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Abstract
Inverse folding models play an important role
in structure-based design by predicting amino
acid sequences that fold into desired reference
structures. Models like ProteinMPNN, a message-
passing encoder-decoder model, are trained to
reliably produce new sequences from a reference
structure. However, when applied to peptides,
these models are prone to generating repetitive
sequences that do not fold into the reference struc-
ture. To address this, we fine-tune ProteinMPNN
to produce diverse and structurally consistent pep-
tide sequences via Direct Preference Optimization
(DPO). We derive two enhancements to DPO: on-
line diversity regularization and domain-specific
priors. Additionally, we develop a new under-
standing on improving diversity in decoder mod-
els. When conditioned on OpenFold generated
structures, our fine-tuned models achieve state-
of-the-art structural similarity scores, improving
base ProteinMPNN by at least 8%. Compared to
standard DPO, our regularized method achieves
up to 20% higher sequence diversity with no loss
in structural similarity score.

1. Introduction
Engineering biopolymers that fold into desired 3D struc-
tures, a computational challenge known as inverse protein
folding problem, has broad applications in drug discovery
and material science (Yang et al., 2023; Dill et al., 2008;
Abascal & Regan, 2018). Several approaches for inverse
folding have been adopted over the past decades, from
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molecular dynamics simulations to machine learning ap-
proaches (Dauparas et al., 2022a; Shanker et al., 2023; Hsu
et al., 2022a; Yi et al., 2023; Correa, 1990). In the standard
machine learning approach, a molecular backbone chain
serves as input, and a model generates sequences that adopt
folding topologies compatible with the reference backbone.
Sequences do not necessarily share sequence homology, as
multiple diverse sequences can fold into similar structures
(Hsu et al., 2022a; Yue & Dill, 1992; Godzik et al., 1993).

Peptides, which are small biopolymers comprising 2-50
residues, are interesting targets for inverse folding given
their role in diverse biological functions, acting as hormones,
neurotransmitters, signalling molecules, or nanostructures
assemblers (Chockalingam et al., 2007; Torres et al., 2019;
Copolovici et al., 2014; Ulijn & Smith, 2008). Only about
225,000 protein structures have been experimentally deter-
mined1 and made available via the Protein Data Bank (PDB).
Training inverse-folding machine learning models in a su-
pervised fashion is a challenging task, due to the complexity
of the problem and the limited amount of experimental data.
The challenge is aggravated in the peptide domain as fewer
than 3.5% PDB structures contain 50 residues or less. In
fact, applying the SCOP classification filter in the PDB to
display structures labelled as “Peptide” reveals only 509 en-
tries, circa 0.2% of all experimentally determined structures
available.

In addition to the lack of data, sequences are subject to com-
position bias. The incidence of certain amino acids may
differ depending on the sequence length , as longer proteins
have more options for accommodating multiple secondary
structures and folding loops (Tiessen et al., 2012). Popular
models like ProteinMPNN (Dauparas et al., 2022a), PiFold
(Gao et al., 2022) and ESM-IF1 (Hsu et al., 2022b) are pri-
marily trained on data derived from longer proteins, leading
to poor performance for peptide design tasks. Addition-
ally, shorter sequences fold into simpler structures. Indeed,
Milner-White & Russell (2008) argue that short peptides
are notoriously “structureless” and tend to flicker between
conformations. For example, a structural conformation of a

1Updated figures available at
https://www.rcsb.org/stats/growth/growth-released-structures.
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single alpha helix or beta sheet – or a combination of two or
three of them – is not necessarily stable and can fluctuate.

Existing inverse folding models optimize sequence residue-
recovery accuracy and structural similarity via template
modeling (TM) score (Zhang & Skolnick, 2004). However,
they often suffer from low sampling diversity (Gao et al.,
2023b). Ideally, the inverse folding model generates max-
imally diverse candidate sequences, as additional design
filters, such as synthesizability and thermal stability, reduce
the number of potential hits downstream of the design pro-
cess.

To address these issues, we apply Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023), a fine-tuning method,
to improve inverse-folding methods for peptide design. To
the authors’ knowledge, we are the first to apply DPO to this
task. We propose several enhancements to DPO to address
specific problems that arise in inverse folding. Particularly,
we forward fold generated sequences and derive an online
regularized algorithm for optimizing structural similarity to
the reference and sequence diversity simultaneously. We
show empirically that this algorithm targets the differential
entropy in log-probability space. Furthermore, we present a
simple reward scaling approach to incorporate scalar reward
information, showing that reward scaling adaptively selects
a KL divergence penalty (Kullback, S. and Leibler, R. A.,
1951) to improve performance on harder structures.

2. Preliminaries
Inverse folding is the problem of inferring the sequence
of amino acids y that fold into a given protein structure.
This protein structure is represented by a set of coordi-
nates x = (xi, yi, zi) | i = 1, . . . , n ∈ R3n,where each
(xi, yi, zi) represents the 3D position of a backbone atom
and n the number of atoms. The inverse folding problem
is underconstrained; there may be many solutions y that
fold into structures similar to x (Koehl & Levitt, 1999).
Prior research is primarily concerned with recovering the
”ground-truth” sequence yx from the experimental (refer-
ence) structure (Dauparas et al., 2022b; Hsu et al., 2022b;
Jing et al., 2021b;a). Recently, forward folding models like
AlphaFold (Jumper et al., 2021), ESMFold (Lin et al., 2022),
and OpenFold (Ahdritz et al., 2022), have made it possible
to estimate the structural similarity between generated se-
quences and the reference structure. In this work, we focus
on measuring structural similarity of generated sequences
to the reference structure via the self-consistency TM-score
(sc-TM) (Gao et al., 2023b).

ProteinMPNN (Dauparas et al., 2022b) is a popular inverse-
folding method that produces full protein sequences from
backbone features (distances and orientations between back-
bone atoms, backbone dihedral angles, accounting for a vir-

tual Cβ atom). ProteinMPNN is a 6-layer encoder-decoder
message-passing neural network based on the ’Structured
Transformer’ (Ingraham et al., 2019). Unlike left-to-right
autoregressive methods like ESM-IF1 (Hsu et al., 2022b),
ProteinMPNN decodes residues in a random decoding order,
as opposed to a fixed left-to-right order from N-terminus
to the C-terminus. (While other non-autoregressive meth-
ods exist, we do not explore them here.) ProteinMPNN is
trained on examples from the Protein Data Bank (PDB) to
determine the most likely residues for a given protein back-
bone. On native protein backbones, it achieves a sequence
recovery of 52.4%, compared to 32.9% for Rosetta (Leman
et al., 2020). In this work we build upon ProteinMPNN by
proposing methods for adapting it to peptide design.

DPO for inverse folding. Direct Preference Optimization
(DPO) is a popular method for aligning Large Language
Models to a dataset of human-produced preference assign-
ments, that discriminate amongst the responses grouped
by prompt (Rafailov et al., 2023). We adapt DPO to fine-
tune inverse-folding models by replacing human preference
labels on generated sentences with TM-score rankings on
generated sequences. Specifically, we generate a dataset of
sequences conditioned on a set of reference structures, and
score each sequence with the TM-score computed between
its predicted structure and the reference structure. These
scores define preference pairs over the generated sequences,
for each reference structure.

Let r(x, y) be the TM-score between structure x and the
predicted fold of sequence y, and πref be a conditional
distribution over y given x. Given a dataset D map-
ping structures (“prompts”) to K generated sequences per
structure (“responses”), DPO is derived within the KL-
constrained reward-maximization objective (Ouyang et al.,
2022; Rafailov et al., 2023):

max
πθ

Ex∼D,y∼πθ(y|x)[r(x, y)]−βDKL[πθ(y|x) || πref(y|x)]
(1)

where β controls the trade-off between reward maximization
and deviation from the base model. The solution to Equation
1 is well-known (Ouyang et al., 2022; Rafailov et al., 2023):

πr =
1

Z(x)
πref(y | x) exp

(
1

β
r(x, y)

)
(2)

where Z(x) is the partition function to normalize πr. There-
fore, for any policy πr, there is a corresponding reward
function (DPO ”implicit reward”) for which πr is optimal:

r(x, y) = β log
πr(y|x)
πref(y|x)

+ β logZ(x). (3)
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Substituting Equation 3 into the Bradley-Terry preference
model (Bradley & Terry, 1952) and optimizing the policy
under a maximum likelihood objective produces the DPO
loss, typically solved via gradient descent:

LDPO (πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β
(
log πθ(yw|x)

πref (yw|x) − log πθ(yl|x)
πref (yl|x)

))]
(4)

where yw represents the sequence that is preferred, and yl
represents the sequence that is less preferred according to
TM-score ranking.

3. Preference optimization for peptide design
In this section, we consider designing fine-tuning methods
well-suited for peptide design. While DPO in its original
formulation is useful for fine-tuning in biology (Park et al.,
2023; Widatalla et al., 2024; Mistani & Mysore, 2024), we
consider how it may be improved to tackle specific problems
arising in inverse-folding for peptides (i.e., poor generation
diversity and lack of peptide data in initial training). First,
we derive a diversity-optimized DPO loss by incorporating
an online diversity penalty directly into the top-level Rein-
forcement Learning objective. Next, we propose an ad-hoc
modification to the DPO reward that incorporates scalar
TM-scores instead of solely preference pairs, and address
the distribution shift between peptides and longer-length
proteins.

3.1. Online diversity optimization

To encourage diversity in generated sequences while maxi-
mizing reward (TM-score), we propose an objective incor-
porating a diversity reward:

max
πθ

Ex∼D, y∼πθ(y|x)[r(x, y)]

− β DKL[πθ(y | x) || πref(y | x)] + αΓγ(πθ)

= max
πθ

Ex∼D, y∼πθ(y|x)

[
r(x, y)

− β log πθ(y|x)
πref(y|x) − αEy′∼πθ(y′|x) [γ(y, y

′)]

]
(5)

where α controls the strength of diversity regularization, γ
is a pairwise distance between sequences, and Γ(πθ) is the
diversity of policy πθ under the distance γ, i.e. Γ(π) =
Ey,y′∼π [γ(y, y

′)]. In practice, we let γ be the fraction of
pairwise different tokens in equal-length sequences y and
y′. This is equivalent to the diversity metric defined in (Gao
et al., 2023b).

This is similar in form to the auxiliary reward objective pro-
posed by Park et al. (2024) and Zhou et al. (2024), but the
auxiliary reward (diversity) depends on the policy πθ. As a
result, the standard analytic solution to Eq. 1 (Ziebart et al.,
2008; Ouyang et al., 2022; Rafailov et al., 2023) is no longer
valid. Instead, we consider an approximate objective, lever-
aging the fact that the DPO loss is solved via iterative gra-
dient descent. Let π̃ = π

(t−1)
θ be an approximation of π(t)

θ .
That is, we will use the policy from a previous iteration to
estimate diversity, while updating the policy in the current it-
eration. Then, let r̃(x, y) = r(x, y)−αEy′∼π̃(y|x) [γ(y, y

′)].
We can approximate Eq. 5 as:

max
πθ

Ey∼πθ(y|x)

[
r̃(x, y)− β log

(
πθ(y | x)
πref(y | x)

)]
. (6)

The rest of the derivation follows from Rafailov et al.
(2023). We produce the diversity-regularized im-
plicit reward after writing the r̃-optimal policy πr̃ =

1
Z(x)πref(y | x) exp

(
1
β r̃(x, y)

)
:

r(x, y) = β log πr(y|x)
πref(y|x)

− αEy′∼π̃(y′|x) [γ(y, y
′)] + β logZ(x) (7)

The resulting MLE loss under the Bradley-Terry preference
model is:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β
(
log πθ(yw|x)

πref (yw|x) − log πθ(yl|x)
πref (yl|x)

)
+ αEy′∼π̃(y′|x)[γ(yl, y

′)− γ(yw, y
′)]
)]

(8)

The α-weighted scalar penalties require sampling from the
approximate policy π̃ to compute the expectation. In prac-
tice, we only update π̃ a few times during training to mini-
mize the cost of sampling. See Appendix B for a detailed
description of the diversity-regularized algorithm.

Unlike prior methods incorporating auxiliary rewards into
DPO (Park et al., 2024; Zhou et al., 2024), ours includes an
online sampling term. Empirically, we show that this online
term is crucial. In the middle part of Fig. 1, we show that
diversity of samples from the static dataset (the auxiliary
reward prescribed in an offline approach) does not correlate
with the diversity of samples from the trained policy (our
auxiliary reward). That is, to accurately estimate – and
therefore encourage – diversity over the course of training,
online sampling is required. By optimizing the approximate

3



Improving Inverse Folding for Peptide Design with Diversity-Regularized Direct Preference Optimization

objective in Equation 6, we provide principled motivation
for including this online sampling term.

3.2. Entropy in diversity optimization

Here, we consider the mechanism behind diversity regu-
larization, showing that diversity improves due to random-
ness in the token decoding order during sampling. Partic-
ularly, we develop a new understanding of ProteinMPNN
based on random decoding order. ProteinMPNN performs
random-order token decoding during sampling and all for-
ward passes. So, for a fixed policy π, sequence y, structure
x, we highlight that log π(y | x) is a random variable, de-
pending on a distribution over token decoding orders. Let
ℓ(π,x,y) = log π(y | x) denote this random variable, and let
fπ(d) be a function parameterized by π that takes decoding
orders d to log-probabilities s. In practice, fπ is a forward
pass through ProteinMPNN, and d is a uniformly chosen
permutation over indices {1, 2, . . . , |y|}. For a decoding
order d ∼ U sampled from the uniform decoding order dis-
tribution U , we can compute a log-probability s = fπ(d).
For this s, ℓ(π,x,y)(s) gives the probability, over all possible
d, that the log-probability of y|x under π is s.

Explaining diversity with differential entropy. This view
offers insight into how diversity increases without token en-
tropy increasing as well. Within the random log-probability
view, there is another source of entropy to account for:
the differential entropy Hd of the distribution over log-
probabilities, defined separately for each tuple (π, x, y):

Hd(ℓ(π,x,y)) = Ed∼U
[
− log

[
ℓ(π,x,y)(fπ(d))

]]
= −

∫ 0

−∞
ℓ(π,x,y)(s) log

[
ℓ(π,x,y)(s)

]
ds (9)

We claim that optimizing for diversity increases differential
entropy in the continuous log-probability space, rather than
increasing discrete entropy in token space. A proof sketch
can be found in Appendix F, and empirical support for this
theory is presented in Section 4.4.

3.3. Leveraging domain-specific priors

Aligning train set and base model. Supervised fine-tuning
(SFT) is a standard part of the DPO pipeline (Rafailov et al.,
2023),where a gradient-based optimizer maximizes the log-
probability of a target sequence prior to applying DPO. The
left part of Fig. 1 shows that the distribution of tokens
sampled from base ProteinMPNN and the peptide train-
ing dataset differs significantly. SFT assuages the token
distribution problem by improving alignment with training
distribution, and ensures consistency with previous research,
where DPO has been applied to related biological tasks
(Park et al., 2023; Widatalla et al., 2024; Mistani & Mysore,

2024).

Incorporating scalar rewards. Given multiple responses
from a single prompt, DPO is derived assuming access
to pairwise preferences. However, since we measure the
reward of a sequence generation by the TM-score between
the original structure and the generated sequence’s predicted
structure, we have access to a total ordering over generations
through scalar rewards for each response. Widatalla et al.
(2024) derives weighted DPO to incorporate scalar rewards,
but it does not substantially outperform standard DPO.

We consider a simple ad-hoc method to incorporate these
scalar scores. Given a structure x, K generated sequences
yk | x, and K corresponding TM-scores rk | x, we scale the
log-probabilities of πref by the average of rk | x. To see the
effect of this scaling, consider the modified implicit reward,
which with some algebra comes out to:

rscale(x, y) = [βR(x)] r(x, y)︸ ︷︷ ︸
Reweighted standard reward

+ β logZ(x)︸ ︷︷ ︸
Partition function

+ [β − βR(x)] log πθ(y | x)︸ ︷︷ ︸
Maximum entropy bonus

(10)

When R(x) is large, the first term (mirroring the standard
DPO reward, Eq. 3) has larger weight, and the second term
(a penalty on the entropyH(πθ) = −E [log πθ(y | x)]) has
smaller weight. Since the weight on the DPO reward con-
trols the strength of KL divergence regularization (Rafailov
et al., 2023), large R(x) corresponds to less aggressive opti-
mization and a lower-entropy policy.

When R(x) is near 1.0, the data-generating policy already
produces high-quality sequences on structure x. Therefore,
we perform less aggressive optimization when R(x) is large,
and vice versa. Effectively, per structure, this reward scaling
adapts the KL divergence penalty to the strength of the
dataset-generating policy. The right part of Fig. 1 shows
that this reward scaling method helps ProteinMPNN recover
the total ordering over generated sequences. Scaling log-
probabilities improves their ability to rank sequences by
TM-score, which provides a more accurate reference model.

4. Results
Here we present results on benchmarks across a suite of
inverse folding models evaluated on peptide design tasks,
as well as an exploration into the behavior of the two pro-
posed algorithm enhancements (diversity regularization and
reward scaling). We find that diversity regularization is
effective in improving sampling diversity, and provide jus-
tification as to how this improvement happens. Addition-
ally, we find reward scaling produces a small improvement
in TM-score, enabling fine-tuned ProteinMPNN to reach
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Figure 1: Motivation for DPO design choices. Left. Frequency of amino acid across ProteinMPNN generations conditioned
on the peptide train set, vs. frequency over the peptide sequences. Middle. When conditioned on the same structure, the
diversity of sequences generated by base ProteinMPNN does not correlate with the diversity of sequences generated by
fine-tuned ProteinMPNN. Right. Distribution of rank correlation coefficient between model log-probabilities and TM-score.

SOTA performance in some situations.

4.1. Experimental overview

Datasets. We fine-tune trained ProteinMPNN from Dau-
paras et al. (2022b) on a set of 211,402 deduplicated peptide
structures with length up to 50 amino acids, derived from
the ColabFold database (Mirdita et al., 2022) by filtering for
predicted local distance difference test (pLDDT)≥ 80. Each
structure was used to generate 4 candidate sequences using
pretrained ProteinMPNN with T = 0.1. Each sequence,
including the true reference sequence from the structure,
was folded with OpenFold (Ahdritz et al., 2022). TM-scores
were computed to create a ranking over generated sequences
for every structure prompt. Each structure therefore con-
tributed

(
4
2

)
= 6 chosen-rejected pairs for DPO, for a total

of 1,268,412 training pairs. Details of the folding process
can be found in Appendix A.

Benchmarks. We consider two non-overlapping bench-
marks. First, we take 50 sequences from the OpenFold set,
enforcing a sequence identity threshold of 0.4 from the train
set and filtering for sequence length L ≤ 50. Next, we
take the CATH 4.3 test split, as used in Hsu et al. (2022b),
filter for sequence identity threshold of 0.4 and L ≤ 60, and
use the resulting 173 peptides as a second benchmark. The
OpenFold set contains structures resolved via OpenFold,
while the CATH split has structures from the PDB. For eval-
uation, we sample 4 sequences per benchmark structure at
T = 0. We compute diversity, TM-score, and recovery met-
rics as in Gao et al. (2023b). Following Section 3.1, we de-
fine diversity as the average fraction of non-identical amino
acids, computed pairwise across all sampled sequences for
the same structure.

Hyperparameters. Supervised fine-tuning was run for 2
epochs with Adam through the PyTorch implementation
(Paszke et al., 2019; Kingma & Ba, 2014), with structures’
true sequence as the target. DPO was run for 20 epochs

with default Adam hyperparameters on pairs of generated
sequences. We vary β based on the method used to facilitate
a fair comparison across similar KL budgets. For more
details, see Appendix A.

Sweeps. We run DPO with diversity penalties α =
{0.0, 0.1, 0.2, 0.5} and DPO with/without reward scaling,
all on the same training set. All training is done with per-
GPU batch size of 32 on a single node with 8xA100 80GB
GPUs. Each run takes about 8 hours wall-clock time.

4.2. Benchmark sweeps

We benchmark our trained models against standard inverse-
folding methods (Jing et al., 2021a;b; Hsu et al., 2022b;
Dauparas et al., 2022b) across both the OpenFold and CATH
benchmarks, filtered for peptide-length proteins. We con-
sider TM-score to be the most important metric, as unlike
sequence recovery, it can more accurately reflect the qual-
ity of generated sequences at high diversities. As shown
in Table 1, on OpenFold structures, all DPO methods out-
perform base ProteinMPNN and other models by at least
8%. Diversity-regularized DPO (α = 0.1) achieves state-of-
the-art (SOTA) diversity, improving base DPO by 20% and
even exceeding the diversity of base ProteinMPNN. This
is notable, as fine-tuning tend to decrease generation diver-
sity (Wang et al., 2023). Combining reward scaling with
diversity regularization does not have a strong beneficial ef-
fect, with similar performance compared to the regularized
method.

On the CATH benchmark, DPO does not help much (Table
2). This is likely due to the fact that our training method
leveraged OpenFold structure predictions, while the CATH
benchmark contains experimentally resolved protein struc-
tures. However, diversity regularization and reward scaling
allow fine-tuned ProteinMPNN to nearly reach the perfor-
mance of ESM-IF1, which was trained on experimentally
resolved structures and is a much larger model. Diversity
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Table 1: Comparison of models on TM-score, sampled sequence diversity, and native sequence recovery for the OpenFold
benchmark. The best results are bolded, and the second-best results are underlined. Means and standard errors are reported
in each cell.

Models OpenFold benchmark (n = 50)

TM-Score ↑ Diversity ↑ Recovery ↑
GVP-GNN (Jing et al., 2021b) 0.62 ± 0.02 0.19 ± 0.01 0.27 ± 0.01

ProteinMPNN (Dauparas et al., 2022b) 0.62 ± 0.01 0.31 ± 0.01 0.23 ± 0.01
ESM-IF1 (Hsu et al., 2022b) 0.61 ± 0.01 0.00 ± 0.00 0.31 ± 0.01

ProteinMPNN + DPO 0.66 ± 0.02 0.27 ± 0.01 0.33 ± 0.01
ProteinMPNN + DPO (scaled) 0.67 ± 0.02 0.28 ± 0.01 0.31 ± 0.01

ProteinMPNN + DPO (α = 0.1) 0.67 ± 0.02 0.32 ± 0.01 0.31 ± 0.01
ProteinMPNN + DPO (scaled, α = 0.1) 0.67 ± 0.02 0.31 ± 0.01 0.32 ± 0.01

regularization is still effective in promoting diversity, beat-
ing base ProteinMPNN and improving standard DPO by
7%.

We find that both reward scaling and diversity regulariza-
tion are effective in improving TM-score over base DPO,
achieving SOTA performance on the OpenFold benchmark.
Diversity regularization is particularly effective in improv-
ing diversity across both benchmarks. Despite CATH struc-
tures being out-of-distribution from the train set, given that
they were not produced by OpenFold, our methods allow
ProteinMPNN to approach the performance of ESM-IF1.

4.3. Pareto front with diversity regularization

We train four DPO models on top of fine-tuned Protein-
MPNN (α = {0.0, 0.1, 0.2, 0.5}), and generate sequences
across a range of temperatures on the OpenFold test split. As
temperature increases, the diversity of generated sequences
increases, but the average TM-score (reward) decreases. We
consider this reward-diversity tradeoff on the left side of
Figure 3. At sufficiently low α values, diversity-regularized
DPO produces a new Pareto frontier. With α = 0.1, regular-
ized DPO consistently achieves higher reward at the same
diversity, indicating this regularization provides a strictly
favorable reward-diversity tradeoff compared to simply in-
creasing temperature. At temperature 0.0, α = 0.1 yields a
20% relative improvement in diversity along with a small
increase in TM-score (1.5%) over standard DPO.

However, at high α values, diversity regularization hurts
both diversity and reward. We see symptoms of this in the
KL divergences between trained DPO policies and initial
fine-tuned ProteinMPNN (middle of Fig. 3). While for
α = {0.0, 0.1, 0.2}, KL divergence trajectories are similar
during training, DPO with α = 0.5 produces much higher
divergences (i.e., the trained policy deviates significantly
more from base ProteinMPNN). In this case, aggressive
diversity optimization led to a collapse in model capacity

via excessive deviation from the initial policy.

4.4. Diversity regularization targets differential entropy

We now consider the explanation for diversity improvement
presented in Section 3.2. Naively, we would expect diver-
sity regularization to directly increase the entropy of the
sampling distributionH(π) = −Ex∼D,y∼π [log π(y|x)]. In
the middle part of Fig. 2, we show that this is not the case.
Apart from β = 0.5 (an outlier as discussed in Section 4.3),
increasing diversity does not increase entropy, which seems
contradictory. However, this is expected under the differen-
tial entropy formulation in Section 3.2, which argued that
diversity optimization increases differential entropy in the
continuous log-probability space. To test this, we draw 128
samples from ℓ(π,x,y) for all (x, y) structure-sequence test
pairs, i.e., compute log-probabilities with 128 different de-
coding orders. In the right part of Fig. 2, we show that the
estimatedHd increases with larger α, as expected under this
theory. This agrees with our intuition, since Hd controls
variability in model log-probabilities, which decide the next
token during sampling. That is, larger Hd leads to greater
log-probability variability, leading to greater diversity.

Effects at higher temperatures. In the left half of Fig. 2,
we conduct a small ablation study to isolate the effect of
random decoding order across temperatures. We find that
at low temperatures, random decoding order is necessary
for diversity. This is because the next token is chosen de-
terministically at T = 0, so entropy in the log-probabilities
is the sole contributor to diversity. However, at higher tem-
peratures, the influence of using random decoding orders
is less pronounced, i.e., temperature has a larger effect on
next-token sampling compared to an increasingHd. There-
fore, this analysis applies only for random decoding order
models at T = 0. For example, left-to-right autoregressive
methods have fixed decoding orders, meaning ℓ(π,y,x) col-
lapses around a single scalar and the differential entropy is
zero. At T = 0, this means that we cannot improve diversity
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Table 2: Comparison of models on TM-score, sampled sequence diversity, and native sequence recovery for the CATH 4.3
benchmark. The best results are bolded, and the second-best results are underlined. Means and standard errors are reported
in each cell. Since all values are rounded to 2 decimals, standard errors are not actually zero.

Models CATH 4.3 benchmark (n = 173)

TM-Score ↑ Diversity ↑ Recovery ↑
GVP-GNN (Jing et al., 2021b) 0.69 ± 0.01 0.21 ± 0.00 0.35 ± 0.01

ProteinMPNN (Dauparas et al., 2022b) 0.68 ± 0.01 0.30 ± 0.00 0.32 ± 0.01
ESM-IF1 (Hsu et al., 2022b) 0.72 ± 0.01 0.00 ± 0.00 0.34 ± 0.01

ProteinMPNN + DPO 0.70 ± 0.01 0.28 ± 0.00 0.32 ± 0.01
ProteinMPNN + DPO (scaled) 0.71 ± 0.01 0.29 ± 0.00 0.32 ± 0.01

ProteinMPNN + DPO (α = 0.1) 0.70 ± 0.01 0.31 ± 0.01 0.32 ± 0.01
ProteinMPNN + DPO (scaled, α = 0.1) 0.71 ± 0.01 0.30 ± 0.00 0.32 ± 0.01

Figure 2: Exploring the effect of online diversity optimization. Left. Improvement in diversity across temperatures 0, 0.5,
and 1.0, with and without random decoding order. Middle. Sampling distribution entropy (average negative log-probability
over samples) over various α values. Right. Entropy of log-probability distribution over validation reference sequences
across α sweep.

by boostingHd, and at higher T ,Hd does not empirically
affect diversity much anyways.

Increased token entropy does not help diversity. We also
try optimizing for discrete token-level entropy, and achieve
around a 15% increase in this entropy. However, in line with
the differential entropy formulation, this method does not
improve sample diversity at temperature 0. See Appendix
C for more details and a complete derivation of the token-
entropy regularized algorithm.

4.5. Reward scaling reinforces biological priors

On the left side of Fig. 4, the reward-diversity curves
for DPO and reward-scaled DPO are computed across
T = {0.0, 0.1, 0.2, . . . , 1.0}. Reward-scaled DPO achieves
consistently higher reward at the same diversity, indicating
it is a Pareto improvement over standard DPO. Moreover, as
in the right side of Fig. 3, reward-scaled DPO operates on
a slightly smaller KL divergence budget compared to stan-
dard DPO. Despite maintaining a smaller deviation from
pretrained ProteinMPNN, the policy trained with reward-
scaled DPO is still strictly better than the policy trained with
standard DPO.

The motivation for reward scaling, as presented in Eq. 10,
is dynamic β selection based on the strength of the ini-
tial policy (or equivalently, the difficulty of the prompt),
where β controls the KL divergence from the reference
model. On the right side of Fig. 4, we show the empirical
effect of reward scaling matches this intuition. For struc-
ture prompts whose ProteinMPNN-generated sequences had
low reward (i.e., where the base model performed poorly),
reward-scaled DPO outperforms standard DPO by around
5%. However, as the average TM-score of the generated
sequences increases, the performance gain from reward scal-
ing drops to nearly 0. Therefore, reward-scaled DPO targets
hard examples where the data-generating policy is weak,
agreeing with the motivation in Section 3.3.

5. Conclusion
We propose diversity-regularized DPO with an online sam-
pling term to accurately estimate and encourage diversity,
applying it to ProteinMPNN. Our approach results in im-
provements on sampling diversity, sequence recovery and
structural similarity of the generated peptide sequences. Fur-
thermore, we give additional intuition on the impact of di-
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Figure 3: Pareto front and KL divergences. Left. Pareto front for various α values over temperature sweep. Middle. KL
divergence from πref for various α values. α = 0 has β = 0.5, all other have β = 0.1. Right. KL divergence for DPO with
reward scaling (β = 0.1) and without (β = 0.5).

Figure 4: Reward scaling improves DPO. Left. Reward-scaled DPO is a Pareto improvement over standard DPO over a
temperature sweep. Middle. Left axis is the KL divergence between the token frequencies in the peptide train set vs. model
samples (lower is better), right axis is the fraction of non-repeating tokens (higher is better). Right. TM-score improvement
over base DPO. Lower TM-score buckets contain structures for which base ProteinMPNN generated low-quality sequences.

versity regularization on differential and discrete entropy.
While our results are reported using ProteinMPNN as a base
model for fine-tuning, our proposed methods are agnostic
to the inverse folding model, setting the grounds for future
research in peptide design via fine-tuning. Our main limi-
tation is that we have not applied our DPO method to the
best inverse-folding models. It may be possible to further
push the frontier of peptide sequence design by fine-tuning
stronger base models like PiFold (Gao et al., 2022) or KW-
Design (Gao et al., 2023a). Furthermore, establishing a
theory-first perspective for our differential entropy frame-
work, are promising directions for future research.

References
Abascal, N. C. and Regan, L. The past, present and future

of protein-based materials. Open Biology, 8(10), October
2018. ISSN 2046-2441. doi: 10.1098/rsob.180113. URL
http://dx.doi.org/10.1098/rsob.180113.

Ahdritz, G., Bouatta, N., Floristean, C., Kadyan, S., Xia,
Q., Gerecke, W., O’Donnell, T. J., Berenberg, D., Fisk,
I., Zanichelli, N., Zhang, B., Nowaczynski, A., Wang,
B., Stepniewska-Dziubinska, M. M., Zhang, S., Ojewole,

A., Guney, M. E., Biderman, S., Watkins, A. M., Ra, S.,
Lorenzo, P. R., Nivon, L., Weitzner, B., Ban, Y.-E. A.,
Sorger, P. K., Mostaque, E., Zhang, Z., Bonneau, R., and
AlQuraishi, M. OpenFold: Retraining AlphaFold2 yields
new insights into its learning mechanisms and capacity
for generalization. bioRxiv, 2022. doi: 10.1101/2022.
11.20.517210. URL https://www.biorxiv.org/
content/10.1101/2022.11.20.517210.

Bradley, R. A. and Terry, M. E. Rank analysis of in-
complete block designs: I. the method of paired com-
parisons. Biometrika, 39(3/4):324–345, 1952. ISSN
00063444, 14643510. URL http://www.jstor.
org/stable/2334029.

Chockalingam, K., Blenner, M., and Banta, S. Design
and application of stimulus-responsive peptide systems.
Protein Engineering, Design & Selection, 20(4):155–161,
2007.

Copolovici, D. M., Langel, K., Eriste, E., and Langel, U.
Cell-penetrating peptides: design, synthesis, and applica-
tions. ACS nano, 8(3):1972–1994, 2014.

Correa, P. E. The building of protein structures from

8

http://dx.doi.org/10.1098/rsob.180113
https://www.biorxiv.org/content/10.1101/2022.11.20.517210
https://www.biorxiv.org/content/10.1101/2022.11.20.517210
http://www.jstor.org/stable/2334029
http://www.jstor.org/stable/2334029


Improving Inverse Folding for Peptide Design with Diversity-Regularized Direct Preference Optimization

alpha-carbon coordinates. Proteins: Structure,
Function, and Bioinformatics, 7(4):366–377, 1990.
doi: https://doi.org/10.1002/prot.340070408. URL
https://onlinelibrary.wiley.com/doi/
abs/10.1002/prot.340070408.

Dauparas, J., Anishchenko, I., Bennett, N., Bai, H., Ragotte,
R. J., Milles, L. F., Wicky, B. I., Courbet, A., de Haas,
R. J., Bethel, N., et al. Robust deep learning–based pro-
tein sequence design using proteinmpnn. Science, 378
(6615):49–56, 2022a.

Dauparas, J., Anishchenko, I., Bennett, N., Bai, H.,
Ragotte, R. J., Milles, L. F., Wicky, B. I. M., Courbet,
A., de Haas, R. J., Bethel, N., Leung, P. J. Y.,
Huddy, T. F., Pellock, S., Tischer, D., Chan, F., Koep-
nick, B., Nguyen, H., Kang, A., Sankaran, B., Bera,
A. K., King, N. P., and Baker, D. Robust deep
learning–based protein sequence design using protein-
mpnn. Science, 378(6615):49–56, 2022b. doi: 10.1126/
science.add2187. URL https://www.science.
org/doi/abs/10.1126/science.add2187.

Dill, K. A., Ozkan, S. B., Shell, M. S., and Weikl,
T. R. The protein folding problem. Annual Review
of Biophysics, 37(1):289–316, June 2008. ISSN 1936-
1238. doi: 10.1146/annurev.biophys.37.092707.153558.
URL http://dx.doi.org/10.1146/annurev.
biophys.37.092707.153558.

Gao, Z., Tan, C., Chacón, P., and Li, S. Z. Pifold: To-
ward effective and efficient protein inverse folding. arXiv
preprint arXiv:2209.12643, 2022.

Gao, Z., Tan, C., and Li, S. Z. Knowledge-design: Push-
ing the limit of protein design via knowledge refine-
ment, 2023a. URL https://arxiv.org/abs/
2305.15151.

Gao, Z., Tan, C., Zhang, Y., Chen, X., Wu, L., and Li, S. Z.
Proteininvbench: Benchmarking protein inverse folding
on diverse tasks, models, and metrics. In Thirty-seventh
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2023b. URL https:
//openreview.net/forum?id=bqXduvuW5E.

Godzik, A., Kolinski, A., and Skolnick, J. De novo and in-
verse folding predictions of protein structure and dynam-
ics. J. Comput. Aided Mol. Des., 7(4):397–438, August
1993.

Hsu, C., Verkuil, R., Liu, J., Lin, Z., Hie, B., Sercu, T.,
Lerer, A., and Rives, A. Learning inverse folding from
millions of predicted structures. ICML, April 2022a. doi:
10.1101/2022.04.10.487779. URL http://dx.doi.
org/10.1101/2022.04.10.487779.

Hsu, C., Verkuil, R., Liu, J., Lin, Z., Hie, B., Sercu,
T., Lerer, A., and Rives, A. Learning inverse
folding from millions of predicted structures.
bioRxiv, 2022b. doi: 10.1101/2022.04.10.487779.
URL https://www.biorxiv.org/content/
early/2022/04/10/2022.04.10.487779.

Ingraham, J., Garg, V., Barzilay, R., and Jaakkola,
T. Generative models for graph-based protein
design. In Wallach, H., Larochelle, H., Beygelz-
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Figure 5: Length, token, and pLDDT statistics on the peptide training set from ColabFold. Left. Distribution of amino acid
tokens on the train set. Middle. Length of sequences in train set. Right. Histogram of pLDDT scores from ColabFold. This
is after filtering for pLDDT > 80.

A. Additional experimental details
Folding peptide sequences. Folding of peptides was done with the OpenFold module in NVIDIA BioNeMo Framework
(John et al., 2024), version 1.8, with default settings. We used mmseqs2(Steinegger & Soeding, 2017) to generate multiple
sequence alignments (MSAs), referencing against UniRef90, Small BFD and MGnify datasets, as the input. For template
searches, hhsearch was used with the PDB70 database. OpenFold inferencing was performed with a single set of weights,
converted from an AlphaFold2 (Jumper et al., 2021) model checkpoint params-model-4; typically AlphaFold2 is run
with five checkpoints. Folding was run on 8 to 32 NVIDIA A100-SXM4-80GB GPUs, with the overall folding throughput
around 1.4 seconds per sequence per GPU. We did not perform structural relaxation after folding. For model checkpoint
download scripts, and database download scripts, see github.com/aqlaboratory/openfold.

Choosing β fairly. Since β is a proxy for specifying the amount of allowable deviation from the base (reference) policy
(Rafailov et al., 2023), we ensure fair comparison between DPO and its variants by modifying β so that all methods operate
on a similar same KL divergence budget. For the diversity-regularized and reward-scaled methods, we choose β = 0.1; for
base DPO, we choose β = 0.5. In the middle and left parts of Fig. 3, we show that these choices allow all models to deviate
from the base policy by around the same amount, with standard DPO still dominating the other model’s KL divergences.
DPO with α = 0.5 is an exception, but we consider this model to be an outlier as described in Section 4.3.

Method evaluations. While recent inverse-folding methods like PiFold and KW-Design show strong performance compared
to ProteinMPNN (Gao et al., 2023b) and ESM-IF1 (Hsu et al., 2022b), we were unable to get their implementation working
on the necessary timeline. As a result, we did not include them in our benchmarks.

Train dataset statistics. In Fig. 5, we report the distribution of protein lengths, the token-level histograms, and the
AlphaFold pLDDT scores for the train dataset referenced earlier.

B. Details of online diversity regularization
In Algorithm 1 we present the full online diversity-regularized DPO algorithm. Note that γ computes the pairwise diversity
between a sequence y and N other sequences y′, so it returns an N -length vector. π̃ is updated only once every K epochs,
so in practice we only have to sample once every K epochs. Between these updates, samples are cached and take up only a
few megabytes of GPU memory. The modifications compared to base DPO (Rafailov et al., 2023) are highlighted in blue.

C. Entropy-regularized DPO
Here, we consider optimizing for discrete entropy over the sequences sampled from ProteinMPNN. The derivation is the
same as in Section 3.1, but with the entropy H(π) = −Ey∼π [log π(y)] as the diversity penalty instead of Γ(π). The
objective is:

12
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Algorithm 1 Diversity-regularized DPO

Require: Dataset D = {(x(i), y
(i)
w , y

(i)
l )}, base policy πref, KL deviation penalty β, diversity incentive α, max steps N ,

sample frequency K, sequence distance γ, number of samples M
0: π

(0)
θ ← πref

0: π̃ ← πref
0: for t = 1 to N do
0: if t mod K = 0 then
0: π̃ ← π

(t−1)
θ

0: end if
0: (x, yw, yl)← Minibatch(D) {Batch size B, sequence length L}
0: r(yw, x)← β log

π
(t−1)
θ (yw|x)
πref (yw|x) {Chosen reward}

0: r(yl, x)← β log
π
(t−1)
θ (yl|x)
πref (yl|x) {Rejected reward}

0: s← Sample(π̃, x,M) {Shape (B,M,L)}
0: d(π̃, yw, x)← Average(γ(yw, s)) {Shape (B, )}
0: d(π̃, yl, x)← Average(γ(yl, s)) {Shape (B, )}
0: π

(t)
θ ← argmin

θ
−E(x,yw,yl)∼D [log σ (r(yw, x)− r(yl, x)+αd(π̃, yw, x)− αd(π̃, yl, x))]

0: end for=0

max
πθ

Ex∼D,y∼πθ(y|x)[r(x, y)]− βDKL[πθ(y | x) || πref(y | x)] + αH(πθ)

= max
πθ

Ex∼D,y∼πθ(y|x)

[
r(x, y)− β log

(
πθ(y | x)
πref(y | x)

)
− α log πθ(y | x)

]
(11)

With the same approximation π̃ and modified reward r̃(x, y) = r(x, y)− α log π̃(y | x):

LDivPO (πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

+

α log π̃(yl | x)− α log π̃(yw | x)
)]

(12)

The full algorithm is described in Algorithm 2, with deviations from base DPO (Rafailov et al., 2023) highlighted in blue. We
find that this algorithm does not produce diversity gains (Table 4) or TM-score gains (Table 3). After entropy regularization,
sample entropy does increase by around 25% compared to standard DPO; however, diversity does not improve at temperature
0. This supports the differential entropy theory from Section 4.4, since explicitly increasing discrete entropy does not help
improve diversity.

Interestingly, as shown in Table 4, at higher temperatures, entropy-regularized DPO does slightly increase diversity. This
again aligns with the analysis in Section 4.4, as at higher temperatures, the randomness introduced by the token sampling
distribution dominates the randomness introduced by log-probability variations due to random decoding orders.

D. Additional benchmark results
In Tables 5 and 6, we report the same benchmark results as in Tables 2 and 1, but with N = 64 samples per structure, as
well as at T = 0.1. Only ESM-IF and ProteinMPNN results are reported.

E. Sampled sequence example structures
In Figures 7 and 6, we present some sequence samples conditioned on structures from both the OpenFold and CATH 4.3
benchmarks. We select pairs where reward scaled DPO and diversity-regularized DPO outperform base ProteinMPNN for
visualization.
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Algorithm 2 Entropy-regularized DPO

Require: Dataset D = {(x(i), y
(i)
w , y

(i)
l )}, base policy πref, hyperparameters β, α, max steps N , π̃ update frequency K

0: π
(0)
θ ← πref

0: π̃ ← πref
0: for t = 1 to N do
0: if t mod K = 0 then
0: π̃ ← π

(t−1)
θ

0: end if
0: (x, yw, yl)← Minibatch(D)

0: r(yw, x)← β log
π
(t−1)
θ (yw|x)
πref (yw|x) {Chosen reward}

0: r(yl, x)← β log
π
(t−1)
θ (yl|x)
πref (yl|x) {Rejected reward}

0: Ĥ(yw, x)← −α log π̃(yw | x) {No gradient computation}
0: Ĥ(yl, x)← −α log π̃(yl | x) {No gradient computation}
0: π

(t)
θ ← argmin

θ
−E(x,yw,yl)∼D

[
log σ

(
r(yw, x)− r(yl, x)+Ĥ(yw, x)− Ĥ(yl, x)

)]
0: end for=0

Table 3: Comparison of TM-Score for ProteinMPNN, standard DPO, and DPO with entropy regularization across different
temperatures (T). Same evaluation setting as the OpenFold benchmark.

Method TM-Score

T=0.0 T=0.1 T=0.2 T=0.3 T=0.4 T=0.5 T=0.6 T=0.7 T=0.8 T=0.9

ProteinMPNN 0.62 0.61 0.62 0.61 0.62 0.61 0.60 0.57 0.56 0.56
Standard DPO 0.66 0.66 0.65 0.66 0.65 0.65 0.65 0.64 0.63 0.61
DPO (α = 0.1) 0.66 0.67 0.66 0.66 0.65 0.64 0.63 0.63 0.61 0.60

Table 4: Comparison of diversity for ProteinMPNN, standard DPO, and DPO with entropy regularization across different
temperatures (T). Same evaluation setting as the OpenFold benchmark.

Method Diversity

T=0.0 T=0.1 T=0.2 T=0.3 T=0.4 T=0.5 T=0.6 T=0.7 T=0.8 T=0.9

ProteinMPNN 0.31 0.35 0.39 0.47 0.54 0.59 0.65 0.71 0.74 0.78
Standard DPO 0.27 0.29 0.35 0.42 0.50 0.56 0.62 0.67 0.71 0.75
DPO (α = 0.1) 0.26 0.30 0.38 0.46 0.53 0.60 0.65 0.70 0.73 0.77

Table 5: Comparison of methods on the OpenFold benchmark.

Method Score Diversity Recovery

ESM-IF1 ((Hsu et al., 2022a)) 0.616 ± 0.004 0.252 ± 0.002 0.305 ± 0.002
ProteinMPNN ((Jing et al., 2021b)) 0.552 ± 0.004 0.421 ± 0.002 0.155 ± 0.002
ProteinMPNN + DPO (scaled) 0.633 ± 0.004 0.404 ± 0.002 0.192 ± 0.002
ProteinMPNN + DPO (α = 0.1) 0.631 ± 0.004 0.440 ± 0.002 0.194 ± 0.002
ProteinMPNN + DPO 0.625 ± 0.004 0.389 ± 0.002 0.212 ± 0.002

Table 6: Comparison of methods on the CATH4.3 benchmark.

Method Score Diversity Recovery

ESM-IF1 ((Hsu et al., 2022a)) 0.719 ± 0.002 0.223 ± 0.001 0.341 ± 0.001
ProteinMPNN ((Jing et al., 2021b)) 0.662 ± 0.002 0.316 ± 0.001 0.318 ± 0.001
ProteinMPNN + DPO 0.688 ± 0.002 0.315 ± 0.001 0.317 ± 0.001
ProteinMPNN + DPO (scaled) 0.701 ± 0.002 0.308 ± 0.001 0.320 ± 0.001
ProteinMPNN + DPO (α = 0.1) 0.695 ± 0.002 0.340 ± 0.001 0.317 ± 0.001
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F. Differential entropy and sample diversity
We will prove that increasing differential entropy in the log-probabilities increases the expected pairwise difference in
next-token sampling. Assume sampling temperature T = 0. We prove this for the slightly weaker case considering only
next-token sampling, not over the entire sequence.

Suppose Y1 . . . Yn are discrete random variables over the set of amino acid tokens, where Yi is conditioned on Yj<i. This
represents the generative process of sampling token i conditioning on the previous sampled tokens. For simplicity, we omit
reference to the conditioning backbone structure, the distribution Y1 can be implicitly viewed as capturing this dependence.

Let y1 . . . yi−1 be a partial realization of Y1 . . . Yn up to the (i − 1)-th token. Consider two sequences A and B, where
A = y1 . . . yi−1, yA and B = y1 . . . yi−1, yB , where yA, yB are independent samples from Yi | y1 . . . yi−1. We omit the
dependence of Yi on y1 . . . yi−1 in the notation from here on. Per the definition of diversity in Section 3.1, the pairwise
diversity on the partial sequences γ(A,B) is dependent only on 1(yA ̸= yB). Assuming the next token of A,B to be
conditionally independent given y1 . . . yi−1, we consider this quantity in expectation over Yi,

E[1(yA ̸= yB)] = 1− P (ya = yb)

= 1−
∑
y∈S

P (Yi = y, Yi = y | y1 . . . yi−1)

= 1−
∑
y∈S

P (Yi = y | y1 . . . yi−1)
2 (13)

where S is the set of amino acid tokens. Maximizing Eq. 13 corresponds to minimizing the sum of squared probabilities, i.e.
E[P (Yi)]. Noting that log is concave and applying Jensen’s inequality, we can derive a lower bound on the diversity via the
discrete Shannon entropyH(Yi),

logE[P (Yi)] ≥
∑
x∈S

P (Yi = y) logP (Yi = y) = −H(Yi)

E[P (Yi)] ≥ exp{−H(Yi)}
P (yA ̸= yB) ≥ 1− exp{−H(Yi)} (14)

That is, if the entropy of Yi increases, so does the expected diversity of the next token 2. Now, since T = 0,
Yi = argmax {ℓ1, . . . , ℓ|S|} where ℓk is the log-probability of the k-th token. In the notation of Section 3.1,
ℓk = ℓ(π,x,{y1...yi−1,Sk}), i.e. a random variable defined as a transformation over uniform decoding orders given by
the parameters of the MPNN.

2Note this is a subtly different type of entropy compared to the one referenced in the middle part of 2. When T = 0, as in this proof,
discrete sequence entropy is 0, since the expectation is over the non-existent stochasticity in the token sampling process. However, when
T = 0, the quantity H(Yi) is nonzero, since the expectation is over the stochasticity in decoding orders.
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Figure 6: Sequence samples on three randomly chosen structures from the CATH 4.3 peptide benchmark, all folded with OpenFold. Gray
is the reference structure (OpenFold), red is a sample from base ProteinMPNN, blue is from diversity-regularized DPO, and green is from
reward-scaled DPO.

Figure 7: Sequence samples on three randomly chosen structures from the OpenFold peptide benchmark, all folded with OpenFold. Gray
is the reference structure (OpenFold), red is a sample from base ProteinMPNN, blue is from diversity-regularized DPO, and green is from
reward-scaled DPO.
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