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Abstract

Image recognition models have struggled to achieve ro-
bustness against real-world degradations and adversar-
ial attacks. In this context, data augmentation meth-
ods like PixMix have been shown to enhance robustness.
The PixMix framework utilizes generative Fractal arts and
Feature Visualizations of CNNs (FVis) as mixing images,
which are combined with images from the original training
dataset. However, these mixing images suffer from copy-
right restrictions and high construction costs. To address
these challenges, we propose Moire DataBase (MoireDB),
a formula-driven Moiré image dataset. MoireDB elim-
inates copyright concerns, reduces dataset construction
costs compared to previous mixing images, and effectively
diversifies the perturbations applied to the original im-
ages during training. Since each Moiré image is generated
from simple mathematical formulas, MoireDB is computa-
tionally efficient, eliminating the need for advanced image
generation AI and minimizing resource consumption. Ex-
periments on CIFAR-C and CIFAR-based adversarial ro-
bustness demonstrate that MoireDB-augmented images in
the CIFAR training dataset partially outperform traditional
augmentations based on Fractal arts and FVis.

1. Introduction
Image recognition techniques, particularly those based on
deep learning, are promising for real-world applications;
however, image classification using deep learning models is
known to be less robust than human visual perception when
faced with diverse real-world degradations, such as noise
and blurring, as well as adversarial attacks [3, 8].

One promising technique for improving the robustness
of image recognition models for classification task is data
augmentation such as Mixup [16] and CutMix [14]. Us-
ing these data augmentation methods, we can increase im-
age counts while reducing overfitting, thus potentially im-
proving robustness. A notable data augmentation method
known for enhancing robustness is PixMix [4], which ex-
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Figure 1. Example of data augmentation using MoireDB.
MoireDB eliminates copyright issues and can be constructed with
lower computational costs than Fractal arts and Feature Visualiza-
tions (FVis) [4]. Moreover, MoireDB achieved the best perfor-
mance in CIFAR corruption benchmarks [3] and adversarial ro-
bustness metrics under certain experimental conditions.

tends training datasets by blending training images with
synthetic images from predefined mixing sets. The mixing
set images used by PixMix include mathematically gener-
ated Fractal arts and feature visualizations (FVis). Fractal
arts are collected on DeviantArt1. The images are visu-
ally diverse. FVis are collected using OpenAI Microscope2.
The images are created from convolutional neural networks
(CNNs) such as AlexNet [7], VGGNet [12], and ResNet [2],
which are basically pre-trained on ImageNet [10, 17].

However, the use of these images entail at least two prac-
tical disadvantages: i) Some of the human-designed digital
patterns and generative arts are protected by copyright, and

1https://www.deviantart.com/
2https://openai.com/index/microscope/



thus commercial use of PixMix data augmentation remains
questionable. ii) Generating FVis requires multiple CNNs
trained on large image datasets, and is thus a high-cost op-
eration for assembling images into datasets.

To address these issues, we propose Moiré DataBase
(MoireDB) as a new mixing set for PixMix. All Moiré
images in MoireDB are generated by formulas, eliminat-
ing copyright concerns and reducing construction costs.
Moiré images, similar to FVis, exhibit structured texture
patterns. However, unlike FVis, they possess circular struc-
tures, which eliminates directional biases. This charac-
teristic is expected to allow any Moiré image to effec-
tively enrich the information of an original image during
augmentation. Moreover, despite being generated with a
small number of parameters in a simple manner, MoireDB
produces textures that induce visual illusions in humans.
This dataset may provide insights into how such visually
illusion-inducing texture images affect the robustness of im-
age recognition models.

Experimental results confirm that MoireDB partially
outperforms Fractal arts and FVis, and it also surpasses
other mathematically generated datasets, such as Fractal
DataBase (FractalDB) [5] and VisualAtom [13], in both cor-
ruption and adversarial robustness.

Our main contributions are following.
• The use of MoireDB for data augmentation improves ro-

bustness with respect to real-world degradations and ad-
versarial attacks.

• MoireDB contains only formula-generated images, elim-
inating copyright problems.

• The images constituting MoireDB are auto-generated,
which reduces the cost of assembling datasets and elimi-
nates the need for trained image generation AI models.

2. Related Work

2.1. Robustness in Image Classification
Digital images are susceptible to noise, compression, and
other sources of corruption caused by a broad range of
mechanisms. Although such corruption does not prevent
human visual perception from identifying images with high
accuracy, it does significantly reduce the image identifica-
tion accuracy of image recognition models, and improving
the robustness of image recognition models is a central chal-
lenge for image recognition research.

The robustness of image recognition models may be
quantified by testing on specialized datasets such as
ImageNet-C [3] and CIFAR-C, which consist of images
that have been corrupted in various ways—such as by
adding noise, blurring, weathering, or applying digital
transformations—to reflect 15 types of corruption com-
monly experienced by digital images.

To quantify robustness using ImageNet-C or CIFAR-C,

the image classification accuracy is measured for each of
the 15 categories of image corruption, and an average is per-
formed over all categories to yield a mean corruption error
(mCE); smaller mCE values indicate greater robustness.

In addition to quantifying robustness against corruption,
robustness may also be quantified against adversaries, i.e.,
adversarial attacks, by measuring image classification ac-
curacy for special test images in the ImageNet [1] and CI-
FAR [6] datasets to which adversarial attacks have been ap-
plied; again, lower values of the image classification accu-
racy indicate greater robustness.

2.2. Data Augmentation Using Additional Images
One of the most promising data augmentation methods
for enhancing robustness is PixMix [4]. In the PixMix
approach to data augmentation, training images from
databases such as ImageNet or CIFAR are combined ad-
ditively or multiplicatively with an auxiliary set of struc-
turally complex images to yield an augmented dataset; deep
learning models trained on the augmented dataset then ex-
hibit improved image identification accuracy and robustness
compared to models trained on the non-augmented dataset.
In the original PixMix proposal, the auxiliary set of struc-
turally complex images included two types of images: Frac-
tal arts and FVis.

Fractal arts (note that this is different from Frac-
talDB [5]) are manually designed images downloaded from
DeviantArt; these images contain shapes and color schemes
designed to pique the curiosity of human visual perception,
and are thus expected to be structurally complex.

FVis are machine-generated images that may be down-
loaded from OpenAI Microscope. This database allows vi-
sualization results for image features [11]—as extracted by
various pre-trained CNN models operating on a large image
dataset—to be downloaded in the form of image files.

Given an input image dataset, PixMix produces an aug-
mented dataset by performing repeated mixing operations.
Specifically, each input image is subjected to a randomly
chosen number (at most 4) of mixing steps and in each step,
the image is mixed either with an input image or with an
image chosen from the auxiliary image set, and the mixing
is performed either additively or multiplicatively (chosen
at random). Deep learning models trained on PixMix aug-
mented datasets are known to exhibit improved image iden-
tification accuracy and robustness compared to other data
augmentation methods such as Mixup [16] or CutMix [14].

However, some Fractal arts are protected by copyright,
and thus commercial use of PixMix remains questionable.
Moreover, both Fractal arts and FVis are enormously costly
to generate, and the number of images that may be feasibly
assembled into a dataset is limited in practice.

To address these issues, we propose a synthetic image
dataset as a new mixing set.
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Figure 2. Algorithm for generating Moiré images

3. Proposed Method Details
In the present study, we propose MoireDB, a formula-
generated image dataset for data augmentation.

Section 3.1 describes our procedure for generating the
Moiré images comprising MoireDB, while Section 3.2 dis-
cusses our strategy for data augmentation using generated
Moiré images.

This idea of generating images through formulas was
inspired by formula-driven supervised learning (FDSL)
datasets such as FractalDB [5] and VisualAtom [13].
MoireDB belongs to the same family of FDSL datasets. A
key distinction is that MoireDB requires only three param-
eters to generate each Moiré image, which is significantly
fewer than the number used in the rendering processes of
FractalDB and VisualAtom. This minimal parameterization
allows for more controllable and interpretable image gener-
ation while eliminating the need for large-scale image gen-
eration AI models.

3.1. Generation of Moiré Images
Our algorithm for generating the Moiré images constituting
MoireDB is depicted schematically in Fig. 2. The starting
point is a simple procedure (Fig. 2, far left) for generating
a concentric-circle pattern; this procedure is described by
a formula, discussed below, containing multiple adjustable
parameters such as the coordinates (xc, yc) of the common
center point. To generate a single Moiré image, we invoke
this formula multiple times—with randomly chosen values
for the adjustable parameters—to yield a set of multiple dis-
tinct concentric-circle patterns (Fig. 2, center), then sim-
ply superpose these to yield the Moiré image (Fig. 2, far
right). The superposition of randomly generated concentric-
circle patterns gives rise to the characteristic interference
fringes of Moiré images, and varying the adjustable param-
eters defining the concentric-circle patterns allows a wide
range of distinct fringe patterns to be realized.

The image representing each concentric-circle pattern is
generated by a formula that computes a brightness value for
each pixel in the image. Each Moiré image depends on sev-
eral adjustable parameters: the number Qn of concentric-
circle patterns superposed, and, for each of these patterns,

the center-point coordinates (xc, yc) and an interval fre-
quency parameter ν described below. Values for all of these
parameters are chosen randomly within the ranges listed in
Table 1.

Each concentric-circle pattern may be described as a su-
perposition of circles of the form

fQn
=

1

Qn

m∑
k=1

ηk ∈ R2 (1)

where m is the number of circles drawn in the pattern and ηk
represents the k-th circle. Denoting the radius of this circle
by rk, and recalling that the circle is centered at (xc, yc), we
may express ηk in the form

ηk =

{
x = (rk cos θ + xc)× g
y = (rk sin θ + yc)× g

(0 ≤ θ < 2π) (2)

The center-point coordinates (xc,yc) are chosen at random
from a uniform distribution. The quantity g in this expres-
sion, representing the brightness at point (x, y), is a sinu-
soidally varying function of the radial distance r:

g = (VM (cos ν × π × r) + 1)× 255, (3)

where VM is the amplitude of the sinusoidal brightness vari-
ation. Using the brightness g to define a grayscale value
for each pixel yields an image representing the concentric-
circle pattern. Choosing the number of concentric-circle
patterns Qn > 1 then ensures interference between the pat-
terns, yielding the desired Moiré image.

We set the size of generated images to be 512× 512 px;
the number of circles m drawn for each concentric-circle
pattern is determined as appropriate based on the image size
and the interval frequency ν.

3.2. Data Augmentation Using Moiré Images
Our strategy for data augmentation using Moiré images is
outlined schematically in the lower part of Fig. 1 shows a
detailed diagram of the operational pipeline of our PixMix
implementation with Moiré images, in this case for an ex-
ample involving 1 time additive mixing operation and 1
time multiplicative mixing operations. Other settings in our
data augmentation procedure are the same as that used in
PixMix.

The number of Moiré images we generate for data aug-
mentation is 14,230, chosen to match the number of Fractal
arts used in [4]. For each image, the parameter values in
the image-generation formulas are chosen at random from
the ranges listed in Table 1. These parameters were deter-
mined through several experiments. For each mixing step,
we choose an image at random from the set of generated
images and mix it either additively or multiplicatively with
the selected Moiré image or with the input image.



Table 1. Adjustable parameters for auto-generated Moiré images

Parameter Symbol Range

Interval frequency ν 0.03 ≤ ν < 0.05

Center-point coordinates xc, yc 0 ≤ (xc, yc) < 600

Number of superposed concentric-circle patterns Qn Qn = {1, 2, 3}

Table 2. Robustness values measured for various data augmentation image datasets [4]. The experiments have been conducted on CIFAR-
10-C and -100-C by using MoireDB within the framework of PixMix. Lower is better for the listed scores.

Dataset Baseline Fractal arts FVis FractalDB VisualAtom MoireDB
Clean 4.4 4.2 4.8 4.0 4.4 4.6
Corruptions 26.4 10.8 9.5 11.9 10.8 9.4CIFAR-10-C
Adversaries 91.3 82.0 78.6 92.2 93.9 77.1
Clean 21.3 20.3 21.0 20.0 21.4 21.1
Corruptions 50.0 33.3 30.3 35.0 33.4 30.9CIFAR-100-C
Adversaries 96.8 93.2 92.3 98.5 98.5 93.5

4. Experimental Evaluation

4.1. Robustness Tests Procedure

We conducted experimental tests to assess the effectiveness
of data augmentation using MoireDB, comparing the results
against robustness values obtained via several alternative
datasets: data augmentation using Fractal arts and FVis, as
originally proposed for PixMix, and PixMix with augmen-
tation images taken from FractalDB and VisualAtom. The
data augmentation settings follow the default configurations
provided in PixMix’s GitHub repository [4]. The number of
images in Fractal arts and FVis is the same as in [4], with
Fractal arts containing 14,230 images and FVis consisting
of 4,700 images. FractalDB contains 1,000 images, while
VisualAtom consists of 14,230 images. As mentioned ear-
lier in this paper, MoireDB also contains 14,230 images.

The training model used in our experiments is WideRes-
Net [15]. We use CIFAR as the training image dataset. For
each data augmentation strategy, we generate an augmented
version of the CIFAR training dataset while keeping the to-
tal number of training images fixed at 50,000. We then train
WideResNet on the augmented dataset for 100 epochs and
evaluate the robustness of the trained model.

Robustness is measured on the CIFAR-C dataset of test
images. The metric for this assessment is the previously
mentioned mCE, which is smaller for greater robustness.
mCE is computed as the mean image identification accuracy
for the 15 types of image corruption represented by CIFAR-
C.

The Adversaries task involves measuring robustness
against adversarial attack [9]. The metric for this assess-
ment is the image identification accuracy, with lower values
indicating better performance. Adversarial attacks are ap-

plied to CIFAR test images.

4.2. Results of Robustness Tests
Table 2 shows the results of tests to assess the impact of
MoireDB-based data augmentation on the robustness of im-
age classification. The column labeled “Baseline” presents
the results obtained using the original (non-augmented) CI-
FAR training data, with the values sourced from [4].

From Table 2 we see that data augmentation using
MoireDB achieves better image identification robustness
than any other method for CIFAR-10-C. When comparing
the results for the FDSL datasets—FractalDB, VisualAtom,
and MoireDB—we observe that in every robustness test for
both CIFAR-10-C and CIFAR-100-C, the greatest improve-
ment in robustness is achieved with data augmentation us-
ing MoireDB.

5. Conclusion
In the present study, we proposed MoireDB, a formula-
generated dataset of interference-fringe images for use with
the PixMix method of data augmentation, and conducted
experiments to assess its impact on robustness. Our results
showed that, for several test categories, data augmentation
using MoireDB achieved a greater improvement in robust-
ness than data augmentation with Fractal arts or FVis. Fur-
thermore, an important point to mention is that every single
image in MoireDB eliminates copyright issues and also re-
duces construction costs.
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