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Abstract

We explore a new language model inver-001
sion problem under strict black-box, zero-shot,002
and limited data conditions. We propose a003
novel training-free framework that reconstructs004
prompts using only a limited number of text005
outputs from a language model. Existing meth-006
ods rely on the availability of a large number007
of outputs for both training and inference, an008
assumption that is unrealistic in the real world,009
and they can sometimes produce garbled text.010
In contrast, our approach, which relies on lim-011
ited resources, consistently yields coherent and012
semantically meaningful prompts. Our frame-013
work leverages a large language model together014
with an optimization process inspired by the ge-015
netic algorithm to effectively recover prompts.016
Experimental results on several datasets de-017
rived from public sources indicate that our ap-018
proach achieves high-quality prompt recovery019
and generates prompts more semantically and020
functionally aligned with the originals than021
current state-of-the-art methods. Additionally,022
use-case studies introduced demonstrate the023
method’s strong potential for generating high-024
quality text data on perturbed prompts.025

1 Introduction026

With the advancement of large language models027

(LLMs), prompt engineering has become an essen-028

tial technique for expanding their capabilities (Sa-029

hoo et al., 2024). This method uses task-specific in-030

structions, or prompts, to enhance model effective-031

ness without altering core parameters. Widely used032

prompting techniques, such as few-shot prompting033

(Radford et al., 2019), chain-of-thought prompting034

(Wei et al., 2022), and retrieval-augmented gen-035

eration (Lewis et al., 2020), have proven highly036

practical in diverse applications.037

With the increasing focus on prompt engineer-038

ing, where input prompts are carefully modified039

to improve the outputs generated by LLMs, a040

natural question arises: can we infer the input041

prompt based solely on the outputs? This challenge, 042

termed language model inversion by Morris et al. 043

(2024), has gained prominence with the growing 044

prevalence of LLMs offered as “services,” where 045

users interact only with outputs while the original 046

prompts remain concealed. This situation presents 047

a dual interest, with users seeking to deduce con- 048

cealed prompts and service providers striving to 049

protect them, thereby rendering language model 050

inversion an increasingly pertinent problem (Mor- 051

ris et al., 2024). Furthermore, recovering prompts 052

has practical applications, such as enabling users to 053

adapt inferred prompts for generating high-quality 054

outputs tailored to new contexts, e.g., transforming 055

a marketing plan for one product into a similarly 056

high-quality plan for another with minimal adjust- 057

ments. In Appendix C, we demonstrate that text 058

generated through our language model inversion 059

method is more favored by human evaluators than 060

text derived from existing high-quality templates. 061

Morris et al. (2024) develop a model trained to 062

predict the input prompt by leveraging the prob- 063

ability distributions and logits from the last layer 064

of an LLM. Building on this, Zhang et al. (2024) 065

further propose a model that uses only the textual 066

outputs to infer the prompts, without relying on 067

internal model parameters. However, this approach 068

is developed under the assumption that a large num- 069

ber of outputs (64) are available to recover a single 070

prompt and that access to user prompts for com- 071

plex system prompts is granted. These assumptions 072

rarely hold true in real-world scenarios. Further- 073

more, both methods demand extensive training on 074

large datasets, which can be resource-intensive. Ad- 075

ditionally, their outputs are heavily influenced by 076

the form of the training data, so they perform poorly 077

on out-of-domain prompt recovery and sometimes 078

generate non-linguistic sequences. These limita- 079

tions, alongside the broader interest in uncovering 080

and protecting prompts and the practical utility of 081

generating high-quality data, motivate the develop- 082
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Figure 1: Performance comparison of RPE and
output2prompt on the REhard dataset. Evaluates the
effectiveness of recovering complex system prompts
from outputs generated by different target LLMs.

Figure 2: Examples of non-linguistic prompts recovered
by output2prompt and prompts recovered by RPE for
the same latent prompts.

ment of a robust, training-free, zero-shot language083

model inversion method that operates with limited084

output access.085

In this paper, we propose a novel language model086

inversion technique, reverse prompt engineering087

(RPE), which assumes the target LLM is a black-088

box model accessible only through limited text089

outputs. RPE infers the underlying prompt from090

these outputs by leveraging the LLM’s reasoning091

capabilities in combination with an iterative opti-092

mization algorithm inspired by the genetic algo-093

rithm (Sampson, 1976). Importantly, RPE in-094

troduces no new models and requires no training.095

The core idea of RPE is to conceptualize lan-096

guage model inversion as a reverse-engineering097

optimization problem, using the relationship be-098

tween prompts and outputs to iteratively refine po-099

tential candidates. By utilizing the reasoning ability100

of an LLM to generate candidate prompts, RPE101

evaluates these candidates based on the similarity102

of their generated outputs to the true output. This 103

evaluation serves as the basis for iterative optimiza- 104

tion, guided by a genetic algorithm intertwined 105

with an LLM, to progressively reduce discrepan- 106

cies between candidates and the latent prompt, and 107

to converge on the most plausible prompt. 108

Compared to previous methods (Morris et al., 109

2024; Zhang et al., 2024), RPE is more resource- 110

efficient, requiring only minimal information from 111

the target LLM (five text outputs) while ensur- 112

ing the generation of natural language outputs. 113

RPE outperforms state-of-the-art methods, achiev- 114

ing an average 5.1% improvement in cosine sim- 115

ilarity over output2prompt (Zhang et al., 2024) 116

on Llama-2 Chat (7B) outputs and 9.5% on 117

GPT-3.5 outputs across different datasets. Ad- 118

ditionally, RPE demonstrates superior perfor- 119

mance in system prompt recovery tasks, surpassing 120

output2prompt by an average of 5.8% in cosine 121

similarity. 122

Our main contributions are as follows. 123

• We provide the first study of the language 124

model inversion problem under black-box, 125

zero-shot, and limited data conditions. 126

• We design an innovative evaluation method 127

that selects the most accurate recovered 128

prompt from multiple candidates by their cor- 129

responding outputs, thereby enhancing the ac- 130

curacy of prompt recovery in scenarios involv- 131

ing multiple candidate prompts. 132

• We purpose a novel optimization algorithm 133

that leverages the LLM itself as an optimizer 134

to further enhance prompt recovery accuracy. 135

The code and datasets are available at 136

https://github.com/Anonymous-Author980/ 137

RPE_Reverse_Prompt_Engineering. 138

2 Related Works 139

2.1 Prompt Engineering 140

Prompt engineering is a closely related field, es- 141

sential for optimizing LLMs by designing prompts 142

that guide model outputs across diverse tasks with- 143

out altering model parameters (Sahoo et al., 2024). 144

Initial prompting techniques include zero-shot and 145

few-shot prompting (Radford et al., 2019; Brown 146

et al., 2020), demonstrating that LLMs can han- 147

dle novel tasks without additional training. Chain- 148

of-thought (CoT) prompting by Wei et al. (2022) 149

introduced step-by-step reasoning, which inspired 150

2

https://github.com/Anonymous-Author980/RPE_Reverse_Prompt_Engineering
https://github.com/Anonymous-Author980/RPE_Reverse_Prompt_Engineering
https://github.com/Anonymous-Author980/RPE_Reverse_Prompt_Engineering


further techniques to enhance LLM reasoning and151

logic abilities (Zhang et al., 2023; Wang et al.,152

2023; Zhao et al., 2024; Hu et al., 2023; Yao et al.,153

2024a; Long, 2023; Yao et al., 2024b; Weston and154

Sukhbaatar, 2023; Zhou et al., 2023b; Wang et al.,155

2024; Diao et al., 2024; Chia et al., 2023). To156

improve accuracy and mitigate hallucinations, Re-157

trieval Augmented Generation (RAG) integrates158

information retrieval into prompting (Lewis et al.,159

2020), and its variations enhance real-time knowl-160

edge access for LLMs (Yao et al., 2023; Dhuliawala161

et al., 2024; Li et al., 2024b; Yu et al., 2024b).162

Other approaches incorporate external tools for im-163

proved accuracy (Paranjape et al., 2023; Wu et al.,164

2024). Techniques for automating prompt genera-165

tion have also emerged, using LLMs as optimizers166

to craft more effective prompts (Zhou et al., 2023a;167

Yang et al., 2024), alongside specialized prompting168

methods for specific tasks such as code generation169

(Nye et al., 2021; Chen et al., 2023; Li et al., 2023b,170

2024a), emotion comprehension (Li et al., 2023a),171

user intent understanding (Deng et al., 2023), and172

abstract concept extraction (Zheng et al., 2024).173

The primary distinction between prompt opti-174

mization (PO) methods and RPE lies in their ob-175

jectives. PO methods are aimed at prompt engi-176

neering, where, given multiple input-output pairs177

and an initial instruction for a specific, known178

task, the instruction is refined for improved perfor-179

mance. In contrast, RPE tackles language model180

inversion, where the task is to infer the original181

input prompt based solely on outputs from a lan-182

guage model, making this inherently more chal-183

lenging than prompt engineering. Furthermore, PO184

methods require a large number of input-output185

pairs (typically more than 50) to derive the final in-186

struction, whereas RPE can achieve high-quality187

prompt recovery with as few as five outputs. Addi-188

tionally, PO methods rely on straightforward eval-189

uation and refinement processes, typically assess-190

ing candidate instructions based on accuracy, as191

they address tasks with a single correct answer192

(e.g., mathematical problems or true-false ques-193

tions). Conversely, RPE employs more nuanced194

evaluation and candidate generation processes, fo-195

cusing on the similarities and differences between196

candidate outputs and reference answers, due to197

its applicability to more complex tasks with mul-198

tiple viable answers, such as creating a marketing199

plan or generating startup ideas. These distinctions200

highlight that the two problems are very different201

and thus RPE requires a different treatment.202

2.2 Language Model Inversion 203

Unlike prompt engineering, which focuses on 204

crafting prompts to achieve better outputs, lan- 205

guage model inversion aims to infer the under- 206

lying prompt from given outputs. Morris et al. 207

(2024) first introduce this problem, developing 208

logit2prompt, a solution that extracts prompts 209

from next-token probability distributions using a 210

T5-based model (Raffel et al., 2020) with addi- 211

tional training. Building on logit2prompt, Zhang 212

et al. (2024) propose output2prompt, the current 213

state-of-the-art method for language model inver- 214

sion. The output2prompt method, also T5-based, 215

can recover prompts using only text outputs, with- 216

out requiring access to model logits (Zhang et al., 217

2024). 218

Our proposed method, RPE, differs in that 219

it requires neither access to model logits nor 220

user prompts, making it particularly suitable 221

for closed-source LLMs like GPT-3.5. Un- 222

like output2prompt, which still relies on the 223

user prompt when reconstructing complex system 224

prompts, RPE depends solely on LLM outputs, 225

requiring no additional information. Moreover, 226

RPE is unique in that it does not require training, 227

training data, or large quantities of LLM outputs, 228

needing only five outputs compared to the 64 re- 229

quired by output2prompt. Since logit2prompt 230

and output2prompt use T5-based models with 231

smaller vocabularies than modern LLMs, RPE 232

offers the advantage of generating prompts with 233

more flexibility in word choice. 234

3 Methodology 235

We formalize the language model inversion prob- 236

lem as follows: given a set of n responses, denoted 237

as A = {a1, a2, . . . , an}, generated by submitting 238

a single prompt p to an LLM n times, the objective 239

is to design a language model inversion method, de- 240

noted as RPE, that can infer the original prompt p 241

from the response set A, which means the output p′ 242

of RPE should be the same as the original prompt 243

p: 244

min d(p, p′) (1) 245

LLM(p)n = A (2) 246

RPE(A) = p′ (3) 247

Here, d could be any score measuring the difference 248

between two prompts. The intriguing part is that p 249

is latent and thus unknown. In this setup, the LLM 250
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Figure 3: Example of One Answer One Shot inference.

Figure 4: Example of Five Answers One Shot and Five
Answer Five Shots inference.

is treated as a black box, meaning that, aside from251

the text outputs, no access is granted to its internal252

parameters or mechanisms. Moreover, the RPE253

method is developed under a zero-shot constraint,254

where no prior training data or additional examples255

of outputs (beyond the given set) are available, and256

no training is permitted in the development of the257

method.258

3.1 The “Naive” Approach259

Our initial approach aims to directly infer the260

prompt p using exactly one response a generated by261

the LLM. Specifically, we query the LLM to infer262

the underlying prompt based on the given response263

a, a method we refer to as one-answer-one-shot264

reverse prompt engineering (RPE1A1S). As illus-265

trated in Figure 3, we provide an example where266

GPT-3.5 is tasked with recovering a prompt from267

a response related to start-up ideas. The recovered268

prompt p′ contains some elements of the original269

prompt p but also includes additional details drawn270

from the response a, such as “customer service,”271

“data analytics,” and “cybersecurity,” which are not272

part of the original prompt. We hypothesize that273

inferring the prompt from only one response may274

lead the LLM to overemphasize specific details275

from the response a that were not present in the276

original prompt p, as demonstrated in the exam-277

ple shown in Figure 3. A detailed example is in278

Appendix D.279

3.2 Five Answers Inference 280

We then extend the naive method by using mul- 281

tiple responses to recover the underlying prompt. 282

Given a set of responses A, we inform the LLM 283

that these responses are generated from the same 284

prompt p and ask the LLM to recover p based on 285

the entire set A. We set n = 5 in our experiments 286

and refer to this method as five-answers-one-shot 287

reverse prompt engineering (RPE5A1S). In Fig- 288

ure 4, we present an example of RPE5A1S using 289

GPT-3.5. Compared to RPE1A1S , the recovered 290

prompt p′ in RPE5A1S captures more elements 291

of the original prompt, such as “two,” “AI,” and 292

“missions.” Additionally, RPE5A1S avoids incor- 293

porating response-specific details, like “customer 294

service” and “data analytics,” which were mistak- 295

enly included by RPE1A1S . However, there is still 296

room for improvement, as the recovered prompt 297

does not fully replicate the original prompt. 298

Building on RPE5A1S , we propose an enhanced 299

approach that generates multiple candidate prompts 300

and selects the most accurate one. Specifically, 301

given a set of responses A with n answers, we 302

ask the LLM to recover the prompt p and gen- 303

erate a set of m candidate prompts, denoted as 304

P ′ = {p′1, p′2, . . . , p′m}. To evaluate the quality of 305

each candidate prompt in P ′, we first pass each 306

recovered prompt p′i to the LLM and obtain a cor- 307

responding response a′i. We then compute the 308

ROUGE-1 score between a′i and each answer in 309

A, yielding a set of scores S′
i = {s′i1, s′i2, . . . , s′in}. 310

While it is intuitive to take the average of S′
i as the 311

final score, a promising prompt might generate a 312

response a′i that closely matches one of the answers 313

in A but not the others. To address this, we combine 314

both the mean and the maximum of S′
i to define the 315

final score for p′i as s′i =
mean(S′

i)+max(S′
i)

2 . 316

The recovered prompt with the highest score s′i 317

is selected as the final prompt. In our experiments, 318

we use n = 5 and m = 5, referring to this approach 319

as five-answers-five-shots reverse prompt engineer- 320

ing (RPE5A5S). As shown in Figure 4, the recov- 321

ered prompt using RPE5A5S captures more details 322

from the original prompt compared to RPE5A1S , 323

although further improvement is still possible. De- 324

tailed examples of RPE5A1S and RPE5A5S are in 325

Appendix D. 326

3.3 Iterative Method 327

To further enhance our approach, we introduce an 328

iterative method aimed at progressively optimiz- 329
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Figure 5: Workflow of RPEGA

ing the recovered prompt with each iteration. In-330

spired by the genetic algorithm (Sampson, 1976),331

we designed an algorithm that generates new candi-332

date prompts based on existing ones and selects the333

most accurate candidates using a custom evaluation334

strategy. We refer to this iterative reverse prompt335

engineering method as RPEGA. The complete336

workflow of the algorithm is depicted in Figure337

5. Below, we describe the key components of this338

algorithm in detail.339

3.3.1 Initialization340

Given a set of responses A with n answers,341

we first ask the LLM to infer the underlying342

prompt p, generating m candidate prompts P ′ =343

{p′1, p′2, . . . , p′m}, following the same procedure as344

in RPE5A5S (see Section 3.2). We then evalu-345

ate each candidate prompt p′i using the evaluation346

method from RPE5A5S , where we pass each can-347

didate p′i to the LLM to generate a response a′i348

and calculate its performance score s′i. The per-349

formance score s′i for each candidate prompt is350

calculated by averaging the mean and max of the351

ROUGE-1 score between a′i and each response in352

A. This completes the initialization phase of the353

RPEGA algorithm.354

3.3.2 Iteration355

Following the initialization step, we iteratively gen-356

erate new candidate prompts and replace the ex-357

isting candidates with better-performing ones. In358

each iteration, we start with the set of original re-359

sponses A, the current candidate set P ′, the re-360

sponses A′ = {a′1, a′2, . . . , a′m} generated by can-361

didate prompts P ′, and the corresponding perfor-362

mance scores S′ = {s′1, s′2, . . . , s′m}. For each can-363

didate prompt p′i and its corresponding response a′i,364

we first ask the LLM to identify the differences365

between a′i and the responses in A. Then, we366

request the LLM to summarize these differences367

and use the summary as a guide to modify the368

Figure 6: Process of generating new candidate prompts
from the old ones.

candidate prompt p′i. The process is illustrated 369

in Figure 6 in detail. This process yields a new 370

set of candidate prompts, P ′′ = {p′′1, p′′2, . . . , p′′m}, 371

for which we calculate the performance scores 372

S′′ = {s′′1, s′′2, . . . , s′′m} as in the previous step. 373

Based on these scores, we update the candidate 374

set by selecting the best m prompts from the union 375

of all 2m prompts (i.e., P ′ and P ′′). 376

3.3.3 Output 377

After repeating the iteration process for k iterations, 378

we select the best-performing prompt from the fi- 379

nal candidate set P ′ based on the highest perfor- 380

mance score in S′. This selected prompt, denoted 381

as p′o, is the final recovered prompt produced by 382

the RPEGA method. 383

4 Computational Assessment 384

In this section, we present the results of testing our 385

proposed methods on various datasets, comparing 386

their performance with the benchmark approach of 387

output2prompt (Zhang et al., 2024). The evalu- 388

ation focuses on assessing the semantic and func- 389

tional similarity between the recovered and original 390

prompts. Specifically, we employ cosine similarity 391

as the evaluation metric, as it best aligns with the 392

language model inversion objective (Zhang et al., 393

2024). Throughout all experiments, GPT-3.5 serves 394

as the backbone model for RPE. 395
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Figure 7: Example prompt from each dataset.

4.1 Dataset396

We evaluate our method using five datasets: Awe-397

some ChatGPT Prompts1 (153 complex instruc-398

tional role-based prompts), MetaMathQA (Yu et al.,399

2024a) (395,000 linguistically diverse math word400

problems), TruthfulQA (Lin et al., 2022) (817 truth-401

fulness assessment prompts), Alpaca-GPT4 (Peng402

et al., 2023) (52,000 simple instruction-following403

prompts), and Dolly Creative Writing2 (673 cre-404

ative writing prompts). Detailed descriptions are405

provided in the appendix A.406

Figure 7 presents an example prompt from each407

dataset. To ensure comprehensive evaluation across408

diverse LLM tasks, including general conversation,409

complex instructions, and creative writing, we sam-410

ple prompts from all five datasets. However, eval-411

uating large datasets via the OpenAI API incurs412

significant costs. To balance cost efficiency and413

evaluation rigor, we randomly select 20 prompts414

from each dataset, forming our primary test set,415

REprompt, while maintaining diversity and com-416

plexity.417

To assess how prompt complexity impacts RPE418

performance, we construct two additional test sets:419

REhard, containing 100 challenging prompts from420

Awesome ChatGPT Prompts, and REeasy, consist-421

ing of 100 simpler prompts from Alpaca-GPT4.422

These three test sets enable a thorough evaluation423

of both the proposed method and the benchmark424

model across varying levels of prompt complexity.425

4.2 Benchmark426

We compare the performance of our best-427

performing method, RPEGA, against the state-of-428

the-art benchmark output2prompt (Zhang et al.,429

2024). To ensure a fair comparison, given that430

1https://github.com/f/awesome-chatgpt-prompts
2https://huggingface.co/datasets/lionelchg/

dolly_creative_writing

Figure 8: Demonstration of system prompt and user
prompt.

output2prompt is trained on outputs from Llama- 431

2 Chat (7B), experiments are performed on outputs 432

generated by both Llama-2 Chat (7B) and GPT-3.5. 433

Following Zhang et al. (2024), cosine similarity 434

is chosen as the evaluation metric due to its align- 435

ment with the objectives of language model inver- 436

sion. To this end, we generate text embeddings us- 437

ing OpenAI’s “text-embedding-ada-002” and “text- 438

embedding-3-large” models, as well as the open- 439

source embedding models “bge-m3” (Chen et al., 440

2024) and “gtr-t5-large” (Ni et al., 2022). 441

Zhang et al. (2024) also introduce a variant of 442

output2prompt, referred to as output2prompts, 443

specifically designed to recover system prompts 444

but requiring access to user prompt. In Figure 8, 445

we present an example from the REhard dataset, 446

which includes both system and user prompts. 447

In output2prompts, the user must generate a 448

total of 64 distinct outputs with 64 different out- 449

puts. These 64 outputs are then fed into the 450

trained output2prompts model to infer the system 451

prompt. To ensure a fair comparison, we evalu- 452

ate output2prompts under two additional settings: 453

(1) using a randomly selected subset of five outputs 454

from the 64, denoted as output2prompts5, and (2) 455

using the same five outputs utilized by RPEGA, 456

denoted as output2prompts5o. This comparison is 457

conducted exclusively on the REhard dataset, as the 458

other two datasets consist mostly of user prompts 459

and do not include system prompts. Additionally, 460

since output2prompts is trained on GPT-3.5 input 461

and output, all experiments comparing RPEGA 462

with output2prompts are performed using GPT- 463

3.5 outputs. 464

4.3 Experiments 465

We conduct experiments on all three datasets using 466

the methods described in Section 3 with parame- 467

ters n = 5, m = 5, and k = 5. As shown in Fig- 468

ure 9, RPEGA achieves higher cosine similarity 469

than output2prompt across all datasets, regardless 470

of whether the outputs are generated by Llama-2 471

Chat (7B) or GPT-3.5. On average across all 3 472

datasets, RPEGA outperforms output2prompt by 473
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Figure 9: Comparison of RPRGA and output2prompt.

5.1% on Llama-2 Chat (7B) outputs and by 9.5%474

on GPT-3.5 outputs, demonstrating its superior per-475

formance.476

Furthermore, we evaluate RPEGA’s cosine sim-477

ilarity on different datasets to measure its perfor-478

mance under different prompt complexities. Figure479

9 shows that RPEGA performs best on REprompt,480

achieving average cosine similarities of 80.1% on481

GPT-3.5 outputs and 78.6% on Llama-2 Chat (7B)482

outputs. In contrast, on REhard, its performance483

drops by 7.1% and 3.6%, respectively, due to the484

complex and restrictive nature of these prompts485

(e.g. “do not write explanations” and “answer only486

ASCII drawing”). Additionally, performance de-487

clines when switching from REprompt to REeasy,488

as prompts from MetaMathQA (in REprompt) are489

easier to recover than those from Alpaca-GPT4,490

the source of REeasy. When solving mathemat-491

ical problems, LLMs tend to repeat the original492

question, facilitating recovery, whereas REeasy493

prompts often lead to extra elaboration that hinders494

prompt recovery. Overall, RPEGA performs best495

on REprompt, moderately on REeasy, and worst on496

REhard, but still handily beating the benchmark,497

indicating that detailed instructions with output498

restrictions present the greatest challenge for lan-499

guage model inversion.500

With n = m = k = 5, RPEGA issues501

230 queries to an LLM and processes approxi-502

mately 100,000 input tokens and 30,000 output503

tokens to recover a prompt. The benchmark504

output2prompt is trained on 30,000 prompts, with505

Figure 10: Comparison of RPEGA and
output2prompts on system prompt recovery
(REhard).

each prompt necessitating 64 outputs—resulting 506

in a total of 1,920,000 queries to an LLM dur- 507

ing training. The final output2prompt model is 508

based on the T5 architecture and comprises of 509

222 million parameters. Next, we evaluate the 510

ability of RPEGA to recover the system prompt 511

on REhard and compare it with output2prompts 512

and its variants with additional settings. Figure 513

10 reports the performance of each method. On 514

system prompt recovery, RPEGA achieves higher 515

cosine similarity than both output2prompts5 and 516

output2prompts5o. When evaluated with “text- 517

embedding-3-large,” RPEGA exhibits an improve- 518

ment of 20.4% over output2prompts5 and 11.7% 519

over output2prompts5o. Moreover, when com- 520

pared with output2prompts, which utilizes all 64 521

outputs, RPEGA achieves higher cosine similarity, 522

with enhancements of 2.3% using “text-embedding- 523

ada-002” and 8.1% using “text-embedding-3-large.” 524

These findings indicate that RPEGA produces 525

prompts that are more semantically and function- 526
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Figure 11: Example of RPEGA and output2prompt
recovering a prompt. To conserve space, we do not
include all 64 outputs generated for output2prompts,
but instead present one output for each query mentioned
earlier.

Figure 12: Example of recovered prompts of RPEGA

and output2prompt.

ally aligned with the original system prompts than527

those recovered by output2prompts.528

Furthermore, since RPEGA uses an LLM to529

generate the recovered prompt, the output is guar-530

anteed to be in natural language. In contrast, the531

output of output2prompt and output2prompts532

occasionally produces sequences that are not lan-533

guage. As illustrated in Figure 11, RPEGA suc-534

cessfully recovers a complete, coherent sentence,535

whereas output2prompt and output2prompts do536

not. The example in Figure 11 represents a partic-537

ularly challenging task, as RPEGA has only five538

identical answers, containing only ASCII symbols,539

to work with. In contrast, output2prompts has ac-540

cess to more information, especially from the query541

“Provide 16 scenarios where I can use your services.542

Start with ‘1:’.” Despite this difficulty, RPEGA543

still outperforms output2prompts, demonstrating544

its robustness in generating natural and semanti- 545

cally meaningful prompts, even under constrained 546

conditions. 547

Another key advantage of RPEGA is its abil- 548

ity to generate prompts in free form, whereas 549

output2prompt and output2prompts are con- 550

strained to producing prompts in a specific for- 551

mat, especially output2prompts, as shown in Fig- 552

ure 12. This limitation of output2prompts may 553

stem from its training data, where all prompts fol- 554

low a uniform structure. Additionally, models 555

in output2prompt and output2prompts have a 556

smaller vocabulary size compared to GPT-3.5, lead- 557

ing to the possible inclusion of “<unk>” tokens 558

in its outputs, as seen in Figure 12. An ablation 559

study comparing the different variants of RPE is 560

included in Appendix B. A use-case study of RPE 561

is included in Appendix C. 562

5 Conclusion 563

We address the language model inversion prob- 564

lem under black-box, zero-shot conditions, intro- 565

ducing reverse prompt engineering. RPE utilizes 566

only an LLM and an optimization algorithm to 567

recover prompts from as few as five text outputs. 568

Experiments on three datasets (REprompt, REhard, 569

REeasy) demonstrate that RPE effectively recon- 570

structs high-quality prompts. On average across 571

all datasets and embedding models, RPE outper- 572

forms output2prompt by 7.3% in cosine similarity 573

on language model inversion. In system prompt re- 574

construction, RPE recovers prompts from REhard 575

that are 5.8% closer in cosine similarity to the orig- 576

inal prompts than output2prompts, a variant tai- 577

lored for system prompt recovery. 578

6 Limitations 579

While our approach demonstrates significant ad- 580

vancements in language model inversion under 581

zero-shot and black-box conditions, there are sev- 582

eral limitations to consider. First, although the 583

method requires only five outputs from the target 584

LLM, making it resource-efficient compared to ex- 585

isting approaches, real-world scenarios may im- 586

pose stricter constraints where fewer outputs are 587

available, which could affect its applicability. Sec- 588

ond, the quality and informativeness of the outputs 589

play a critical role in the effectiveness of the prompt 590

recovery process. In cases where the latent prompt 591

restricts the target LLM to produce minimal or un- 592

informative responses—such as outputs containing 593

8



only ASCII characters, as demonstrated in Figure594

11—our method has room for improvement to han-595

dle such situations more effectively. Lastly, the596

computational cost of iterative optimization can597

scale with the complexity of the task, posing chal-598

lenges for large-scale or time-sensitive applications.599

Addressing these limitations offers opportunities600

for future work to further enhance the robustness601

and applicability of the proposed framework.602
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A Public Datasets and Ethics826

• Awesome ChatGPT Prompts3: This is a cu-827

rated set of 153 prompts resembling system828

messages used in real-world LLM-based APIs829

and services. These prompts are structured as830

detailed instructions, designed to adapt the831

LLM to specific roles, such as a food critic or832

a Python interpreter. The dataset is released833

under the CC0-1.0 license.834

• MetaMathQA: Introduced by Yu et al.835

(2024a), MetaMathQA consists of 395,000836

linguistically diverse math word problems,837

ranging in difficulty from primary school to838

graduate school. This dataset is released under839

the MIT license.840

• TruthfulQA: TruthfulQA(Lin et al., 2022)841

consists of 817 questions across 38 categories,842

including health, law, finance, and politics.843

These questions are designed in a way that844

some humans might answer incorrectly due to845

false beliefs or misconceptions. The dataset846

is intended to evaluate whether a language847

model generates truthful answers to such ques-848

tions. This dataset is released under the849

Apache-2.0 license.850

• Alpaca-GPT4: Alpaca-GPT4 contains851

52,000 instruction-following examples852

generated by GPT-4 using prompts from the853

Alpaca dataset, and it was used to fine-tune854

LLMs in the work by Peng et al. (2023). The855

dataset is released under the CC-BY-NC-4.0856

license.857

• Dolly Creative Writing4: This dataset con-858

sists of 673 prompts designed to assess the859

3https://github.com/f/awesome-chatgpt-prompts
4https://huggingface.co/datasets/lionelchg/

dolly_creative_writing

Figure 13: Comparison of different RPE methods on
three datasets.

creativity of a language model. Each prompt 860

is either a question or an instruction, guiding 861

the LLM to perform a creative writing task. 862

The benchmark code for output2prompt is dis- 863

tributed under the MIT license. All datasets and 864

code employed in this study are solely intended 865

for academic research, in accordance with their 866

designated usage. We have verified the ethical doc- 867

umentation for each dataset and conducted exten- 868

sive sampling to ensure the absence of personally 869

identifying or objectionable content. The code and 870

datasets generated in this study will likewise be 871

released under the MIT license. 872

Moreover, our questionnaire explicitly obtained 873

participants’ consent to utilize their anonymized 874

responses in our research. 875

B Ablation Study 876

In the ablation study, we compare the performance 877

of RPEGA and its variants depicted in Section 3. 878

In addition, we examine the impact of different 879

approaches to calculating the performance score s′ 880

for the RPEGA variant. Specifically, the variant 881

RPEGAm computes s′i by selecting the maximum 882

ROUGE-1 score between a′i and each response in 883

set A, while RPEGAa calculates s′i as the average 884

ROUGE-1 score between a′i and all responses in 885

A. The best and thus default RPEGA method, by 886

contrast, determines s′i as the average of both the 887

mean and maximum ROUGE-1 scores. 888

As illustrated in Figure 13, RPEGA consistently 889

outperforms the other RPE variants. The results 890

from RPEGAm and RPEGAa indicate that using 891

either the maximum or the average score alone for 892

performance calculation compromises the quality 893
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of the inferred prompts. Furthermore, the superior894

performance of RPE5A5S over other non-iterative895

approaches underscores the efficacy of our evalu-896

ation strategy in selecting high-quality recovered897

prompts.898

C Use Case899

A potential use case of RPE is extracting prompts900

from high-quality content, such as marketing plans,901

video game designs, and song lyrics, enabling users902

to refine and reuse them for generating similar high-903

quality outputs. To explore this, we collect samples904

from these domains and use RPEGA to infer the905

original prompts. The inferred prompts are then906

used to generate new content—marketing plans907

for different products, game designs with varied908

themes, and lyrics featuring diverse motifs—which909

are compared against outputs generated using stan-910

dard templates.911

Participants in our evaluation are recruited from912

a pool of college students. An online question-913

naire has been developed and its link is distributed914

through email and social media platforms to reach915

individuals who had not previously been known to916

the research team, thereby ensuring an unbiased917

sample. To assess quality, we conducted a blind918

evaluation in which participants reviewed both tem-919

plate generated and RPE generated responses for920

the same task without any indication of their ori-921

gin. Participants were asked to select the response922

they deemed more favorable, with the option cho-923

sen by the majority being classified as the higher924

quality response. Table 1 presents the human evalu-925

ation results, demonstrating that RPE outperforms926

template based methods in generating content pre-927

ferred by users. This result indicates that RPE is928

better for producing more high-quality data than929

templates.930

In Figure 14, we illustrate the workflow for gen-931

erating new high-quality data using both RPE and932

templates, exemplified by generating a marketing933

plan for Product B based on Product A’s plan.934

Figure 14: Workflow to generate new high quality an-
swers.

C.1 Use Case Experiments: Marketing Plan 935

We begin with a marketing plan for an energy drink 936

as our initial reference point. Using both the RPE 937

and template methods, we then generate marketing 938

plans for three distinct products: “a new smart- 939

phone targeting seniors aged 65 and older”, “a 940

financial software tailored for small businesses and 941

individual investors”, and “developmental toys de- 942

signed for toddlers under one year old”. As shown 943

in Table 1, for each product, a greater number of 944

participants favored the RPE-generated market- 945

ing plan over the template-generated one. Overall, 946

90.5% of responses preferred the RPE method, 947

while only 9.5% favored the template method. De- 948

tailed marketing plans are provided in Appendix 949

C.4. 950

C.2 Use Case Experiments: Video Game 951

Design 952

Using the game design of the popular video game 953

“Don’t Starve” as a reference, we created high- 954

quality designs for other games. We prompted 955

GPT-3.5 to design games based on the following 956

themes: “a rogue-like game incorporating elements 957

of Greek mythology and combat,” “a kart racing 958

game that includes multiplayer and item-based me- 959

chanics,” and “a first-person shooter game combin- 960

ing elements of war and counter-terrorism.” Using 961

both RPE and template methods, we produced 962

a total of six game designs. As shown in Table 963

1, participants preferred the game designs gener- 964

ated by RPE over those created by the template 965

method. Overall, 76.2% of responses favored the 966

RPE-generated designs, while only 23.8% pre- 967

ferred the template-generated designs. Complete 968

game designs are presented in Appendix C.5. 969

C.3 Use Case Experiments: Lyrics 970

For the lyrics generation task, we first use “Cruel 971

Summer” by Taylor Swift as a reference to create 972

lyrics for songs with the following themes: “evok- 973

ing sadness and grief with themes of loss, winter, 974

and religion,” “evoking happiness and joy with 975

themes of family, friends, college life, and flowers,” 976

and “evoking excitement and positivity with themes 977

of courage, hope, and the future.” We then use 978

“Master of Puppets” by Metallica as another refer- 979

ence to generate lyrics for songs themed around 980

“love and heartbreak,” “self-discovery and personal 981

growth,” and “nostalgia and memories.” For each 982

theme, we generated two sets of lyrics using both 983

12



Marketing Plan Video Game Design Lyrics
Example Number Template RPE Template RPE Template RPE

1 2 5 3 4 1 6
2 0 7 0 7 1 6
3 0 7 2 5 1 6
4 / / / / 2 5
5 / / / / 3 4
6 / / / / 3 4

summary 2(9.5%) 19(90.5%) 5(23.8%) 16(76.2%) 11(26.2%) 31(73.8%)

Table 1: Result of the Use Case Experiment. Record the number of people who think the answer generated by the
corresponding method is better than the other.

the template and RPE methods, producing a total984

of twelve lyrics. Participants preferred the RPE-985

generated lyrics, with 73.8% of responses favoring986

them over the template-generated versions, which987

received only 26.2% preference. All lyrics are pro-988

vided in Appendix C.4.989

C.4 Complete Examples of Market Plan990

Figure 15 presents the reference marketing plan,991

the prompt recovered using RPE, and edited992

prompts used to generate marketing plans for dif-993

ferent products. Complete marketing plans gener-994

ated from perturbed RPE-recovered prompts and995

template-based prompts are provided in Figures 16,996

17, and 18.997

C.5 Complete Examples of Video Game998

Description999

Figure 19 displays the reference video game de-1000

scription, along with the prompt recovered using1001

RPE and modified prompts used to generate de-1002

scriptions for video games with varying themes.1003

The full set of video game descriptions gener-1004

ated from perturbed RPE-recovered prompts and1005

template-based prompts is presented in Figures 20,1006

21, and 22.1007

C.6 Complete Examples of Lyrics1008

Figures 23 and 24 present the reference song lyrics,1009

along with the prompt recovered using RPE and1010

modified prompts used to generate lyrics in differ-1011

ent styles and themes. The complete set of lyrics1012

generated from perturbed RPE-recovered prompts1013

and template-based prompts is shown in Figures1014

25, 26, 27, 28, 29, and 30.1015

D Detailed Examples of RPE1A1S , 1016

RPE5A1S , and RPE5A5S 1017

A detailed example of RPE1A1S is in Figure 31. 1018

Detailed examples of RPE5A1S and RPE5A5S are 1019

in Figure 32. 1020
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Figure 15: Reference marketing plan and the prompt recovered by RPE, along with perturbed prompts used to
generate marketing plans for different products.

Figure 16: Example 1 of market plan generation.
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Figure 17: Example 2 of market plan generation.

Figure 18: Example 3 of market plan generation.
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Figure 19: Reference video game description and the prompt recovered by RPE, along with perturbed prompts
used to generate video description for different themes.

Figure 20: Example 1 of video game description generation.
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Figure 21: Example 2 of video game description generation.

Figure 22: Example 3 of video game description generation.
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Figure 23: Reference song lyrics 1 and the prompt recovered by RPE, along with perturbed prompts used to
generate song lyrics for different themes and motifs.

Figure 24: Reference song lyrics 2 and the prompt recovered by RPE, along with perturbed prompts used to
generate song lyrics for different themes and motifs.

18



Figure 25: Example 1 of song lyrics generation.

Figure 26: Example 2 of song lyrics generation.
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Figure 27: Example 3 of song lyrics generation.

Figure 28: Example 4 of song lyrics generation.
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Figure 29: Example 5 of song lyrics generation.

Figure 30: Example 6 of song lyrics generation.
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Figure 31: A detailed example of One Answer One Shot inference.
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Figure 32: Detailed examples of Five Answers One Shot and Five Answers Five Shots inference.
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