t

2ϵ1/2(1− β2)1/2(1− γ)

d∑
i=1
∥g1:T,i∥2.

With all lemmas provided above, now we are ready to provide the proof of Theorem 4.3.

Proof [Proof Sketch of Theorem 4.3] Since f is L-smooth, we have:

f(zt+1) ≤ f(zt) +∇f(zt)⊤(zt+1 − zt) + L

2 ∥zt+1 − zt∥2
2

= f(zt) +∇f(xt)⊤(zt+1 − zt)︸ ︷︷ ︸
I1

+ (∇f(zt)−∇f(xt))⊤(zt+1 − zt)︸ ︷︷ ︸
I2

+ L

2 ∥zt+1 − zt∥2
2︸ ︷︷ ︸

I3

. (6.2)

In the following, we bound I1, I2 and I3 separately.

Bounding term I1: We can prove that when t = 1,

∇f(x1)⊤(z2 − z1) = −∇f(x1)⊤α1V̂−1/2
t g1. (6.3)

For t ≥ 2, by Lemma 6.1, we can prove the following result:

∇f(xt)⊤(zt+1 − zt) ≤
1

1− β1
G2

∞

(∥∥αt−1v̂−1/2
t−1

∥∥
1 −

∥∥αtv̂−1/2
t

∥∥
1

)
−∇f(xt)⊤αt−1V̂−1/2

t−1 gt. (6.4)

Bounding term I2: For t ≥ 1, by Lemma 6.1 and Lemma 6.2, we can prove that

(
∇f(zt)−∇f(xt)

)⊤(zt+1 − zt) ≤ L
∥∥αtV̂−1/2

t gt

∥∥2
2 + 2L

(
β1

1− β1

)2
∥xt − xt−1∥2

2, (6.5)

Bounding term I3: For t ≥ 1, by Lemma 6.1, we have

L

2 ∥zt+1 − zt∥2
2 ≤ L

∥∥αtV̂−1/2
t gt

∥∥2
2 + 2L

(
β1

1− β1

)2
∥xt−1 − xt∥2

2. (6.6)

Now we get back to (6.2). We provide upper bounds of (6.2) for t = 1 and t > 1 separately. For t = 1,
substituting (6.3), (6.5) and (6.6) into (6.2), taking expectation and rearranging terms, we have

E[f(z2)− f(z1)] ≤ E[dα1G∞ + 2L
∥∥α1V̂−1/2

1 g1
∥∥2

2], (6.7)

For t ≥ 2, substituting (6.4), (6.5) and (6.6) into (6.2), taking expectation and rearranging terms, we have

E
[
f(zt+1) +

G2
∞

∥∥αtv̂−1/2
t

∥∥
1

1− β1

]
− E

[
f(zt) +

G2
∞

∥∥αt−1v̂−1/2
t−1

∥∥
1

1− β1

]
≤ E

[
− αt−1

∥∥∇f(xt)
∥∥2

2(G∞ +
√

ϵ)−1 + 2L
∥∥αtV̂−1/2

t gt

∥∥2
2 + 4L

(
β1

1− β1

)2∥∥αt−1V̂−1/2
t−1 mt−1

∥∥2
2

]
, (6.8)

where the inequality holds due to the fact ∇f(xt)⊤V̂−1/2
t−1 ∇f(xt) ≥ (G∞ +

√
ϵ)−1∥∇f(xt)∥2

2 by Lemma 6.4.
We now telescope (6.8) for t = 2 to T , and add it with (6.7). Rearranging it, we have

(G∞ +
√

ϵ)−1
T∑

t=2
αt−1E

∥∥∇f(xt)
∥∥2

2

≤ E
[
∆ + G2

∞α1ϵ−1/2d

1− β1
+ dα1G∞

]
+ 2L

T∑
t=1

E
∥∥αtV̂−1/2

t gt

∥∥2
2 + 4L

(
β1

1− β1

)2 T∑
t=1

E
[∥∥αtV̂−1/2

t mt

∥∥2
2

]
.

(6.9)

10

Published in Transactions on Machine Learning Research (02/2024)

By using Lemma 6.5, we can further bound
∑T

t=1 E∥αtV̂−1/2
t gt∥2

2 and
∑T

t=1 E∥αtV̂−1/2
t mt∥2

2 in (6.9) with∑d
i=1 ∥g1:T,i∥2, which turns out to be

E∥∇f(xout)∥2
2 ≤

1
Tα

2(G∞ +
√

ϵ)∆ + 2
T

(
G2

∞(G∞ +
√

ϵ)ϵ−1/2d

1− β1
+ dG∞(G∞ +

√
ϵ)

)
+ 2(G∞ +

√
ϵ)Lα

T 1/2ϵ1/2(1− γ)(1− β2)1/2E
(d∑

i=1
∥g1:T,i∥2

)
·
(

1 + 2(1− β1)
(

β1

1− β1

)2)
, (6.10)

Finally, rearranging (6.10), and adopting the theorem condition that ∥g1:T,i∥2 ≤ G∞T s, we obtain

E∥∇f(xout)∥2
2 ≤

M1

Tα
+ M2d

T
+ αM3d

T 1/2−s
,

where {Mi}3
i=1 are defined in Theorem 4.3. This completes the proof.

Remark 6.6 We highlight here why we can achieve a tighter dimension dependency (d/
√

T v.s.
√

d/
√

T)
as compared with Défossez et al. (2020). Both our analysis and the one in Défossez et al. (2020) required
to upper bound the gradient norm ∥∇f(xout)∥2

2 by the stochastic gradients gt and momentum mt (see our
(6.9) and (A.19) in Défossez et al. (2020). However, Défossez et al. (2020) bounded mt and gt separately
as suggested by (A.20) in Défossez et al. (2020), and they obtained a better bound for mt, which depends
on α2, and a worse bound for gt, which has an α0 dependency. Thus, the final bound in their result suffers
from an α2d + d = O(d) dependency (see the second and third term in (A.54) in Défossez et al. (2020). To
compare with, we bound both mt and gt by

∑d
i=1 ∥g1:T,i∥2 uniformly by using Lemma 6.5 which makes our

final bound only has an α1d dependency (see the third term in (6.10)). Therefore, by optimizing α, our final
bound only depends on

√
d rather than d.

We then show the proof sketch for high probability result, i.e, Theorem 4.3.

Proof [Proof Sketch of Theorem 5.2] Following the same procedure as in the proof for Theorem 4.3 until
(6.6). For t = 1, substituting (6.3), (6.5) and (6.6) into (6.2), rearranging terms, we have

f(z2)− f(z1) ≤ dα1G∞ + 2L
∥∥α1V̂−1/2

1 g1
∥∥2

2, (6.11)

For t ≥ 2, substituting (6.4), (6.5) and (6.6) into (6.2), rearranging terms, we have

f(zt+1) +
G2

∞
∥∥αtV̂−1/2

t

∥∥
1,1

1− β1
−

(
f(zt) +

G2
∞

∥∥αt−1V̂−1/2
t−1

∥∥
1,1

1− β1

)
≤ −∇f(xt)⊤αt−1V̂−1/2

t−1 gt + 2L
∥∥αtV̂−1/2

t gt

∥∥2
2 + 4L

(
β1

1− β1

)2∥∥αt−1V̂−1/2
t−1 mt−1

∥∥2
2. (6.12)

We now telescope (6.12) for t = 2 to T and add it with (6.11). Rearranging it, we have
T∑

t=2
αt−1∇f(xt)⊤V̂−1/2

t−1 gt

≤ ∆ + G2
∞α1ϵ−1/2d

1− β1
+ dα1G∞ + 2L

T∑
t=1

∥∥αtV̂−1/2
t gt

∥∥2
2 + 4L

(
β1

1− β1

)2 T∑
t=1

∥∥αtV̂−1/2
t mt

∥∥2
2. (6.13)

Now consider the filtration Ft = σ(ξ1, . . . , ξt). Since xt and V̂−1/2
t−1 only depend on ξ1, . . . , ξt−1, by Assump-

tion 5.1 and an martingale concentration argument,we obtain∣∣∣∣∣
T∑

t=2

αt−1∇f(xt)⊤V̂−1/2
t−1 gt −

T∑
t=2

αt−1∇f(xt)⊤V̂−1/2
t−1 ∇f(xt)

∣∣∣∣∣
≤ ϵ−1σ2

T∑
t=2

α2
t−1∥∇f(xt)∥2

2 + C log(2/δ), (6.14)

11

Published in Transactions on Machine Learning Research (02/2024)

By using Lemma 6.5 and substituting (6.14) into (6.13), we have

T∑
t=2

αt−1∇f(xt)⊤V̂−1/2
t−1 ∇f(xt)

≤ ∆ + G2
∞α1ϵ−1/2d

1− β1
+ dα1G∞ + ϵ−1σ2

T∑
t=2

α2
t−1∥∇f(xt)∥2

2 + LT 1/2α2
t

ϵ1/2(1− β2)1/2(1− γ)

d∑
i=1
∥g1:T,i∥2

+ C log(2/δ) +
(

β1

1− β1

)2 2LT 1/2α2
t (1− β1)

ϵ1/2(1− β2)1/2(1− γ)

d∑
i=1
∥g1:T,i∥2.

Moreover, by Lemma 6.4, we have ∇f(xt)⊤V̂−1/2
t−1 ∇f(xt) ≥ (G∞ +

√
ϵ)−1∥∇f(xt)∥2

2, and therefore by
choosing αt = α ≤ σ−2ϵ/2 and rearranging terms, we have

1
T − 1

T∑
t=2
∥∇f(xt)∥2

2 ≤
4(G∞ +

√
ϵ)

Tα
·∆ + 4G2

∞(G∞ +
√

ϵ)ϵ−1/2

1− β1
· d

T
+ 4G∞(G∞ +

√
ϵ) · d

T

+ 4(G∞ +
√

ϵ)Lα

ϵ1/2(1− β2)1/2(1− γ)T 1/2

d∑
i=1
∥g1:T,i∥2 + C ′(G∞ +

√
ϵ) log(2/δ)

Tα

+
(

β1

1− β1

)2 8(G∞ +
√

ϵ)Lα(1− β1)
ϵ1/2(1− β2)1/2(1− γ)T 1/2

d∑
i=1
∥g1:T,i∥2, (6.15)

where C ′ is an absolute constant. Finally, rearranging (6.15) and adopting the condition ∥g1:T,i∥2 ≤ G∞T s

gives

1
T − 1

T∑
t=2
∥∇f(xt)∥2

2 ≤
M1

Tα
+ M2d

T
+ αM3d

T 1/2−s
,

where {Mi}3
i=1 are defined in Theorem 5.2. This completes the proof.

7 Conclusion

In this paper, we provided a fine-grained analysis of a general class of adaptive gradient methods, and proved
their convergence rates for smooth nonconvex optimization. Our results provide faster convergence rates of
AMSGrad and the corrected version of RMSProp as well as AdaGrad for smooth nonconvex optimization
compared with previous works. In addition, we also prove high probability bounds on the convergence rates
of AMSGrad and RMSProp as well as AdaGrad, which have not been established before.

Acknowledgments

We thank Yiqi Tang for his valuable discussions and preparation of this work. We thank the anonymous
reviewers for their helpful comments. This research was sponsored in part by the National Science Foundation
CAREER Award IIS-1906169, BIGDATA IIS-1855099 and IIS-2008981. We also thank AWS for providing
cloud computing credits associated with the NSF BIGDATA award. The views and conclusions contained
in this paper are those of the authors and should not be interpreted as representing any funding agencies.

References
Ahmet Alacaoglu, Yura Malitsky, Panayotis Mertikopoulos, and Volkan Cevher. A new regret analysis for

adam-type algorithms. In International Conference on Machine Learning, pp. 202–210. PMLR, 2020.

12

Published in Transactions on Machine Learning Research (02/2024)

Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimization. In International
Conference on Machine Learning, pp. 699–707, 2016.

Amitabh Basu, Soham De, Anirbit Mukherjee, and Enayat Ullah. Convergence guarantees for rmsprop and
adam in non-convex optimization and their comparison to nesterov acceleration on autoencoders. arXiv
preprint arXiv:1807.06766, 2018.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the generaliza-
tion gap of adaptive gradient methods in training deep neural networks. In International Joint Conferences
on Artificial Intelligence, 2020.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type algorithms
for nonconvex optimization. arXiv preprint arXiv:1808.02941, 2018a.

Zaiyi Chen, Yi Xu, Enhong Chen, and Tianbao Yang. Sadagrad: Strongly adaptive stochastic gradient
methods. In International Conference on Machine Learning, pp. 913–921, 2018b.

Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. On the convergence of adam and
adagrad. arXiv preprint arXiv:2003.02395, 2020.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Saeed Ghadimi and Guanghui Lan. Accelerated gradient methods for nonconvex nonlinear and stochastic
programming. Mathematical Programming, 156(1-2):59–99, 2016.

Nicholas JA Harvey, Christopher Liaw, Yaniv Plan, and Sikander Randhawa. Tight analyses for non-smooth
stochastic gradient descent. In Conference on Learning Theory, pp. 1579–1613. PMLR, 2019a.

Nicholas JA Harvey, Christopher Liaw, and Sikander Randhawa. Simple and optimal high-probability bounds
for strongly-convex stochastic gradient descent. arXiv preprint arXiv:1909.00843, 2019b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In
ECCV, pp. 630–645. Springer, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Prateek Jain, Dheeraj Nagaraj, and Praneeth Netrapalli. Making the last iterate of sgd information theo-
retically optimal. arXiv preprint arXiv:1904.12443, 2019.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. A short note on concentration
inequalities for random vectors with subgaussian norm. arXiv preprint arXiv:1902.03736, 2019.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
In Advances in neural information processing systems, pp. 315–323, 2013.

Sham M Kakade and Ambuj Tewari. On the generalization ability of online strongly convex programming
algorithms. In Advances in Neural Information Processing Systems, pp. 801–808, 2009.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum optimization via scsg
methods. In Advances in Neural Information Processing Systems, pp. 2345–2355, 2017.

13

Published in Transactions on Machine Learning Research (02/2024)

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive stepsizes.
arXiv preprint arXiv:1805.08114, 2018.

Xiaoyu Li and Francesco Orabona. A high probability analysis of adaptive sgd with momentum. arXiv
preprint arXiv:2007.14294, 2020.

Mingrui Liu, Youssef Mroueh, Jerret Ross, Wei Zhang, Xiaodong Cui, Payel Das, and Tianbao Yang. To-
wards better understanding of adaptive gradient algorithms in generative adversarial nets. arXiv preprint
arXiv:1912.11940, 2019.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated corpus of
english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex optimization.
arXiv preprint arXiv:1002.4908, 2010.

Mahesh Chandra Mukkamala and Matthias Hein. Variants of rmsprop and adagrad with logarithmic regret
bounds. In ICML, 2017.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science
& Business Media, 2013.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational
Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance reduction
for nonconvex optimization. pp. 314–323, 2016.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In International
Conference on Learning Representations, 2018.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 1951.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and
momentum in deep learning. In International conference on machine learning, pp. 1139–1147, 2013.

T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex land-
scapes, from any initialization. arXiv preprint arXiv:1806.01811, 2018.

Tianbao Yang, Qihang Lin, and Zhe Li. Unified convergence analysis of stochastic momentum methods for
convex and non-convex optimization. arXiv preprint arXiv:1604.03257, 2016.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods for
nonconvex optimization. In Advances in neural information processing systems, pp. 9793–9803, 2018.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduction for nonconvex optimization.
arXiv preprint arXiv:1806.07811, 2018.

Fangyu Zou and Li Shen. On the convergence of adagrad with momentum for training deep neural networks.
arXiv preprint arXiv:1808.03408, 2018.

Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition for convergences
of adam and rmsprop. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11127–11135, 2019.

14

Published in Transactions on Machine Learning Research (02/2024)

Appendix

A Proof of the Main Theory

Here we provide the detailed proof of the main theorem.

A.1 Proof of Theorem 4.3

Let x0 = x1. To prove Theorem 4.3, we need the following lemmas:

Lemma A.1 (Restatement of Lemma 6.4) Let v̂t and mt be as defined in Algorithm 1. Then under
Assumption 4.1, we have ∥∇f(x)∥∞ ≤ G∞, ∥v̂t∥∞ ≤ G2

∞ and ∥mt∥∞ ≤ G∞.

Lemma A.2 (Generalized version of Lemma 6.5) Let β1, β2, β′
1, β′

2 be the weight parameters such that

mt = β1mt−1 + (1− β′
1)gt,

vt = β2vt−1 + (1− β′
2)g2

t ,

αt, t = 1, . . . , T be the step sizes. We denote γ = β1/β
1/2
2 . Suppose that αt = α and γ ≤ 1, then under

Assumption 4.1, we have the following two results:

T∑
t=1

α2
t

∥∥V̂−1/2
t mt

∥∥2
2 ≤

T 1/2α2
t (1− β′

1)
2ϵ1/2(1− β′

2)1/2(1− γ)

d∑
i=1
∥g1:T,i∥2,

and
T∑

t=1
α2

t

∥∥V̂−1/2
t gt

∥∥2
2 ≤

T 1/2α2
t

2ϵ1/2(1− β′
2)1/2(1− γ)

d∑
i=1
∥g1:T,i∥2.

Note that Lemma A.2 is general and applicable to various algorithms. Specifically, set β′
1 = β1 and β′

2 = β2,
we recover the case in Algorithm 1. Further set β1 = 0 we recover the case in Algorithm 2. Set β′

1 = β1 = 0
and β2 = 1, β′

2 = 0 we recover the case in Algorithm 3.

To deal with stochastic momentum mt and stochastic weight V̂−1/2
t , following Yang et al. (2016), we define

an auxiliary sequence zt as follows: let x0 = x1, and for each t ≥ 1,

zt = xt + β1

1− β1
(xt − xt−1) = 1

1− β1
xt −

β1

1− β1
xt−1. (A.1)

Lemma A.3 shows that zt+1 − zt can be represented in two different ways.

Lemma A.3 (Restatement of Lemma 6.1) Let zt be defined in (A.1). For t ≥ 2, we have

zt+1 − zt = β1

1− β1

[
I−

(
αtV̂−1/2

t

)(
αt−1V̂−1/2

t−1
)−1

]
(xt−1 − xt)− αtV̂−1/2

t gt. (A.2)

and

zt+1 − zt = β1

1− β1

(
αt−1V̂−1/2

t−1 − αtV̂−1/2
t

)
mt−1 − αtV̂−1/2

t gt. (A.3)

For t = 1, we have

z2 − z1 = −α1V̂−1/2
1 g1. (A.4)

By Lemma A.3, we connect zt+1−zt with xt+1−xt and αtV̂−1/2
t gt. The following two lemmas give bounds

on ∥zt+1 − zt∥2 and ∥∇f(zt)−∇f(xt)∥2, which play important roles in our proof.

15

Published in Transactions on Machine Learning Research (02/2024)

Lemma A.4 (Restatement of Lemma 6.2) Let zt be defined in (A.1). For t ≥ 2, we have

∥zt+1 − zt∥2 ≤
∥∥αV̂−1/2

t gt

∥∥
2 + β1

1− β1
∥xt−1 − xt∥2.

Lemma A.5 (Restatement of Lemma 6.3) Let zt be defined in (A.1). For t ≥ 2, we have

∥∇f(zt)−∇f(xt)∥2 ≤ L
(β1

1− β1

)
· ∥xt − xt−1∥2.

We present the following lemma which upper bounds the difference f(zt+1)− f(zt).

Lemma A.6 For t = 1, we have

f(z2)− f(z1) ≤ dα1G∞ + 2L
∥∥α1V̂−1/2

1 g1
∥∥2

2.

For t ≥ 2, we have

f(zt+1) +
G2

∞
∥∥αtV̂−1/2

t

∥∥
1,1

1− β1
−

(
f(zt) +

G2
∞

∥∥αt−1V̂−1/2
t−1

∥∥
1,1

1− β1

)
≤ −∇f(xt)⊤αt−1V̂−1/2

t−1 gt + 2L
∥∥αtV̂−1/2

t gt

∥∥2
2 + 4L

(
β1

1− β1

)2
∥xt − xt−1∥2

2,

Now we are ready to prove Theorem 4.3.

Proof [Proof of Theorem 4.3]

By Lemma A.6, for t = 1, we have

E[f(z2)− f(z1)] ≤ E[dα1G∞ + 2L
∥∥α1V̂−1/2

1 g1
∥∥2

2]. (A.5)

For t ≥ 2, we have

E
[
f(zt+1) +

G2
∞

∥∥αtV̂−1/2
t

∥∥
1,1

1− β1
−

(
f(zt) +

G2
∞

∥∥αt−1V̂−1/2
t−1

∥∥
1,1

1− β1

)]
≤ E

[
−∇f(xt)⊤αt−1V̂−1/2

t−1 gt + 2L
∥∥αtV̂−1/2

t gt

∥∥2
2 + 4L

(
β1

1− β1

)2
∥xt − xt−1∥2

2

]
= E

[
−∇f(xt)⊤αt−1V̂−1/2

t−1 ∇f(xt) + 2L
∥∥αtV̂−1/2

t gt

∥∥2
2 + 4L

(
β1

1− β1

)2∥∥αt−1V̂−1/2
t−1 mt−1

∥∥2
2

]
≤ E

[
− αt−1

∥∥∇f(xt)
∥∥2

2(G∞ +
√

ϵ)−1 + 2L
∥∥αtV̂−1/2

t gt

∥∥2
2 + 4L

(
β1

1− β1

)2∥∥αt−1V̂−1/2
t−1 mt−1

∥∥2
2

]
, (A.6)

16

Published in Transactions on Machine Learning Research (02/2024)

where the equality holds because E[gt] = ∇f(xt) conditioned on ∇f(xt) and V̂−1/2
t−1 , the second inequality

holds because of Lemma A.1. Telescoping (A.6) for t = 2 to T and adding with (B.15), we have

(G∞ +
√

ϵ)−1
T∑

t=2
αt−1E

∥∥∇f(xt)
∥∥2

2

≤ E
[
f(z1) +

G2
∞

∥∥α1V̂−1/2
1

∥∥
1,1

1− β1
+ dα1G∞ −

(
f(zT +1) +

G2
∞

∥∥αT v̂−1/2
T

∥∥
1

1− β1

)]
+ 2L

T∑
t=1

E
∥∥αtV̂−1/2

t gt

∥∥2
2 + 4L

(
β1

1− β1

)2 T∑
t=2

E
[∥∥αt−1V̂−1/2

t−1 mt−1
∥∥2

2

]
≤ E

[
∆ + G2

∞α1ϵ−1/2d

1− β1
+ dα1G∞

]
+ 2L

T∑
t=1

E
∥∥αtV̂−1/2

t gt

∥∥2
2

+ 4L

(
β1

1− β1

)2 T∑
t=1

E
[∥∥αtV̂−1/2

t mt

∥∥2
2

]
. (A.7)

By Lemma A.2, we have
T∑

t=1
α2

tE
[
∥V̂−1/2

t mt∥2
2

]
≤ T 1/2α2

t (1− β1)
2ϵ1/2(1− β2)1/2(1− γ)E

(d∑
i=1
∥g1:T,i∥2

)
, (A.8)

where γ = β1/β
1/2
2 . We also have

T∑
t=1

α2
tE

[
∥V̂−1/2

t gt∥2
2

]
≤ T 1/2α2

t

2ϵ1/2(1− β2)1/2(1− γ)E
(d∑

i=1
∥g1:T,i∥2

)
. (A.9)

Substituting (A.8) and (A.9) into (A.7), and rearranging (A.7), we have

E∥∇f(xout)∥2
2 = 1∑T

t=2 αt−1

T∑
t=2

αt−1E
∥∥∇f(xt)

∥∥2
2

≤ (G∞ +
√

ϵ)∑T
t=2 αt−1

E
[
∆ + G2

∞α1ϵ−1/2d

1− β1
+ dα1G∞

]

+ 2L(G∞ +
√

ϵ)∑T
t=2 αt−1

· T 1/2α2
t

2ϵ1/2(1− β2)1/2(1− γ) · E
(d∑

i=1
∥g1:T,i∥2

)

+ 4L(G∞ +
√

ϵ)∑T
t=2 αt−1

(
β1

1− β1

)2
T 1/2α2

t (1− β1)
2ϵ1/2(1− β2)1/2(1− γ) · E

(d∑
i=1
∥g1:T,i∥2

)
≤ 1

Tα
2(G∞ +

√
ϵ)∆ + 2

T

(
G2

∞(G∞ +
√

ϵ)ϵ−1/2d

1− β1
+ dG∞(G∞ +

√
ϵ)

)
+ 2(G∞ +

√
ϵ)Lα

T 1/2ϵ1/2(1− γ)(1− β2)1/2E
(d∑

i=1
∥g1:T,i∥2

)
·
(

1 + 2(1− β1)
(

β1

1− β1

)2)
, (A.10)

where the second inequality holds because αt = α. Rearranging (A.10), and note that in the theorem
condition we have ∥g1:T,i∥2 ≤ G∞T s, we obtain

E∥∇f(xout)∥2
2 ≤

M1

Tα
+ M2d

T
+ αM3d

T 1/2−s
,

where {Mi}3
i=1 are defined in Theorem 4.3. This completes the proof.

17

Published in Transactions on Machine Learning Research (02/2024)

A.2 Proof of Corollary 4.5

Proof [Proof of Corollary 4.5] Following the proof for Theorem 4.3, setting β′
1 = β1 = 0 and β′

2 = β2 = β
in Lemma A.2 we get the conclusion.

A.3 Proof of Corollary 4.6

Proof [Proof of Corollary 4.6] Following the proof for Theorem 4.3, setting β′
1 = β1 = 0, β2 = 1 and β′

2 = 0
in Lemma A.2 we get the conclusion.

A.4 Proof of Theorem 5.2

Proof [Proof of Theorem 5.2]

By Lemma A.6, for t = 1, we have

f(z2)− f(z1) ≤ dα1G∞ + 2L
∥∥α1V̂−1/2

1 g1
∥∥2

2, (A.11)

For t ≥ 2, we have

f(zt+1) +
G2

∞
∥∥αtV̂−1/2

t

∥∥
1,1

1− β1
−

(
f(zt) +

G2
∞

∥∥αt−1V̂−1/2
t−1

∥∥
1,1

1− β1

)
≤ −∇f(xt)⊤αt−1V̂−1/2

t−1 gt + 2L
∥∥αtV̂−1/2

t gt

∥∥2
2 + 4L

(
β1

1− β1

)2
∥xt − xt−1∥2

2

= −∇f(xt)⊤αt−1V̂−1/2
t−1 gt + 2L

∥∥αtV̂−1/2
t gt

∥∥2
2 + 4L

(
β1

1− β1

)2∥∥αt−1V̂−1/2
t−1 mt−1

∥∥2
2. (A.12)

Telescoping (A.12) for t = 2 to T and adding (A.11), we have

T∑
t=2

αt−1∇f(xt)⊤V̂−1/2
t−1 gt ≤ f(z1) +

G2
∞

∥∥α1V̂−1/2
1

∥∥
1,1

1− β1
+ dα1G∞ −

(
f(zT +1) +

G2
∞

∥∥αT v̂−1/2
T

∥∥
1

1− β1

)

+ 2L

T∑
t=1

∥∥αtV̂−1/2
t gt

∥∥2
2 + 4L

(
β1

1− β1

)2 T∑
t=2

∥∥αt−1V̂−1/2
t−1 mt−1

∥∥2
2

≤ ∆ + G2
∞α1ϵ−1/2d

1− β1
+ dα1G∞ + 2L

T∑
t=1

∥∥αtV̂−1/2
t gt

∥∥2
2

+ 4L

(
β1

1− β1

)2 T∑
t=1

∥∥αtV̂−1/2
t mt

∥∥2
2. (A.13)

By Lemma A.2, we have

T∑
t=1

α2
t [∥V̂−1/2

t mt∥2
2 ≤

T 1/2α2
t (1− β1)

2ϵ1/2(1− β2)1/2(1− γ)

d∑
i=1
∥g1:T,i∥2, (A.14)

where γ = β1/β
1/2
2 . We also have

T∑
t=1

α2
t ∥V̂

−1/2
t gt∥2

2 ≤
T 1/2α2

t

2ϵ1/2(1− β2)1/2(1− γ)

d∑
i=1
∥g1:T,i∥2. (A.15)

18

Published in Transactions on Machine Learning Research (02/2024)

Moreover, consider the filtration Ft = σ(ξ1, . . . , ξt). Since xt and V̂−1/2
t−1 only depend on ξ1, . . . , ξt−1. For

any τ, λ > 0, by Assumption 5.1 with v = τ · αt−1V̂−1/2
t−1 ∇f(xt), we have

E
{

exp
[
λαt−1∇f(xt)⊤V̂−1/2

t−1 (gt −∇f(xt))
]∣∣∣Ft−1

}
≤ exp(σ2α2

t−1λ2∥V̂−1/2
t−1 ∇f(xt)∥2

2/2).

Denote Zt = αt−1∇f(xt)⊤V̂−1/2
t−1 (gt −∇f(xt)). Then we have

P(Zt ≥ τ |Ft−1) = P[exp(λZt) ≥ exp(λτ)|Ft−1]
= E[1{exp(−λτ + λZt) ≥ 1}|Ft−1]
≤ exp(−λτ) · E[exp(λZt)|Ft−1]

≤ exp(−λτ) · exp(σ2α2
t−1λ2∥V̂−1/2

t−1 ∇f(xt)∥2
2/2)

= exp(−λτ + σ2α2
t−1λ2∥V̂−1/2

t−1 ∇f(xt)∥2
2/2).

With exactly the same proof, we also have

P(Zt ≤ −τ |Ft−1) ≤ exp(−λτ + σ2α2
t−1λ2∥V̂−1/2

t−1 ∇f(xt)∥2
2/2).

Combining above two inequalities, we have

P(|Zt| ≥ τ |Ft−1) ≤ 2 exp(−λτ + σ2α2
t−1λ2∥V̂−1/2

t−1 ∇f(xt)∥2
2/2).

Choosing λ = [σ2α2
t−1∥V̂

−1/2
t−1 ∇f(xt)∥2

2]−1τ , we finally obtain

P(|Zt| ≥ τ |Ft−1) ≤ 2 exp(−τ2/(2σ2
t)) (A.16)

for all τ > 0, where σt = σαt−1∥V̂−1/2
t−1 ∇f(xt)∥2. The tail bound (A.16) enables the application of Lemma 6

in Jin et al. (2019), which gives that with probability at least 1− δ,∣∣∣∣∣
T∑

t=2
Zt

∣∣∣∣∣ ≤
T∑

t=2
σ2

t + C log(2/ϵ),

where C is an absolute constant. Plugging in the definitions of Zt and σt, we obtain∣∣∣∣∣
T∑

t=2

αt−1∇f(xt)⊤V̂−1/2
t−1 gt −

T∑
t=2

αt−1∇f(xt)⊤V̂−1/2
t−1 ∇f(xt)

∣∣∣∣∣
≤

T∑
t=2

σ2α2
t−1∥V̂−1/2

t−1 ∇f(xt)∥2
2 + C log(2/δ)

≤ ϵ−1σ2
T∑

t=2

α2
t−1∥∇f(xt)∥2

2 + C log(2/δ), (A.17)

where the second inequality is by the fact that the diagonal entries of V̂t−1 are all loewr bounded by ϵ.
Substituting (A.14), (A.15) and (A.17) into (A.13), we have

T∑
t=2

αt−1∇f(xt)⊤V̂−1/2
t−1 ∇f(xt) ≤ ∆ + G2

∞α1ϵ−1/2d

1− β1
+ dα1G∞ + LT 1/2α2

t

ϵ1/2(1− β2)1/2(1− γ)

d∑
i=1
∥g1:T,i∥2

+
(

β1

1− β1

)2 2LT 1/2α2
t (1− β1)

ϵ1/2(1− β2)1/2(1− γ)

d∑
i=1
∥g1:T,i∥2

+ ϵ−1σ2
T∑

t=2
α2

t−1∥∇f(xt)∥2
2 + C log(2/δ).

19

Published in Transactions on Machine Learning Research (02/2024)

Moreover, by Lemma A.1, we have ∇f(xt)⊤V̂−1/2
t−1 ∇f(xt) ≥ (G∞ +

√
ϵ)−1∥∇f(xt)∥2

2, and therefore by
choosing αt = α and rearranging terms, we have

(G∞ +
√

ϵ)−1
T∑

t=2
α(1− ϵ−1σ2α)∥∇f(xt)∥2

2

≤ ∆ + G2
∞αϵ−1/2d

1− β1
+ dαG∞ + LT 1/2α2

ϵ1/2(1− β2)1/2(1− γ)

d∑
i=1
∥g1:T,i∥2

+
(

β1

1− β1

)2 2LT 1/2α2(1− β1)
ϵ1/2(1− β2)1/2(1− γ)

d∑
i=1
∥g1:T,i∥2 + C log(2/δ).

Therefore when α < σ−2ϵ/2, we have

1
T − 1

T∑
t=2
∥∇f(xt)∥2

2

≤ 4(G∞ +
√

ϵ)
Tα

·∆ + 4G2
∞(G∞ +

√
ϵ)ϵ−1/2

1− β1
· d

T
+ 4G∞(G∞ +

√
ϵ) · d

T

+ 4(G∞ +
√

ϵ)Lα

ϵ1/2(1− β2)1/2(1− γ)T 1/2

d∑
i=1
∥g1:T,i∥2

+
(

β1

1− β1

)2 8(G∞ +
√

ϵ)Lα(1− β1)
ϵ1/2(1− β2)1/2(1− γ)T 1/2

d∑
i=1
∥g1:T,i∥2 + C ′(G∞ +

√
ϵ) log(2/δ)

Tα
,

where C ′ is an absolute constant.

Now by the theorem condition ∥g1:T,i∥2 ≤ G∞T s, we have

1
T − 1

T∑
t=2
∥∇f(xt)∥2

2 ≤
M1

Tα
+ M2d

T
+ αM3d

T 1/2−s
,

where {Mi}3
i=1 are defined in Theorem 5.2. This completes the proof.

A.5 Proof of Corollary 5.4

Proof [Proof of Corollary 5.4] Following the proof for Theorem 5.2, setting β′
1 = β1 = 0 and β′

2 = β2 = β
in Lemma A.2 we get the conclusion.

A.6 Proof of Corollary 5.4

Proof [Proof of Corollary 5.4] Following the proof for Theorem 5.2, setting β′
1 = β1 = 0, β2 = 1 and β′

2 = 0
in Lemma A.2 we get the conclusion.

20

Published in Transactions on Machine Learning Research (02/2024)

B Proof of Technical Lemmas

B.1 Proof of Lemma A.1

Proof [Proof of Lemma A.1] Since f has G∞-bounded stochastic gradient, for any x and ξ, ∥∇f(x; ξ)∥∞ ≤
G∞. Thus, we have

∥∇f(x)∥∞ = ∥Eξ∇f(x; ξ)∥∞ ≤ Eξ∥∇f(x; ξ)∥∞ ≤ G∞.

Next we bound ∥mt∥∞. We have ∥m0∥∞ = 0 ≤ G∞. Suppose that ∥mt∥∞ ≤ G∞, then for mt+1, we have

∥mt+1∥∞ = ∥β1mt + (1− β1)gt+1∥∞

≤ β1∥mt∥∞ + (1− β1)∥gt+1∥∞

≤ β1G∞ + (1− β1)G∞

= G∞.

Thus, for any t ≥ 0, we have ∥mt∥∞ ≤ G∞. Finally we bound ∥v̂t∥∞. First we have ∥v0∥∞ = ∥v̂0∥∞ =
0 ≤ G2

∞. Suppose that ∥v̂t∥∞ ≤ G2
∞ and ∥vt∥∞ ≤ G2

∞. Note that we have

∥vt+1∥∞ = ∥β2vt + (1− β2)g2
t+1∥∞

≤ β2∥vt∥∞ + (1− β2)∥g2
t+1∥∞

≤ β2G2
∞ + (1− β2)G2

∞

= G2
∞,

and by definition, we have ∥v̂t+1∥∞ = max{∥v̂t∥∞, ∥vt+1∥∞} ≤ G2
∞. Thus, for any t ≥ 0, we have

∥v̂t∥∞ ≤ G2
∞.

B.2 Proof of Lemma A.2

Proof Recall that v̂t,j , mt,j , gt,j denote the j-th coordinate of v̂t, mt and gt. We have

α2
t ∥V̂

−1/2
t mt∥2

2 = α2
t

d∑
i=1

m2
t,i

v̂
1/2
t,i

·
v̂

1/2
t,i

v̂t,i + ϵ

≤ α2
t

d∑
i=1

m2
t,i

v̂
1/2
t,i

·
v̂

1/2
t,i

2v̂
1/2
t,i ϵ1/2

≤ α2
t

2ϵ1/2

d∑
i=1

m2
t,i

v
1/2
t,i

= α2
t

2ϵ1/2

d∑
i=1

(
∑t

j=1(1− β′
1)βt−j

1 gj,i)2

(
∑t

j=1(1− β′
2)βt−j

2 g2
j,i)1/2

, (B.1)

where the first inequality holds since a + b ≥ 2
√

ab and the second inequality holds because v̂t,i ≥ vt,i. Next
we have

α2
t

2ϵ1/2

d∑
i=1

(
∑t

j=1(1− β′
1)βt−j

1 gj,i)2

(
∑t

j=1(1− β′
2)βt−j

2 g2
j,i)1/2

≤ α2
t (1− β′

1)2

2ϵ1/2(1− β′
2)1/2

d∑
i=1

(
∑t

j=1 βt−j
1)(

∑t
j=1 βt−j

1 |gj,i|2)
(
∑t

j=1 βt−j
2 g2

j,i)1/2

≤ α2
t (1− β′

1)
2ϵ1/2(1− β′

2)1/2

d∑
i=1

∑t
j=1 βt−j

1 |gj,i|2

(
∑t

j=1 βt−j
2 g2

j,i)1/2
, (B.2)

21

Published in Transactions on Machine Learning Research (02/2024)

where the first inequality holds due to Cauchy inequality, and the last inequality holds because
∑t

j=1 βt−j
1 ≤

(1− β1)−1. Note that

d∑
i=1

∑t
j=1 βt−j

1 |gj,i|2

(
∑t

j=1 βt−j
2 g2

j,i)1/2
≤

d∑
i=1

t∑
j=1

βt−j
1 |gj,i|2

(βt−j
2 g2

j,i)1/2

=
d∑

i=1

t∑
j=1

γt−j |gj,i|, (B.3)

where the equality holds due to the definition of γ. Substituting (B.2) and (B.3) into (B.1), we have

α2
t ∥V̂

−1/2
t mt∥2

2 ≤
α2

t (1− β′
1)

2ϵ1/2(1− β′
2)1/2

d∑
i=1

t∑
j=1

γt−j |gj,i|. (B.4)

Telescoping (B.4) for t = 1 to T , we have

T∑
t=1

α2
t ∥V̂

−1/2
t mt∥2

2 ≤
α2

t (1− β′
1)

2ϵ1/2(1− β′
2)1/2

T∑
t=1

d∑
i=1

t∑
j=1

γt−j |gj,i|

= α2
t (1− β′

1)
2ϵ1/2(1− β′

2)1/2

d∑
i=1

T∑
j=1
|gj,i|

T∑
t=j

γt−j

≤ α2
t (1− β′

1)
2ϵ1/2(1− β′

2)1/2(1− γ)

d∑
i=1

T∑
j=1
|gj,i|. (B.5)

Finally, we have

d∑
i=1

T∑
j=1
|gj,i| ≤

d∑
i=1

(T∑
j=1

g2
j,i

)1/2
· T 1/2 = T 1/2

d∑
i=1
∥g1:T,i∥2, (B.6)

where the inequality holds due to Hölder’s inequality. Substituting (B.6) into (B.5), we have

T∑
t=1

α2
t ∥V̂

−1/2
t mt∥2

2 ≤
T 1/2α2

t (1− β′
1)

2ϵ1/2(1− β′
2)1/2(1− γ)

d∑
i=1
∥g1:T,i∥2.

Specifically, taking β1 = 0, we have mt = gt, then

T∑
t=1

α2
t ∥V̂

−1/2
t gt∥2

2 ≤
T 1/2α2

t

2ϵ1/2(1− β′
2)1/2(1− γ)

d∑
i=1
∥g1:T,i∥2.

B.3 Proof of Lemma A.3

Proof By definition, we have

zt+1 = xt+1 + β1

1− β1
(xt+1 − xt)

= 1
1− β1

xt+1 −
β1

1− β1
xt.

22

Published in Transactions on Machine Learning Research (02/2024)

Then we have

zt+1 − zt = 1
1− β1

(xt+1 − xt)−
β1

1− β1
(xt − xt−1)

= 1
1− β1

(
− αtV̂−1/2

t mt

)
+ β1

1− β1
αt−1V̂−1/2

t−1 mt−1.

The equities above are based on definition. Then we have

zt+1 − zt = −αtV̂−1/2
t

1− β1

[
β1mt−1 + (1− β1)gt

]
+ β1

1− β1
αt−1V̂−1/2

t−1 mt−1

= β1

1− β1

(
αt−1V̂−1/2

t−1 − αtV̂−1/2
t

)
mt−1 − αtV̂−1/2

t gt

= β1

1− β1
αt−1V̂−1/2

t−1

[
I−

(
αtV̂−1/2

t

)(
αt−1V̂−1/2

t−1
)−1

]
mt−1 − αtV̂−1/2

t gt

= β1

1− β1

[
I−

(
αtV̂−1/2

t

)(
αt−1V̂−1/2

t−1
)−1

]
(xt−1 − xt)− αtV̂−1/2

t gt.

The equalities above follow by combining the like terms.

B.4 Proof of Lemma A.4

Proof By Lemma A.3, we have

∥zt+1 − zt∥2 =
∥∥∥∥ β1

1− β1

[
I− (αtV̂−1/2

t)(αt−1V̂−1/2
t−1)−1

]
(xt−1 − xt)− αtV̂−1/2

t gt

∥∥∥∥
2

≤ β1

1− β1

∥∥∥I− (αtV̂−1/2
t)(αt−1V̂−1/2

t−1)−1
∥∥∥

∞,∞
· ∥xt−1 − xt∥2 +

∥∥αV̂−1/2
t gt

∥∥
2,

where the inequality holds because the term β1/(1 − β1) is positive, and triangle inequality. Considering
that αtv̂−1/2

t,j ≤ αt−1v̂−1/2
t−1,j , when p > 0, we have

∥∥∥I − (αtV̂−1/2
t)(αt−1V̂−1/2

t−1)−1
∥∥∥

∞,∞
≤ 1. With that fact,

the term above can be bound as:

∥zt+1 − zt∥2 ≤
∥∥αV̂−1/2

t gt

∥∥
2 + β1

1− β1
∥xt−1 − xt∥2.

This completes the proof.

B.5 Proof of Lemma A.5

Proof For term ∥∇f(zt)−∇f(xt)∥2, we have:

∥∇f(zt)−∇f(xt)∥2 ≤ L∥zt − xt∥2 ≤ L
∥∥∥ β1

1− β1
(xt − xt−1)

∥∥∥
2
≤ L

(β1

1− β1

)
· ∥xt − xt−1∥2,

where the last inequality holds because the term β1/(1− β1) is positive.

23

Published in Transactions on Machine Learning Research (02/2024)

B.6 Proof of Lemma A.6

Proof Since f is L-smooth, we have:

f(zt+1) ≤ f(zt) +∇f(zt)⊤(zt+1 − zt) + L

2 ∥zt+1 − zt∥2
2

= f(zt) +∇f(xt)⊤(zt+1 − zt)︸ ︷︷ ︸
I1

+ (∇f(zt)−∇f(xt))⊤(zt+1 − zt)︸ ︷︷ ︸
I2

+ L

2 ∥zt+1 − zt∥2
2︸ ︷︷ ︸

I3

(B.7)

In the following, we bound I1, I2 and I3 separately.

Bounding term I1: When t = 1, we have

∇f(x1)⊤(z2 − z1) = −∇f(x1)⊤α1V̂−1/2
t g1. (B.8)

For t ≥ 2, we have

∇f(xt)⊤(zt+1 − zt) = ∇f(xt)⊤
[

β1

1− β1

(
αt−1V̂−1/2

t−1 − αtV̂−1/2
t

)
mt−1 − αtV̂−1/2

t gt

]
= β1

1− β1
∇f(xt)⊤(

αt−1V̂−1/2
t−1 − αtV̂−1/2

t

)
mt−1 −∇f(xt)⊤αtV̂−1/2

t gt, (B.9)

where the first equality holds due to (A.3) in Lemma A.3. For ∇f(xt)⊤(αt−1V̂−1/2
t−1 − αtV̂−1/2

t)mt−1 in
(B.9), we have

∇f(xt)⊤(αt−1V̂−1/2
t−1 − αtV̂−1/2

t)mt−1 ≤ ∥∇f(xt)∥∞ ·
∥∥αt−1V̂−1/2

t−1 − αtV̂−1/2
t

∥∥
1,1 · ∥mt−1∥∞

≤ G2
∞

[∥∥αt−1V̂−1/2
t−1

∥∥
1,1 −

∥∥αtV̂−1/2
t

∥∥
1,1

]
. (B.10)

The first inequality holds because for a positive diagonal matrix A, we have x⊤Ay ≤ ∥x∥∞ · ∥A∥1,1 · ∥y∥∞.
The second inequality holds due to αt−1V̂−1/2

t−1 ⪰ αtV̂−1/2
t ⪰ 0. Next we bound −∇f(xt)⊤αtV̂−1/2

t gt. We
have

−∇f(xt)⊤αtV̂−1/2
t gt = −∇f(xt)⊤αt−1V̂−1/2

t−1 gt −∇f(xt)⊤(
αtV̂−1/2

t − αt−1V̂−1/2
t−1

)
gt

≤ −∇f(xt)⊤αt−1V̂−1/2
t−1 gt + ∥∇f(xt)∥∞ ·

∥∥αtV̂−1/2
t − αt−1V̂−1/2

t−1
∥∥

1,1 · ∥gt∥∞

≤ −∇f(xt)⊤αt−1V̂−1/2
t−1 gt + G2

∞

(∥∥αt−1V̂−1/2
t−1

∥∥
1,1 −

∥∥αtV̂−1/2
t

∥∥
1,1

)
. (B.11)

The first inequality holds because for a positive diagonal matrix A, we have x⊤Ay ≤ ∥x∥∞ · ∥A∥1,1 · ∥y∥∞.
The second inequality holds due to αt−1V̂−1/2

t−1 ⪰ αtV̂−1/2
t ⪰ 0. Substituting (B.10) and (B.11) into (B.9),

we have

∇f(xt)⊤(zt+1 − zt) ≤ −∇f(xt)⊤αt−1V̂−1/2
t−1 gt + 1

1− β1
G2

∞

(∥∥αt−1V̂−1/2
t−1

∥∥
1,1 −

∥∥αtV̂−1/2
t

∥∥
1,1

)
. (B.12)

Bounding term I2: For t ≥ 1, we have(
∇f(zt)−∇f(xt)

)⊤(zt+1 − zt) ≤
∥∥∇f(zt)−∇f(xt)

∥∥
2 · ∥zt+1 − zt∥2

≤
(∥∥αtV̂−1/2

t gt

∥∥
2 + β1

1− β1
∥xt−1 − xt∥2

)
· β1

1− β1
· L∥xt − xt−1∥2

= L
β1

1− β1

∥∥αtV̂−1/2
t gt

∥∥
2 · ∥xt − xt−1∥2 + L

(
β1

1− β1

)2
∥xt − xt−1∥2

2

≤ L
∥∥αtV̂−1/2

t gt

∥∥2
2 + 2L

(
β1

1− β1

)2
∥xt − xt−1∥2

2, (B.13)

24

Published in Transactions on Machine Learning Research (02/2024)

where the second inequality holds because of Lemma A.3 and Lemma A.4, the last inequality holds due to
Young’s inequality.

Bounding term I3: For t ≥ 1, we have

L

2 ∥zt+1 − zt∥2
2 ≤

L

2

[∥∥αtV̂−1/2
t gt

∥∥
2 + β1

1− β1
∥xt−1 − xt∥2

]2

≤ L
∥∥αtV̂−1/2

t gt

∥∥2
2 + 2L

(
β1

1− β1

)2
∥xt−1 − xt∥2

2. (B.14)

The first inequality is obtained by introducing Lemma A.3.

For t = 1, substituting (B.8), (B.13) and (B.14) into (B.7), taking expectation and rearranging terms, we
have

f(z2)− f(z1) ≤ −∇f(x1)⊤α1V̂−1/2
1 g1 + 2L

∥∥α1V̂−1/2
1 g1

∥∥2
2 + 4L

(
β1

1− β1

)2
∥x1 − x0∥2

2

= −∇f(x1)⊤α1V̂−1/2
1 g1 + 2L

∥∥α1V̂−1/2
1 g1

∥∥2
2

≤ dα1G∞ + 2L
∥∥α1V̂−1/2

1 g1
∥∥2

2, (B.15)

where the last inequality holds because

−∇f(x1)⊤V̂−1/2
1 g1 ≤ d · ∥∇f(x1)∥∞ · ∥V̂−1/2

1 g1∥∞ ≤ dG∞.

For t ≥ 2, substituting (B.12), (B.13) and (B.14) into (B.7), taking expectation and rearranging terms, we
have

f(zt+1) +
G2

∞
∥∥αtV̂−1/2

t

∥∥
1,1

1− β1
−

(
f(zt) +

G2
∞

∥∥αt−1V̂−1/2
t−1

∥∥
1,1

1− β1

)
≤ −∇f(xt)⊤αt−1V̂−1/2

t−1 gt + 2L
∥∥αtV̂−1/2

t gt

∥∥2
2 + 4L

(
β1

1− β1

)2
∥xt − xt−1∥2

2,

which ends our proof.

B.7 Experimental Verification of the Growth Rate Condition

In order to show that the growth rate condition of the cumulative stochastic gradient indeed holds, we have
conducted experiments to estimate the growth rate parameter s for ResNet-18 (He et al., 2016) model and
3-layer LSTM model (Hochreiter & Schmidhuber, 1997) respectively. For simplicity, we assume G∞ = 1 and
estimate the growth rate s by calculating the logarithm of the cumulative gradient norm log ∥g1:T,i∥2 and
calculate log ∥g1:T,i∥2. As can be seen from Table 2, s of adaptive gradient methods (AdaGrad, RMSProp and
AMSGrad) is smaller than that of SGDM for training 3-layer LSTM model on the PennTreeBank (Marcus
et al., 1993) dataset. All of them are actually far below the theoretical limit 1/2 in this real experiment.

method s training loss test perplexity
SGDM 0.136 4.01 65.11

AdaGrad 0.089 3.92 64.90
RMSProp 0.085 3.84 63.77
AMSGrad 0.086 3.85 63.97

Table 2: Empirical growth rate parameter s of 3-layer LSTM model on PennTreeBank dataset.

25

	Introduction
	Our Contributions

	Related Work
	Algorithms
	Convergence Results in Expectation
	Convergence Results with High Probability
	Proof Sketch of the Main Results
	Conclusion
	Proof of the Main Theory
	Proof of Theorem 4.3
	Proof of Corollary 4.5
	Proof of Corollary 4.6
	Proof of Theorem 5.2
	Proof of Corollary 5.4
	Proof of Corollary 5.4

	Proof of Technical Lemmas
	Proof of Lemma A.1
	Proof of Lemma A.2
	Proof of Lemma A.3
	Proof of Lemma A.4
	Proof of Lemma A.5
	Proof of Lemma A.6
	Experimental Verification of the Growth Rate Condition

