arXiv:2502.04563v3 [cs.LG] 30 May 2025

WaferLLM: Large Language Model Inference at Wafer Scale

Congjie He! Yeqi Huang! Pei Mu! Ziming Miao

YUniversity of Edinburgh

Abstract

Emerging Al accelerators increasingly adopt wafer-scale
manufacturing technologies, integrating hundreds of thou-
sands of Al cores in a mesh architecture with large distributed
on-chip memory (tens of GB in total) and ultra-high on-chip
memory bandwidth (tens of PB/s). However, current LLM
inference systems, optimized for shared memory architectures
like GPUs, fail to exploit these accelerators fully.

We introduce WaferLLM, the first wafer-scale LLM infer-
ence system. WaferLLM is guided by a novel PLMR model
(pronounced as "Plummer") that captures the unique hardware
characteristics of wafer-scale architectures. Leveraging this
model, WaferLLM pioneers wafer-scale LLM parallelism, op-
timizing the utilization of hundreds of thousands of on-chip
cores. It also introduces MeshGEMM and MeshGEMYV, the
first GEMM and GEMV implementations designed to scale
effectively on wafer-scale accelerators.

Evaluations show that WaferLLM achieves up to 200x
higher accelerator utilization than state-of-the-art methods.
Leveraging a wafer-scale accelerator (Cerebras WSE2),
WaferLLM delivers GEMYV operations 606 x faster and 16x
more energy-efficient than on an NVIDIA A100 GPU. For
full LLM inference, WaferLLM achieves 10-20x speedups
over A100 GPU clusters running SGLang and vLLM. These
advantages are expected to grow as wafer-scale Al models,
software, and hardware continue to mature. WaferLLM is
open-sourced at https://github.com/MeshInfra/WaferLLM.

1 Introduction

Large Language Model (LLM) inference is a rapidly growing
workload. It has two phases [15]: (i) the prefill phase, which
processes input tokens (the prompt) and spends most of its cy-
cles on General Matrix Multiply (GEMM); and (ii) the decode
phase, which generates tokens one by one in an autoregressive
manner, primarily performing General Matrix-Vector Product
(GEMV). Decode requires repeatedly loading the entire LLM
model into on-chip memory, with GEMV dominating its cy-
cles. Since LLMs generate many tokens, especially in the
test-time scaling scenario, such as the OpenAl-01/03 [16,33]
and DeepSeek-R1 [13], inference is constrained by GEMV
latency, making it inherently memory-bandwidth-bound.

To address memory bandwidth bottlenecks, Al accelerators
are increasingly adopting system-on-wafer integration [21].
This approach scales chip area to a full wafer, up to 100x

Jilong Xue

2 Lingxiao Ma? Fan Yang® Luo Mai!

>Microsoft Research

larger than a typical GPU die, enabling significantly more
on-chip cores, memory, and bandwidth. Examples include
Cerebras WSE [24] and upcoming Tesla Dojo [41]. The
Cerebras WSE-2, for instance, integrates 850,000 cores with
40GB of on-chip memory, 1,000 x more than GPUs, and pro-
vides 22PB/s memory bandwidth, 7,000 higher than GPUs.
TSMC anticipates widespread adoption of system-on-wafer
integration, citing advantages in performance, energy-efficient
die-to-die communication, and cost reduction. IEEE similarly
forecasts a surge in wafer-scale computing by 2027 [21].
Wafer-scale accelerators are already seeing real-world de-
ployment, particularly in model serving. In February 2025,
Mixtral and Perplexity adopted wafer-scale chips, achieving
cost parity with GPUs in terms of tokens per dollar [40, 44].
G42 now operates data centers fully outfitted with wafer-scale
accelerators, and Cerebras has secured major commercial con-
tracts [39].

Unlocking the potential of wafer-scale accelerators is chal-
lenging because current LLM systems rely on shared memory
architectures typical of GPUs and TPUs. Wafer-scale accel-
erators, however, adopt network-on-chip (NoC) designs that
interconnect millions of cores with local memory in a massive-
scale, mesh-based memory architecture. This architecture far
exceeds the scale of on-chip crossbars (e.g., one-hop NUMA
such as GraphCore IPU), multi-socket NUMA [2], and high-
density Al clusters (hundreds of GPUs per pod) [17]. Without
fully addressing this fundamental shift in memory architec-
ture, directly applying designs from state-of-the-art systems
like T10 [25] and Ladder [45] to wafer-scale devices often
results in extremely poor performance.

To address these challenges, we propose a device model
that captures the critical hardware properties of wafer-scale ac-
celerators, highlighting key differences from shared-memory
devices. This model enables us to evaluate current LLM in-
ference design principles, identify non-compliant areas, and
pinpoint where new approaches are required. Guided by this
model, we can achieve an ambitious system design: running
complete LLM inference on a single chip, minimizing costly
off-chip communication and maximizing on-chip memory
bandwidth utilization.

The above idea motivates WaferLLLM, the first wafer-scale
LLM inference system, yielding several contributions:

(1) Device model for wafer-scale accelerators. We propose

https://github.com/MeshInfra/WaferLLM
https://arxiv.org/abs/2502.04563v3

the PLMR model', which captures the key hardware proper-
ties of wafer-scale accelerators: (i) Massive Parallel cores (P):
Millions of cores can be integrated on a large wafer, requiring
systems to effectively partition LLMs and their operations.
(i1) Highly non-uniform memory access Latency (L): Inter-
core data access exhibits significant variation, with latency
differences up to 1,000, necessitating the system to mitigate
this. (iii) Constrained per-core local Memory (M): Each core
has limited memory (tens of KBs to several MBs), requir-
ing efficient memory usage. (iv) Limited hardware-assisted
Routing (R): The NoC routing hardware is constrained by the
area size per core and can only support a limited number of
routing paths, e.g., less than 25 on Cerebras WSE-2.

(2) Wafer-scale LLM parallelism. We propose an effective,
PLMR-compliant LLM parallelism policy for wafer-scale
accelerators. In the prefill phase, we design fine-grained par-
titioning to achieve million-core parallelism. For the decode
phase, where tensor dimensions are insufficient for partition-
ing, we design fine-grained replication to enable parallelism
with minimal communication costs. As a result, WaferLLM
achieves larger-scale and finer-grained parallelism (satisfying
P in PLMR) than GPU-based approaches. Additionally, we re-
place conventional GPU-based GEMM and GEMYV operators
with new algorithm designed for the PLMR model (satisfying
L, M, and R) and propose tensor placement strategies that
eliminate matrix transpositions, which are costly with a mesh
NoC (satisfying L).

We also designed a scalable KV-cache management method
for wafer-scale devices. This approach features a novel KV
cache shift method to ensure balanced core usage (satisfying
P and M), avoiding skewed utilization of cores caused by KV
cache concatenation methods common on GPUs.

(3) Wafer-scale GEMM. We propose MeshGEMM, a scal-
able GEMM algorithm for wafer-scale devices, accelerating
the prefill phase. Unlike conventional distributed GEMM
algorithms, MeshGEMM achieves full PLMR compliance
by leveraging two key operations: cyclic shifting and inter-
leaving. Cyclic shifting ensures algorithm correctness while
maintaining bounded usage of local memory (satisfying M).
The interleaving operation minimizes communication latency
in the mesh NoC, effectively reducing the overhead of highly
non-uniform memory latency (satisfying L) and routing re-
sources (satisfying R).

(4) Wafer-scale GEMYV. We propose MeshGEMYV, a scal-
able GEMYV algorithm for wafer-scale devices, accelerating
the decode phase. Unlike existing GEMV implementations,
MeshGEMV uses a novel K-tree allreduce algorithm to ag-
gregate local GEMYV results across massive cores. This algo-
rithm ensures routing resource usage meets the hardware’s
limitation (satisfying R) and reduces communication latency
(satisfying L).

'PLMR model can be pronounced as “Plummer”

Token Generation Phase

User Prompt KV Cache KV Cach V Cach N
Generation Update Update

Prefill D d D d D d
Trans- Trans- Trans- Trans-
former former former former

v v v M
GEMM GEMV GEMV GEMV

Prompt Phase

Figure 1: Key components in LLM inference

We implemented WaferLLM on the Cerebras WSE engine
using approximately 7,000 lines of CSL (a C-like program-
ming language) for LLM parallelism, MeshGEMM, and
MeshGEMV, and 2,000 lines of Python for loading LLM
checkpoints, launching inference, and execution parallelism
policy.

We conducted end-to-end LLM inference experiments with
various models, including full LLaMA3-8B and LLaMA2-
13B, as well as subsets of layers of CodeLLaMA-34B, and
QWen2-72B. By combining wafer-scale LLM parallelism,
GEMM and GEMYV, WaferLLM outperforms state-of-the-art
(SOTA) systems: (i) 100-200x faster than T10 [25], the SOTA
system for massive cores with a distributed on-chip memory
architecture, and (ii) 200-400x faster than Ladder [45], the
SOTA system for shared-memory architectures.

Micro-benchmarks further show that MeshGEMM is 2-3 x
faster than SUMMA [42], the default optimized GEMM for
Cerebras WSE, and Cannon [6], the SOTA GEMM for super-
computers with large-scale mesh architectures. MeshGEMV
achieves 4-8 x speedups over Cerebras’s optimized GEMYV,
and 606 x than a single A100 GPU. Additionally, WaferLLM
’s cache shift method is up to 400x more scalable than the
KV cache SOTA on GPUgs, such as PagedAttention [20].

Combined, WaferLLLM (on Cerebras WSE-2) outperforms
SGLang (on single A100) by 30-40x. Compared to the opti-
mal performance of SGLang on A100 multi-GPUs connected
with NVLink and RDMA, WaferLLM delivers a 10-20x
faster end-to-end speed and is 2.5x more energy-efficient.
The reduced gains from GEMYV to LLM are due to current
limitations in software, hardware, and existing LLM model
designs. We anticipate stronger performance as wafer-scale
Al computing matures and these limitations are addressed.

2 Background and Motivation

2.1 LLM inference and its key constraint

An LLM inference system typically performs auto-regressive
token-by-token generation, as illustrated in Figure 1. The
model comprises multiple transformer layers, dominated by
self-attention and feedforward blocks. Inference operates in
two phases: prefill and decode. The total cycles of the prefill
phase are dominated by GEMM operations (shown by @).
While the total cycles of the decode phase are dominated by

System-on-Die System-on-Wafer
Area (mm?) Up to 858 Up to 73062
Transistors (TSMC n3) ~1s Tillion ~10s Trillion
Cores 1,000s-10,000s 100,000s-1,000,000s
On-Chip Memory 10s-100s MB ~10s GB
Memory Bandwidth 1s TB/s ~10s PBs/s
Attached HBM ~10s-100s GB 10s TB (via TSMC SoW) [21]
Die-to-Die
Bandwidth (TB/s) ~1s-10s (via off-chip) ~10s-100s (via on-chip)
Die-to-Die
Latency (ns) ~100s (via off-chip) ~1s (via on-chip)
Die-to-Die e o . .
Power (pJ/bit) ~10s (via off-chip) ~0.1s (via on-chip)

Table 1: System-on-Die vs. System-on-Wafer

GEMY operations (shown by @).

LLM inference is memory bandwidth-bound. Model
weights (10-1,000 GB) are fetched repeatedly from external
memory during inference, as GPUs typically have only 100
MB of on-chip memory. For per request, generating thousands
of tokens per second demands hundreds of TB/s bandwidth,
far exceeding the capabilities of HBM (high bandwidth mem-
ory) on current GPUs.

While tensor parallelism across GPUs can increase band-
width, mitigating communication bottlenecks in a large GPU
cluster remains challenging. Also, adding GPUs improves
throughput for concurrent queries but does not reduce time
per output token (TPOT), as each query is still memory
bandwidth-limited.

2.2 Reasons for wafer-scale accelerators

To increase memory bandwidth, accelerator designers are
increasingly adopting system-on-wafer integration [21] for
several reasons:

Performance advantages. System-on-wafer technology al-
lows trillions of transistors to be integrated into a single wafer-
scale chip, up to 100x more than a typical GPU die, shown
in Table 1. This enables millions of Al-optimized cores, pro-
viding tens of GBs of on-chip memory and up to tens of PB/s
memory bandwidth, 1,000 higher than a standard GPU’s
several TB/s. Future wafer-scale chips can also attach 40-
80x more HBM chips to their edge compared to a standard
die [21].

Integration efficiency. System-on-wafer excels at integrat-
ing massive parallel cores, with wafer-based die-to-die con-
nections offering up to 10x more bandwidth per unit area,
100-300x latency benefit, and nearly 100x better power ef-
ficiency per bit than conventional PCB-based chip-to-chip
interconnection [24] (e.g., NVIDIA NVLink, PCle), shown
in Table 1. As noted earlier, LLM inference is primarily con-
strained by memory bandwidth due to intensive data access.
In distributed settings, inter-chip communication overhead
from remote memory access, especially during decode-phase
GEMY, limits scalability. Thus, system-on-wafer integration
offers lower-latency and high-bandwidth interconnects and
improved efficiency over conventional chip-to-chip links.

ﬂ;er\ Y-axis Mesh
Die IO T
Core
Chip
Fully ': S axis
Connected PR
LI—] T "4 Architecture .
AR v
| Router |+= " E
Core) Local
???? Comput Vi
Share Memory Wafer-Scale Accelerator ¥

S

(a) Shared Memory (b) Massive-Sacle, Mesh-Based Memory

Figure 2: Massive-scale mesh-based memory architecture

Lower cost. Wafer-scale integration can lower the manufac-
turing cost, since a significant fraction of the cost of fabrica-
tion (typically 30-50%) is related to testing and packaging the
individual chips [48]. Additionally, wafer-scale integration
has made notable progress in yield improvement. Companies
such as TSMC are also developing techniques to integrate
fully tested dies on a single wafer, further enhancing yield.

2.3 Challenges for wafer-scale LLM inference

The key challenge in leveraging wafer-scale accelerators for
LLM inference is their shift to a distributed, non-uniform
memory architecture on a single chip. Current LLM systems
are optimized for shared memory (single chip) or fully con-
nected architectures (e.g., GPU pods), as shown in Figure 2(a).
However, as on-chip memory size grows, these architectures
face exponential manufacturing costs and performance degra-
dation, driving the need for a distributed on-chip architecture.

Al accelerator designers predominantly use a mesh-like
network-on-chip (NoC) to connect massive cores (rang-
ing from hundreds of thousands to millions), as shown in
Figure 2(b). The mesh topology is favored for its efficiency
in core arrangement, enabling effective cooling [29], power
delivery [19], and cost-efficient wiring [38, 46], with each
core communicating only with nearby neighbors, as shown
in Figure 2(b). Alternative topologies, such as 3D torus or
tree structures, are impractical due to high on-chip wiring
costs. Therefore, wafer-scale chip makers such as Cerebras
WSE [24] and Tesla Dojo [41] adopt massive-scale mesh ar-
chitectures. Even non-wafer-scale accelerators such as Meta
MTIA [30], Tenstorrent [18], and others [4,31] use mesh to
scale cores on a chip.

The massive-scale mesh architecture presents challenges
for several LLM operations due to their high data move-
ment demands: (i) managing LLM models and KV
cache, (ii)) GEMM operations during the prefill phase, and
(iii) GEMV operations during the decode phase. Other opera-
tions, such as element-wise computations such as dot-product
and activation functions, require no data movement and natu-
rally benefit from parallelism. Operations needing allreduce,
such as RMSNorm and Softmax, can leverage GEMV solu-
tions.

3 Device Model for Wafer-Scale Accelerators

3.1 The PLMR model

We develop the PLMR model to capture the unique hardware
properties of wafer-scale accelerators and to motivate system
requirements needed for utilizing this emerging hardware.

(1) Massive Parallelism (P): A wafer-scale accelerator can
accommodate millions of parallel cores, compared to
thousands in GPUs. Each core features a local hardware
pipeline that overlaps data ingress, egress, computation,
and memory access at the cycle level. This requires the
computation to be partitioned at a massive scale and a
fine-grained schedule to overlap computation, memory
access, and NoC communication.

(2) Highly non-uniform memory access Latency (L): Ac-
cessing memory across cores in a mesh incurs highly
non-uniform latency. In a mesh with N,, X N}, cores, orga-
nized as a rectangle, the maximum number of NoC hops
between two cores is N,, + N, and the worst-case mem-
ory access latency is given by a(N,, + N;,) + Pr, where
r < N,, + Nj, denotes the number of routing stages along
the communication path. Here, o denotes the per-hop
transmission latency, the cost incurred when a message
is directly forwarded at a core according to the router
hardware’s pre-configured rules, increasing with hops. B
represents the per-routing latency, the overhead when a
message is involved in header parsing and rewriting by
software at a core when forwarding [27]. Typically, a < P.
In a mesh with a million cores, the maximum number of
hops and routing can reach up to several thousand, result-
ing in up to a thousand times latency gap between local
and remote memory access. Consequently, minimizing
long-range communication is critical for performance.

(3) Constrained per-core local Memory (M): Each core
has a small local memory (tens of KBs to several MBs),
as performance and energy efficiency decline with larger
capacities [47]. As a result, computation data must be
explicitly partitioned into fine-grained chunks to fully fit
within the constraints of each core’s local memory.

(4) Constrained Routing resources (R): Wafer-scale acceler-
ators integrating millions of cores impose strict constraints
on each core’s routing circuit complexity or routing table
size. For example, on the Cerebras WSE-2, each core can
recognize only message headers with a 5-bit address code.
Consequently, each core can support at most 2° distinct
routing paths, and the software system must carefully plan
these paths. For long-distance remote communication, a
pair of cores can consume routing resources to establish
a direct routing path, incurring only o latency. However,
if the number of routing paths exceeds hardware limits,
messages must be relayed through multiple intermediate
cores, introducing additional B latency.

We expect these properties to remain relevant, as they are
rooted in the fundamental characteristics of hardware and its

manufacturing process. The PLMR model applies to both
current (Cerebras WSE) and future (Tesla Dojo) wafer-scale
devices. Even some non-wafer-scale devices with mesh-based
NoC architectures, such as Tenstorrent Blackhole [18], can
be represented by PLMR with adjusted parameters for paral-
lelism (P), the size of the mesh (L), or relaxed constraints on
local memory (M) and routing resources (R).

3.2 Limitations of state-of-the-art approaches

Leveraging the PLMR model, we analyze why existing Al
systems fail to fully utilize wafer-scale accelerators. To run
an LLM on a wafer-scale accelerator, we generally have two
choices: (i) abstract the distributed local memory in each
core as a shared memory and directly access data placed in a
remote core through NoC; and (ii) explicitly partition com-
putation into distributed cores and use message passing to
exchange necessary data. We analyze two types of represen-
tative systems: LLM runtime or DNN compilers for shared
memory architecture such as GPUs, e.g., Ladder [45]; and the
SOTA compiler for distributed on-chip memory architectures,
e.g., T10 [25] for GraphCore IPU.

Shared-memory system. A shared-memory-based DNN
compiler such as Ladder usually assumes a uniform mem-
ory access pattern within the underlying memory hierar-
chy, which cannot tolerate the thousands of times latency
variance in wafer-scale accelerators when accessing data
from remote memory (failing in L). Moreover, these com-
pilers [10,28,37,45,51,54,57] often focus primarily on parti-
tioning computation, with less emphasis on optimizing data
partitioning. This approach can easily lead to significant data
duplication and violate the memory constraint requirements
(failing in M). Finally, these compilers are unaware of the
communication distance of each core, poorly addressing the
constraint of routing resources.

Distributed-memory system. The T10 system [25] is de-
signed for Al accelerators with an on-chip crossbar, which
ensures a constant latency of memory access to any other
cores on the same chip. T10 handles small local memory
and balances communication loads, addressing memory con-
straints (M) and routing resource limitations (R). However, on
a PLMR device, it fails to account for varying memory access
latency (failing in L) and scales to thousands, not millions, of
cores (failing in P).

4 Wafer-Scale LLM Parallelism

We present wafer-scale LLM parallelism, featuring new de-
signs across prefill, decode, and KV cache management.

4.1 Prefill parallelism

The parallelism for LLM prefill must ensure compliance with
the PLMR model. Key challenges include: (i) Handling multi-
ple large matrices during prefill, requiring effective dimension

Feed Forward

Self Attention

o

e

Dist-GEMM |

ETD

Dist-GEMM |

Dist-GEMM

©

K(BLyHx]

V [BLyHx

Figure 3: Prefill parallelism plan. E\F, represents a matrix
of shape EF, where the E dimension is partitioned along the
x-axis of cores, and F along the y-axis of cores on a mesh.

partitioning to achieve million-core parallelism (P); (ii) Opti-
mizing GEMM operations, which involve further partitioning
and overlapping computation and communication, to mini-
mize long-range communication latency (L), respect local
memory constraints (M), and account for limited routing re-
sources (R); and (iii) Handling matrix transposes, which are
costly on a mesh NoC (L) but often required for sequential
GEMM operations.

Designing fine-grained partitioning for million-core par-
allelism. To achieve high chip utilization, we propose par-
titioning two dimensions of the input activation and weight
matrices along both the X- and Y -axes of cores. This approach
enables finer-grained, million-scale parallelism compared to
existing methods [12,15,32,35], which typically partition only
the embedding dimension, resulting in insufficient parallelism
on PLMR devices.

We illustrate this partitioning using self-attention and feed-
forward, as shown in Figure 3. For this discussion, we define
the following annotations: the input activation A and weight
W are multi-dimensional tensors during the prefill process.
B represents the batch size, L the sequence dimension 2 E
the embedding dimension, H the head dimension, and F the
hidden dimension in the feedforward block. As shown by @,
the partitioning layout of A is represented as BLyE,, where the
L dimension is partitioned along the Y -axis of cores, and the
E dimension along the X-axis of cores. Similarly, all weight
matrices (Wp, Wk, Wy, W;,, and W,,,) are partitioned across
both dimensions.

Designing PLMR-compliant distributed GEMM. We pro-
pose replacing conventional GEMM operators, which are
designed for shared memory architectures, with a newly de-
signed PLMR-compliant distributed GEMM during the prefill
phase (as shown in @ of Figure 3). Unlike TPU and GPU sys-
tems that primarily rely on allgather operations for GEMM,
PLMR-compliant distributed GEMM algorithms achieve high
NoC bandwidth utilization while respecting local memory and

2[: sequence dimension; L: memory access latency in PLMR.

Feed Forward
@ Amer) w

Self Attention

WolEyi) | WiE) | Ve

Dist-GEMV | 4 Dist-GEMV | 1{ Dist-GEMV |

I3 B ¥ ¥
Q(BHy N[BLyHx Lyt)
[KV cache Update |
[Dist-GEMV }—{BL'yHx BL'yHx |
K cache V]cache

Dist-GEMV

Figure 4: Decode parallelism plan. EYF, indicates the E di-
mension is replicated along the y-axis, and F is partitioned
along the x-axis.

routing constraints, ensuring compliance with the L, M, and
R properties. This PLMR-compliant distributed GEMM is
fully described in Section 5.

Using transposed distributed GEMM to avoid matrix
transpose. We propose a transpose-free parallelism plan for
prefill to avoid matrix transpose, a common operation in LLM
systems designed for shared memory architectures. The L
property in PLMR highlights that matrix transposition is par-
ticularly costly on a wafer-scale device. It requires a core on
one corner of the mesh to send data to the opposite diagonal
corner, creating a long-range communication path.

Our transpose-free parallelism plan leverages transposed
distributed GEMM (denoted as dist-GEMM-T) [11, 42] to
compute Q@K' during LLM prefill, as shown by @ in Fig-
ure 3. Specifically, the intermediate Q and K tensors, gener-
ated by multiplying X with Wy and Wk, require transposing
K before proceeding with dist-GEMM operations due to the
on-chip partition shape.

4.2 Decode parallelism

The parallelism strategy for LLM decode must address its
memory-bandwidth-intensive nature, presenting several chal-
lenges: (i) Decode uses smaller matrices than prefill due to
limited input sequences and batch sizes, requiring careful par-
allelization when dimensions are insufficient for partitioning;
(i) The phase heavily relies on GEMYV operations, which
are less compute-intensive than GEMM, resulting in short
computation phases with limited overlap with communica-
tion, making GEMYV vulnerable to long-range communication
latency on a mesh NoC (L) and requiring adherence to local
memory and routing constraints (M and R); and (iii) Sequen-
tial GEMV operations introduce costly matrix transpose on a
NoC, risking violation of the L property.

Designing fine-grained replication to enable parallelism
at minimal communication cost. When tensor dimensions
are insufficient to achieve the high parallelism required for de-
code, we propose fine-grained replication of tensors in LLMs,

Step 1 Step 2 Step 17
I o I | I o111
1 I I I
0,00 =00 DD .. 0
'y

0

& WTINT I

Figure 5: KV cache concatenation vs. KV cache shift

specifically replicating the sequence dimension, where the
sequence length equals the prompt length during prefill phase
and equals 1 during the decode phase. This approach offers
two key advantages: (i) it improves parallelism and ensures
balanced loads across all cores, and (ii) it avoids additional
communication operations such as allreduce across all cores.
As shown by @ in Figure 4, the E dimension is partitioned
along the y-axis, and the L dimension is replicated along the x-
axis, represented as BEyL*. Weight matrices W are partitioned
across both dimensions, consistent with the prefill phase.

Our fine-grained replication differs from recent work on
long-context/sequence inference systems [49,55], which se-
lectively replicate certain dimensions during the prefill phase
rather than the decode phase.

Designing PLMR-compliant distributed GEMV. We found
that existing GEMV implementations fail to fully comply
with PLMR requirements due to long-range communication
and excessive routing resource consumption at each core.
To address this, we propose a PLMR-compliant distributed
GEMYV, utilizing this new implementation throughout the de-
code phase (as detailed in @ of Figure 4). A comprehensive
description of this GEMV design is provided in Section 6.

Pre-optimizing model weight placement to avoid matrix
transpose. To avoid matrix transpose during decode, we pre-
optimize the model weight layout for decode, particularly for
the distributed GEMV operation, to eliminate matrix trans-
pose. While this introduces re-placement overhead between
prefill and decode phases, the overhead is far smaller than that
of sequential matrix transpose during token generation.
Figure 4 illustrates this proposal, detailed in @. Specifically,
we optimize the placement of weights such as Wy and W,
for distributed GEMYV in decode, differing from their layout
in the prefill phase. This approach also removes transpose
operations in calculating Q@K during decode self-attention.

4.3 Shift-based KV cache management

KV cache management on PLMR devices is challenging as
it requires storing large data across distributed cores while
adhering to local memory constraints (M) and distributing

KV cache computations to achieve high parallelism (P). To
address these, we have the following insights:

Existing concatenate-based management causes skewed
core utilization. Current KV cache management methods
primarily concatenate the most recently generated KV vectors
to the existing cache. Though efficient in shared memory ar-
chitectures, this concatenate operation leads to highly skewed
core utilization on PLMR devices, as shown in @ of Figure 5,
where only the core in a row is responsible for storing and
computing over the generated KV vector. After several token
generation steps, this only core quickly becomes the bottle-
neck, as depicted in @ of Figure 5, causing skewed memory
usage and violating the M in PLMR. Moreover, the imbal-
anced KV cache distribution across cores results in inefficient
parallelism, violating the P property.

Proposing shift-based management for balanced core uti-
lization. We propose a shift-based KV cache management
strategy that evenly distributes cache data across all cores.
Instead of concatenating new KV cache vectors at the end,
this method performs a balancing shift operation, where each
row transfers the oldest KV cache data to the row above, as
shown in @ of Figure 5. When new KV data arrives, each
core checks its local capacity against its neighbors. If equal,
upward shifts are triggered, with each row receiving data from
below and passing some to the row above. As illustrated in
@, this ensures even KV cache distribution across all cores.

The upward shifts utilize NoC links in parallel, maintaining
high performance and satisfying the P property. The physical
placement of KV cache aligns with logical continuity and
only involves data movement between the adjacent cores,
adhering to the L property. This method also fully resolves
the M violation issue observed in the last row of cores with
the concatenate-based approach.

4.4 Implementation details
We outline several implementation details below:

Prefill and decode transition. Prefill and decode require
distinct strategies. To handle the transition efficiently, we
reshuffle KV cache and weights through the fast NoC, which
often provides 100s Pbits/s aggregated bandwidth, completing
instantly without relying on slower off-chip memory.

Parallelism configuration. WaferLLM uses offline autotun-
ing to select core counts for each model, optimizing latency
based on model size, input/output length, memory per core,
and prefill/decode phases. It chooses different core counts
for each phase, with fast dynamic remapping enabled by
high NoC bandwidth. For models with variable input/output
lengths, average values are used to maintain near-peak per-
formance. Autotuning runs separately per model to adapt to
specific needs.

Variations of self-attention. WaferLLLM supports variations
of Self-Attention, including Grouped Query Attention [3],
Multihead Attention [43], and Multi-query Attention [5].

Critical Path #Routing #Latency Memory

®) (L) M)
9 @ 1
GEMM
(AllGather) ﬂ ? . ﬁ OW) Ola+ BN o
2]
SomA W ON) O[(a+ BN 0(%)
5 |
Cannon W ﬁ ﬁ g o) 0(aN) 0(%)

MeshGEMM W g ﬁ ﬁ o) 0(a) 0(12)
(Ours) N

Figure 6: PLMR compliance in distributed GEMM

These differ by performing dist-GEMM, dist-GEMYV and dist-
GEMM-T locally after grouping by head dimensions.

5 Wafer-Scale GEMM

In this section, we introduce MeshGEMM, a scalable dis-
tributed GEMM for massive-scale, mesh architectures.

5.1 PLMR compliance in distributed GEMM

To identify a scalable distributed GEMM for PLMR devices,
we define the following metrics: (i) Routing paths per core:
The number of routing paths per core, with fewer paths ensur-
ing compliance with the R property. (ii) Latency of critical
path: Maximal latency among all communication paths in
each step to transmit submatrix (as the red lines in Figure 6),
with less latency adhering to the L property. (iii) Memory
per core: The memory required per core, with lower usage
ensuring the M property.

We analyze current distributed GEMM methods and show
how MeshGEMM meets these metrics:

(1) GEMM via Allgather is commonly used in GPU and
TPU pods for distributed GEMM [32, 35, 56]. Its critical
communication path in each step is one core gathering
data from the farthest cores, shown as the red line in Fig-
ure 6 @, and N steps to complete the allgather. Each core
creates N routing paths to neighbors in its row and column
(violating R). The constraint of R necessitates step-by-step
submatrix transmission via intermediate cores, introduc-
ing a communication latency of O[(ot+ B)N] along the
critical path (violating L), and each core uses O(1/N)
memory due to inflated working buffers (violating M).

(2) SUMMA is Cerebras’ default choice for distributed
GEMM on its wafer-scale engine [7]. Its critical com-
munication path in each step is where one core broadcasts
data to the farthest core along the column or row, shown
by the red line in @ of Figure 6. Same to the allgather
communication in @, each core creates N routing paths
(violating R) and spans the critical path with O[(ot+ B)N]
latency (violating L) in each step. While SUMMA im-
proves memory usage compared to allgather, requiring

only a working set equal to the size of locally partitioned
submatrices, it still doubles the peak memory usage.

(3) Cannon is mesh-optimized choice for distributed

GEMM [6], popular in supercomputers and distributed
cluster. Its critical communication path in each step is
the head cores send data to the tail cores shown in @ of
Figure 6. Each intermediate core communicates with two
neighbours in a 2D torus and passes through the submatrix
from head to tail, which only needs O(1) communication
paths and optimal memory usage of O(1/N?).
Notably, Cannon involves only a constant number of rout-
ing paths per core, allowing static routing rules to be as-
signed for both neighbor communication and the critical
path. At each step, submatrices can pass directly from the
head to the tail core through intermediate cores, unlike
GEMM via allgather or SUMMA, which require step-
by-step message transmission. As a result, the critical
path incurs only per-hop latency o, without additional per-
routing overhead 3. However, since the critical path spans
N hops, it still incurs O(oV) latency, shown as the red
line in @, violating the L.

(4) MeshGEMM (Ours) is a distributed GEMM which com-
plies with the PLMR model. The critical communication
path in each step, which we named as two-hop transmis-
sion, is shown as the red line in @ of Figure 6, which is
significantly shorter than the others. Each core communi-
cates with two two-hop away neighbors(proven in later
sections to be scalable for larger-sized mesh architectures),
and passes through a one-hop neighbor’s communication.
This design achieves O(1) communication paths per core
needed and optimal memory usage of O(1/N?), similar to
Cannon. Crucially, it bounds the critical path to constantly
2 hops with O(a) complexity, making it uniquely capable
of addressing the L property.

5.2 Design intuitions and scalability analysis

Our design involves two phases: (i) We ensure algorithm
correctness using a cyclic shifting process for GEMM, and
(ii) then use interleaving to bound the critical path latency to
a constant. Based on the cyclic shifting and interleaving, we
get the two-hop transmission communication path, and we
prove that it, on this cycle, is the minimal distance required
to satisfy the L property.

Cyclic shifting. Cyclic shifting enables MeshGEMM to sat-
isfy the M and R properties by limiting communication to two
neighbors and minimizing memory usage. It ensures correct
GEMM results, following reasoning similar to Cannon [6].
As illustrated in @ of Figure 6, a logical circle of 5 cores is
flattened into the physical communication mapping, with a
critical path from head core to tail core.

Interleaving. For the flattened communication plan, we
would like to minimize the length of the critical path fur-
ther, thus satisfying the L property. Our key intuition here is

At HEEE
(1) /]E:@Eﬂ (2] @bjDDD

EE s e

Logical Mapping :I |:| I:I I:I

Physical Mapping

Figure 7: Design intuitions and scalability analysis.

Algorithm 1: INTERLEAVE
Input: index, N
Output: send_index, recv_index
1 if index mod 2 == 0 then

2 recv_index = Max (index - 2, 0);

3 send_index = Min (index + 2, N - 1);
4 else

5 recv_index = Min (index + 2, N - 1);
6 send_index = Max (index - 2, 0);

7 if index == 0 then recv_index = 1;

8 if index == N - 1 then

9 if N mod 2 == 0 then recv_index = N - 2;
10 else send_index =N - 2;

11 Return send_index, recv_index;

to introduce an INTERLEAVE operation to find the mapping
relationship from logical to physical, defined in Algorithm 1.
As shown by @ of Figure 7, MeshGEMM first insert core 1
in between core 0 and 4 and core 2 in between core 4 and 3
to form a logical mapping, and then call the INTERLEAVE
operation to get the send to and receive from neighbours’
index, resulting in a permutated, equivalent communication
plan as shown by @ in Figure 7. For example, there are 5 cores
total (N=5), so physical core 2 (index=2) sends data to phys-
ical core 4 (send_index=4) and receives from physical core
0 (recv_index=0). Figures 6 and 7 illustrate the case with 5
cores as an example, while Algorithm | demonstrates that the
two-hop communication pattern in MeshGEMM generalizes
to mesh architectures of arbitrary size with N > 3.

Scalability analysis. We can prove that the two-hop distance
created by INTERLEAVE cannot be further reduced. The
proof relies on the fundamental properties of sequential ar-
rangements: if we attempt to create a circular sequence where
each number differs from its neighbors by exactly one hop,
we encounter a mathematical impossibility. This can be un-
derstood by visualizing the numbers as points on a line -
while adjacent numbers can be connected, the endpoints of
the sequence cannot simultaneously maintain single-hop dif-
ferences with their neighbors while forming a circle.

Note that our discussion, based on a 1D array, naturally

extends to a 2D mesh, as the 1D array corresponds to the
mesh’s X-axis and Y-axis due to their symmetry.

5.3 The MeshGEMM algorithm

We outline the key steps of MeshGEMM below:

(1) Imitialization: Consider C = A x B. MeshGEMM will
partition A and B into tiles Ay, and By,;, along two dimen-
sions, forming N x N tiles, which are distributed across the
cores. Each core receives one tile of Ag,;, and one of By,;.
MeshGEMM will then use INTERLEAVE to initialize the
neighbors’ positions for each core.

(2) Alignment: Each core will then align with neighbors to
align the input submatrices in a way that ensures every
core in the distributed system begins with the appropriate
operands for the matrix multiplication process.

(3) Compute-shift loop: Each core operates with a compute-
shift loop involving N steps of communication and compu-
tation. In each step, every core computes the partial sum of
its corresponding Cy,, = Agup X By + Coup. Meanwhile,
shift Ay, along the X-axis and By, along the Y-axis to
get new Al and B, , for the next step computation as
© we shown in Figure 7. After N steps, the accumulated
Cyup 1s returned.

5.4 Implementation details

Handling non-square mesh. For a non-square mesh N, x N,
(Ni # N,), the A and B matrices can be logically partitioned
into Ny X Ny cores, where Ny, is the least common mul-
tiple of Nj and N,,,.

Transposed distributed GEMM. The above algorithm can
be applied to the computation of C = A x BT, the dist-GEMM-
T in Figure 3 to avoid transposing B on mesh. It does not
require alignment before computation and only necessitates
N steps of two-hop compute-shift for the right matrix B along
the Y-axis. After each shift step, each core computes Cyyp =
Agub X Bgup, followed by a ReduceAdd of Cyyp, along the X-
axis. After N steps, the final matrix C is obtained.

6 Wafer-Scale GEMV

In this section, we describe MeshGEMYV, a scalable GEMV
algorithm for PLMR devices.

6.1 PLMR compliance in distributed GEMV

The completion time of a distributed GEMYV is primarily de-
termined by an element-wise computation to generate a partial
sum result at each core and then an allreduce operation that ag-
gregates partial results from all selected cores and then sends
the aggregated results back to all cores for the continuous
GEMV. As the analysis in GEMM, in wafer-scale GEMV, we
also define the following metrics: (i) Routing paths per core:
The number of routing paths per core, with fewer paths en-
suring compliance with the R property (ii) Latency of critical

oy #Latency #Routing
Critical Path 1) ®)

mﬁ 0[2a + HN] 0(1)

Broadcast

(> R Dﬁ []] I;] [] QD ol2a +BIN] 0(D)

Phase 3
K=

e [— W — Phase 1
K-tree
9 Allreduce O[aN + K 1 0(K)
(Ours)

Broadcast

0 Pipeline
Allreduce

Figure 8: PLMR compliance in distributed GEMV

path: Maximal latency of the whole allreduce communication,
mainly determined by the time from when the partial sum
is sent from the farthest core to when the aggregated sum is
received by the farthest core.

We analyze current distributed GEMV methods and show
how MeshGEMYV meets these metrics:

(1) GEMYV with pipeline allreduce is commonly used in
TPU pod systems [35] and as the default in Cerebras
demo [9]. As illustrated by the red line in the Figure 8 @,
the critical path of the pipelined all-reduce starts from
the farthest core, where partial sums are reduced step-
by-step toward the root core, and the aggregated result is
then broadcast from root to all cores. While this approach
ensures that the routing path per core remains within the R
constraint, O(1) per-core routing resource usage, it incurs
a total of 2N hops and N routing stages, violating the L
property.

(2) GEMY with ring allreduce is commonly used in GPU
pod systems, where it is the default configuration, espe-
cially for a large amount of data [27]. As shown by @
in Figure 8, the critical path of ring allreduce involves
each partial sum traversing all cores in the ring. Similar
to pipelined allreduce, this approach maintains O(1) rout-
ing paths per core, but incurs a communication latency
of O[(20.+ B)N], thus violating the latency constraint L
defined in PLMR.

(3) GEMY with K-tree allreduce (Ours). As analyzed above
for pipelined and ring allreduce, the sequential execution
of reduce-add operations leads to N routing stages along
the critical path. In contrast, K-tree allreduce organizes the
reduce-add path as a balanced K-tree, enabling K phases
grouped parallel reductions with O({/N) cores per group
and reducing the critical path to only I‘VZNK times routing

and N hops. However, this comes at the cost of requiring
O(K) routing paths per core.

6.2 The MeshGEMY algorithm

We will outline the key steps of MeshGEMM below:

(1) Inmitialization: Consider C = A x B and A is a vector.
MeshGEMV will partition B into tiles By, along two

dimensions, forming N x N tiles and distributed across
the cores. For A, MeshGEMYV will partition it along the
vector length, forming N tiles distributed on one axis and
replica A on another axis. Each core receives one tile of
Agp and one of By,,. Then we determine which cores
form a group to obtain aggregated results in each phase
based on the K-tree.

(2) Parallel computation: In this stage, each core performs
alocal GEMV Agyp X Bgyp to obtain Cg,p, partial sum.

(3) Aggregation: The aggregation step primarily involves
using the K-tree allreduce we design. The key steps are as
follows: (i) In the 1st-phase, each group performs group
reduction and obtains the partial sum of Cy,, at the root
core of each group. (ii) In the kth-phase, the results from
the (k— 1) th-phase are reduced to the root cores of each
group in the kth-phase. After K times repeating, C can
be obtained by concatenating the Cy,;, from all K-tree
root cores. (iii) Optionally, a broadcast operation from the
root core of the K-tree may follow, depending on whether
continuous GEMYV is required.

Scalability Analysis. As shown in @ of Figure 8, this method
scales efficiently with parallelism and meets the L property
by selecting an appropriate K. It requires K 4 1 paths at the
tree root core but allows flexible adjustment of K to address R
based on hardware limitations. Compared to pipeline and ring
all-reduce, K-tree all-reduce essentially builds pass-through
paths between distant cores by consuming routing resources,
thereby reducing routing latency.

However, a larger K is not always better, as it depends on
N and R constraints. Additionally, larger K increases routing
complexity and overhead. Considering these factors, we have
chosen K = 2 for our current implementation, evaluated in
the following sections.

7 Evaluation

We extensively evaluated WaferLLLM against various state-of-

the-art methods and systems. Our results show that:

(1) WaferLLM achieves orders of magnitude speedup over
T10 and Ladder in LLM inference (§7.1);

(2) WaferLLM’s MeshGEMM and MeshGEMYV perform and
scale strongly over the state-of-the-art (§7.2);

(3) WaferLLM'’s shift-based KV cache management enables
over 360-385 x more token capacity (§7.4);

(4) WaferLLM on Cerebras WSE-2 achieves 10-20x e2e
speedup compared to the optimal performance of SGLang
on A100 GPUs-cluster, and about 30-40x speedup com-
pared to a single A100 GPU. WaferLLM also achieves
approximately 2.5 x better energy efficiency (§7.1,§7.5).

Experiment setup. We evaluate WaferLLLM on a server with
Cerebras WSE-2. WSE-2 has 850,000 Cores, each with a
Compute Engine (CE) operating at a maximum of 1.1 GHz.
Each clock cycle can fetch two 32-bit operands from SRAM,
perform a multiply-accumulate operation, and then write back

to SRAM. Each core also has a fabric router that can send or
receive 32-bit messages from neighbouring cores with a single
clock cycle. Additionally, each core contains 48KB of SRAM,
with the chip totalling 40GB of aggregated SRAM [24].

We compare WaferLLM with two DNN compilers: (i)T10
[25], the state-of-the-art compiler for Al accelerators with
inter-core connections and distributed on-chip memory, and
(ii)Ladder [45], the state-of-the-art compiler for shared mem-
ory architectures. For T10, we implemented it on WSE-2,
treating each core as part of a distributed memory system in-
terconnected by a crossbar, despite the actual mesh topology.
T10 maps data to core IDs and fetches data from local SRAM
as required. For Ladder, we treated the distributed memory
architecture of the chip, interconnected by mesh, as unified
memory, requiring collective communication over the NoC
to access data.

We use the Nvidia A100 for GPU comparison experiments,
which shares the same 7nm process as the WSE-2 for fairness.
The experiments utilize up to 16 GPUs across two nodes (2x8
configuration). Within a single node, the eight A100 GPUs
are interconnected via NVLink, while inter-node communica-
tion is handled through a high-performance InfiniBand (IB)
network. We use SGLang [53], one of the highest-performing
LLM inference systems for GPU-based experiments.

Experiment metric. To evaluate the maximum per-request
throughput performance of LLM inference systems on differ-
ent hardware, we define Throughput per Request (TPR) as a
key metric. TPR is derived from the more widely used Time
per Output Token (TPOT), with TPR = .

LLM models. Our evaluation includes various representa-
tive LLMs of different sizes and architectures. Specifically,
LLaMA3-8B and LLaMA2-13B are widely used open-source
LLMs, with LLaMA3 using group-query attention instead of
multi-head attention to reduce KV cache usage. For LLaMA2-
13B, we modified the model to remove the 4K context length
limitation to evaluate system performance across different
input and output lengths. Additionally, due to the tensor par-
allelism constraints, the number of attention heads of a model
must be divisible by the number of GPUs used. We did not
conduct the multi-GPU experiment of LLaMA-2 on a 16-GPU
cluster. CodeLLaMA-34B is a specialized LLM for coding
tasks, while QWen2-72B, another popular LLM, is renowned
for its high model quality.

7.1 LLM inference

We first report the end-to-end performance of WaferLLM
compared to T10 and Ladder on WSE-2 and SGLang on the
A100 GPU cluster. Then we further analyze the performance
to provide deeper insights by breaking down the execution
into prefill and decode phases.

End-to-end throughput. Table 2 shows the inference TPR

3No 2x8 GPUs, due to model architecture and tensor parallelism.

10

. Input/Output Seqence Length
Model Device 20487128 | 4096/128 | 2048/2048 | 4096/4096
WaferLLM | 764.4 604.4 23703 2459.0
WSE-2 TI0 46 45 583 94.6
LLaMAS8B Ladder 12 11 74 8.7
AL00GPU I 3438 311 365 784
(SGLang) 8 117.2 109.0 128.4 256.1
2x8 737 702 793 162.5
WaferLLM | 4739 414 1690.3 1826.0
WSE-2 T10 26 25 35.0 583
LLaMA2-13B Ladder 0.7 0.7 49 6.1
AT00 GPU T 204 7.1 211 79
(SGLang)® 8 79.6 70.5 86.9 1724

Table 2: End-to-end LLM inference TPR

of LLaMA3-8B and LLaMA2-13B on WSE-2 and A100 with
different input and output sequence lengths. Here, the end-
to-end throughput is calculated as the total number of tokens
generated during the decode phase divided by the total time
spent in the prefill and decode phases. WaferLLM uses core
configurations optimized for the best performance with each
model. In LLaMA3-8B, we use 660x660 cores for prefill
and 360x360 for decode. In LLaMA2-13B, we use 750x750
cores for prefill and 375375 for decode. CodeLLaMA-34B
and QWen2-72B are not included due to the memory con-
straint of a single WSE-2 chip.

Compared to T10, WaferLLM achieves 160x speedup on
average, up to 180, for short sequence generation tasks such
as 4096 and 2048 input context lengths with 128 tokens output.
For longer tasks, with input context lengths of 4096 and 2048
tokens and output lengths of 4096 and 2048 tokens, Wafer-
LLM achieves 36 x on average and up to 48 x. Although T10
designs the compute-shift model that considers the memory
constraints (M) and routing resource limits (R) of a PLMR
device, it does not account for the cores interconnected by a
mesh NoC. Thus, failing to address varying hop distances (L)
and scale to millions of cores (P), highlighting the need for
new system designs in massive-scale NUMA architectures.

Compared to Ladder, WaferLLM achieves 625X speedup
on average, up 677 x, for short sequence generation tasks such
as 4096 and 2048 input context lengths with 128 tokens out-
put. For longer sequence generation tasks, with input context
lengths of 4096 and 2048 tokens and output lengths of 4096
and 2048 tokens, WaferLLLM achieves 312x on average and
up to 342x. That is because Ladder is designed for shared
memory architecture and does not consider the characteristics
of the PLMR device, resulting in failure in partitioning LLMs
across millions of cores (P), incurring costly long-range NoC
communication (L), failure in handling local memory con-
straints (M) and limited routing resources (R).

Prefill throughput. Table 3 shows the prefill performance
for an input sequence length of 4096, using core configura-
tions from 480x480 to 720x720. For CodeLLaMA-34B and
QWen2-72B, which exceed the memory capacity of WSE-2
and a single A100, we evaluate a subset of layers and scale
the results proportionally due to their uniform layer structure.

WaferLLM achieves significant speedups over T10 and

‘WSE-2 Cores # A100 GPUs (SGLang)

Model Methods |y 280 T 600600 [720x720 I 3 2x3
WaferLLM | 20320.6 | 250372 | 276865

LLaMA3-8B TI0 175.0 156.6 132.8 13988.3 | 17361.6 | 13994.2
Ladder 61.8 423 313
WaferLLM | 13685.1 | 168542 | 174983

LLaMA2-13B TI0 1213 100.6 81.3 7805.1 | 12287.1 s
Ladder 47.3 33.1 24.2
WaferLLM | 54714 | 7540.1 8526

CodeLLaMA-34B TI0 49.1 46.8 412 53825 | 71555 | 6409.2
Ladder 30.1 23.1 177
WaferLLM | 27852 | 37755 | 44216

QWen2-72B TI0 249 235 215 1677.3 | 38038 | 37505
Ladder 16.8 123 10.1

Table 3: Prefill Throughput per Request (TPR)

‘WSE-2 Cores # A100 GPUs (SGLang)

Model Methods 75230 T 540x540 | 660x660 1 3 2x38
WaferLLM | 26999 | 25015 | 22433

LLaMA3-8B TI10 4183 3394 265.1 789 | 2604 | 1646
Ladder 14.6 13.1 11.4
WaferLLM | 20392 | 18994 | 1739.8

LLaMA2-13B TI0 3418 2708 2337 487 | 1758 | 7
Ladder 11.0 9.9 9.0
WaferLLM | 14508 | 1407.7 | 13592

CodeLLaMA-34B TI0 2782 224 193.1 26.1 | 1004 | 845
Ladder 6.1 6.2 538
WaferLLM | 8397 8243 7871

QWen2-72B TI0 168.5 133.0 114.6 106 | 512 | 487
Ladder 32 33 34

Table 4: Decode Throughput per Request (TPR)

Ladder by effectively addressing all PLMR properties, an
average speedup of 160x (up to 178) over T10 and 270-
450x over Ladder. As discussed in Section §2, GEMM is
the primary bottleneck, and MeshGEMM substantially en-
hances WaferLLM’s prefill performance, analyzed in detail
in Section §7.2.

Additionally, WaferLLM scales throughput with increasing
cores across all models. For instance, WaferLLM achieves a
1.6 scaleup on QWen2-72B and a 1.4 x scaleup on LLaMA3-
8B when scaling from 480x480 to 720x 720 cores. In con-
trast, T10 and Ladder fail to scale effectively, with throughput
even declining as more cores are added. This is mainly be-
cause T10 and Ladder do not account for the spatial locality
characteristic (L) of highly uniformly distributed memory,
which can lead to frequent long-distance data reads across
cores and increased communication overhead.

Decode throughput. Table 4 shows decode throughput
for core configurations from 420x420 to 660x660. For
CodelLLaMA-34B and QWen2-72B decode benchmark on
WSE-2 and single A100, we evaluate a subset of layers and
scale the results.

By addressing all PLMR properties, WaferLLM achieves
an average speedup of 5.7x (up to 6.5x) over T10 and 217 x
(up to 260x) over Ladder.

Compared to the 160x speedup WaferLLM achieves over
T10 during prefill, it offers only about a 6.5 x speedup dur-
ing decode. However, WaferLLM maintains a consistent 200-
500x advantage over Ladder in both prefill and decode stages.
This is mainly because prefill involves dist-GEMM computa-
tions, which require each data element to traverse cores along
the same row or column sequentially. In contrast, the dist-
GEMY allreduce operation in decode only requires traversal
across cores in the same row or column, without enforcing a

11

GEMM 2K

GEMM 4K GEMM 8K

600k

400k

200k

0k

180 360 540
Cores
SUMMA (Total)
B8 SUMMA (Comm)

720 360 540

Cores
Cannon (Total)
% Cannon (Comm)

720 360 540

Cores
MeshGEMM (Total)
EEE MeshGEMM (Comm)

720

Figure 9: MeshGEMM vs. SUMMA & Cannon

strict access order. While T10’s compute-shift paradigm does
not consider the spatial locality of cores on a mesh NoC, it
still accounts for distributed memory, which allows perfor-
mance gains when memory (communication) accesses are
order-independent. In contrast, Ladder is entirely designed
for a shared memory architecture, leading to severe commu-
nication overhead regardless of whether memory access order
is required.

Comparison with SGLang. As shown in Table 2,3 and 4,
WaferLLM demonstrates clear advantages over SGLang +
A100 GPU clusters in prefill, decode tasks, and also the end-
to-end performance across models ranging from 8B to 72B.
More detailed comparisons with GPUs are discussed in Sec-
tion §7.5.

It is worth noting that T10 and Ladder fail to leverage the
powerful hardware capabilities of the WSE-2 when compared
to SGLang. For example, in prefill tasks and for Ladder in
decode tasks, their performance is even worse than that of
SGLang running on a single A100. This highlights that design-
ing high-performance systems and algorithms on wafer-scale
chips must carefully consider the PLMR model; otherwise,
not only will the massive compute potential of the chip go
underutilized, but performance may even degrade due to the
highly uniform distributed memory resulting from the large-
scale mesh NoC.

7.2 MeshGEMM

We compare MeshGEMM with Cannon [6] and SUMMA [42]
on WSE-2 across different core scales and matrix sizes.

Scaling core count. Figure 9 shows that across matrices of
different sizes, MeshGEMM can achieve the lowest latency
than SUMMA and Cannon by scaling up the number of cores.
Compared to the pipeline broadcast in SUMMA and head-
to-tail transmission in Cannon, interleave transmission in
MeshGEMM can minimize per-step communication overhead
and, as much as possible, overlap communication with com-
putation during large-scale fine-grained parallel execution. It
demonstrates stronger scalability, maintaining over 70% com-
putational efficiency even near the hardware limit. In contrast,
SUMMA and Cannon exhibit poor scalability, with compu-
tational efficiency falling below 50% with 720x 720 cores,
primarily due to the communication overhead in SUMMA
and Cannon, increasing with the parallelism scale.

GEMV 4K

GEMV 8K GEMV 16K

aK 10k

8k
3k
6k

2k
4k

1k 2%

ok ok L
1202 2402 360% 4802 6002
Cores

1202 240% 360% 4802 600?
Cores
MeshGEMV (Total)
B8 MeshGEMV (Comm)

3602 4802 6002

Cores

1202 240?

GEMV-Cerebras (Total)
=% GEMV-Cerebras (Comm)

Figure 10: MeshGEMYV vs. GEMV-Cerebras

Additionally, increasing the number of cores does not al-
ways bring performance gains, especially for small matrix
GEMM tasks. For example, in GEMM 2K, when scaling
from 360x360 to 720x 720 cores, the end-to-end latency of
SUMMA and Cannon increases instead of decreasing. This is
because the per-core computation cost drops sublinearly as
cores increase beyond a threshold (due to fixed overheads like
function calls and logic checks). At the same time, communi-
cation overhead grows linearly, as seen from the shaded areas
in Figure 9, leading to worse overall performance. In contrast,
MeshGEMM only shows a slight communication overhead
increase at 720x720 cores and maintains stable end-to-end
latency. This is because its interleave communication bounds
the per-step communication cost to a constant, independent
of core count (the total communication overhead grows only
because the number of steps increases in all dist-GEMM algo-
rithms). Thus, MeshGEMM can achieve a better overlapping
between communication and computation even under large-
scale fine-grained parallelism (each core is only responsible
for a small amount of data).

Scaling matrix size. We also evaluate MeshGEMM with
larger matrix sizes, transforming GEMM into a more com-
putationally intensive operation. At large scales, though the
cost of communication becomes less significant, MeshGEMM
maintains its scalability and outperforms SUMMA and Can-
non by a wide margin, reducing total cycles by around 17%.

An interesting observation in Figure 9 is that for GEMM
8K, communication cycles decrease as core count increases.
This occurs because when processing large data volumes,
communication is bandwidth-bound rather than latency-
bound. Increasing the number of cores not only boosts aggre-
gate compute power to reduce computation overhead but also
increases aggregate bandwidth to lower overall communica-
tion cost.

7.3 MeshGEMYV

We evaluate MeshGEMYV and the default GEMV implemen-
tation on Cerebras (pipeline allreduce) across various core
scales and matrix shapes.

Communication latency bottleneck. Figure 10 shows that
communication becomes the primary bottleneck for dist-
GEMYV computations on WSE-2, especially when the par-
allelism scale is large relative to the computation per core,

12

Model LLaMA3-8B | LLaMA2-13B
Concat-based (PagedAttention) 382 16
Shift-based (WaferLLM) 137548 6168

Table 5: Maximum decode output length

GEMV [1,16K]x[16K,16K] [1,32K]x[32K,32K]
TP in SGLang(A100) 1GPU 8GPUs 2x8GPUs | 1 GPU 8GPUs 2x8 GPUs
Time (ms) 0336 0.253 0.340 1.231 0.341 0.339
MeshGEMY (WSE-2) 0.0012 0.00203
Time (ms)
A100/WSE-2 Energy Ratio | 7.47 44.97 120.88 16.17 35.83 71.25

Table 6: Comparing MeshGEMV (WSE-2) with TP in
SGLang(A100) of GEMYV latency and energy.

where communication overhead can dominate 90% of the
total. However, MeshGEMYV significantly reduces communi-
cation overhead compared to the Cerebras baseline GEMYV,
achieving about 4.6 x higher end-to-end performance. This is
because large-scale dist-GEMYV requires long-distance allre-
duce communication, and MeshGEMYV uses K-tree Allreduce
to maximize parallelism in the allreduce process, minimizing
communication and computation costs along the critical path.

Scaling core count and matrix size. We also evaluate
MeshGEMV with larger matrix sizes. For GEMV 8K and
16K compared to 2K, the baseline shows a trend that the end-
to-end overhead first decreases and then increases. The initial
decrease comes from increased core count, where the higher
aggregate compute power and bandwidth reduce computation
and communication costs. However, as the core count grows,
the communication latency of allreduce eventually overtakes
computation and bandwidth as the dominant bottleneck. In
contrast, MeshGEMV’s inflection point appears later, which
means that for the same data size, MeshGEMV’s communica-
tion overhead grows much more slowly with increasing core
count compared to the baseline, demonstrating better scalabil-
ity. This enables more flexible on-chip mapping policies, such
as using more cores to store additional LLM parameters to
meet memory limitations (M) without introducing significant
extra overhead.

7.4 Shift-based KV cache management

We also compare the shift-based KV cache management
with the concat-based KV cache management in PagedAt-
tention. We evaluate KV cache capacity on LLaMA3-8B and
LLaMAZ2-13B using the same settings as the end-to-end in-
ference evaluation in Section §7.1. Table 5 shows that Wafer-
LLM’s shift-based KV cache management supports 360 x
and 385X more tokens than the concat-based method for
LLaMA3-8B and LLaMA2-13B, respectively. This improve-
ment results from balanced core utilization and the resolution
of skewed data issues achieved by the shift-based approach.

7.5 Comparison with GPUs

We compare WaferLLM against the state-of-the-art LLM in-
ference system on GPUs using Cerebras WSE-2 and NVIDIA

Prefill (4K CTX) LLaMA3-8B LLaMA2-13B
1GPU 8GPUs 2x8GPUs | 1GPU 8 GPUs
SGLang(A100) TPR 13088 17361 13994 | 7805 12287
WaferLLM WSE-2 TPR 27686 17498
A100/WSE-2 Energy Ratio | 005 0.34 0.84 006 030
Table 7: Comparing WaferLLM (WSE-2) with
SGLang(A100) in prefill throughput and energy.
Decode (4K CTX) LLaMA3-8B LLaMA2-13B
IGPU 8GPUs 2x8GPUs | 1GPU 8 GPUs
SGLang(A100) TPR 78 260 164 8 75
WaferLLM WSE-2 TPR 2700 2039
A100/WSE-2 Energy Ratio | 092 2.22 7.02 113 249
Table 8: Comparing WaferLLM (WSE-2) with

SGLang(A100) in decode throughput and energy.

A100. To compare against the H100 fairly, we would need
access to the WSE-3, which is a Snm manufacturer but un-
available to us.

GEMV. We compared MeshGEMYV with the GEMV paral-
lelization strategy that follows SGLang’s [53] multi-GPU
tensor parallelism, while the computation on each GPU is
accelerated using the cuBLAS library. Shown by Table 6,
compared to a single A100 GPU, MeshGEMYV outperforms
by 280-606 x with different matrix sizes, showcasing the ad-
vantages of providing substantial memory bandwidth through
wafer-scale devices. This also translates to 7.5-16x greater
energy efficiency, reflecting the benefits of wafer-based con-
nections (connecting on-chip memory) over PCB-based ones
(connecting off-chip HBM) in GPUs.

Distributed GEMV on multi-GPUs shows limited scala-
bility: a single A100 yields the highest energy efficiency
per FLOP, and performance improves only 1.32x from one
to eight GPUs, then degrades at sixteen. This inefficiency
stems from memory intensity and communication overhead
over NVLink and IB. In contrast, MeshGEMYV exploits WSE-
2’s low-latency NoC to scale across hundreds of thousands
of cores, achieving 166-210x higher performance and 45-
70x better energy efficiency at peak compared to the best
GPU cluster results. Moreover, GEMV exhibits similar per-
formance for 16K and 32K tasks on two machines with 16
GPUs, mainly because communication overhead dominates
the computation in distributed GEMV across two nodes.

Despite these advantages, MeshGEMYV does not achieve
the theoretical 7,000 x improvement. Profiling identifies three
contributing factors: (i) WSE-2 cores, still in their second gen-
eration, cannot fully overlap memory access and computation;
(ii) edge cores are underutilized; and (iii) NoC long-range
communication overhead persists, despite MeshGEMV miti-
gating it effectively. We anticipate these gaps will continue to
narrow as wafer-scale accelerators mature.

LLM inference. The maximum TPR achievable on GPU
clusters is significantly lower than on WSE-2. We compare
WaferLLM with SGLang on an A100 multi-GPUs cluster and
find that WaferLLM delivers a 6-20x higher TPR across a

13

range of input/output lengths and model sizes from 8B to 72B,
with the gap widening for longer outputs and larger models
(Table 2). As shown in Tables 7 and 8, scaling SGLang from
1 to 8 GPUs yields only 1.2-1.6x prefill and 3.3-3.6 x decode
speedups, far below ideal linear scaling. Performance further
degrades when scaling to 16 GPUs, due to inter-node commu-
nication bottlenecks. As a result, peak TPR for dense mod-
els is typically reached within a single 8-GPU node, where
WaferLLM still outperforms SGLang up to 20x. For use
cases demanding high per-request throughput, wafer-scale
accelerators are substantially more capable than conventional
xPU-based systems.

In terms of energy efficiency, though a WSE-2 chip has
47x the area and 37 x the power and cost of an A100, Wafer-
LLM still achieves a 2-2.5x energy efficiency advantage at
SGLang’s optimal multi-GPU result, owing to GPUs’ non-
linear scaling on decode. This advantage is especially valu-
able for long-output scenarios like test-time scaling, where
serving cost is critical. However, compared to GEMV, Wafer-
LLM’s decode energy efficiency advantage is reduced due
to: (i) limited local SRAM (48KB) on WSE-2 cores, which
hinders efficient tensor parallelism and necessitates pipeline
parallelism, causing up to 5x underutilization; and (ii) GPU-
optimized LLaMA models with narrow layers that constrain
layer placement and worsen utilization on WSE-2.

8 Implementation Detail and Future Direction

We discuss the current limitations of WaferLLM and wafer-
scale accelerators and envision their future solutions:

Hardware architecture. The performance of WaferLLM is
currently constrained by execution bubbles caused by the
need for pipeline parallelism. Increasing a core’s local mem-
ory by 5-6x could eliminate the need for pipeline parallelism,
enabling full tensor parallelism, as on vVLLM and SGLang.
Wafer-scale chip designers are already moving in this direc-
tion. Cerebras WSE-3 retains the same NoC configuration but
improves per-core efficiency and local memory, while Tesla’s
Dojo incorporates 1MB of per-core memory.

Memory-to-Compute Ratio. LLM decoding demands a near
1:1 memory-to-compute ratio. However, GPUs like A100
have limited on-chip SRAM, forcing frequent off-chip mem-
ory access and yielding a poor ratio of 1:312 (FP16). Multi-
GPU setups exacerbate this due to heavy inter-GPU com-
munication. In contrast, Cerebras WSE-2 maps most model
weights onto on-chip memory via a low-latency NoC, achiev-
ing near-ideal locality and approaching a 1:1 ratio. To fully
realize this balance on mesh-based NoCs, adherence to the
PLMR model is essential, enabling WaferLLM to outperform
GPU-based systems by orders of magnitude in TPR.

Handle reliability issues. Currently, Cerebras WSE-2/3 han-
dles faults by hardware, only exposing healthy cores (orga-
nized in a mesh) to software, with no explicit handling re-
quired at the software level. Moreover, redundant cores and

links are built in at fabrication, and the on-chip SoC dynami-
cally remaps and reroutes around defects at runtime, ensur-
ing minimal performance impact at a low redundancy cost.
Meanwhile, wafer-scale chip makers recently reported a 93%
functional wafer area, higher than 70-80% in commercial
GPUs [8], due to the smaller area per core design. Over two
years of WSE-2 deployment, we have observed high relia-
bility, confirming the effectiveness of these fault-tolerance
mechanisms in real-world use.

Various model architecture. WaferLLM is also beneficial
for MoE as it shares key operators with dense LLMs, includ-
ing MeshGEMM, MeshGEMYV, and shift-based KV cache
management. The main difference is the all-to-all commu-
nication between attention and expert layers, which we im-
plement using WSE-2’s NoC multi-cast operations. Further
optimizations for sparse models, such as offloading and sparse
attention, are among our future research.

Beyond Cerebras WSE. While evaluated on Cerebras WSE,
the PLMR model generalizes to emerging mesh-like archi-
tectures such as Tesla Dojo, which also feature hundreds of
thousands of cores with local memory and constrained NoC
routing. Variants like 2D torus or hybrid mesh-switch topolo-
gies also conform to PLMR. Our design for MeshGEMM
and MeshGEMYV targets worst-case 2D mesh and remains
competitive across such platforms. Beyond on-chip meshes,
chip-to-chip mesh interconnects, as seen in Tenstorrent’s core-
and card-level meshes, also align well with PLMR. Look-
ing ahead, advancements in wafer-scale integration, such as
TSMC’s projected 40x density increase by 2027, further re-
inforce the long-term applicability of our approach.

9 Related Work

Deep learning frameworks and compilers. Current deep
learning frameworks and compilers, such as PyTorch, Ten-
sorFlow, and XLA [1, 10, 28,34, 36,37, 45,51, 54, 57], are
designed for shared memory architectures and use a tile-based
“load-compute-store” computation model. While effective for
shared memory, this model ignores the unique characteris-
tics of PLMR devices, making it inefficient for wafer-scale
AT chips. LLM frameworks such as vLLM and TensorRT-
LLM [20,56] have emerged to support modern LLMs but rely
on frameworks and compilers designed for shared memory ar-
chitectures (e.g., PyTorch [34]), inheriting similar limitations
on wafer-scale chips.

Distributed GPU and TPU systems. The on-chip distributed
memory architecture could theoretically be treated as a dis-
tributed LLM system, as studied in prior works [20,23, 35,49,
52,56]. However, such systems, designed for GPU and TPU
pods (up to thousands of nodes), rely on more capable routers
and lack local memory constraints, making them misaligned
with the PLMR model. These approaches are complementary
to our focus on on-chip scaling.

14

Systolic array. Systolic array architectures [22], used in Al
accelerators such as Amazon Trainium and Google TPU, fo-
cus on the design of small cores rather than larger wafer-scale
accelerators. With limited processing elements (usually up to
hundreds) in a core, they are not PLMR devices but comple-
ment WaferLLM. For example, a Cerebras WSE core could
employ a systolic array to accelerate local GEMM operations.

Dataflow architectures. Prior research has explored compu-
tation on dataflow architectures that account for inter-core
connections. TENET [26] maps computation spatially and
temporally to connected cores in a dataflow pattern. DIS-
TAL [50] enables scheduling over distributed clusters using
a dataflow approach. SambaNova [14] combines model and
pipeline parallelism for DNN execution. However, none of
these works scale computation to wafer-scale chips.

Wafer-scale allreduce. Recent research [27] has investigated
wafer-scale allreduce, but a single allreduce cannot fully par-
allelize GEMV or support full LLM inference as achieved by
WaferLLM. Additionally, this prior work is a specific instance
of the K-tree allreduce proposed in WaferLLM.

10 Conclusion

We envision this paper as a foundational step in exploring
the potential of wafer-scale computing for LLMs. The simple
yet effective PLMR model has revealed significant opportu-
nities, guiding the development of the first wafer-scale LLM
parallelism solution and scalable GEMM and GEMV algo-
rithms for wafer-scale accelerators. Despite the limitations
of the current software stack for wafer-scale devices, our ap-
proach achieves orders-of-magnitude improvements in both
performance and energy efficiency. We hope this work in-
spires greater focus on wafer-scale computing and advances
the path toward a more sustainable future for Al

11 Acknowledgments

We sincerely thank our shepherd, Marco Canini, and the OSDI
reviewers for their insightful feedback that greatly improved
this paper. We are also grateful to Yuqing Xia (Microsoft) for
her valuable input during the development of this work.

We acknowledge the hardware resources provided by the
Edinburgh International Data Facility (EIDF) and the Edin-
burgh Parallel Computing Centre (EPCC), particularly their
support in granting access to the Cerebras WSE systems. We
thank Nick Johnson for coordinating access and Mark Parsons
for supporting the hardware acquisition and our project.

Finally, we appreciate the generous assistance of Leighton
Wilson and Mathias Jacquelin from Cerebras for their patience
and detailed responses to our many questions regarding CSL
and the Cerebras WSE.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

M. Abadi, P. Barham, J. Chen, et al. TensorFlow: A
system for large-scale machine learning. OSDI 2016,
2016.

Advanced Micro Devices. AMD optimizes EPYC mem-
ory with NUMA. White paper, Advanced Micro De-
vices, Inc., 2023.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebrén, and Sumit Sanghai. Gqa:
Training generalized multi-query transformer models
from multi-head checkpoints, 2023.

AMD. AMD XDNA adaptive architecture, 2023. Ac-
cessed: 2024-11-29.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

Lynn Elliot Cannon. A cellular computer to implement
the kalman filter algorithm. PhD thesis, Montana State
University, 1969.

Cerebras Systems. GEMM with collective operations.
Accessed: 2024-10-05.

Cerebras Systems. 100x defect tolerance: How cerebras
solved the yield problem, 2022. Accessed: 2025-04-29.

Cerebras Systems. Benchmark GEMV collectives, 2023.
Accessed: 2024-11-29.

T. Chen et al. TVM: An automated end-to-end optimiza-
tion stack for deep learning. SSP 2018, 2018.

Jaeyoung Choi, Jack J. Dongarra, and David W. Walker.
Parallel matrix transpose algorithms on distributed
memory concurrent computers. Parallel Computing,
21(9):1387-1405, 1995.

Tri Dao. FlashAttention-2: Faster attention with bet-
ter parallelism and work partitioning. In The Telfth

International Conference on Learning Representations,
2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing
reasoning capability in 1lms via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025.

Mark Harris. SambaNova’s new Al chip and the quest
for efficiency, 2023. Accessed: 2024-11-29.

15

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong
Li, Jun Liu, Kangdi Chen, Hanyu Dong, and Yu Wang.
Flashdecoding++: Faster large language model infer-
ence on GPUs. arXiv preprint arXiv:2311.01282, 2023.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar, Alek-
sander Madry, Alex Beutel, Alex Carney, et al. Openai
ol system card. arXiv preprint arXiv:2412.16720, 2024.

Norman Jouppi, Cliff Young, et al. Tensor processing
units for machine learning: An introduction. Technical
report, Google Inc., 2017.

Patrick Kennedy. Tenstorrent Blackhole and Metalium
for standalone AI processing, 2024. ServeTheHome,
Hot Chips 2024 Coverage.

Jinwoo Kim, Venkata Chaitanya Krishna Chekuri,
Nael Mizanur Rahman, Majid Ahadi Dolatsara,
Hakki Mert Torun, Madhavan Swaminathan, Saibal
Mukhopadhyay, and Sung Kyu Lim. Chiplet/interposer
co-design for power delivery network optimization in
heterogeneous 2.5-d ICs. IEEE Transactions on Com-
ponents, Packaging and Manufacturing Technology,
11(12):2148-2157, 2021.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez,
Hao Zhang, and Ion Stoica. Efficient memory man-
agement for large language model serving with Page-
dAttention. In Proceedings of the 29th Symposium on
Operating Systems Principles, pages 611-626, 2023.

Mark LaPedus. TSMC bets big on advanced packaging,
2023. Accessed: 2024-11-29.

Ching-Jui Lee and Tsung Tai Yeh. ReSA: Reconfig-
urable systolic array for multiple tiny DNN tensors.
ACM Transactions on Architecture and Code Optimiza-
tion, 21(3):43:1-43:24, 2024.

Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent
Liu, Ying Sheng, Xin Jin, Yanping Huang, Zhifeng Chen,
Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Al-
paServe: Statistical multiplexing with model parallelism
for deep learning serving. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 23), pages 663-679, 2023.

Sean Lie. Cerebras architecture deep dive: First look in-
side the hardware/software co-design for deep learning.
IEEE Micro, 43(3):18-30, 2023.

Yiqi Liu, Yuqi Xue, Yu Cheng, Lingxiao Ma, Ziming
Miao, Jilong Xue, and Jian Huang. Scaling deep learn-
ing computation over the inter-core connected intelli-
gence processor with T10. In Proceedings of the ACM

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

SIGOPS 30th Symposium on Operating Systems Princi-
ples, pages 505-521, 2024.

Ligiang Lu, Naiqing Guan, Yuyue Wang, Liancheng Jia,
Zizhang Luo, Jieming Yin, Jason Cong, and Yun Liang.
TENET: A framework for modeling tensor dataflow
based on relation-centric notation. In 2021 ACM/IEEE
48th Annual International Symposium on Computer Ar-
chitecture (ISCA), pages 720-733, 2021.

Piotr Luczynski, Lukas Gianinazzi, Patrick Iff, Leighton
Wilson, Daniele De Sensi, and Torsten Hoefler. Near-
optimal wafer-scale reduce. In Proceedings of the 33rd
International Symposium on High-Performance Parallel
and Distributed Computing, HPDC *24, page 334-347.
ACM, June 2024.

Lingxiao Ma, Zhigiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rTasks. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 881-897, 2020.

Xiaoning Ma, Qinzhi Xu, Chenghan Wang, He Cao,
Jianyun Liu, Daoqing Zhang, and Zhigiang Li. An
electrical-thermal co-simulation model of chiplet hetero-
geneous integration systems. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 32(10):1769—
1781, 2024.

Meta Al. Introducing MTIA: Meta’s next-generation
training and inference accelerator for Al, 2024. Ac-
cessed: 2024-12-10.

Microsoft Azure. Azure Maia: For the era of Al from
silicon to software to systems, 2023. Accessed: 2024-
11-29.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia.
Efficient large-scale language model training on GPU
clusters using Megatron-LM. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1-15,
2021.

OpenAl. Openai 03 and 04-mini system card. https:
//openai.com/index/03-04-mini-system-card/,
2025. Accessed: 2025-05-03.

A. Paszke, S. Gross, S. Chintala, et al. Automatic differ-
entiation in PyTorch. NIPS 2017, 2017.

16

[35]

[36]

(37]

(38]

[39]

(40]

[41]

[42]

[43]

[44]

[45]

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scal-
ing transformer inference. Proceedings of Machine
Learning and Systems, 5, 2023.

J. Rock et al. XLA: Optimizing TensorFlow for high
performance. Google Research, 2017.

Yining Shi, Zhi Yang, Jilong Xue, Lingxiao Ma, Yuqing
Xia, Ziming Miao, Yuxiao Guo, Fan Yang, and Lidong
Zhou. Welder: Scheduling deep learning memory access
via tile-graph. In 17th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 23),
pages 701-718, 2023.

Shukri J. Souri, Kaustav Banerjee, Amit Mehrotra, and
Krishna C. Saraswat. Multiple Si layer ICs: motiva-
tion, performance analysis, and design implications. In
Proceedings of the 37th Annual Design Automation Con-
ference, pages 213-220, 2000.

Cerebras Systems. Cerebras and g42 break ground
on condor galaxy 3, an 8 exaflops ai supercom-
puter. https://cerebras.ai/press-release/
cerebras-g42-announce-condor-galaxy-3, 2024.

Accessed: 2025-05-03.

Cerebras Systems. Cerebras powers perplex-
ity sonar with industry’s fastest ai inference.
https://www.cerebras.ai/press-release/
cerebras-powers-perplexity-sonar-with\
-industrys-fastest-ai-inference, 2025.

cessed: 2025-05-03.

Ac-

Emil Talpes, Douglas Williams, and Debjit Das Sarma.
DOJO: The microarchitecture of Tesla’s exa-scale com-
puter. In 2022 IEEE Hot Chips 34 Symposium (HCS),
pages 1-28, 2022.

R. A. Van De Geijn and J. Watts. SUMMA: scalable
universal matrix multiplication algorithm. Concurrency:
Practice and Experience, 9(4):255-274, 1997.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
Advances in Neural Information Processing Systems 30
(NeurlPS 2017), pages 5998—6008. Curran Associates,
Inc., 2017.

James Wang. Cerebras brings instant inference
to mistral le chat. https://cerebras.ai/blog/
mistral-le-chat, 2025. Accessed: 2025-05-03.

Lei Wang, Lingxiao Ma, Shijie Cao, Quanlu Zhang, Ji-
long Xue, Yining Shi, Ningxin Zheng, Ziming Miao, Fan

https://openai.com/index/o3-o4-mini-system-card/
https://openai.com/index/o3-o4-mini-system-card/
https://cerebras.ai/press-release/cerebras-g42-announce-condor-galaxy-3
https://cerebras.ai/press-release/cerebras-g42-announce-condor-galaxy-3
https://www.cerebras.ai/press-release/cerebras-powers-perplexity-sonar-with\ -industrys-fastest-ai-inference
https://www.cerebras.ai/press-release/cerebras-powers-perplexity-sonar-with\ -industrys-fastest-ai-inference
https://www.cerebras.ai/press-release/cerebras-powers-perplexity-sonar-with\ -industrys-fastest-ai-inference
https://cerebras.ai/blog/mistral-le-chat
https://cerebras.ai/blog/mistral-le-chat

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Yang, Ting Cao, et al. Ladder: Enabling efficient low-
precision deep learning computing through hardware-
aware tensor transformation. In /8th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 24), pages 307-323, 2024.

Tianqi Wang, Fan Feng, Shaolin Xiang, Qi Li, and Jing
Xia. Application defined on-chip networks for heteroge-
neous chiplets: An implementation perspective. In IEEE
International Symposium on High-Performance Com-
puter Architecture (HPCA), pages 1198-1210, 2022.

Wikipedia contributors. Static random-access memory,
2024. Accessed: 2024-12-10.

Wikipedia contributors. Wafer-scale integration, 2024.
Accessed: 2024-12-10.

Bingyang Wu, Shengyu Liu, Yinmin Zhong, Peng Sun,
Xuanzhe Liu, and Xin Jin. LoongServe: Efficiently
serving long-context large language models with elas-
tic sequence parallelism. In Proceedings of the ACM
SIGOPS 30th Symposium on Operating Systems Princi-
ples, pages 640-654. ACM, 2024.

Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. DIS-
TAL: the distributed tensor algebra compiler. In Pro-
ceedings of the 43rd ACM SIGPLAN International Con-
ference on Programming Language Design and Imple-
mentation, pages 286-300, 2022.

Y. Zhao et al. Ansor: A compiler stack for auto-tuning
tensor programs. /[EEE Transactions on Software Engi-
neering, 2020.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. Alpa:
Automating inter-and intra-operator parallelism for dis-
tributed deep learning. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
22), pages 559-578, 2022.

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie,
Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez,
et al. Sglang: Efficient execution of structured language
model programs. Advances in Neural Information Pro-
cessing Systems, 37:62557-62583, 2024.

Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and
Kaiwen Sheng. FlexTensor: An automatic schedule
exploration and optimization framework for tensor com-
putation on heterogeneous system. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 859-873, 2020.

17

[55]

[56]

[57]

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu,
Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang. Dist-
Serve: Disaggregating prefill and decoding for goodput-
optimized large language model serving. In 18th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24), pages 193-210. USENIX
Association, 2024.

Yuxiao Zhou and Kecheng Yang. Exploring TensorRT
to improve real-time inference for deep learning. In
2022 IEEE 24th International Conference on High Per-
formance Computing & Communications, pages 2011—
2018. IEEE, 2022.

Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke,
Haoyu Li, Chen Zhang, Jilong Xue, Lingxiao Ma,
Yuqing Xia, Wei Cui, Fan Yang, Mao Yang, Lidong
Zhou, Asaf Cidon, and Gennady Pekhimenko. ROLLER:
Fast and efficient tensor compilation for deep learning.
In 16th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 22), pages 233-248,
2022.

	Introduction
	Background and Motivation
	LLM inference and its key constraint
	Reasons for wafer-scale accelerators
	Challenges for wafer-scale LLM inference

	Device Model for Wafer-Scale Accelerators
	The PLMR model
	Limitations of state-of-the-art approaches

	Wafer-Scale LLM Parallelism
	Prefill parallelism
	Decode parallelism
	Shift-based KV cache management
	Implementation details

	Wafer-Scale GEMM
	PLMR compliance in distributed GEMM
	Design intuitions and scalability analysis
	The MeshGEMM algorithm
	Implementation details

	Wafer-Scale GEMV
	PLMR compliance in distributed GEMV
	The MeshGEMV algorithm

	Evaluation
	LLM inference
	MeshGEMM
	MeshGEMV
	Shift-based KV cache management
	Comparison with GPUs

	Implementation Detail and Future Direction
	Related Work
	Conclusion
	Acknowledgments

