

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BYTEFLOW: LANGUAGE MODELING THROUGH ADAPTIVE BYTE COMPRESSION WITHOUT A TOKENIZER

Anonymous authors

Paper under double-blind review

ABSTRACT

Modern language models (LMs) still rely on fixed, pre-defined subword tokenizations. Once a tokenizer is trained, the LM can only operate at this fixed level of granularity, which often leads to brittle and counterintuitive behaviors even in otherwise strong reasoning models. We introduce **ByteFlow Net**, a new hierarchical architecture that removes tokenizers entirely and instead enables models to learn their own segmentation of raw byte streams into semantically meaningful units. ByteFlow Net performs compression-driven segmentation based on the coding rate of latent representations, yielding adaptive boundaries *while preserving a static computation graph via Top-K selection*. Unlike prior self-tokenizing methods that depend on brittle heuristics with human-designed inductive biases, ByteFlow Net adapts its internal representation granularity to the input itself. Experiments demonstrate that this compression-based chunking strategy yields substantial performance gains, with ByteFlow Net outperforming both BPE-based Transformers and previous byte-level architectures. These results suggest that end-to-end, tokenizer-free modeling is not only feasible but also more effective, opening a path toward more adaptive, robust, and information-grounded language models.

1 INTRODUCTION

Tokenization is a foundational step in every language model pipeline (Grattafiori et al., 2024; Team et al., 2025; DeepSeek-AI et al., 2025; Yang et al., 2025). The model’s first action is to segment raw input—be it text, code, or other modalities—into discrete tokens. This seemingly simple decision carries profound consequences, defining the model’s vocabulary, sequence lengths, and the very granularity of its learned representations. The primary limitation of dominant strategies like byte-pair encoding (BPE) (Sennrich et al., 2015; Gallé, 2019; Liu et al., 2025) is their *static* nature. After training, they apply a fixed segmentation logic to all inputs, ignoring context, linguistic nuance, or task-specific requirements. This *static property on subword level* is the source of many weird model behaviors, such as difficulties with counting, arithmetic, structured data, and multilingual text (Rust et al., 2020; Zhang et al., 2024; Yehudai et al., 2024). At a more fundamental level, tokenization introduces a non-learnable stage into the pipeline, breaking the end-to-end language modeling. This imposes a rigid inductive bias, forcing the model to expend its FLOPs on predefined units rather than learning how to allocate them dynamically.

Recent efforts to eliminate tokenizers have largely converged on hierarchical architectures. The central challenge for such designs is defining the high-level semantic units beyond byte level. Current methods generally fall into two main categories: i) *Heuristic-based* strategies that employ static chunking via fixed strides, word boundaries, or regular expressions (Yu et al., 2023b; Slagle, 2024a; Videau et al., 2025), and ii) *Dynamic chunking* that learn to segment sequences using a neural network, entropy thresholds, or cosine similarity (Nawrot et al., 2022; Pagnoni et al., 2025; Hwang et al., 2025b)¹. While heuristic approaches embed strong inductive biases into the model, dynamic methods introduce considerable uncertainty into the chunking process, which can hinder pattern finding during the early stages of pre-training. Furthermore, we still lack a dynamic mechanism for guiding the model’s allocation of FLOPs in a principled manner.

¹H-Net (Hwang et al., 2025a) is our concurrent work that also explores end-to-end tokenizer-free modeling. We contrast our chunking approach with theirs in § 4.4.

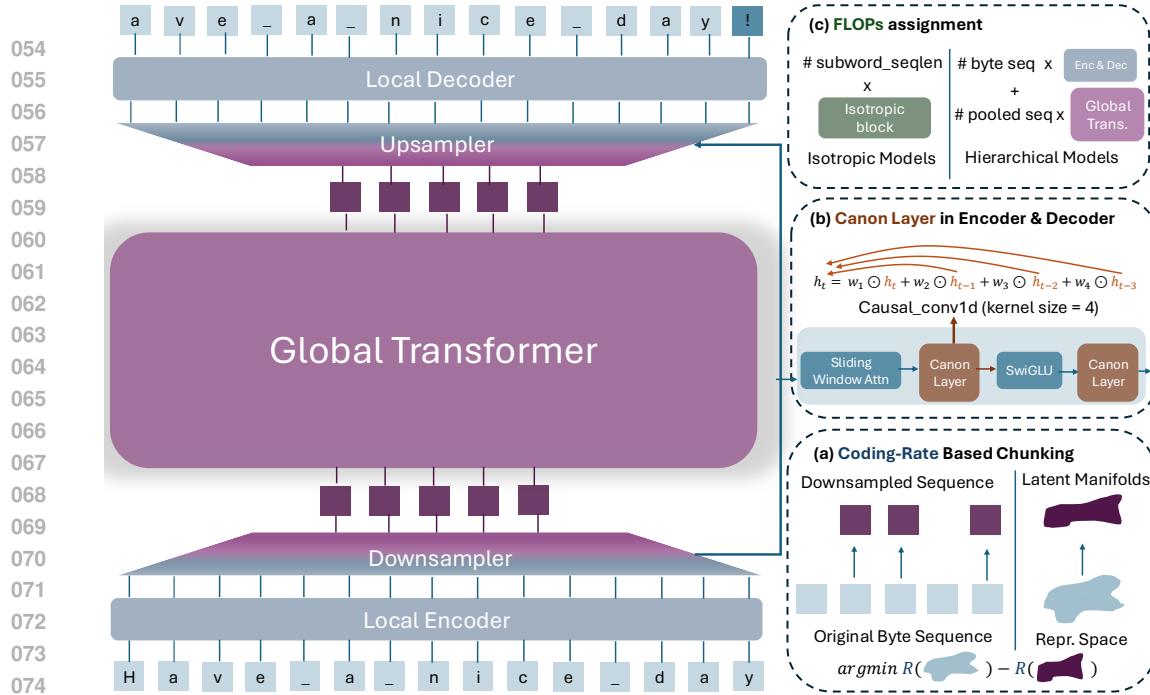


Figure 1: **Architecture of ByteFlow Net.** (a) ByteFlow Net’s chunking strategy is primarily driven by the coding rate R of latent representations. As shown in the figure, the model is encouraged to select token boundaries that form pooled subsequences which best compress the original input. (b) Since byte-level sequences are roughly $4\times$ longer, directly applying $O(n^2d)$ softmax attention becomes prohibitively expensive. To address this, we adopt sliding-window attention (SWA) combined with canon layers (Allen-Zhu, 2025), enabling efficient and low-cost token mixing. (c) The beauty of the hierarchical architecture lies in allocating the majority of FLOPs operating at the high-level information (a deep and wide global transformer), while using lightweight local encoders/decoders (shallow and narrow) to quickly process low-level information.

We introduce *ByteFlow Net* (Figure 1), a novel hierarchical byte-level architecture that learns to *self-tokenize* directly from raw byte streams. Rather than applying a fixed vocabulary, ByteFlow Net integrates segmentation into its forward computation: as bytes flow through the network, it dynamically promotes them to higher-level calculations. The decision of when to commit a boundary is framed as a principled, *coding-rate-based compression* problem, estimating the representational cost of promoting the position to a higher level. This formulation turns boundary placement into an *online* information-theoretic optimization problem, enabling the model to adjust token granularity according to input complexity on its own.

Architecturally, ByteFlow Net follows a simple but effective hierarchy: The process begins with a *local encoder* that transforms byte sequences into contextualized representations. Next, a *chunking module* applies the coding-rate criterion to these representations, producing higher-level tokens on the fly. These dynamic tokens are then modeled by a *global transformer* to capture the deep and abstract patterns in high resolution level, before a decoder maps the global context back to byte-level predictions. Because this entire boundary selection process is integrated into the model’s computation, ByteFlow Net naturally adapts across languages and domains without requiring language-specific rules or a separate tokenizer training stage.

Contributions.

- We introduce a new paradigm that replaces static tokenization with dynamic, learned segmentation. Our architecture, ByteFlow Net, operates end-to-end on raw bytes, using a principled information-theoretic objective to identify meaningful units on the fly.
- We demonstrate superior performance and scaling through extensive experiments. ByteFlow Net consistently outperforms both strong LLaMA baseline and other byte-level archi-

lectures on pre-training loss and downstream tasks, showing that end-to-end, tokenizer-free modeling is not only feasible but more effective.

- We reveal that the success of our approach stems from *its ability to preserve a coherent latent manifold*. Our ablation studies show that the coding-rate objective uniquely maintains the geometric structure of the data’s representation, preventing the fragmentation that plagues other methods and enabling more powerful learning.

2 RELATED WORK

Tokenizer-free Architecture. Modern tokenizer-free architectures can be broadly categorized into three main approaches:

- **Pure Byte-Level Modeling:** These models perform language modeling directly on raw byte sequences (Xue et al., 2022a). Given that the $O(n^2d)$ complexity of full attention is prohibitive for long sequences, architectures like MambaByte (Wang et al., 2024) have emerged as an effective solution, balancing fine-grained information processing with computational efficiency.
- **Hierarchical Modeling with Heuristic Chunking:** These methods use fixed, rule-based strategies to group bytes into larger units. For instance, MegaByte (Yu et al., 2023b) uses a fixed stride (e.g., 4 or 6 bytes) to create a higher level of representation, outperforming pure byte-level models while significantly saving FLOPs. Building on this, SpaceByte (Slagle, 2024b) uses word boundaries for chunking, achieving performance on par with or even exceeding BPE-based transformers on some pre-training corpora. AU-Net (Videau et al., 2025) further refines this concept by replacing simple word boundaries with a flexible set of regex rules to better handle special tokens and digits.
- **Hierarchical Modeling with Dynamic Chunking:** Instead of fixed rules, these models employ a learned mechanism to determine chunk boundaries. Nawrot et al. (2022; 2023); Kallini et al. use a neural network to gate token boundaries. The Byte Latent Transformer (BLT) (Pagnoni et al., 2024) first trains a separate entropy model and then uses it as a proxy to set a global chunking threshold. This multi-stage process is not fully end-to-end and functions more like a different tokenizer. In a concurrent work, H-Net (Hwang et al., 2025a) uses the cosine similarity between neighboring representations to decide chunking.

Tokenization in Language Modeling. The prevailing solution in modern LMs is subword tokenization (Sennrich et al., 2015; Kudo & Richardson, 2018; Zouhar et al., 2023; Schmidt et al., 2024; Liu et al., 2025) (e.g., BPE), which use a fixed-size vocabulary of word pieces to represent any text. These fixed vocabularies create a rigid, non-learnable stage in the modeling pipeline, often causing brittle and unexpected behaviors (Belinkov & Bisk, 2018; Sun et al., 2020; Rust et al., 2020; Petrov et al., 2023; Schmidt et al., 2024; Zhang et al., 2024; Yehudai et al., 2024), which motivated the development of modern tokenizer-free models that operate directly on raw bytes.

3 BYTEFLOW.NET

Overview. ByteFlow Net is a hierarchical architecture that operates through five main stages: local encoder, downsampling (coding-rate chunking), global modeling, upsampling, and decoder.

$$x_{1:T} \in V^T \xrightarrow{\text{Local Encoder}} h_{1:T} \in \mathbb{R}^{T \times d_{\text{local}}} \quad (\text{contextualized byte representations}) \quad (1)$$

$$\text{Downsampling} \setminus \tilde{z}_{1:N} \in \mathbb{P}^{K \times d_{\text{global}}} \quad (\text{adaptive chunking}, \ K \ll T) \quad (2)$$

$$\text{Global Transformer} \in \mathbb{R}^{K \times d_{\text{global}}} \quad (\text{High-resolution local modeling}) \quad (2)$$

$$\text{Upsampling} = \mathbb{W}T \times d_{\text{in}} \times (w_{\text{in}} \times h_{\text{in}} \times 1) \rightarrow (w_{\text{out}} \times h_{\text{out}} \times 1) \quad (4)$$

Decoder: $\hat{y}(t) = \text{softmax}(\hat{h}(t))$ (compute softmax distribution) (47)

Here T is the input sequence length, $V \in \Delta^{258}$ (contains 256 UTF-8 Byte plus two *BOS/EOS* tokens) is the byte vocabulary, and d_{local} , d_{global} are the hidden dimensions at local and global levels.

162 3.1 LOCAL ENCODER: FAST PROCESSING OVER BYTE-LEVEL REPRESENTATIONS
163

164 The local encoder are stacked small transformer. The input byte sequence $x_{1:T} \in V^T$ first embedded
165 into a continuous representation $h_{1:T}^{(0)}$ by the learned byte embedding matrix, then transformed into
166 contextualized representations $h_{1:T} \in \mathbb{R}^{T \times d_{\text{local}}}$.
167

168 **Transformer Blocks with Sliding Window Attention.** We stack E pre-norm causal transformer
169 blocks. For each layer $l \in \{1, \dots, E\}$ and position $t \in \{1, \dots, T\}$:

$$170 \quad u_t^{(l)} = \text{LN}(h_t^{(l-1)}), \quad (6)$$

$$172 \quad \hat{h}_t^{(l)} = \text{Canon}(h_t^{(l-1)} + \text{SWA}(\mathbf{Q}, \mathbf{K}, \mathbf{V})), \mathbf{Q}, \mathbf{K}, \mathbf{V} = u_{1:t}^{(l)} X_{\mathbf{Q}}, u_{1:t}^{(l)} X_{\mathbf{K}}, u_{1:t}^{(l)} X_{\mathbf{V}} \quad (7)$$

$$174 \quad v_t^{(l)} = \text{LN}(\hat{h}_t^{(l)}), \quad (8)$$

$$175 \quad h_t^{(l)} = \text{Canon}(\hat{h}_t^{(l)} + \text{SwiGLU}(v_t^{(l)})), \quad (9)$$

177 where: $\text{LN}(\cdot)$ denotes layer normalization. $\text{SWA}(\cdot)$ represents sliding window attention (SWA) with
178 window size w_{local} . This reduces computational complexity from $O(T^2)$ to $O(T \cdot w_{\text{local}})$.
179

180 $\text{SwiGLU}(\cdot)$ is the gated activation function $\text{SwiGLU}(x) = \text{Swish}(xW_1) \odot (xW_2)$, where $W_1, W_2 \in$
181 $\mathbb{R}^{d_{\text{local}} \times d_{\text{ff}}}$ are learned projection matrices, d_{ff} is the feed-forward hidden dimension, $\text{Swish}(x) =$
182 $x \cdot \sigma(x)$ with $\sigma(\cdot)$ being the sigmoid function, and \odot denotes element-wise multiplication.
183

184 **Canon Layer.** Canon layer are introduced in [Allen-Zhu \(2025\)](#) to foster the token mixing:
185

$$186 \quad \text{Canon}(\mathbf{h}_t) = w_0 \odot \mathbf{h}_t^{(l)} + w_1 \odot \mathbf{h}_{t-1}^{(l)} + w_2 \odot \mathbf{h}_{t-2}^{(l)} + w_3 \odot \mathbf{h}_{t-3}^{(l)}, \quad (10)$$

187 where $w_i \in \mathbb{R}^{d_{\text{local}}}$ are learned gating vectors. They are basically `causal_conv1d` with kernel size
188 = 4, so highly efficient CUDA operator are supported.
189

190 **Why SWA + Canon Layer for Token Mixing.** Theoretically if we use SWA along, given a se-
191 quence length T and window size w_{local} , we will need at least $\frac{T}{w_{\text{local}}}$ encoder layers to ensure every
192 byte position can attend to every other. This would necessitate a very deep local encoder for long
193 sequences, increasing computational cost and potentially hindering training stability. The canon
194 layer instead is an efficient addition, as it introduces negligible parameter overhead and benefits
195 from highly optimized implementations.
196

197 3.2 DOWNSAMPLING: CODING-RATE CHUNKING
198

199 The chunker then determines which byte positions to promote to the next hierarchical level by eval-
200 uating the *coding rate* of contextualized representations. This approach is grounded in information
201 theory: positions with high coding rates contain more information and should be preserved as chunk
202 boundaries, while positions with low coding rates can be safely compressed away.
203

204 **Lossy Coding Rate in Representation Space.** Let the local encoder produce contextualized
205 representations $h_{1:T} \in \mathbb{R}^{T \times d_{\text{local}}}$. The lossy coding rate ([Cover, 1999; Ma et al., 2007](#))² for
206 $h_{1:T} \in \mathbb{R}^{T \times d_{\text{local}}}$ is:

$$207 \quad R_{\varepsilon}(h_{1:T}) = \frac{1}{2} \log \det \left(I + \frac{d_{\text{local}}}{\varepsilon^2} h_{1:T} h_{1:T}^{\top} \right), \quad (11)$$

208 where ε^2 is a noise variance parameter that controls the sensitivity of the coding rate computation.
209

210 $R_{\varepsilon}(h_{1:T})$ is large when the representation $h_{1:T}$ has large eigenvalues and spans diverse directions in
211 the representation space, indicating high information position that warrants preservation.
212

213 **Streaming Decision.** Let the local encoder produce contextualized representations $h_{1:T} \in$
214 $\mathbb{R}^{T \times d_{\text{local}}}$. The marginal coding rate at position t measures the information gain from including
215 the t -th byte:

$$216 \quad \Delta R_t = R_{\varepsilon}(h_{1:t}) - R_{\varepsilon}(h_{1:t-1}). \quad (12)$$

217 ²We provide theoretical derivation in Appendix A and a fast approximation in Appendix B.

216 ΔR_t is large when position t introduces large information gain, indicating a natural segmentation
 217 boundary. Given the target global sequence length K , the chunking procedure begins by com-
 218 puting marginal coding rates ΔR_t for all positions $t \in \{2, 3, \dots, T\}$. We initialize the selected
 219 positions with $\mathcal{S} = \{1\}$ to always include the BOS token, then identify the $(K - 1)$ positions
 220 with the largest ΔR_t values. Finally, we sort these selected positions chronologically to obtain
 221 $\mathcal{S} = \{s_1, s_2, \dots, s_K\}$ where $s_1 = 1$ and $s_1 < s_2 < \dots < s_K$. During teacher-forced training, Top-
 222 K uses the full-sequence *importance* profile to allocate global compute, but causal masks ensure
 223 predictions never access future byte content.

224 After selecting K positions³, we extract the corresponding representations $[h_{s_1}, h_{s_2}, \dots, h_{s_K}] \in$
 225 $\mathbb{R}^{K \times d_{\text{local}}}$ and map them to the global representation space: $z_{1:K} = [h_{s_1}, h_{s_2}, \dots, h_{s_K}]W_{\text{proj}} \in$
 226 $\mathbb{R}^{K \times d_{\text{global}}}$, where $W_{\text{proj}} \in \mathbb{R}^{d_{\text{local}} \times d_{\text{global}}}$ is the projection matrix.
 227

228 **Why Not Global Threshold?** Instead of using a global information threshold for chunking, we
 229 select the Top- K positions with the highest information gain for two reasons. First, determining an
 230 appropriate global threshold is *non-trivial*: it often requires extensive empirical tuning and results
 231 in a “magic number” that is difficult to interpret or generalize. Second, a fixed threshold leads
 232 to dynamic chunks for different inputs. This variability in the global sequence length breaks the
 233 static computation graph. While specialized CUDA operators used in (Hwang et al., 2025a) can
 234 manage dynamic graphs, they introduce other issues like variable memory allocation per input,
 235 which easily got into OOM issue with some unlucky batch. Fixed-length Top- K also preserves a
 236 static computation graph, enabling consistent memory allocation and avoiding ragged tensors that
 237 complicate GPU batching.
 238

239 3.3 GLOBAL TRANSFORMER: DEEP MODELING FOR HIGH-LEVEL ABSTRACTION

240 The global transformer operates on compressed representations $z_{1:K} \in \mathbb{R}^{K \times d_{\text{global}}}$ using full causal
 241 attention. Since $K \ll T$, we employ a deep (G layers) and wide ($d_{\text{global}} \gg d_{\text{local}}$) architecture that
 242 concentrates computational budget on high-level reasoning:
 243

$$245 \quad g_{1:K} = \text{Transformer}_{\text{global}}(z_{1:K}), \quad \text{FLOPs} \approx O(G \cdot K^2 \cdot d_{\text{global}}^2) \quad (13)$$

247 The quadratic attention complexity $O(K^2)$ remains tractable due to compression, while the large
 248 hidden dimension d_{global} and depth G enable sophisticated modeling of long-range dependencies
 249 and abstract patterns.
 250

251 3.4 UPSAMPLING: MULTI-LINEAR RECONSTRUCTION WITH LARGE RESIDUAL

252 Given processed global representations $g_{1:K}$ and selected positions $\mathcal{S} = \{s_1, \dots, s_K\}$, we recon-
 253 struct full-length representations using position-specific transformations:
 254

$$257 \quad \text{chunk}(t) = \arg \max_i \{s_i : s_i \leq t\}, \quad (14)$$

$$259 \quad \text{bin}(t) = \left\lfloor \frac{t}{T/B} \right\rfloor, \quad B \ll T, \quad (15)$$

$$261 \quad \tilde{s}_t = g_{\text{chunk}(t)} W_{\text{bin}(t)}, \quad W_{\text{bin}(t)} \in \{W_1, \dots, W_B\}, \quad (16)$$

$$262 \quad s_t = h_t + \tilde{s}_t. \quad (17)$$

264 where we share upsampling parameters across B bins (default $B = 16$), making the overhead
 265 negligible while matching per-position performance.
 266

268 ³In this work, we focus on selecting specific byte positions to promote to the next level, rather than using
 269 mean pooling within the chunk, as prior work has found that different pooling operations yield nearly identical
 270 performance (Pagnoni et al., 2024; Videau et al., 2025; Hwang et al., 2025a).

270 3.5 DECODER: SYMMETRIC ARCHITECTURE FOR NEXT BYTE PREDICTION
271272 The decoder uses identical architecture to the local encoder (sliding window attention + Canon
273 layers) operating on upsampled representations $s_{1:T}$:
274

275
$$\hat{p}(x_{t+1}|x_{1:t}) = \text{softmax}(\text{Transformer}_{\text{decoder}}(s_{1:T})_t W_{\text{out}}), \quad (18)$$

276

277 where $W_{\text{out}} \in \mathbb{R}^{d_{\text{local}} \times |V|}$ projects to byte vocabulary. The symmetric encoder-decoder design en-
278 sures consistent processing while the global transformer concentrates computational resources on
279 high-level modeling.
280281 4 EXPERIMENTS
282283 We follow a standard pre-training setup at academic scale (Yang et al., 2024; Allen-Zhu, 2025)
284 where ablations are done with matched FLOPs at the GPT-3 Large level and scaling experiments are
285 run at GPT-3 XL scale. Training details are provided in Appendix C.2.
286287 4.1 EXPERIMENTAL SETUP
288289 **Pretraining Dataset.** All models are trained *from scratch* on the FineWeb-Edu-100B (Penedo
290 et al., 2024) corpus, a curated pre-training dataset of educational content comprising approximately
291 500B training byte tokens.
292293 **Bits-Per-Byte Estimation.** We adopt the Bits-Per-Byte (BPB) metric following established practices
294 in recent literature (Xue et al., 2022b; Yu et al., 2023a; Wang et al., 2024). BPB normalizes
295 cross-entropy loss by byte count rather than token count:
296

297
$$\text{BPB}(\mathbf{x}) = \frac{\mathcal{L}_{CE}(\mathbf{x})}{\ln(2) \cdot n_{\text{bytes}}} \quad (19)$$

298

299 where $\mathcal{L}_{CE}(\mathbf{x})$ is the cross-entropy loss over data \mathbf{x} and n_{bytes} is the total bytes in \mathbf{x} .
300301 **Downstream Tasks.** Due to the scale of pretraining, we focus primarily on BPB loss and se-
302 lected zero-shot downstream tasks from the lm-eval-harness (Gao et al., 2024) (e.g., HEL-
303 LASWAG (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2019), BOOLQ (Clark et al., 2019),
304 PIQA (Bisk et al., 2020), ARC (Clark et al., 2018)) for the ByteFlow Net runs. The baseline
305 decoder-only transformer variant is validated on a held-out FineWeb-Edu split every 1000 steps.
306307 4.2 BASELINES
308309 We compare against several representative architectures:
310311

- **Standard Transformer:** *LLaMA* (Touvron et al., 2023; Dubey et al., 2024), trained with a
312 fixed BPE tokenizer. This serves as the strong tokenized baseline.
- **Byte-level isotropic models:** *LlamaByte* (pure Llama layers on byte-level modeling) and
313 *MambaByte* (Wang et al., 2024) process raw UTF-8 bytes without hierarchy.
- **Heuristic chunkers:** *SpaceByte* (Slagle, 2024b) and *AU-Net* (Videau et al., 2025) uses
314 whitespace-like delimiters for chunking.
- **ByteFlow Net:** Our proposed architecture, where chunk boundaries are chosen online via
315 the lossy coding-rate criterion (section 3).

316317 Byte/BPE models are trained on sequence lengths of 8192/2048 respectively, and for ByteFlow Net
318 and AU-Net we use hierarchical sequence lengths (8192 \rightarrow 3200 \rightarrow 8192). All detailed model
319 configurations are provided in Appendix C and further ablation in Appendix D for reference.
320321 **Training-time efficiency.** We profile controlled runs on 8 \times A100-80GB with matched FLOPs bud-
322 gets. Table 1 shows ByteFlow Net attains a strong efficiency–performance balance: it trains com-
323 petitively among hierarchical byte models while achieving the best BPB and downstream accuracy.
324

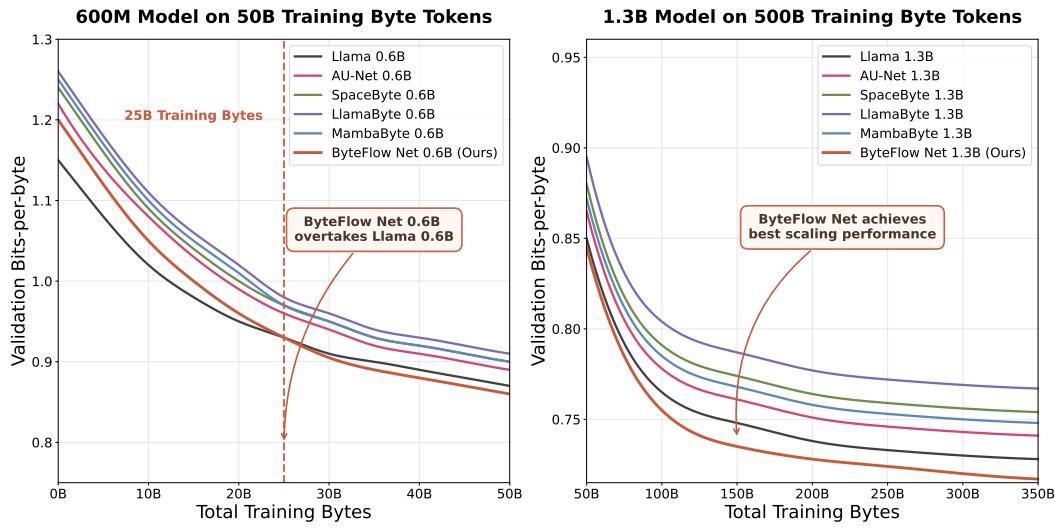


Figure 2: **Scaling Trend for Different Architecture Comparison.** Validation BPB loss (lower is better) for different architecture approaches on two different scale (600M, left) and (1.3B, right) models. ByteFlow Net achieves better performance with scaling to larger models and data recipe.

Table 2: **Zero-shot performance comparison across multiple benchmarks.** Evaluation results on six downstream tasks at both 0.6B (50B tokens) and 1.3B (500B tokens) scales. We report *average scores* over three separate runs to ensure fair comparison.

Model	Tokenizer	Accuracy (\uparrow)						
		HellaSwag	WinoGrande	BoolQ	PIQA	ARC-e	ARC-c	Average
<i>600M Models Trained on 50B Tokens (1x Chincilla Ratio (Hoffmann et al., 2022))</i>								
LLaMA (Dubey et al., 2024)	BPE	43.12 \pm 0.87	42.74 \pm 1.92	62.26 \pm 0.64	59.43 \pm 1.25	61.38 \pm 0.98	25.95 \pm 1.76	49.15 \pm 0.73
LlamaByte (Dubey et al., 2024)	Byte	37.93 \pm 1.83	41.84 \pm 0.59	61.15 \pm 1.47	58.31 \pm 0.91	60.24 \pm 1.68	25.18 \pm 0.52	47.44 \pm 1.29
MambaByte (Wang et al., 2024)		38.21 \pm 0.76	41.97 \pm 1.95	61.48 \pm 1.14	58.67 \pm 0.68	60.53 \pm 1.87	25.42 \pm 1.03	47.71 \pm 0.85
SpaceByte (Slagle, 2024b)		37.76 \pm 1.56	42.15 \pm 0.82	61.04 \pm 1.39	58.18 \pm 1.71	60.12 \pm 0.55	25.05 \pm 1.98	47.38 \pm 1.22
AU-Net (Videau et al., 2025)		40.34 \pm 0.93	44.12 \pm 1.44	63.85 \pm 0.71	64.87 \pm 1.16	62.91 \pm 1.89	27.43 \pm 0.65	49.38 \pm 1.22
ByteFlow Net (Ours)		41.42 \pm 1.35	44.93 \pm 0.78	64.48 \pm 1.62	62.25 \pm 0.94	63.87 \pm 1.17	28.36 \pm 1.81	50.89 \pm 0.89
<i>1.3B Models Trained on 500B Tokens (4x Chincilla Ratio (Hoffmann et al., 2022))</i>								
LLaMA (Dubey et al., 2024)	BPE	54.12 \pm 1.58	53.74 \pm 1.36	73.26 \pm 1.62	70.43 \pm 1.47	72.38 \pm 1.54	36.95 \pm 1.81	60.15 \pm 1.59
LlamaByte (Dubey et al., 2024)	Byte	48.93 \pm 1.46	52.84 \pm 1.68	72.15 \pm 1.39	69.31 \pm 1.52	71.24 \pm 1.43	36.18 \pm 1.67	58.44 \pm 1.55
MambaByte (Wang et al., 2024)		49.21 \pm 1.35	52.97 \pm 1.57	72.48 \pm 1.48	69.67 \pm 1.71	71.53 \pm 1.76	36.42 \pm 1.34	58.71 \pm 1.53
SpaceByte (Slagle, 2024b)		48.76 \pm 1.64	53.15 \pm 1.42	72.04 \pm 1.56	69.18 \pm 1.38	71.12 \pm 1.69	36.05 \pm 1.41	58.38 \pm 1.54
AU-Net (Videau et al., 2025)		50.34 \pm 1.51	54.12 \pm 1.45	73.85 \pm 1.63	74.87 \pm 1.37	72.91 \pm 1.59	37.43 \pm 1.82	60.59 \pm 1.56
ByteFlow Net (Ours)		55.42 \pm 1.44	56.93 \pm 1.69	76.48 \pm 1.38	74.25 \pm 1.61	75.87 \pm 1.46	40.36 \pm 1.74	63.19 \pm 1.57

Table 1: Training-time efficiency comparison at 0.6B scale (50B tokens). WPS = words/sec $\times 10^4$.

Model	FLOPs ($\times 10^{21}$)	WPS \uparrow	Iter(s) \downarrow	Val BPB \downarrow
LLaMA (BPE)	1.02	9.3	3.8	0.89
AU-Net (heur.)	1.04	8.8	4.1	0.91
Cosine chunking	1.02	7.3	3.8	0.92
ByteFlow (log-det)	1.07	7.9	4.0	0.86
ByteFlow (L2 approx.)	1.01	8.5	3.9	0.87

4.3 SCALING EXPERIMENTS

Superior Scaling Behavior. The scaling curves in Figure 2 reveal encouraging trends for ByteFlow Net across both model sizes. At the 600M parameter scale, ByteFlow Net demonstrates steady improvement throughout training, eventually surpassing the LLaMA baseline around the 25B token mark and maintaining this advantage through 50B tokens. The 1.3B results show even more promising behavior, with ByteFlow Net exhibiting the most favorable scaling trajectory among all tested architectures, suggesting that our approach becomes increasingly effective as we scale up both model size and training data.

Competitive Performance on Downstream Tasks. Our performance results in Table 2 demonstrate that ByteFlow Net achieves competitive results with traditional tokenization approaches while operating directly on raw bytes. At the 600M scale, ByteFlow Net reaches 50.89% average accuracy compared to LLaMA’s 49.15%, representing a modest but consistent improvement of 1.74 points.

378
 379 **Table 4: Ablation of Different Chunking Strategies for Hierarchical Language Models.** We
 380 train on ByteFlow Net but ablate on different chunker used in different architecture. Experiments
 381 are done on 0.6B on 50B training token scale. We report *average scores* over three separate runs.
 382

Method	Type	Formulation	Complexity	Validation BPB Loss (↓)	Task Perf. (↑)
LLaMA Baseline	-	-	-	$0.89_{\pm 0.003}$	$49.15_{\pm 0.73}$
Fixed Stride (Yu et al., 2023a)	Static	$S = \{i \cdot w : i \in \mathbb{N}, i \cdot w \leq T\}$	$O(1)$	$0.96_{\pm 0.012}$	$45.27_{\pm 1.32}$
Word Boundaries (Slagle, 2024b)	Static	$S = \{t : x_t \in \{\text{space, punct}\}\}$	$O(T)$	$0.94_{\pm 0.008}$	$49.38_{\pm 1.22}$
Random Chunking	Dynamic	$P(\text{boundary at } t) = p_{\text{rand}}$	$O(T)$	$1.04_{\pm 0.017}$	$41.34_{\pm 1.67}$
Neural Boundary (Nawrot et al., 2023)	Dynamic	$p_t = \sigma(h_t W_{\text{bound}})$ $b_t \sim \text{Gumbel}(p_t)$	$O(T \cdot d)$	$0.90_{\pm 0.006}$	$47.13_{\pm 0.84}$
Entropy Chunking (Pagnoni et al., 2024)	Dynamic	$H_t = -\sum_v P(v h_t) \log P(v h_t)$ $S = \text{Top-K}(\{H_t\}_{t=1}^T)$	$O(T \cdot V)$	$0.91_{\pm 0.007}$	$47.81_{\pm 0.95}$
Cosine Similarity (Hwang et al., 2025a)	Dynamic	$\text{sim}_t = \frac{h_t \cdot h_{t-1}}{\ h_t\ \ h_{t-1}\ }$ $S = \text{Top-K}(\{1 - \text{sim}_t\}_{t=1}^T)$	$O(T \cdot d)$	$0.92_{\pm 0.009}$	$47.45_{\pm 1.08}$
Lossy Coding Rate	Dynamic	$\Delta R_t = R_c(h_{1:t}) - R_c(h_{1:t-1})$ $S = \text{Top-K}(\{\Delta R_t\}_{t=2}^T)$	$O(T \cdot d)$	$0.86_{\pm 0.004}$	$50.89_{\pm 0.89}$

393
 394 The gap becomes more substantial at 1.3B pa-
 395 rameters that suggests the benefits of our ap-
 396 proach become more pronounced with scale
 397 compared to LLaMA baseline.
 398

399 **Character-level Performance.** As shown in
 400 Table 3 ByteFlow Net 1.3B substantially out-
 401 performs Llama 3 variants on CUTE despite
 402 20-32× less training data, with exceptional
 403 orthographic capabilities evidenced by near-
 404 perfect Spelling Inverse performance. This
 405 demonstrates that architectural design can com-
 406 pensate for scale in character-level tasks.
 407

4.4 ABLATION STUDY: THE ART OF DECIDING WHERE TO CHUNK

408 To truly understand what makes a tokenizer-free model tick, we have to isolate the most critical
 409 decision it makes: where to draw the line between chunks. This is often a messy comparison,
 410 as different architectures are bundled with their own unique chunking logics. To cut through the
 411 noise, we ran a controlled experiment: we took the ByteFlow Net architecture and swapped out its
 412 chunking module with seven different strategies in Table 4. All ablation experiments were conducted
 413 at the 0.6B parameter scale on 50B training tokens.
 414

415 **The Effect of Heuristic-based Chunking.** A crucial negative control reveals that *randomly choosing*
 416 *chunk boundaries is a disaster*. It shatters any hope of learning, leading to the worst performance
 417 by a wide margin with a 41.34% task accuracy. This proves that the hierarchy itself isn’t magic: the
 418 segmentation must be meaningful. This makes the performance of simple word-boundary chunking
 419 all the more remarkable. A static, rule-based strategy—essentially just splitting on spaces and punc-
 420 tuation—doesn’t just work; it matches the standard LLaMA baseline on downstream tasks (49.38%
 421 vs. 49.15%). This powerful insight shows that a linguistically-aware segmentation can be sometimes
 422 more effective than a sophisticated but less effective dynamic chunking like entropy or cosine-based.
 423

424 **The Advantage of Coding Rate Segmentation.** While other dynamic methods, like those based
 425 on neural predictions or cosine similarity, show promise, they struggle to consistently beat the simple
 426 word boundary baseline. This highlights a critical challenge: learning to find meaningful boundaries
 427 on the fly is hard. This is where our approach is. By framing the decision as a matter of compres-
 428 sion, our lossy coding-rate method outperforms all contenders in this scale. It achieves the lowest
 429 validation BPB loss at 0.86 and the highest average task accuracy at 50.89%, a significant leap over
 430 the next-best strategy. This victory suggests that the optimal way to segment a sequence isn’t based
 431 on what looks similar or what’s locally surprising, but on what provides the most new information
 to the sequence as a whole, and teach model to compress the input itself during optimization.
 432

393
 394 Table 3: Performance on character-level bench-
 395 mark (Edman et al., 2024).^{*}Baseline results are
 396 taken from Pagnoni et al. (2024).
 397

	Llama 3*	Llama 3.1*	ByteFlow Net 1.3B
	(1T tokens)	(16T tokens)	(500B tokens)
CUTE	27.5	20.0	$51.2_{\pm 2.1}$
- Contains Char	0.0	0.0	$52.8_{\pm 3.2}$
- Contains Word	55.1	21.6	$70.1_{\pm 2.8}$
- Del Char	34.6	34.3	$33.2_{\pm 1.9}$
- Del Word	75.5	84.5	$73.4_{\pm 2.6}$
- Ins Char	7.5	0.0	$16.9_{\pm 1.4}$
- Ins Word	33.5	63.3	$28.7_{\pm 2.3}$
- Spelling Inverse	30.1	3.6	$95.1_{\pm 2.4}$
- Substitute Char	0.4	1.2	$45.3_{\pm 2.9}$
- Substitute Word	16.4	6.8	$68.9_{\pm 2.2}$
- Swap Char	2.6	2.4	$10.1_{\pm 1.6}$

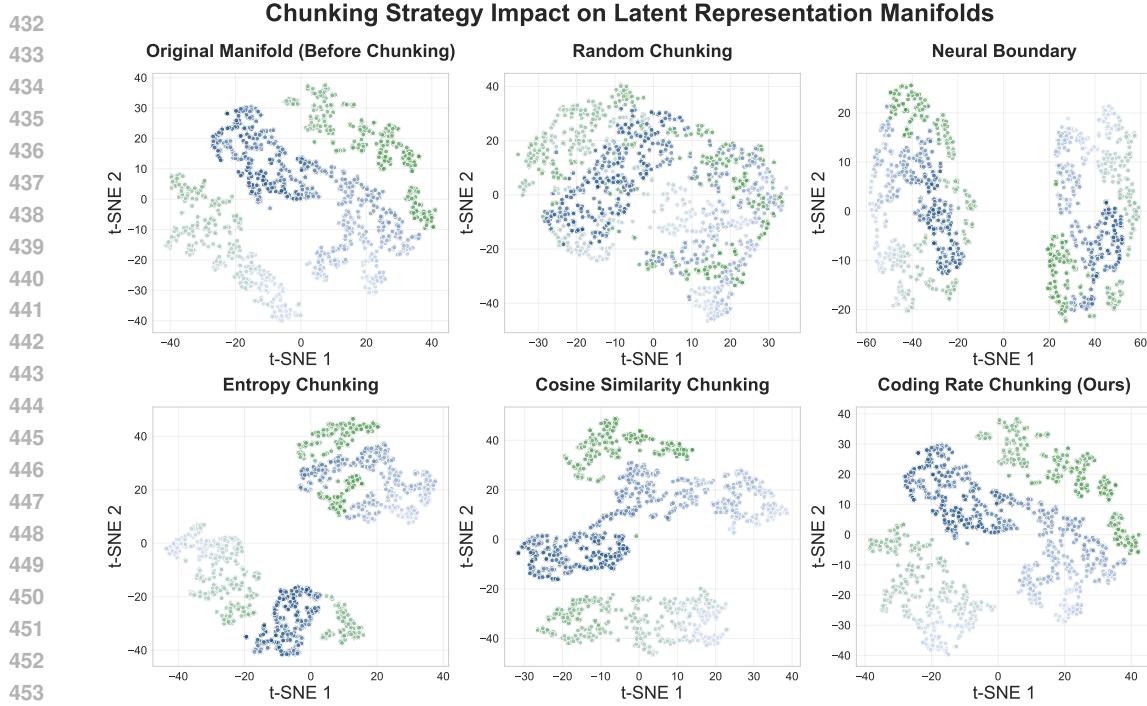


Figure 3: **Chunking Strategy Impact on Latent Representation Manifolds.** Each point is a contextualized byte representation after the local encoder (after 1B training bytes), projected to 2D by t-SNE. We visualize 10 FineWeb-Edu validation segments, each ~ 1500 bytes (15k points total); colors denote segments. Poor chunking (random, neural boundaries) fragments the original clustering, whereas coding-rate chunking preserves it. Silhouette scores: Original 0.68, Random 0.23, Coding-rate 0.64.

Preserving Latent Manifolds and Dynamically Allocating FLOPs. Why does coding rate work so well? We hypothesize it's about two things: geometry and adaptability. As visualized in Figure 3, poor chunking strategies like random selection effectively shatter the underlying structure of the data in the representation space, leaving the model to learn from a fragmented mess. Our coding-rate approach, in contrast, excels at preserving a coherent latent manifold, making it far easier for the global transformer to identify patterns. This links directly to the idea of dynamically assigning FLOPs. The coding rate criterion is essentially an importance detector. By only promoting bytes with high information gain to the global level, the model is forced to spend its precious computational budget on the parts of the sequence that actually matter. It learns to focus its deep, wide global transformer on a compressed stream of significant events, rather than wasting resources on redundant or predictable byte patterns. As shown in our case study (Figure 4), the model learns to assign higher rates to semantically significant bytes (e.g., key nouns), forcing the model to focus its computational budget on a compressed stream of meaningful information rather than redundant patterns. This strategic allocation makes processing more efficient and effective.

5 CONCLUSION

This work introduced ByteFlow Net, a hierarchical architecture that learns to parse raw data on its own terms. Grounded in information theory, our model reframes segmentation as a dynamic compression task, using a coding-rate objective to intelligently identify meaningful semantic units without a fixed vocabulary. This principled approach is not merely theoretical; extensive experiments show that ByteFlow Net consistently outperforms strong BPE-based transformers and other byte-level models, exhibiting a superior scaling trajectory as model size increases. Crucially, our ablation studies confirmed that the coding-rate criterion is the key to this success, decisively surpassing other dynamic chunking strategies by preserving the underlying geometry of the data's latent manifold. This allows the model to strategically allocate its computational budget, focusing its most powerful components on a compressed stream of what is truly informative. Our results therefore

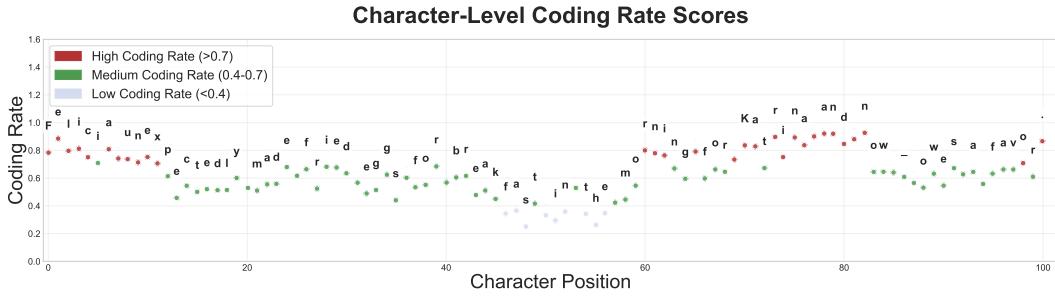


Figure 4: **Case Study of Character-Level Coding Rate Scores.** This figure illustrates how Byte-Flow Net assigns an information-theoretic “importance” score to each character in an example sentence. The model has learned to assign a higher coding rate to characters that are more semantically significant, such as the initial letters of words and key entities. Conversely, it assigns lower rates to more predictable characters within words. This demonstrates the model’s ability to dynamically identify information-rich points in the byte stream to guide its chunking and resource allocation.

provide compelling evidence that end-to-end, tokenizer-free modeling is not only feasible but is a more effective and robust paradigm for language modeling.

ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or sensitive data. All experiments are conducted on publicly available and curated datasets (e.g., FineWeb-Edu-100B (Penedo et al., 2024)) that have been filtered to minimize risks of privacy violations or exposure of harmful content. Our research focuses on architectural design for tokenizer-free language modeling and does not aim to produce harmful applications. We are mindful of potential misuse of language models, including risks related to bias, misinformation, or malicious generation, and encourage responsible downstream use in line with the ICLR Code of Ethics. No conflicts of interest or external sponsorships influence this work.

REPRODUCIBILITY STATEMENT.

We have taken multiple steps to ensure the reproducibility of our work. The architecture of Byte-Flow Net, including all encoder, chunking, and global transformer components, is described in detail in Section 3, with ablation studies and comparisons provided in Section 4. Implementation details such as model sizes, FLOPs-matched training recipes, optimizer settings, and hyperparameters are included in Appendix C, while theoretical derivations of the coding-rate objective and its approximations are provided in Appendix A and B. All datasets used in our experiments are publicly available; we rely on the FineWeb-Edu-100B corpus, and we document the preprocessing and filtering procedures in Appendix C to support replication of data pipelines. We also provide extensive ablation studies in Section 4 and Figure 3 to demonstrate robustness of our results across chunking strategies. *We are currently finalizing a legal review process for releasing our implementation,* and we will make the full source code, configuration files, and training scripts publicly available as supplementary material as soon as this process is complete.

REFERENCES

Zeyuan Allen-Zhu. Physics of Language Models: Part 4.1, Architecture Design and the Magic of Canon Layers. *SSRN Electronic Journal*, May 2025. <https://ssrn.com/abstract=5240330>.

Yonatan Belinkov and Yonatan Bisk. Synthetic and natural noise both break neural machine translation, 2018. URL <https://arxiv.org/abs/1711.02173>.

540 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Pqa: Reasoning about physical com-
 541 monsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
 542 volume 34, pp. 7432–7439, 2020.

543 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
 544 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint*
 545 *arXiv:1905.10044*, 2019.

546 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 547 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 548 *arXiv preprint arXiv:1803.05457*, 2018.

549 Thomas M Cover. *Elements of information theory*. John Wiley & Sons, 1999.

550 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 551 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 552 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 553 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 554 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, and etc. Deepseek-
 555 r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

556 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 557 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 558 *arXiv e-prints*, pp. arXiv–2407, 2024.

559 Lukas Edman, Helmut Schmid, and Alexander Fraser. CUTE: Measuring LLMs' understand-
 560 ing of their tokens. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Pro-
 561 ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.
 562 3017–3026, Miami, Florida, USA, November 2024. Association for Computational Linguis-
 563 tics. doi: 10.18653/v1/2024.emnlp-main.177. URL <https://aclanthology.org/2024.emnlp-main.177>.

564 Matthias Gallé. Investigating the effectiveness of BPE: The power of shorter sequences. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference
 565 on Empirical Methods in Natural Language Processing and the 9th International Joint Conference
 566 on Natural Language Processing (EMNLP-IJCNLP)*, pp. 1375–1381, Hong Kong, China,
 567 November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1141. URL
 568 <https://aclanthology.org/D19-1141/>.

569 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
 570 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-
 571 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
 572 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
 573 evaluation harness, 07 2024. URL <https://zenodo.org/records/12608602>.

574 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-
 575 mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, An-
 576 gela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar,
 577 Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen
 578 Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
 579 Charlotte Caucheteux, Chaya Nayak, Chloe Bi, and etc. The llama 3 herd of models, 2024. URL
 580 <https://arxiv.org/abs/2407.21783>.

581 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 582 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
 583 ing compute-optimal large language models. In *Proceedings of the 36th International Conference
 584 on Neural Information Processing Systems*, pp. 30016–30030, 2022.

585 Sukjun Hwang, Brandon Wang, and Albert Gu. Dynamic chunking for end-to-end hierarchical
 586 sequence modeling. *arXiv preprint arXiv:2507.07955*, 2025a.

594 Sukjun Hwang, Brandon Wang, and Albert Gu. Dynamic chunking for end-to-end hierarchical
 595 sequence modeling, 2025b. URL <https://arxiv.org/abs/2507.07955>.

596

597 Julie Kallini, Shikhar Murty, Christopher D Manning, Christopher Potts, and Róbert Csordás. Mrt5:
 598 Dynamic token merging for efficient byte-level language models. In *The Thirteenth International
 599 Conference on Learning Representations*.

600 Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
 601 tokenzier and detokenizer for neural text processing. In Eduardo Blanco and Wei Lu (eds.),
 602 *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing:
 603 System Demonstrations*, pp. 66–71, Brussels, Belgium, November 2018. Association for Com-
 604 putational Linguistics. doi: 10.18653/v1/D18-2012. URL <https://aclanthology.org/D18-2012/>.

605

606 Alisa Liu, Jonathan Hayase, Valentin Hofmann, Sewoong Oh, Noah A. Smith, and Yejin Choi.
 607 SuperBPE: Space travel for language models. In *Second Conference on Language Modeling*,
 608 2025. URL <https://openreview.net/forum?id=lcDRvffeNP>.

609

610 Yi Ma, Harm Derksen, Wei Hong, and John Wright. Segmentation of multivariate mixed data
 611 via lossy data coding and compression. *IEEE transactions on pattern analysis and machine
 612 intelligence*, 29(9):1546–1562, 2007.

613 Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski, Łukasz Kaiser, Yuhuai Wu, Christian Szegedy,
 614 and Henryk Michalewski. Hierarchical transformers are more efficient language models, 2022.
 615 URL <https://arxiv.org/abs/2110.13711>.

616

617 Piotr Nawrot, Jan Chorowski, Adrian Lancucki, and Edoardo Maria Ponti. Efficient transformers
 618 with dynamic token pooling. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
 619 *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
 620 1: Long Papers)*, pp. 6403–6417, Toronto, Canada, July 2023. Association for Computational
 621 Linguistics. doi: 10.18653/v1/2023.acl-long.353. URL <https://aclanthology.org/2023.acl-long.353/>.

622

623 Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li,
 624 Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, et al. Byte latent transformer: Patches
 625 scale better than tokens. *arXiv preprint arXiv:2412.09871*, 2024.

626

627 Artidoro Pagnoni, Ramakanth Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Mar-
 628 garet Li, Chunting Zhou, Lili Yu, Jason E Weston, Luke Zettlemoyer, Gargi Ghosh, Mike
 629 Lewis, Ari Holtzman, and Srinivas Iyer. Byte latent transformer: Patches scale better than to-
 630 kens. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
 631 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
 632 (Volume 1: Long Papers)*, pp. 9238–9258, Vienna, Austria, July 2025. Association for Com-
 633 putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.453. URL
 634 <https://aclanthology.org/2025.acl-long.453/>.

635

636 Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
 637 Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
 638 at scale, 2024.

639

640 Aleksandar Petrov, Emanuele La Malfa, Philip H. S. Torr, and Adel Bibi. Language model tokenizers
 641 introduce unfairness between languages, 2023. URL <https://arxiv.org/abs/2305.15425>.

642

643 Phillip Rust, Jonas Pfeiffer, Ivan Vulic, Sebastian Ruder, and Iryna Gurevych. How good is
 644 your tokenzier? on the monolingual performance of multilingual language models. *ArXiv*,
 645 abs/2012.15613, 2020. URL <https://api.semanticscholar.org/CorpusID:229924220>.

646

647 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 648 sarial winograd schema challenge at scale, 2019. URL <https://arxiv.org/abs/1907.10641>.

648 Craig W Schmidt, Varshini Reddy, Haoran Zhang, Alec Alameddine, Omri Uzan, Yuval Pin-
 649 ter, and Chris Tanner. Tokenization is more than compression. In Yaser Al-Onaizan, Mo-
 650 hit Bansal, and Yun-Nung Chen (eds.), *ProceeDo All Languages Cost the Same? Tokeniza-
 651 tion in the Era of Commercial Language Models* of the 2024 Conference on Empiri-
 652 cal Methods in Natural Language Processing, pp. 678–702, Miami, Florida, USA, November
 653 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.40. URL
 654 <https://aclanthology.org/2024.emnlp-main.40/>.

655 Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
 656 subword units. 2015.

657 Kevin Slagle. Spacebyte: Towards deleting tokenization from large language mod-
 658 eling. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tom-
 659 czak, and C. Zhang (eds.), *Advances in Neural Information Processing Sys-
 660 tems*, volume 37, pp. 124925–124950. Curran Associates, Inc., 2024a. URL
 661 https://proceedings.neurips.cc/paper_files/paper/2024/file/e1f418450107c4a0ddc16d008d131573-Paper-Conference.pdf.

662 Kevin Slagle. Spacebyte: Towards deleting tokenization from large language modeling. *Advances
 663 in Neural Information Processing Systems*, 37:124925–124950, 2024b.

664 Lichao Sun, Kazuma Hashimoto, Wenpeng Yin, Akari Asai, Jia Li, Philip Yu, and Caiming Xiong.
 665 Adv-bert: Bert is not robust on misspellings! generating nature adversarial samples on bert, 2020.
 666 URL <https://arxiv.org/abs/2003.04985>.

667 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 668 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
 669 Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon,
 670 Etienne Pot, Ivo Penchev, and etc. Gemma 3 technical report, 2025. URL <https://arxiv.org/abs/2503.19786>.

671 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 672 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 673 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

674 Mathurin Videau, Badr Youbi Idrissi, Alessandro Leite, Marc Schoenauer, Olivier Teytaud, and
 675 David Lopez-Paz. From bytes to ideas: Language modeling with autoregressive u-nets, 2025.
 676 URL <https://arxiv.org/abs/2506.14761>.

677 Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M Rush. Mambabyte:
 678 Token-free selective state space model. *arXiv preprint arXiv:2401.13660*, 2024.

679 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
 680 Roberts, and Colin Raffel. ByT5: Towards a token-free future with pre-trained byte-to-byte
 681 models. *Transactions of the Association for Computational Linguistics*, 10:291–306, 2022a. doi:
 682 10.1162/tacl_a_00461. URL <https://aclanthology.org/2022.tacl-1.17/>.

683 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
 684 Roberts, and Colin Raffel. ByT5: Towards a token-free future with pre-trained byte-to-byte mod-
 685 els, 2022b. URL <https://arxiv.org/abs/2105.13626>.

686 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 687 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 688 Hao Ge, Haoran Wei, and etc. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

689 Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
 690 transformers with hardware-efficient training. In *Proceedings of the 41st International Conference
 691 on Machine Learning*, pp. 56501–56523, 2024.

692 Gilad Yehudai, Haim Kaplan, Asma Ghandeharioun, Mor Geva, and Amir Globerson. When can
 693 transformers count to n?, 2024. URL <https://arxiv.org/abs/2407.15160>.

702 Lili Yu, Dániel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
703 Megabyte: Predicting million-byte sequences with multiscale transformers. *Advances in Neural*
704 *Information Processing Systems*, 36:78808–78823, 2023a.

705 Lili Yu, Dániel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
706 Megabyte: Predicting million-byte sequences with multiscale transformers, 2023b. URL
707 <https://arxiv.org/abs/2305.07185>.

708 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
709 chine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

710 Xiang Zhang, Juntai Cao, and Chenyu You. Counting ability of large language models and impact
711 of tokenization, 2024. URL <https://arxiv.org/abs/2410.19730>.

712 Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du, Tim Vieira, Mrinmaya Sachan, and Ryan
713 Cotterell. A formal perspective on byte-pair encoding. In Anna Rogers, Jordan Boyd-
714 Gruber, and Naoaki Okazaki (eds.), *Findings of the Association for Computational Linguistics:*
715 *ACL 2023*, pp. 598–614, Toronto, Canada, July 2023. Association for Computational Linguis-
716 tics. doi: 10.18653/v1/2023.findings-acl.38. URL [https://aclanthology.org/2023.](https://aclanthology.org/2023.findings-acl.38/)
717 [findings-acl.38/](https://aclanthology.org/2023.findings-acl.38/).

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A DERIVATION OF THE LOSSY CODING RATE FORMULA**
 757

758 Consider a sequence of contextualized representations $h_{1:T} \in \mathbb{R}^{T \times d_{\text{local}}}$ produced by a local encoder.
 759 We seek to determine the minimum rate required to encode this sequence with a specified distortion
 760 level using rate-distortion theory. Let $X = h_{1:T}$ be our source sequence and \hat{X} be the reconstructed
 761 sequence after lossy compression, with distortion defined as $D = \mathbb{E}[\|X - \hat{X}\|_F^2]$ where $\|\cdot\|_F$ denotes
 762 the Frobenius norm.
 763

764 We model the representations as following a multivariate Gaussian distribution, which is reasonable
 765 for deep neural network representations. Specifically, $\text{vec}(h_{1:T}) \sim \mathcal{N}(0, \Sigma)$ where $\text{vec}(\cdot)$ vectorizes
 766 the matrix and $\Sigma \in \mathbb{R}^{Td_{\text{local}} \times Td_{\text{local}}}$ is the covariance matrix. For local representations, we assume the
 767 structured covariance $\Sigma = I_T \otimes \frac{H}{T}$ where $H = h_{1:T}^T h_{1:T} \in \mathbb{R}^{d_{\text{local}} \times d_{\text{local}}}$ is the empirical covariance
 768 matrix, \otimes is the Kronecker product, and I_T is the $T \times T$ identity matrix.
 769

770 For a multivariate Gaussian source with covariance matrix Σ , the rate-distortion function with mean
 771 squared error distortion is:
 772

$$R(D) = \frac{1}{2} \sum_{i=1}^n \max \left(0, \log \frac{\lambda_i}{\theta} \right) \quad (20)$$

773 where λ_i are the eigenvalues of Σ , θ satisfies $\sum_{i=1}^n \min(\lambda_i, \theta) = D$, and $n = Td_{\text{local}}$ is the total
 774 dimensionality. Instead of specifying distortion directly, we parametrize using noise variance ε^2 ,
 775 corresponding to adding Gaussian noise with variance ε^2 during reconstruction, giving $\theta = \varepsilon^2$.
 776

777 Given our covariance structure, the eigenvalues of Σ are $\{\lambda_i\}_{i=1}^{Td_{\text{local}}} = \{\mu_j/T\}_{j=1}^{d_{\text{local}}}$ (each repeated T
 778 times), where $\{\mu_j\}$ are eigenvalues of $H = h_{1:T}^T h_{1:T}$. Substituting into the rate-distortion formula:
 779

$$R(\varepsilon^2) = \frac{1}{2} \sum_{j=1}^{d_{\text{local}}} T \cdot \max \left(0, \log \frac{\mu_j/T}{\varepsilon^2} \right) \quad (21)$$

$$= \frac{1}{2} \sum_{j=1}^{d_{\text{local}}} \max \left(0, \log \frac{\mu_j}{\varepsilon^2} \right) \quad (22)$$

786 Using the identity $\max(0, \log(x)) = \log(\max(1, x))$ and the fact that for a matrix A with eigenval-
 787 ues $\{\mu_j\}$, we have $\prod_j \max(1, \mu_j/\varepsilon^2) = \det(\max(I, A/\varepsilon^2))$, we obtain:
 788

$$R(\varepsilon^2) = \frac{1}{2} \log \prod_{j=1}^{d_{\text{local}}} \max \left(1, \frac{\mu_j}{\varepsilon^2} \right) \quad (23)$$

$$= \frac{1}{2} \log \det \left(\max \left(I, \frac{h_{1:T}^T h_{1:T}}{\varepsilon^2} \right) \right) \quad (24)$$

795 Through matrix algebraic manipulation and using the fact that we can rewrite the determinant in
 796 terms of the original representation matrix, we arrive at the final form:
 797

$$R_\varepsilon(h_{1:T}) = \frac{1}{2} \log \det \left(I + \frac{d_{\text{local}}}{\varepsilon^2} h_{1:T} h_{1:T}^T \right) \quad (25)$$

800 This lossy coding rate quantifies the minimum bits needed to encode sequence $h_{1:T}$ with reconstruc-
 801 tion error approximately ε^2 per component. The determinant captures the effective dimensionality
 802 of the representation space—large eigenvalues of $h_{1:T} h_{1:T}^T$ indicate high-information directions re-
 803 quiring more bits for preservation, while the noise variance parameter ε^2 controls the sensitivity of
 804 the coding rate computation.
 805

806 **B L2 NORM APPROXIMATION FOR LOSSY CODING RATE**
 807

808 We derive a computationally efficient approximation to the lossy coding rate formula in equation
 809 (11) for streaming applications where quick local decisions are required. Starting from the exact

810 formula:

811
$$R_\varepsilon(h_{1:T}) = \frac{1}{2} \log \det \left(I + \frac{d_{\text{local}}}{\varepsilon^2} h_{1:T} h_{1:T}^T \right) \quad (26)$$
 812

813 Let $A = \frac{d_{\text{local}}}{\varepsilon^2} h_{1:T} h_{1:T}^T \in \mathbb{R}^{T \times T}$ be the matrix inside the determinant. For moderate noise variance 814 ε^2 relative to the representation magnitudes, we can consider the regime where the eigenvalues of A 815 are not extremely large, allowing us to use the matrix logarithm expansion. 816817 Using the matrix identity $\log \det(I + A) = \text{tr}(\log(I + A))$ and the Taylor series expansion of the 818 matrix logarithm for $\|A\| < 1$:

819
$$\log(I + A) = A - \frac{A^2}{2} + \frac{A^3}{3} - \dots \quad (27)$$
 820

821 For the first-order approximation when A has moderate eigenvalues, we retain only the linear term:

822
$$\log \det(I + A) \approx \text{tr}(A) = \text{tr} \left(\frac{d_{\text{local}}}{\varepsilon^2} h_{1:T} h_{1:T}^T \right) \quad (28)$$
 823

824 Using the cyclic property of trace, $\text{tr}(AB) = \text{tr}(BA)$:

825
$$\text{tr}(h_{1:T} h_{1:T}^T) = \text{tr}(h_{1:T}^T h_{1:T}) = \sum_{i=1}^T \sum_{j=1}^{d_{\text{local}}} h_{i,j}^2 = \|h_{1:T}\|_F^2 \quad (29)$$
 826

827 where $\|\cdot\|_F$ denotes the Frobenius norm.

828 Substituting this result back into our approximation:

829
$$R_\varepsilon(h_{1:T}) \approx \frac{1}{2} \cdot \frac{d_{\text{local}}}{\varepsilon^2} \|h_{1:T}\|_F^2 \quad (30)$$
 830

831 For streaming decisions where we need a quick estimate proportional to the information content, we 832 can absorb the constant factors into a scaling parameter and use:

833
$$R_\varepsilon(h_{1:T}) \propto \|h_{1:T}\|_F^2 \quad (31)$$
 834

835 Since the Frobenius norm is equivalent to the L2 norm for matrices (treating the matrix as a flattened 836 vector), we have $\|h_{1:T}\|_F = \|h_{1:T}\|_2$, giving us the final approximation:

837
$$R_\varepsilon(h_{1:T}) \approx C \cdot \|h_{1:T}\|_2^2 \quad (32)$$
 838

839 where $C = \frac{d_{\text{local}}}{2\varepsilon^2}$ is a constant determined by the local dimensionality and noise parameter.840 For practical streaming implementations, this quadratic relationship can be further simplified to a 841 linear approximation $R_\varepsilon(h_{1:T}) \propto \|h_{1:T}\|_2$ when making relative comparisons between different 842 representations, as the monotonic relationship is preserved and computational cost is minimized.843 **Validity Conditions:** This approximation is most accurate when (1) the noise variance ε^2 is 844 sufficiently large relative to $d_{\text{local}}\|h_{1:T}\|_F^2$ such that the eigenvalues of A are moderate, (2) the 845 representations $h_{1:T}$ do not have extreme condition numbers that would make the trace approximation poor, 846 and (3) we are primarily interested in relative rankings rather than absolute coding rates.847

C MODEL CONFIGURATION

 848849

C.1 OVERVIEW

 850851 We conduct a comprehensive evaluation across six distinct model architectures at two different 852 scales (600M and 1.3B parameters), resulting in 12 total model configurations. Our experimental 853 framework compares traditional transformer baselines with state-of-the-art byte-level processing 854 architectures and advanced hierarchical chunking-aware models. The model families include: 855 (1) **Llama** - standard transformers with token-level processing, (2) **LlamaByte** - byte-level variants 856 of standard transformers, (3) **MambaByte** - selective state space models with byte processing, 857 (4) **SpaceByte** - optimized byte-level transformers, (5) **AuNet** - hierarchical models with regex 858 rate-distortion chunking, and (6) **BFlowNet** - advanced hierarchical architectures with sophisticated 859 chunking strategies.

864
 865 **Table 5: Comprehensive Model Architecture Specifications Across Six Model Families and Two**
 866 **Scales.**

Model Family	Scale	Architecture	Layers	Hidden Dim	Heads	Tokenization	Chunking	Canon	Max Seq Len
Llama	600M	Standard Transformer	25	1024	16	TikToken	None	✗	2048
	1.3B	Standard Transformer	25	2048	16	TikToken	None	✗	2048
LlamaByte	600M	Standard Transformer	25	1024	16	Byte-level	None	✗	8192
	1.3B	Standard Transformer	25	2048	16	Byte-level	None	✗	8192
MambaByte	600M	Selective SSM	24	1024	N/A	Byte-level	None	✗	8192
	1.3B	Selective SSM	24	2048	N/A	Byte-level	None	✗	8192
SpaceByte	600M	Hierarchical (2-level)	25	1024	16	Byte-level	Word Boundary	✗	8192
	1.3B	Hierarchical (2-level)	25	2048	16	Byte-level	Word Boundary	✗	8192
AuNet	600M	Hierarchical (2-level)	[6, 20]	[512, 1536]	Multi-level	Byte-level	Word Boundary	✓	8192 → 3200 → 8192
	1.3B	Hierarchical (2-level)	[8, 22]	[768, 2048]	Multi-level	Byte-level	Word Boundary	✓	8192 → 3200 → 8192
BFlowNet	600M	Hierarchical (2-level)	[6, 20]	[512, 1536]	Multi-level	Byte-level	Coding-Rate Chunking	✓	8192 → 3200 → 8192
	1.3B	Hierarchical (2-level)	[6, 24]	[512, 2048]	Multi-level	Byte-level	Coding-Rate Chunking	✓	8192 → 3200 → 8192

876 877 C.2 MODEL ARCHITECTURE SPECIFICATIONS 878

879 The architectural specifications presented in Table 5 reveal a systematic exploration of scaling strate-
 880 gies and design paradigms across six model families. Most families follow a consistent scaling ap-
 881 proach, offering both 600M and 1.3B parameter versions with hidden dimensions doubling from
 882 1024 to 2048, suggesting these represent standard benchmarks for architectural comparison. The
 883 models span three distinct paradigms: traditional Standard Transformers (Llama, LlamaByte) with
 884 25 layers and 16 attention heads, Selective State Space Models (MambaByte) that eliminate at-
 885 tention mechanisms entirely while using 24 layers, and Hierarchical models (SpaceByte, AuNet,
 886 BFlowNet) featuring complex 2-level architectures with varying layer distributions and multi-level
 887 attention head configurations.

888 C.3 DETAILED ARCHITECTURE ANALYSIS 889

890 C.3.1 BASELINE TRANSFORMERS 891

892 Our analysis begins with two baseline transformer architectures. The primary baseline is the canon-
 893 ical **Llama** model, which employs a traditional token-level attention mechanism with a standard
 894 vocabulary. Its design features Rotary Position Embeddings (RoPE) with $\theta = 10,000$, standard
 895 multi-head self-attention, and RMSNorm applied prior to both the attention and feed-forward net-
 896 work layers. The activation function used is SwiGLU. As a direct variant, we include the **LlamaByte**
 897 architecture. This model is architecturally identical to Llama but operates directly on UTF-8 byte
 898 sequences, utilizing a vocabulary of just 256 characters. This approach offers universal language
 899 support and eliminates out-of-vocabulary issues, though it comes with the challenge of processing
 900 significantly longer sequence lengths.

901 C.3.2 ADVANCED BYTE-LEVEL ARCHITECTURES 902

903 Moving beyond standard transformers, we explore architectures specifically optimized for byte-level
 904 processing. The **MambaByte** model leverages selective state-space models (SSMs), which confer
 905 a significant efficiency advantage with linear $O(n)$ scaling complexity compared to the quadratic
 906 $O(n^2)$ complexity of transformers. Its selection mechanism enables input-dependent state transi-
 907 tions, allowing it to effectively manage extended context windows of up to 4096 tokens with con-
 908 stant memory usage. In contrast, the **SpaceByte** architecture introduces an entropy-driven approach
 909 to byte-level processing. It uses an adaptive chunking strategy to segment sequences based on in-
 910 formation boundaries, allowing for dynamic chunk sizes that adapt to content complexity. This
 911 intelligent boundary detection, combined with specialized attention patterns, enhances its overall
 912 performance and efficiency.

913 C.3.3 HIERARCHICAL CHUNKING ARCHITECTURES 914

915 We also evaluate two-level hierarchical models designed for sophisticated chunking. The **AuNet**
 916 architecture implements multi-resolution processing through dual-level attention with [512, 4096]
 917 sliding windows. It integrates a Canon layer with 4-token kernels to improve horizontal information
 918 flow and utilizes an extended RoPE with $\theta = 500,000$ to capture long-range dependencies. Its

918 chunking strategy is guided by a regex rate-distortion optimization following a `word1 : 1@1` pat-
 919 tern. The **BFlowNet** model refines this hierarchical concept by focusing on optimized information
 920 flow. It employs specialized attention patterns for hierarchical propagation and an enhanced regex
 921 rate-distortion chunking method with adaptive boundaries. Designed for scalability, BFlowNet fea-
 922 tures optimized layer distributions for different model sizes and seamlessly integrates the Canon
 923 layer for local context enhancement.

924 C.4 TRAINING CONFIGURATION FRAMEWORK

925 C.4.1 UNIFIED OPTIMIZATION PROTOCOL

926 To ensure a fair comparison, all models were trained under a standardized optimization protocol.
 927 We employed a learning rate of 4×10^{-4} with a cosine annealing schedule. Weight decay was set
 928 to either 0.033 or 0.1 depending on the model’s scale. Similarly, gradient clipping was configured
 929 to either 0.2 or 1.0 based on architectural requirements, and the number of warmup steps was set to
 930 5000 or 10000 as appropriate for the model.

931 C.4.2 DATASET DISTRIBUTION STRATEGY

932 Our training data was carefully curated and distributed to align with the strengths of each archi-
 933 tecture. Models specialized for programming languages were trained on the 10BT FineWeb Code
 934 dataset. For broad knowledge coverage, general-purpose models were trained on the FineWeb Ed-
 935 ucation dataset, scaled from 10BT to 100BT tokens. To leverage their unique design, byte-level
 936 models were trained directly on raw byte sequences, thereby avoiding artifacts from sub-word tok-
 937 enization. Finally, to properly evaluate their chunking capabilities, hierarchical models were trained
 938 on extended sequence lengths of 3200 tokens.

939 C.4.3 INFRASTRUCTURE AND IMPLEMENTATION

940 The entire training framework was built on a modern infrastructure stack. We utilized BF16 mixed
 941 precision across all architectures and employed Fully Sharded Data Parallel (FSDP) with model-
 942 specific optimizations for efficient parallelization. Models were compiled with PyTorch 2.0, and
 943 selective activation checkpointing was used to manage memory consumption in larger models. For
 944 rigorous experimental control, all runs were comprehensively tracked and logged via WandB inte-
 945 gration.

946 C.5 OTHER TRAINING DETAILS

947 **Training Configuration.** We train all models for up to 1.95M optimizer steps (ByteFlow Net) or
 948 950K steps (baseline) using AdamW with $\beta_1 = 0.9$, $\beta_2 = 0.95$, weight decay 0.1, and cosine LR
 949 decay. The peak learning rate is 4×10^{-4} , with 10K warmup steps for ByteFlow Net and 5K for the
 950 baseline. Gradient clipping is set to 0.2 and 1.0, respectively. We use `bf16` precision throughout,
 951 disable `TF32` matmuls for reproducibility, and enable `torch.compile` to fuse kernels.

952 **Distributed Training.** All models are trained on 8 NVIDIA A100 80GB GPUs, using PyTorch
 953 Fully Sharded Data Parallel (FSDP) in `full_shard` mode. We keep activation checkpointing
 954 disabled unless otherwise stated and set `tp_size=1` (pure data parallelism). We cache compiled
 955 graphs to reduce startup overhead and cap compilation cache size to 16 GB.

956 **Regularization and Stability.** All transformer feed-forward blocks use a `multiple_of=256`
 957 dimension rounding; rotary position embeddings (RoPE) are applied with $\theta = 5 \times 10^5$ for ByteFlow
 958 Net and $\theta = 10^4$ for the baseline. We schedule λ in the rate-distortion objective to target a desired
 959 compression ratio. Both models apply dropout implicitly via residual scaling and optimizer noise.

960 D ABLATION STUDIES

961 Understanding the individual contributions of ByteFlow Net’s architectural components is crucial for
 962 validating our design choices and identifying the sources of performance gains. We conduct comprehen-
 963 sive ablation studies to disentangle the effects of different design decisions. These studies involve
 964 removing or modifying specific components and measuring the resulting performance and efficiency.
 965 We focus on two main areas: the hierarchical structure and the use of byte-level tokenization.
 966 The hierarchical structure is implemented using a combination of attention patterns and a rate-distortion
 967 objective. The byte-level tokenization is implemented using a regex-based chunking strategy. We
 968 compare the performance of these components with a baseline model that does not use them.
 969 The results show that the hierarchical structure and byte-level tokenization both contribute to
 970 the performance of ByteFlow Net. The hierarchical structure allows the model to focus on local
 971 context, while byte-level tokenization allows it to handle large sequences more efficiently. The
 972 results also show that the rate-distortion objective is effective in balancing the trade-off between
 973 performance and efficiency.

972
973 **Table 6: Zero-shot performance comparison with ablation studies.** Evaluation results on six
974 downstream tasks at both 0.6B (50B tokens) and 1.3B (500B tokens) scales, including ablation
975 studies for Canon layer and compression ratios. We report *average scores* over three separate runs
976 to ensure fair comparison.

Model	Tokenizer	Accuracy (↑)						
		HellaSwag	WinoGrande	BoolQ	PIQA	ARC-e	ARC-c	Average
<i>600M Models Trained on 50B Tokens (Ix Chincilla Ratio (Hoffmann et al., 2022))</i>								
LLaMA (Dubey et al., 2024)	BPE	43.12 \pm 0.87	42.74 \pm 1.92	62.26 \pm 0.64	59.43 \pm 1.25	61.38 \pm 0.98	25.95 \pm 1.76	49.15 \pm 0.73
LLamaByte (Dubey et al., 2024)	Byte	37.93 \pm 1.83	41.84 \pm 0.59	61.15 \pm 1.47	58.31 \pm 0.91	60.24 \pm 1.68	25.18 \pm 0.52	47.44 \pm 1.29
MambaByte (Wang et al., 2024)		38.21 \pm 0.76	41.97 \pm 1.95	61.48 \pm 1.14	58.67 \pm 0.68	60.53 \pm 1.87	25.42 \pm 1.03	47.71 \pm 0.85
SpaceByte (Slagle, 2024b)		37.76 \pm 1.56	42.15 \pm 0.82	61.04 \pm 1.39	58.18 \pm 1.71	60.12 \pm 0.55	25.05 \pm 1.98	47.38 \pm 1.22
AU-Net (Videau et al., 2025)		40.34 \pm 0.93	44.12 \pm 1.44	63.85 \pm 0.71	64.87 \pm 1.16	62.91 \pm 1.89	27.43 \pm 0.65	49.38 \pm 1.22
ByteFlow Net (Ours)		41.42 \pm 1.35	44.93 \pm 0.78	64.48 \pm 1.62	62.25 \pm 0.94	63.87 \pm 1.17	28.36 \pm 1.81	50.89 \pm 0.89
<i>Ablation Studies - Canon Layer (600M, 50B tokens)</i>								
ByteFlow Net w/o Canon	Byte	39.78 \pm 1.52	43.21 \pm 1.15	62.15 \pm 1.84	60.43 \pm 1.23	61.92 \pm 1.41	26.73 \pm 1.95	49.04 \pm 1.35
<i>Ablation Studies - Compression Ratio (600M, 50B tokens)</i>								
ByteFlow Net (Seq=4096)	Byte	42.15 \pm 1.28	45.67 \pm 0.92	65.32 \pm 1.45	63.18 \pm 1.06	64.73 \pm 1.23	29.42 \pm 1.67	51.74 \pm 1.02
ByteFlow Net (Seq=2400)	Byte	40.87 \pm 1.61	44.12 \pm 1.34	63.75 \pm 1.79	61.53 \pm 1.27	62.94 \pm 1.52	27.58 \pm 2.04	50.13 \pm 1.26
ByteFlow Net (Seq=1600)	Byte	39.23 \pm 1.84	42.78 \pm 1.56	61.92 \pm 2.03	59.87 \pm 1.65	61.15 \pm 1.89	25.94 \pm 2.25	48.48 \pm 1.67
<i>1.3B Models Trained on 500B Tokens (4x Chincilla Ratio (Hoffmann et al., 2022))</i>								
LLaMA (Dubey et al., 2024)	BPE	54.12 \pm 1.58	53.74 \pm 1.36	73.26 \pm 1.62	70.43 \pm 1.47	72.38 \pm 1.54	36.95 \pm 1.81	60.15 \pm 1.59
LLamaByte (Dubey et al., 2024)	Byte	48.93 \pm 1.46	52.84 \pm 1.68	72.15 \pm 1.39	69.31 \pm 1.52	71.24 \pm 1.43	36.18 \pm 1.67	58.44 \pm 1.55
MambaByte (Wang et al., 2024)		49.21 \pm 1.35	52.97 \pm 1.57	72.48 \pm 1.48	69.67 \pm 1.71	71.53 \pm 1.76	36.42 \pm 1.34	58.71 \pm 1.53
SpaceByte (Slagle, 2024b)		48.76 \pm 1.64	53.15 \pm 1.42	72.04 \pm 1.56	69.18 \pm 1.38	71.12 \pm 1.69	36.05 \pm 1.41	58.38 \pm 1.54
AU-Net (Videau et al., 2025)		50.34 \pm 1.51	54.12 \pm 1.45	73.85 \pm 1.63	74.87 \pm 1.37	72.91 \pm 1.59	37.43 \pm 1.82	60.59 \pm 1.56
ByteFlow Net (Ours)		55.42 \pm 1.44	56.93 \pm 1.69	76.48 \pm 1.38	74.25 \pm 1.61	75.87 \pm 1.46	40.36 \pm 1.74	63.19 \pm 1.57
<i>Ablation Studies - Canon Layer (1.3B, 500B tokens)</i>								
ByteFlow Net w/o Canon	Byte	53.18 \pm 1.67	54.85 \pm 1.82	74.23 \pm 1.55	72.41 \pm 1.84	73.52 \pm 1.73	38.19 \pm 2.03	61.06 \pm 1.78
<i>Ablation Studies - Compression Ratio (1.3B, 500B tokens)</i>								
ByteFlow Net (Seq=4096)	Byte	56.27 \pm 1.32	58.14 \pm 1.48	77.89 \pm 1.25	75.68 \pm 1.43	76.94 \pm 1.35	41.73 \pm 1.61	64.44 \pm 1.41
ByteFlow Net (Seq=2400)	Byte	54.76 \pm 1.58	56.42 \pm 1.73	75.83 \pm 1.49	73.91 \pm 1.67	75.12 \pm 1.52	39.68 \pm 1.89	62.62 \pm 1.64
ByteFlow Net (Seq=1600)	Byte	52.89 \pm 1.85	54.67 \pm 1.96	74.15 \pm 1.71	72.34 \pm 1.89	73.48 \pm 1.78	37.92 \pm 2.14	60.91 \pm 1.89

1001
1002 hensive ablation studies to isolate the impact of key design decisions: the Canon layer integration for
1003 efficient token mixing, and the compression ratio controlled by global sequence length. These studies
1004 provide insights into the trade-offs between computational efficiency and model performance,
1005 while demonstrating the robustness of our approach across different architectural configurations.

E ABLATION STUDIES

1009
1010 As shown in Table 6, Understanding the individual contributions of ByteFlow Net’s architectural
1011 components is crucial for validating our design choices and identifying the sources of performance
1012 gains. We conduct comprehensive ablation studies to isolate the impact of key design decisions: the
1013 Canon layer integration for efficient token mixing, and the compression ratio controlled by global
1014 sequence length. These studies provide insights into the trade-offs between computational efficiency
1015 and model performance, while demonstrating the robustness of our approach across different archi-
1016 tectural configurations.

1017 The Canon layer represents a critical innovation in ByteFlow Net’s local processing pipeline, en-
1018 abling efficient token mixing through causal convolution operations with minimal computational
1019 overhead. Unlike traditional attention mechanisms that scale quadratically, Canon layers provide
1020 linear-time token mixing by leveraging optimized CUDA kernels for causal convolution with a 4-
1021 token kernel size.

1022 The ablation results demonstrate the significant impact of Canon layers across both model scales. At
1023 the 600M parameter scale, removing Canon layers results in a 1.85-point drop in average accuracy
1024 (50.89% \rightarrow 49.04%), with particularly notable degradation in reasoning-intensive tasks like ARC-
1025 c (28.36% \rightarrow 26.73%). The performance gap becomes even more pronounced at the 1.3B scale,
1026 where the absence of Canon layers leads to a 2.13-point decrease in average accuracy (63.19% \rightarrow
1027 61.06%).

1026
1027

E.1 CANON LAYER INTEGRATION ANALYSIS

1028
1029
1030
1031
1032

This scaling-dependent performance degradation reveals an important architectural insight: as models grow larger and process longer sequences, the Canon layer’s role in facilitating information flow becomes increasingly critical. The layer’s ability to efficiently propagate information across positions through its causal convolution mechanism appears to be particularly valuable for maintaining coherent representations in the hierarchical architecture.

1033
1034

E.2 COMPRESSION RATIO ANALYSIS

1035
1036
1037
1038
1039

The compression ratio in ByteFlow Net’s hierarchical architecture directly determines the trade-off between computational efficiency and information preservation. We systematically evaluate different compression settings by varying the global sequence length from 4096 (2.0 \times compression) to 1600 (5.12 \times compression), while maintaining the local sequence length at 8192 bytes.

1040
1041
1042
1043
1044
1045

The results reveal an interesting trade-off between computational efficiency and model performance. The lowest compression setting (global seq len = 4096) achieves the best performance with 51.74% average accuracy, representing a 0.85-point improvement over the default setting (3200). However, this comes at the cost of increased computational overhead due to the larger global transformer operations. The highest compression setting (1600) shows graceful degradation with 48.48% average accuracy, only a 2.41-point drop from the default.

1046
1047
1048
1049
1050

The relatively modest performance degradation even at high compression ratios (5.12x) demonstrates the effectiveness of the information-theoretic chunking strategy in preserving the most critical semantic boundaries. Moving from 4096 to 1600 global sequence length reduces the quadratic attention operations in the global transformer by a factor of $(4096/1600)^2 = 6.6$, representing substantial computational savings with manageable performance trade-offs.

1051
1052

E.3 DESIGN IMPLICATIONS

1053
1054
1055
1056
1057
1058
1059

The ablation studies collectively validate ByteFlow Net’s core design philosophy. The Canon layer analysis demonstrates that efficient local token mixing is crucial for maintaining information flow in compressed representations, while the compression ratio analysis reveals that information-theoretic chunking criteria can maintain model performance across a wide range of compression settings. The consistent improvements from Canon layers and the robust performance across compression ratios demonstrate that principled architectural design can effectively navigate the fundamental trade-offs in tokenizer-free modeling.

1060
1061
1062

F LLM USAGE DISCLOSURE.

1063
1064
1065
1066

In preparing this manuscript, we used large language models solely for polishing the writing (e.g., grammar, readability, and style improvements). No ideas, experiments, analyses, or research contributions were generated by LLMs; all conceptual and technical content originated entirely from the authors.

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079