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Abstract

Image recognition models have struggled to achieve ro-001
bustness against real-world degradations and adversar-002
ial attacks. In this context, data augmentation meth-003
ods like PixMix have been shown to enhance robustness.004
The PixMix framework utilizes generative Fractal arts and005
Feature Visualizations of CNNs (FVis) as mixing images,006
which are combined with images from the original training007
dataset. However, these mixing images suffer from copy-008
right restrictions and high construction costs. To address009
these challenges, we propose Moire DataBase (MoireDB),010
a formula-driven Moiré image dataset. MoireDB elim-011
inates copyright concerns, reduces dataset construction012
costs compared to previous mixing images, and effectively013
diversifies the perturbations applied to the original im-014
ages during training. Since each Moiré image is generated015
from simple mathematical formulas, MoireDB is computa-016
tionally efficient, eliminating the need for advanced image017
generation AI and minimizing resource consumption. Ex-018
periments on CIFAR-C and CIFAR-based adversarial ro-019
bustness demonstrate that MoireDB-augmented images in020
the CIFAR training dataset partially outperform traditional021
augmentations based on Fractal arts and FVis.022

1. Introduction023

Image recognition techniques, particularly those based on024
deep learning, are promising for real-world applications;025
however, image classification using deep learning models is026
known to be less robust than human visual perception when027
faced with diverse real-world degradations, such as noise028
and blurring, as well as adversarial attacks [3, 8].029

One promising technique for improving the robustness030
of image recognition models for classification task is data031
augmentation such as Mixup [16] and CutMix [14]. Us-032
ing these data augmentation methods, we can increase im-033
age counts while reducing overfitting, thus potentially im-034
proving robustness. A notable data augmentation method035
known for enhancing robustness is PixMix [4], which ex-036
tends training datasets by blending training images with037
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Figure 1. Example of data augmentation using MoireDB.
MoireDB eliminates copyright issues and can be constructed with
lower computational costs than Fractal arts and Feature Visualiza-
tions (FVis) [4]. Moreover, MoireDB achieved the best perfor-
mance in CIFAR corruption benchmarks [3] and adversarial ro-
bustness metrics under certain experimental conditions.

synthetic images from predefined mixing sets. The mixing 038
set images used by PixMix include mathematically gener- 039
ated Fractal arts and feature visualizations (FVis). Fractal 040
arts are collected on DeviantArt1. The images are visu- 041
ally diverse. FVis are collected using OpenAI Microscope2. 042
The images are created from convolutional neural networks 043
(CNNs) such as AlexNet [7], VGGNet [12], and ResNet [2], 044
which are basically pre-trained on ImageNet [10, 17]. 045

However, the use of these images entail at least two prac- 046
tical disadvantages: i) Some of the human-designed digital 047
patterns and generative arts are protected by copyright, and 048
thus commercial use of PixMix data augmentation remains 049
questionable. ii) Generating FVis requires multiple CNNs 050

1https://www.deviantart.com/
2https://openai.com/index/microscope/
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trained on large image datasets, and is thus a high-cost op-051
eration for assembling images into datasets.052

To address these issues, we propose Moiré DataBase053
(MoireDB) as a new mixing set for PixMix. All Moiré054
images in MoireDB are generated by formulas, eliminat-055
ing copyright concerns and reducing construction costs.056
Moiré images, similar to FVis, exhibit structured texture057
patterns. However, unlike FVis, they possess circular struc-058
tures, which eliminates directional biases. This charac-059
teristic is expected to allow any Moiré image to effec-060
tively enrich the information of an original image during061
augmentation. Moreover, despite being generated with a062
small number of parameters in a simple manner, MoireDB063
produces textures that induce visual illusions in humans.064
This dataset may provide insights into how such visually065
illusion-inducing texture images affect the robustness of im-066
age recognition models.067

Experimental results confirm that MoireDB partially068
outperforms Fractal arts and FVis, and it also surpasses069
other mathematically generated datasets, such as Fractal070
DataBase (FractalDB) [5] and VisualAtom [13], in both cor-071
ruption and adversarial robustness.072

Our proposal of MoireDB offers several key advantages,073
including the following.074

• The use of MoireDB for data augmentation improves ro-075
bustness with respect to real-world degradations and ad-076
versarial attacks.077

• MoireDB contains only formula-generated images, elim-078
inating copyright problems.079

• The images constituting MoireDB are auto-generated,080
which reduces the cost of assembling datasets and elimi-081
nates the need for large-scale image generation AI mod-082
els.083

2. Related Work084

2.1. Robustness in Image Classification085

Digital images are susceptible to noise, compression, and086
other sources of corruption caused by a broad range of087
mechanisms. Although such corruption does not prevent088
human visual perception from identifying images with high089
accuracy, it does significantly reduce the image identifica-090
tion accuracy of image recognition models, and improving091
the robustness of image recognition models is a central chal-092
lenge for image recognition research.093

The robustness of image recognition models may be094
quantified by testing on specialized datasets such as095
ImageNet-C [3] and CIFAR-C, which consist of images096
that have been corrupted in various ways—such as by097
adding noise, blurring, weathering, or applying digital098
transformations—to reflect 15 types of corruption com-099
monly experienced by digital images.100

To quantify robustness using ImageNet-C or CIFAR-C,101

the image classification accuracy is measured for each of 102
the 15 categories of image corruption, and an average is per- 103
formed over all categories to yield a mean corruption error 104
(mCE); smaller mCE values indicate greater robustness. 105

In addition to quantifying robustness against corruption, 106
robustness may also be quantified against adversaries, i.e., 107
adversarial attacks, by measuring image classification ac- 108
curacy for special test images in the ImageNet [1] and CI- 109
FAR [6] datasets to which adversarial attacks have been ap- 110
plied; again, lower values of the image classification accu- 111
racy indicate greater robustness. 112

2.2. Data Augmentation Using Additional Images 113

One of the most promising data augmentation methods 114
for enhancing robustness is PixMix [4]. In the PixMix 115
approach to data augmentation, training images from 116
databases such as ImageNet or CIFAR are combined ad- 117
ditively or multiplicatively with an auxiliary set of struc- 118
turally complex images to yield an augmented dataset; deep 119
learning models trained on the augmented dataset then ex- 120
hibit improved image identification accuracy and robustness 121
compared to models trained on the non-augmented dataset. 122
In the original PixMix proposal, the auxiliary set of struc- 123
turally complex images included two types of images: Frac- 124
tal arts and FVis. 125

Fractal arts (note that this is different from Frac- 126
talDB [5]) are manually designed images downloaded from 127
DeviantArt; these images contain shapes and color schemes 128
designed to pique the curiosity of human visual perception, 129
and are thus expected to be structurally complex. 130

FVis are machine-generated images that may be down- 131
loaded from OpenAI Microscope. This database allows vi- 132
sualization results for image features [11]—as extracted by 133
various pre-trained CNN models operating on a large image 134
dataset—to be downloaded in the form of image files. 135

Given an input image dataset, PixMix produces an aug- 136
mented dataset by performing repeated mixing operations. 137
Specifically, each input image is subjected to a randomly 138
chosen number (at most 4) of mixing steps and in each step, 139
the image is mixed either with an input image or with an 140
image chosen from the auxiliary image set, and the mixing 141
is performed either additively or multiplicatively (chosen 142
at random). Deep learning models trained on PixMix aug- 143
mented datasets are known to exhibit improved image iden- 144
tification accuracy and robustness compared to other data 145
augmentation methods such as Mixup [16] or CutMix [14]. 146

However, some Fractal arts are protected by copyright, 147
and thus commercial use of PixMix remains questionable. 148
Moreover, both Fractal arts and FVis are enormously costly 149
to generate, and the number of images that may be feasibly 150
assembled into a dataset is limited in practice. 151

To address these issues, we propose a synthetic image 152
dataset as a new mixing set. 153
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Figure 2. Algorithm for generating Moiré images

3. Proposed Method Details154

In the present study, we propose MoireDB, a formula-155
generated image dataset for data augmentation.156

Section 3.1 describes our procedure for generating the157
Moiré images comprising MoireDB, while Section 3.2 dis-158
cusses our strategy for data augmentation using generated159
Moiré images.160

This idea of generating images through formulas was161
inspired by formula-driven supervised learning (FDSL)162
datasets such as FractalDB [5] and VisualAtom [13].163
MoireDB belongs to the same family of FDSL datasets. A164
key distinction is that MoireDB requires only three param-165
eters to generate each Moiré image, which is significantly166
fewer than the number used in the rendering processes of167
FractalDB and VisualAtom. This minimal parameterization168
allows for more controllable and interpretable image gener-169
ation while eliminating the need for large-scale image gen-170
eration AI models.171

3.1. Generation of Moiré Images172

Our algorithm for generating the Moiré images constituting173
MoireDB is depicted schematically in Fig. 2. The starting174
point is a simple procedure (Fig. 2, far left) for generating175
a concentric-circle pattern; this procedure is described by176
a formula, discussed below, containing multiple adjustable177
parameters such as the coordinates (xc, yc) of the common178
center point. To generate a single Moiré image, we invoke179
this formula multiple times—with randomly chosen values180
for the adjustable parameters—to yield a set of multiple dis-181
tinct concentric-circle patterns (Fig. 2, center), then sim-182
ply superpose these to yield the Moiré image (Fig. 2, far183
right). The superposition of randomly generated concentric-184
circle patterns gives rise to the characteristic interference185
fringes of Moiré images, and varying the adjustable param-186
eters defining the concentric-circle patterns allows a wide187
range of distinct fringe patterns to be realized.188

The image representing each concentric-circle pattern is189
generated by a formula that computes a brightness value for190
each pixel in the image. Each Moiré image depends on sev-191
eral adjustable parameters: the number Qn of concentric-192
circle patterns superposed, and, for each of these patterns,193

the center-point coordinates (xc, yc) and an interval fre- 194
quency parameter ν described below. Values for all of these 195
parameters are chosen randomly within the ranges listed in 196
Table 1. 197

Each concentric-circle pattern may be described as a su- 198
perposition of circles of the form 199

fQn
=

1

Qn

m∑
k=1

ηk ∈ R2 (1) 200

where m is the number of circles drawn in the pattern and ηk 201
represents the k-th circle. Denoting the radius of this circle 202
by rk, and recalling that the circle is centered at (xc, yc), we 203
may express ηk in the form 204

ηk =

{
x = (rk cos θ + xc)× g
y = (rk sin θ + yc)× g

(0 ≤ θ < 2π) (2) 205

The center-point coordinates (xc,yc) are chosen at random 206
from a uniform distribution. The quantity g in this expres- 207
sion, representing the brightness at point (x, y), is a sinu- 208
soidally varying function of the radial distance r: 209

g = (VM (cos ν × π × r) + 1)× 255, (3) 210

where VM is the amplitude of the sinusoidal brightness vari- 211
ation. Using the brightness g to define a grayscale value 212
for each pixel yields an image representing the concentric- 213
circle pattern. Choosing the number of concentric-circle 214
patterns Qn > 1 then ensures interference between the pat- 215
terns, yielding the desired Moiré image. 216

We set the size of generated images to be 512× 512 px; 217
the number of circles m drawn for each concentric-circle 218
pattern is determined as appropriate based on the image size 219
and the interval frequency ν. 220

3.2. Data Augmentation Using Moiré Images 221

Our strategy for data augmentation using Moiré images is 222
outlined schematically in the lower part of Fig. 1 shows a 223
detailed diagram of the operational pipeline of our PixMix 224
implementation with Moiré images, in this case for an ex- 225
ample involving 1 time additive mixing operation and 1 226
time multiplicative mixing operations. Other settings in our 227
data augmentation procedure are the same as that used in 228
PixMix. 229

The number of Moiré images we generate for data aug- 230
mentation is 14,230, chosen to match the number of Fractal 231
arts used in [4]. For each image, the parameter values in 232
the image-generation formulas are chosen at random from 233
the ranges listed in Table 1. These parameters were deter- 234
mined through several experiments. For each mixing step, 235
we choose an image at random from the set of generated 236
images and mix it either additively or multiplicatively with 237
the selected Moiré image or with the input image. 238
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Table 1. Adjustable parameters for auto-generated Moiré images

Parameter Symbol Range

Interval frequency ν 0.03 ≤ ν < 0.05

Center-point coordinates xc, yc 0 ≤ (xc, yc) < 600

Number of superposed concentric-circle patterns Qn Qn = {1, 2, 3}

Table 2. Robustness values measured for various data augmentation image datasets [4]. The experiments have been conducted on CIFAR-
10-C and -100-C by using MoireDB within the framework of PixMix. Lower is better for the listed scores.

Dataset Baseline Fractal arts FVis FractalDB VisualAtom MoireDB
Clean 4.4 4.2 4.8 4.0 4.4 4.6
Corruptions 26.4 10.8 9.5 11.9 10.8 9.4CIFAR-10-C
Adversaries 91.3 82.0 78.6 92.2 93.9 77.1
Clean 21.3 20.3 21.0 20.0 21.4 21.1
Corruptions 50.0 33.3 30.3 35.0 33.4 30.9CIFAR-100-C
Adversaries 96.8 93.2 92.3 98.5 98.5 93.5

4. Experimental Evaluation239

4.1. Robustness Tests Procedure240

We conducted experimental tests to assess the effectiveness241
of data augmentation using MoireDB, comparing the results242
against robustness values obtained via several alternative243
datasets: data augmentation using Fractal arts and FVis, as244
originally proposed for PixMix, and PixMix with augmen-245
tation images taken from FractalDB and VisualAtom. The246
data augmentation settings follow the default configurations247
provided in PixMix’s GitHub repository [4]. The number of248
images in Fractal arts and FVis is the same as in [4], with249
Fractal arts containing 14,230 images and FVis consisting250
of 4,700 images. FractalDB contains 1,000 images, while251
VisualAtom consists of 14,230 images. As mentioned ear-252
lier in this paper, MoireDB also contains 14,230 images.253

The training model used in our experiments is WideRes-254
Net [15]. We use CIFAR as the training image dataset. For255
each data augmentation strategy, we generate an augmented256
version of the CIFAR training dataset while keeping the to-257
tal number of training images fixed at 50,000. We then train258
WideResNet on the augmented dataset for 100 epochs and259
evaluate the robustness of the trained model.260

Robustness is measured on the CIFAR-C dataset of test261
images. The Corruptions task involves using CIFAR-C to262
measure robustness against image corruption [3]. The met-263
ric for this assessment is the previously mentioned mCE,264
which is smaller for greater robustness. mCE is computed265
as the mean image identification accuracy for the 15 types266
of image corruption represented by CIFAR-C.267

The Adversaries task involves measuring robustness268
against adversarial attack [9]. The metric for this assess-269
ment is the image identification accuracy, with lower values270

indicating better performance. Adversarial attacks are ap- 271
plied to CIFAR test images. 272

4.2. Results of Robustness Tests 273

Table 2 shows the results of tests to assess the impact of 274
MoireDB-based data augmentation on the robustness of im- 275
age classification. The column labeled “Baseline” presents 276
the results obtained using the original (non-augmented) CI- 277
FAR training data, with the values sourced from [4]. 278

From Table 2 we see that data augmentation using 279
MoireDB achieves better image identification robustness 280
than any other method for CIFAR-10-C. When comparing 281
the results for the FDSL datasets—FractalDB, VisualAtom, 282
and MoireDB—we observe that in every robustness test for 283
both CIFAR-10-C and CIFAR-100-C, the greatest improve- 284
ment in robustness is achieved with data augmentation us- 285
ing MoireDB. 286

These results demonstrate that data augmentation with 287
MoireDB can achieve robustness improvements compara- 288
ble to or even surpassing those of Fractal arts and FVis- 289
based augmentations. 290

5. Conclusion 291

In the present study, we proposed MoireDB, a formula- 292
generated dataset of interference-fringe images for use with 293
the PixMix method of data augmentation, and conducted 294
experiments to assess its impact on robustness. Our results 295
showed that, for several test categories, data augmentation 296
using MoireDB achieved a greater improvement in robust- 297
ness than data augmentation with Fractal arts or FVis. Fur- 298
thermore, an important point to mention is that every single 299
image in MoireDB eliminates copyright issues and also re- 300
duces construction costs. 301
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