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Weakly-Supervised Cell Segmentation for
Multiplex Immunohistochemistry Images
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Abstract. Multiplex immunohistochemistry (mIHC) is a novel scalable
method of staining multiple cell types in a single tissue slice. In this
paper, we propose a new method to automatically segment multiple cell
types from a mIHC whole slide image. Our method only requires domain
experts to provide a limited number of weak annotations (i.e., labeled
dots placed at the centers of cells), while still achieving high quality
segmentation. In particular, we (1) expand dot labels to mask annota-
tions via superpixels; (2) introduce a multi-resolution supervision loss;
and (3) leverage color deconvolution networks to further refine segmenta-
tion boundaries. Empirical evaluation on pancreatic cancer tissue slides
demonstrates the efficacy of our method in providing an unprecedented
amount of data from a single tissue section. Combining mIHC and the cell
segmentation methods described herein would enable large scale studies
of the immune contexture of cancer with minimal annotation effort from
domain experts.

Keywords: Cell Segmentation · Multiplex Immunohistochemistry.

1 Introduction

Multiplex techniques allow the study of multiple cell types and the spatial rela-
tionships between them while maximizing the amount of information acquired
from a single sample [13,4,8]. This is particularly important for the study of the
tumor immune microenvironment, which has become an intense area of transla-
tional research focus. Multiplex immunohistochemistry (mIHC) and immunoflu-
orescence (mIF) allow simultaneous labeling of 5 or more distinct cell types in
the same tissue sample using colored chromogens or fluorophores, respectively.
mIF tends to be more costly and requires a specialized microscope for image
capture. On the other hand IHC is already routinely used in clinical medicine,
and mIHC images can be captured by traditional bright field microscopy with
a single, low-cost imaging step (10% of the cost of fluorescent staining), making
mIHC the most rational choice for future large scale studies.

While scalable staining and image capture platforms are readily available
for mIHC, automated image analysis platforms are lacking. Cell segmentation
in mIHC images requires distinguishing between cell classes primarily based
on color. Compared with other microscopic image modalities, there is high cell
appearance heterogeneity in mIHC images. Cell shapes are highly variable; most
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Fig. 1. Left: Four sample images from mIHC whole slide images taken at the same
scale and size illustrating the fuzzy cell boundaries and large variation in immune cell
size and shape. Right: Stained immune cell types are magnified and labeled.

lymphocytes are nearly circular with an average diameter of 8 micrometers (um),
while macrophages range from discrete rounded cells of similar size, to elongated
cells (∼20um) with projections extending in all directions. The edges of the cells
may appear fuzzy due to chromogen properties, and boundaries between cells
may be difficult to detect when cells are in close proximity. Furthermore, the
appearance of the same cell types can be variable. Compared with H&E and
fluorescence microscopy images, chromogenic staining has less clear delineation
of the cell boundaries. Furthermore, nearby cells tend to be fused together and
are hard to separate (see Fig. 1).

mIHC works by tagging an enzyme to a specific protein that is uniquely
produced by a given cell type; the enzyme acts on the chromogen, producing
a colored dye localized only at the cell type of interest. Individual cells of a
given class may produce varying amounts of the specific proteins targeted by the
mIHC stains, leading to differences in staining color intensities across a class.
Furthermore, color spectra of different chromogen stains overlap significantly,
making it difficult to distinguish between some classes. While all cell nuclei in the
tissue are stained with hematoxylin (nuclear counterstain, blue), target proteins
are often localized at the cytoplasm of the cell. In the case of lymphocytes, much
of the cell volume is taken up by the nucleus, which introduces a significant co-
staining issue. Therefore, a direct color deconvolution (unmixing different colors
as cell masks) [24,17,21,6,7,23] is both challenging and insufficient.

Another challenge in mIHC image segmentation is the lack of high quality
manual annotations for training. Manual generation of highly detailed, high qual-
ity training data is challenging even for expert pathologists due to interactions
between nearby biomarkers, co-existence of multiple stains in a cell, biomarker
protein expression variation, and the large variation of macrophage shapes. There
is a need for segmentation methods that can use weak annotations, for example,
dots placed at (approximately) the cell centers.

In this paper, we propose a novel approach for weakly-supervised semantic
cell segmentation of mIHC images. Our goal is to achieve high segmentation
quality despite limited supervision and cell appearance heterogeneity in mIHC.
In our approach, we first extend dot annotations to mask annotations using
superpixels. Second, we introduce multi-resolution supervision, i.e., comparing
the prediction result at different layers/resolutions of the neural network. Finally,
we observe that focusing on stains/colors can capture the fine-details of the
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cell near the boundary. Thus, we use a color deconvolution method (detecting
masks corresponding to different colors/stains) to complement our segmentation
network. Empirically, our method attains high quality segmentation results on
sample patches from 4 whole slide images of pancreatic cancer tissue and we
believe opens the way to future large-scale studies.

Related work. Cell and nucleus segmentation have been studied mainly in the
context of H&E and fluorescence microscopy [5,15,3,25,22]. Most of the earlier
work relies on the availability of high quality, curated pixel-wise annotations
that delineate the boundaries of cells and nuclei. Recent work has looked at
methods for overcoming the need for high-quality annotation data in fluorescent
microscopy datasets [18,11]. [19] is the first weakly supervised method that incor-
porates dot annotations for nuclei segmentation in H&E stained histopathology
images. They assumed that most nuclei shapes are convex regions, so segmenta-
tion masks are generated with Voronoi diagrams. After the segmentation network
is trained, they used a fine-tuning step with a dense conditional random field
loss. In the context of mIHC segmentation, [4] is the first work to enable cell
segmentation of more than 5 immunostaining cell classes in prostate cancer tis-
sue. Also, [14] performed segmentation in the bone marrow tissue from patients
with acute lymphoblastic leukemia. Both works rely on traditional segmentation
methods such as the watershed segmentation method and Otsu’s thresholding
method, respectively. Recently, [12] proposed a multi-stage weakly supervised
cell detector with only dot annotations using mIHC images of breast cancer
tissue. Segmentation masks are generated by labeling pixels within a fixed ra-
dius from dot annotations as centers. The detection process is performed in two
stages. First, a segmentation network learns to predict the cell locations and
includes an auxiliary loss to regress the number of cells. Then, a cell classifier
model based on a feature extractor is trained with small patches that cover the
cell areas.

2 Methodology

We use weak annotation labels in the form of dots placed in the centers of the
cells. These dot annotations are used to train and to validate our automatic
segmentation method. We use superpixels to expand the labels of each dot to
its adjacent area, so that we have a per-pixel annotation to train our network.
We compute superpixels in each input image using SLIC [2] (one of the com-
monly used superpixel methods). Each superpixel is assigned the same semantic
label (i.e., the stain/color) as the dot within it. This means all pixels within a
superpixel are given the same semantic label. An empty superpixel is assigned
the background label.

Fig. 2 illustrates the overview of our method. We first convert dot anno-
tations into a superpixel mask. Using this per-pixel annotation, we train a se-
mantic segmentation network. We adopt the UNet [20] architecture. To address
the large cell shape and size variations, we introduce multi-scale supervision,



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV

#100
ECCV

#100

4 ECCV-20 submission ID 100

namely, provide loss-based supervision at different resolutions/layers of the de-
coder module. This way the network learns accurate representations at different
resolutions. Details are provided in Section 2.1. Finally, since the superpixel
mask itself is inaccurate in delineating cell boundaries, the segmentation model
trained with the mask cannot be expected to produce correct details. To address
this problem, we introduce a color decomposition network that is able to capture
fine grain stain presence and composition. We then employ an ensemble method
that combines the segmentation results of both networks. The final results enjoy
the advantages of both networks and are of higher quality. See Section 2.2 for
more details.

Fig. 2. Pipeline of the ensemble method, which combines the predictions of the multi-
resolution UNet (MS-UNet) and the color decomposition model (CDNet).

2.1 Segmentation Network

In this section, we propose a semantic segmentation network based on the
UNet [20] architecture. The segmentation network has to deal with the fact that
cells exhibit a large variation in shape and size (see Fig. 1 for an illustration). To
address this challenge, we draw inspiration from how pathologists study tissue
images. Pathologists often use multiple magnifications jointly so that they can
take into consideration cell/tissue architectural features at different scales. By
viewing images (especially mIHC images) at different scales, pathologists capture
contextual information about shape and size variations.

Based on this insight, we introduce a multi-resolution supervision component
to the segmentation network. In particular, we introduce additional supervision
to different intermediate layers of the decoder module of UNet. The additional
supervision enables the network to learn more discriminative features in those
intermediate layers so that their feature representation better captures cells of
different sizes/shapes. In the literature, this technique, called a deeply supervised
network [16], has been applied in various domains [9,26,27,10]. To the best of
our knowledge, we are the first to apply deep supervision to microscopic image
analysis tasks.
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The architecture of our multi-resolution UNet (MS-UNet) is illustrated in
Fig. 3. More specifically, we input the intermediate feature representation of
each of the layers into a convolutional layer for semantic label prediction. The
prediction is of the same resolution as the layer. We use a downsampled super-
pixel mask to supervise this prediction (via cross-entropy loss). In this manner,
we can enforce the segmentation network to learn better representations at dif-
ferent resolutions, from fine to coarse. The total loss L can be formulated as
follows

L = LCE(Y, Ŷ ) +

n∑
i=1

λiLCE(Yi, Ŷi) (1)

where LCE is the categorical cross-entropy loss. The first cross-entropy loss
compares Ŷ , the prediction of the network, and Y , the superpixel mask. The
remaining terms compare an intermediate layer prediction Ŷi and a downsam-
pled superpixel mask, Yi (downsampled by a factor of 2i). The weights of the
different intermediate layer losses are controlled by λi’s.

Fig. 3. Multi-resolution UNet (MS-UNet).

2.2 Ensemble with Color Decomposition Network

The segmentation (or segmentor) network is unable to capture fine cell details,
especially near their boundaries. This is inherently unavoidable because the
training labels (superpixel masks) are extended automatically from dot anno-
tations and are not guaranteed to be accurate. Failing to detect fine scale cell
boundaries can be detrimental to downstream analyses that require accurate
measurements of pairwise distances between cells, cell sizes and cell distribu-
tions.

We observe that the cell boundary is well defined by color chromogenetic
stains, which bind to proteins and express themselves in the cell cytoplasm. If
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we can identify the color stains correctly, we can refine the prediction cell mask.
Indeed, color deconvolution (or color decomposition), which is the process of
finding masks corresponding to different stain colors, is a classic image anal-
ysis task. Various existing color deconvolution methods have been developed
[24,17,21,6,7,23]. Most of these methods can only solve problems with up to 4
stains. In this paper, we adopt a recent deep autoencoder method that can unmix
a large number of stains [1]1.

Fig. 4 shows an input mIHC image and the color deconvolution result. We
show the concentration maps of different stains/colors. We can compute a seg-
mentation mask for each stain by thresholding these concentration maps (Fig. 4
right). Our method uses this pretrained color deconvolution network, denoted
as CDNet, to complement the segmentor MS-UNet. We observe that MS-UNet
is better in detecting cells, while CDNet better delineates cell boundaries.

We propose an ensemble of the outputs of MS-UNet and CDNet and we de-
noted it as the anchor operation, where we exploit the benefits of both methods.
In particular, CDNet anchor MS-UNet uses the MS-UNet predictions to deter-
mine cell locations. Then, we refine each located cell by taking the union of the
MS-UNet prediction and the CDNet prediction. In other words, we drop any
connected component of the CDNet prediction which does not intersect with
the MS-UNet prediction. We take the union of the remaining CDNet prediction
and the MS-UNet prediction as the final output mask. Note that this ensemble
is carried out for each stain/color separately.

Fig. 4. Sample output from the color decomposition network (CDNet).

3 Experimental Results

Dataset and Settings. We evaluated the proposed method using multiplex
IHC whole slide images (WSIs) of pancreatic cancer tissue that are stained with
chromogenic biomarkers. The biomarkers are CD3 (yellow), CD4 (teal), CD8
(purple), CD16 (black), and CD20 (red), representing different types of immune
cells. Fig. 1 depicts instances of these stained immune cell types. The training set
consists of 300 patches of size 400×400 pixels randomly sampled from the tumor

1 The code was obtained by communication with the authors
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area of 5 WSIs and the validation set is 60 patches of the same dimensions from
another WSI. The test set is 19 patches of size 1200×1920 pixels from 4 different
WSIs. The physical resolution of all the patches is 0.174 microns per pixel. The
MS-UNet and CDNet are each trained independently on the same dataset. The
MS-UNet is trained with the Adam optimizer for 1200 epochs, with an initial
learning rate of 0.001 and decreased by 10 every 400 epochs. Using the validation
set, the model with the lowest cross entropy loss in only the last output layer
is selected. In the final segmentation small connected components that are far
less than the typical size of immune cells are removed. A size threshold of 100
pixels, which is around 3 square microns, is empirically chosen.

Quantitative Results. In our evaluation, F-scores are computed using the
dot annotations as follows: (i) a true positive is a dot that intersects with the
prediction segmentation mask of the same label, (ii) a false positive is a con-
nected component in the prediction that does not intersect with a ground truth
dot of the same label, and (iii) a false negative is a dot that does not intersect
with any component of the same label in the prediction segmentation mask. We
compare the results from the segmentation using CDNet alone, a typical UNet
without deep supervision, and MS-UNet with different weights for the deep su-
pervision layers. Performance is improved by varying the weight for the first deep
supervision layer (λ1). Varying the weights for the rest of the remaining deep
supervision layers does not improve performance. In Table 1 we compare with
different configurations for λ1, further comparisons with varying λ2 and λ3 are
in the supplementary material. Table 2 shows that the ensemble CDNet anchor
MS-UNet method achieves higher performance than the segmentation network
UNet and the color decomposition network CDNet. The mean F-score improves
by 11.8% and 13% compared to CDNet and UNet respectively. Class-wise, there
is a significant improvement in most classes compared to the individual model
results in Table 1.

Qualitative results. Fig. 5 shows example qualitative results. For each patch,
a magnified area is displayed in the following row. In the first magnified sample
the red staining in the CD20 cell appears like purple staining. CDNet, which is
sensitive to the staining, mistakes part of that cell for CD8, whereas MS-UNet
correctly segments the whole cell. In the same magnified region, we see that
the yellow staining on the right has a very light color that CDNet picks up
more accurately and gives a better segmentation of the whole region than MS-
UNet. In the last column we see the advantage of the proposed ensemble CDNet
anchor MS-UNet which is able to capture the best of both models. In the second
magnified sample, MS-UNet mistakenly connects the top cell to the bottom ones.
This is due to being trained on coarse superpixels, on the other hand CDNet can
better separate the cells. Because we take the union of the 2 results, we leave
this issue to future work. Additionally, Fig. 6 shows segmentation predictions
on two patches of the test set in full size. Further segmentation results of the
ensemble method on the test set can be found in the supplementary material.
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Fig. 5. Qualitative results on patches from the test set. Rows 1 and 3 are patches of
400x400 pixels. Rows 2 and 4 are magnifications of subregions of 100x100 pixels.

Fig. 6. Left: Two full size patches of 1200 × 1920 pixels from the test set. Right:
Segmentation predictions using the ensemble method CDNet anchor MS-UNet.
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Table 1. Evaluation of color decomposition network and individual segmentation net-
works

F1-score

Method CD16 CD3 CD4 CD8 CD20 Mean

CDNet 0.6716 0.6168 0.6141 0.6336 0.2166 0.5505

UNet (λ1=0) 0.7413 0.5876 0.5048 0.6166 0.2738 0.5448

MS-UNet(λ1=0.50) 0.7383 0.6344 0.5907 0.6248 0.3342 0.5845

MS-UNet(λ1=0.75) 0.7473 0.6380 0.5859 0.6478 0.3455 0.5929

MS-UNet (λ1=1.00) 0.6881 0.6042 0.6288 0.6439 0.3562 0.5842

Table 2. Evaluation of ensemble models

F1-score

Method CD16 CD3 CD4 CD8 CD20 Mean

MS-Unet anchor CDNet 0.6775 0.6246 0.6211 0.6429 0.2166 0.5565

CDNet anchor MS-UNet 0.7877 0.6651 0.6079 0.6618 0.3556 0.6156

4 Conclusions

We proposed a weakly supervised cell segmentation method for mIHC images.
Our method leverages the fine details offered by the color decomposition network
and the multi-scale representation learnt through deep supervision. It achieves
high quality immune cell segmentation. We expect it to be very useful in down-
stream quantitative large-scale studies of tumor microenvironments.



405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV
#100

ECCV
#100

10 ECCV-20 submission ID 100

References

1. Abousamra, S., Fassler, D., Hou, L., Zhang, Y., Gupta, R., Kurc, T., Escobar-
Hoyos, L.F., Samaras, D., Knudson, B., Shroyer, K., et al.: Weakly-supervised deep
stain decomposition for multiplex ihc images. In: 2020 IEEE 17th International
Symposium on Biomedical Imaging (ISBI). pp. 481–485. IEEE (2020)

2. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpix-
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