
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BYTEFLOW: LANGUAGE MODELING THROUGH ADAP-
TIVE BYTE COMPRESSION WITHOUT A TOKENIZER

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern language models (LMs) still rely on fixed, pre-defined subword tokeniza-
tions. Once a tokenizer is trained, the LM can only operate at this fixed level
of granularity, which often leads to brittle and counterintuitive behaviors even in
otherwise strong reasoning models. We introduce ByteFlow Net, a new hierar-
chical architecture that removes tokenizers entirely and instead enables models
to learn their own segmentation of raw byte streams into semantically meaning-
ful units. ByteFlow Net performs compression-driven segmentation based on the
coding rate of latent representations, yielding adaptive boundaries while preserv-
ing a static computation graph via Top-K selection. Unlike prior self-tokenizing
methods that depend on brittle heuristics with human-designed inductive biases,
ByteFlow Net adapts its internal representation granularity to the input itself. Ex-
periments demonstrate that this compression-based chunking strategy yields sub-
stantial performance gains, with ByteFlow Net outperforming both BPE-based
Transformers and previous byte-level architectures. These results suggest that
end-to-end, tokenizer-free modeling is not only feasible but also more effective,
opening a path toward more adaptive, robust, and information-grounded language
models.

1 INTRODUCTION

Tokenization is a foundational step in every language model pipeline (Grattafiori et al., 2024; Team
et al., 2025; DeepSeek-AI et al., 2025; Yang et al., 2025). The model’s first action is to segment raw
input—be it text, code, or other modalities—into discrete tokens. This seemingly simple decision
carries profound consequences, defining the model’s vocabulary, sequence lengths, and the very
granularity of its learned representations. The primary limitation of dominant strategies like byte-
pair encoding (BPE) (Sennrich et al., 2015; Gallé, 2019; Liu et al., 2025) is their static nature. After
training, they apply a fixed segmentation logic to all inputs, ignoring context, linguistic nuance, or
task-specific requirements. This static property on subword level is the source of many wierd model
behaviors, such as difficulties with counting, arithmetic, structured data, and multilingual text (Rust
et al., 2020; Zhang et al., 2024; Yehudai et al., 2024). At a more fundamental level, tokenization
introduces a non-learnable stage into the pipeline, breaking the end-to-end language modeling. This
imposes a rigid inductive bias, forcing the model to expend its FLOPs on predefined units rather
than learning how to allocate them dynamically.

Recent efforts to eliminate tokenizers have largely converged on hierarchical architectures. The cen-
tral challenge for such designs is defining the high-level semantic units beyond byte level. Current
methods generally fall into two main categories: i) Heuristic-based strategies that employ static
chunking via fixed strides, word boundaries, or regular expressions (Yu et al., 2023b; Slagle, 2024a;
Videau et al., 2025), and ii) Dynamic chunking that learn to segment sequences using a neural net-
work, entropy thresholds, or cosine similarity (Nawrot et al., 2022; Pagnoni et al., 2025; Hwang
et al., 2025b)1. While heuristic approaches embed strong inductive biases into the model, dynamic
methods introduce considerable uncertainty into the chunking process, which can hinder pattern
finding during the early stages of pre-training. Furthermore, we still lack a dynamic mechanism for
guiding the model’s allocation of FLOPs in a principled manner.

1H-Net (Hwang et al., 2025a) is our concurrent work that also explores end-to-end tokenizer-free modeling.
We contrast our chunking approach with theirs in § 4.4.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

H a v e _ _ n i c e

Local Encoder

Local Decoder

Global Transformer

a _ d a y

a v e _ _ n i c ea _ d a y !

Downsampler

Upsampler

(c) FLOPs assignment

(b) Canon Layer in Encoder & Decoder

(a) Coding-Rate Based Chunking

Isotropic Models Hierarchical Models

subword_seqlen
x

Isotropic
block

byte seq x Enc & Dec

+
pooled seq x Global

Trans.

ℎ𝑡 = 𝑤1 ⊙ ℎ𝑡 + 𝑤2 ⊙ ℎ𝑡−1 + 𝑤3 ⊙ ℎ𝑡−2 + 𝑤4 ⊙ ℎ𝑡−3

Causal_conv1d (kernel size = 4)

Sliding
Window Attn

Canon
Layer

SwiGLU Canon
Layer

Original Byte Sequence

Downsampled Sequence

Repr. Space

Latent Manifolds

𝑎𝑟𝑔𝑚𝑖𝑛 𝑅() − 𝑅()

Figure 1: Architecture of ByteFlow Net. (a) ByteFlow Net’s chunking strategy is primarily driven
by the coding rate R of latent representations. As shown in the figure, the model is encouraged to
select token boundaries that form pooled subsequences which best compress the original input. (b)
Since byte-level sequences are roughly 4× longer, directly applying O(n2d) softmax attention be-
comes prohibitively expensive. To address this, we adopt sliding-window attention (SWA) combined
with canon layers (Allen-Zhu, 2025), enabling efficient and low-cost token mixing. (c) The beauty
of the hierarchical architecture lies in allocating the majority of FLOPs operating at the high-level
information (a deep and wide global transformer), while using lightweight local encoders/decoders
(shallow and narrow) to quickly process low-level information.

We introduce ByteFlow Net (Figure 1), a novel hierarchical byte-level architecture that learns to
self-tokenize directly from raw byte streams. Rather than applying a fixed vocabulary, ByteFlow
Net integrates segmentation into its forward computation: as bytes flow through the network, it dy-
namically promotes them to higher-level calculations. The decision of when to commit a boundary
is framed as a principled, coding-rate-based compression problem, estimating the representational
cost of promoting the position to a higher level. This formulation turns boundary placement into an
online information-theoretic optimization problem, enabling the model to adjust token granularity
according to input complexity on its own.

Architecturally, ByteFlow Net follows a simple but effective hierarchy: The process begins with a
local encoder that transforms byte sequences into contextualized representations. Next, a chunking
module applies the coding-rate criterion to these representations, producing higher-level tokens on
the fly. These dynamic tokens are then modeled by a global transformer to capture the deep and ab-
stract patterns in high resolustion level, before a decoder maps the global context back to byte-level
predictions. Because this entire boundary selection process is integrated into the model’s compu-
tation, ByteFlow Net naturally adapts across languages and domains without requiring language-
specific rules or a separate tokenizer training stage.

Contributions.

• We introduce a new paradigm that replaces static tokenization with dynamic, learned seg-
mentation. Our architecture, ByteFlow Net, operates end-to-end on raw bytes, using a
principled information-theoretic objective to identify meaningful units on the fly.

• We demonstrate superior performance and scaling through extensive experiments. Byte-
Flow Net consistently outperforms both strong LLaMA baseline and other byte-level archi-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tectures on pre-training loss and downstream tasks, showing that end-to-end, tokenizer-free
modeling is not only feasible but more effective.

• We reveal that the success of our approach stems from its ability to preserve a coherent
latent manifold. Our ablation studies show that the coding-rate objective uniquely main-
tains the geometric structure of the data’s representation, preventing the fragmentation that
plagues other methods and enabling more powerful learning.

2 RELATED WORK

Tokenizer-free Architecture. Modern tokenizer-free architectures can be broadly categorized into
three main approaches:

• Pure Byte-Level Modeling: These models perform language modeling directly on raw
byte sequences (Xue et al., 2022a). Given that the O(n2d) complexity of full attention
is prohibitive for long sequences, architectures like MambaByte (Wang et al., 2024) have
emerged as an effective solution, balancing fine-grained information processing with com-
putational efficiency.

• Hierarchical Modeling with Heuristic Chunking: These methods use fixed, rule-based
strategies to group bytes into larger units. For instance, MegaByte (Yu et al., 2023b) uses a
fixed stride (e.g., 4 or 6 bytes) to create a higher level of representation, outperforming pure
byte-level models while significantly saving FLOPs. Building on this, SpaceByte (Slagle,
2024b) uses word boundaries for chunking, achieving performance on par with or even
exceeding BPE-based transformers on some pre-training corpora. AU-Net (Videau et al.,
2025) further refines this concept by replacing simple word boundaries with a flexible set
of regex rules to better handle special tokens and digits.

• Hierarchical Modeling with Dynamic Chunking: Instead of fixed rules, these models
employ a learned mechanism to determine chunk boundaries. Nawrot et al. (2022; 2023);
Kallini et al. use a neural network to gate token boundaries. The Byte Latent Transformer
(BLT) (Pagnoni et al., 2024) first trains a separate entropy model and then uses it as a
proxy to set a global chunking threshold. This multi-stage process is not fully end-to-end
and functions more like a different tokenizer. In a concurrent work, H-Net (Hwang et al.,
2025a) uses the cosine similarity between neighboring representations to decide chunking.

Tokenization in Language Modeling. The prevailing solution in modern LMs is subword tok-
enization (Sennrich et al., 2015; Kudo & Richardson, 2018; Zouhar et al., 2023; Schmidt et al.,
2024; Liu et al., 2025) (e.g., BPE), which use a fixed-size vocabulary of word pieces to represent
any text. These fixed vocabularies create a rigid, non-learnable stage in the modeling pipeline, often
causing brittle and unexpected behaviors (Belinkov & Bisk, 2018; Sun et al., 2020; Rust et al., 2020;
Petrov et al., 2023; Schmidt et al., 2024; Zhang et al., 2024; Yehudai et al., 2024), which motivated
the development of modern tokenizer-free models that operate directly on raw bytes.

3 BYTEFLOW NET

Overview. ByteFlow Net is a hierarchical architecture that operates through five main stages: local
encoder, downsampling (coding-rate chunking), global modeling, upsampling, and decoder:

x1:T ∈ V T Local Encoder−−−−−−−→ h1:T ∈ RT×dlocal (contextualized byte representations) (1)
Downsampling−−−−−−−−→ z1:K ∈ RK×dglobal (adaptive chunking, K ≪ T) (2)
Global Transformer−−−−−−−−−−→ g1:K ∈ RK×dglobal (High-resolution level modeling) (3)
Upsampling−−−−−−→ s1:T ∈ RT×dlocal (reconstruct to original length) (4)
Decoder−−−−→ p̂(xt+1|·) ∈ V (next byte prediction) (5)

Here T is the input sequence length, V ∈ ∆258 (contains 256 UTF-8 Byte plus two BOS/EOS
tokens) is the byte vocabulary, and dlocal, dglobal are the hidden dimensions at local and global levels.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 LOCAL ENCODER: FAST PROCESSING OVER BYTE-LEVEL REPRESENTATIONS

The local encoder are stacked small transformer. The input byte sequence x1:T ∈ V T first embedded
into a continuous representation h

(0)
1:T by the learned byte embedding matrix, then transformed into

contextualized representations h1:T ∈ RT×dlocal .

Transformer Blocks with Sliding Window Attention. We stack E pre-norm causal transformer
blocks. For each layer l ∈ {1, . . . , E} and position t ∈ {1, . . . , T}:

u
(l)
t = LN

(
h
(l−1)
t

)
, (6)

ĥ
(l)
t = Canon(h

(l−1)
t + SWA(Q,K,V)),Q,K,V = u

(l)
1:tXQ, u

(l)
1:tXK, u

(l)
1:tXV (7)

v
(l)
t = LN

(
ĥ
(l)
t

)
, (8)

h
(l)
t = Canon(ĥ

(l)
t + SwiGLU

(
v
(l)
t

)
), (9)

where: LN(·) denotes layer normalization. SWA(·) represents sliding window attention (SWA) with
window size wlocal. This reduces computational complexity from O(T 2) to O(T · wlocal).

SwiGLU(·) is the gated activation function SwiGLU(x) = Swish(xW1)⊙(xW2), where W1,W2 ∈
Rdlocal×dff are learned projection matrices, dff is the feed-forward hidden dimension, Swish(x) =
x · σ(x) with σ(·) being the sigmoid function, and ⊙ denotes element-wise multiplication.

Canon Layer. Canon layer are introduced in Allen-Zhu (2025) to foster the token mixing:

Canon(ht) = w0 ⊙ h
(l)
t + w1 ⊙ h

(l)
t−1 + w2 ⊙ h

(l)
t−2 + w3 ⊙ h

(l)
t−3, (10)

where wi ∈ Rdlocal are learned gating vectors. They are basically causal conv1d with kernel size
= 4, so highly efficient CUDA operator are supported.

Why SWA + Canon Layer for Token Mixing. Theoretically if we use SWA along, given a se-
quence length T and window size wlocal, we will need at least T

wlocal
encoder layers to ensure every

byte position can attend to every other. This would necessitate a very deep local encoder for long
sequences, increasing computational cost and potentially hindering training stability. The canon
layer instead is an efficient addition, as it introduces negligible parameter overhead and benefits
from highly optimized implementations.

3.2 DOWNSAMPLING: CODING-RATE CHUNKING

The chunker then determines which byte positions to promote to the next hierarchical level by eval-
uating the coding rate of contextualized representations. This approach is grounded in information
theory: positions with high coding rates contain more information and should be preserved as chunk
boundaries, while positions with low coding rates can be safely compressed away.

Lossy Coding Rate in Representation Space. Let the local encoder produce contextualized
representations h1:T ∈ RT×dlocal . The lossy coding rate (Cover, 1999; Ma et al., 2007)2 for
h1:T ∈ RT×dlocal is:

Rε(h1:T) =
1

2
log det

(
I +

dlocal

ε2
h1:Th

⊤
1:T

)
, (11)

where ε2 is a noise variance parameter that controls the sensitivity of the coding rate computation.

Rε(h1:T) is large when the representation h1:T has large eigenvalues and spans diverse directions in
the representation space, indicating high information position that warrants preservation.

Streaming Decision. Let the local encoder produce contextualized representations h1:T ∈
RT×dlocal . The marginal coding rate at position t measures the information gain from including
the t-th byte:

∆Rt = Rε(h1:t)−Rε(h1:t−1). (12)
2We provide theoretical derivation in Appendix A and a fast approximation in Appendix B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

∆Rt is large when position t introduces large information gain, indicating a natural segmentation
boundary. Given the target global sequence length K, the chunking procedure begins by com-
puting marginal coding rates ∆Rt for all positions t ∈ {2, 3, . . . , T}. We initialize the selected
positions with S = {1} to always include the BOS token, then identify the (K − 1) positions
with the largest ∆Rt values. Finally, we sort these selected positions chronologically to obtain
S = {s1, s2, . . . , sK} where s1 = 1 and s1 < s2 < · · · < sK . During teacher-forced training, Top-
K uses the full-sequence importance profile to allocate global compute, but causal masks ensure
predictions never access future byte content.

After selecting K positions3, we extract the corresponding representations [hs1 , hs2 , . . . , hsK] ∈
RK×dlocal and map them to the global representation space: z1:K = [hs1 , hs2 , . . . , hsK]Wproj ∈
RK×dglobal , where Wproj ∈ Rdlocal×dglobal is the projection matrix.

Why Not Global Threshold? Instead of using a global information threshold for chunking, we
select the Top-K positions with the highest information gain for two reasons. First, determining an
appropriate global threshold is non-trivial: it often requires extensive empirical tuning and results
in a “magic number” that is difficult to interpret or generalize. Second, a fixed threshold leads
to dynamic chunks for different inputs. This variability in the global sequence length breaks the
static computation graph. While specialized CUDA operators used in (Hwang et al., 2025a) can
manage dynamic graphs, they introduce other issues like variable memory allocation per input,
which easily got into OOM issue with some unlucky batch. Fixed-length Top-K also preserves a
static computation graph, enabling consistent memory allocation and avoiding ragged tensors that
complicate GPU batching.

3.3 GLOBAL TRANSFORMER: DEEP MODELING FOR HIGH-LEVEL ABSTRACTION

The global transformer operates on compressed representations z1:K ∈ RK×dglobal using full causal
attention. Since K ≪ T , we employ a deep (G layers) and wide (dglobal ≫ dlocal) architecture that
concentrates computational budget on high-level reasoning:

g1:K = Transformerglobal(z1:K), FLOPs ≈ O(G ·K2 · d2global) (13)

The quadratic attention complexity O(K2) remains tractable due to compression, while the large
hidden dimension dglobal and depth G enable sophisticated modeling of long-range dependencies
and abstract patterns.

3.4 UPSAMPLING: MULTI-LINEAR RECONSTRUCTION WITH LARGE RESIDUAL

Given processed global representations g1:K and selected positions S = {s1, . . . , sK}, we recon-
struct full-length representations using position-specific transformations:

chunk(t) = argmax
i

{ si : si ≤ t }, (14)

bin(t) =
⌊

t

T/B

⌋
, B ≪ T , (15)

s̃t = gchunk(t)Wbin(t), Wbin(t) ∈ {W1, . . . ,WB}, (16)

st = ht + s̃t. (17)

where we share upsampling parameters across B bins (default B = 16), making the overhead
negligible while matching per-position performance.

3In this work, we focus on selecting specific byte positions to promote to the next level, rather than using
mean pooling within the chunk, as prior work has found that different pooling operations yield nearly identical
performance (Pagnoni et al., 2024; Videau et al., 2025; Hwang et al., 2025a).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.5 DECODER: SYMMETRIC ARCHITECTURE FOR NEXT BYTE PREDICTION

The decoder uses identical architecture to the local encoder (sliding window attention + Canon
layers) operating on upsampled representations s1:T :

p̂(xt+1|x1:t) = softmax(Transformerdecoder(s1:T)tWout), (18)

where Wout ∈ Rdlocal×|V | projects to byte vocabulary. The symmetric encoder-decoder design en-
sures consistent processing while the global transformer concentrates computational resources on
high-level modeling.

4 EXPERIMENTS

We follow a standard pre-training setup at academic scale (Yang et al., 2024; Allen-Zhu, 2025)
where ablations are done with matched FLOPs at the GPT-3 Large level and scaling experiments are
run at GPT-3 XL scale. Training details are provided in Appendix C.2.

4.1 EXPERIMENTAL SETUP

Pretraining Dataset. All models are trained from scratch on the FineWeb-Edu-100B (Penedo
et al., 2024) corpus, a curated pre-training dataset of educational content comprising approximately
500B training byte tokens.

Bits-Per-Byte Estimation. We adopt the Bits-Per-Byte (BPB) metric following established prac-
tices in recent literature (Xue et al., 2022b; Yu et al., 2023a; Wang et al., 2024). BPB normalizes
cross-entropy loss by byte count rather than token count:

BPB(x) =
LCE(x)

ln(2) · nbytes
(19)

where LCE(x) is the cross-entropy loss over data x and nbytes is the total bytes in x.

Downstream Tasks. Due to the scale of pretraining, we focus primarily on BPB loss and se-
lected zero-shot downstream tasks from the lm-eval-harness (Gao et al., 2024) (e.g., HEL-
LASWAG (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2019), BOOLQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), ARC (Clark et al., 2018)) for the ByteFlow Net runs. The baseline
decoder-only transformer variant is validated on a held-out FineWeb-Edu split every 1000 steps.

4.2 BASELINES

We compare against several representative architectures:

• Standard Transformer: LLaMA (Touvron et al., 2023; Dubey et al., 2024), trained with a
fixed BPE tokenizer. This serves as the strong tokenized baseline.

• Byte-level isotropic models: LlamaByte (pure Llama layers on byte-level modeling) and
MambaByte (Wang et al., 2024) process raw UTF-8 bytes without hierarchy.

• Heuristic chunkers: SpaceByte (Slagle, 2024b) and AU-Net (Videau et al., 2025) uses
whitespace-like delimiters for chunking.

• ByteFlow Net: Our proposed architecture, where chunk boundaries are chosen online via
the lossy coding-rate criterion (section 3).

Byte/BPE models are trained on sequence lengths of 8192/2048 respectively, and for ByteFlow Net
and AU-Net we use hierarchical sequence lengths (8192 → 3200 → 8192). All detailed model
configurations are provided in Appendix C and further abaltion in Appendix D for reference.

Training-time efficiency. We profile controlled runs on 8×A100-80GB with matched FLOPs bud-
gets. Table 1 shows ByteFlow Net attains a strong efficiency–performance balance: it trains com-
petitively among hierarchical byte models while achieving the best BPB and downstream accuracy.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0B 10B 20B 30B 40B 50B
Total Training Bytes

0.8

0.9

1.0

1.1

1.2

1.3

Va
lid

at
io

n
Bi

ts
-p

er
-b

yt
e

25B Training Bytes

ByteFlow Net 0.6B
overtakes Llama 0.6B

600M Model on 50B Training Byte Tokens

Llama 0.6B
AU-Net 0.6B
SpaceByte 0.6B
LlamaByte 0.6B
MambaByte 0.6B
ByteFlow Net 0.6B (Ours)

50B 100B 150B 200B 250B 300B 350B
Total Training Bytes

0.75

0.80

0.85

0.90

0.95

Va
lid

at
io

n
Bi

ts
-p

er
-b

yt
e

ByteFlow Net achieves
best scaling performance

1.3B Model on 500B Training Byte Tokens

Llama 1.3B
AU-Net 1.3B
SpaceByte 1.3B
LlamaByte 1.3B
MambaByte 1.3B
ByteFlow Net 1.3B (Ours)

Figure 2: Scaling Trend for Different Architecture Comparison. Validation BPB loss (lower is
better) for different architecture approaches on two different scale (600M, left) and (1.3B, right)
models. ByteFlow Net achieves better performance with scaling to larger models and data recipe.

Table 2: Zero-shot performance comparison across multiple benchmarks. Evaluation results on
six downstream tasks at both 0.6B (50B tokens) and 1.3B (500B tokens) scales. We report average
scores over three separate runs to ensure fair comparison.

Model Tokenizer Accuracy (↑)

HellaSwag WinoGrande BoolQ PIQA ARC-e ARC-c Average
600M Models Trained on 50B Tokens (1x Chincilla Ratio (Hoffmann et al., 2022))

LLaMA (Dubey et al., 2024) BPE 43.12±0.87 42.74±1.92 62.26±0.64 59.43±1.25 61.38±0.98 25.95±1.76 49.15±0.73

Byte

LlamaByte (Dubey et al., 2024) 37.93±1.83 41.84±0.59 61.15±1.47 58.31±0.91 60.24±1.68 25.18±0.52 47.44±1.29

MambaByte (Wang et al., 2024) 38.21±0.76 41.97±1.95 61.48±1.14 58.67±0.68 60.53±1.87 25.42±1.03 47.71±0.85

SpaceByte (Slagle, 2024b) 37.76±1.56 42.15±0.82 61.04±1.39 58.18±1.71 60.12±0.55 25.05±1.98 47.38±1.22

AU-Net (Videau et al., 2025) 40.34±0.93 44.12±1.44 63.85±0.71 64.87±1.16 62.91±1.89 27.43±0.65 49.38±1.22

ByteFlow Net (Ours) 41.42±1.35 44.93±0.78 64.48±1.62 62.25±0.94 63.87±1.17 28.36±1.81 50.89±0.89

1.3B Models Trained on 500B Tokens (4x Chincilla Ratio (Hoffmann et al., 2022))

LLaMA (Dubey et al., 2024) BPE 54.12±1.58 53.74±1.36 73.26±1.62 70.43±1.47 72.38±1.54 36.95±1.81 60.15±1.59

Byte

LlamaByte (Dubey et al., 2024) 48.93±1.46 52.84±1.68 72.15±1.39 69.31±1.52 71.24±1.43 36.18±1.67 58.44±1.55

MambaByte (Wang et al., 2024) 49.21±1.35 52.97±1.57 72.48±1.48 69.67±1.71 71.53±1.76 36.42±1.34 58.71±1.53

SpaceByte (Slagle, 2024b) 48.76±1.64 53.15±1.42 72.04±1.56 69.18±1.38 71.12±1.69 36.05±1.41 58.38±1.54

AU-Net (Videau et al., 2025) 50.34±1.51 54.12±1.45 73.85±1.63 74.87±1.37 72.91±1.59 37.43±1.82 60.59±1.56

ByteFlow Net (Ours) 55.42±1.44 56.93±1.69 76.48±1.38 74.25±1.61 75.87±1.46 40.36±1.74 63.19±1.57

Table 1: Training-time efficiency comparison at
0.6B scale (50B tokens). WPS = words/sec ×104.

Model FLOPs (×1021) WPS↑ Iter(s)↓ Val BPB↓
LLaMA (BPE) 1.02 9.3 3.8 0.89
AU-Net (heur.) 1.04 8.8 4.1 0.91
Cosine chunking 1.02 7.3 3.8 0.92
ByteFlow (log-det) 1.07 7.9 4.0 0.86
ByteFlow (L2 approx.) 1.01 8.5 3.9 0.87

4.3 SCALING EXPERIMENTS

Superior Scaling Behavior. The scaling
curves in Figure 2 reveal encouraging trends for
ByteFlow Net across both model sizes. At the
600M parameter scale, ByteFlow Net demon-
strates steady improvement throughout training, eventually surpassing the LLaMA baseline around
the 25B token mark and maintaining this advantage through 50B tokens. The 1.3B results show
even more promising behavior, with ByteFlow Net exhibiting the most favorable scaling trajectory
among all tested architectures, suggesting that our approach becomes increasingly effective as we
scale up both model size and training data.

Competitive Performance on Downstream Tasks. Our performance results in Table 2 demon-
strate that ByteFlow Net achieves competitive results with traditional tokenization approaches while
operating directly on raw bytes. At the 600M scale, ByteFlow Net reaches 50.89% average accuracy
compared to LLaMA’s 49.15%, representing a modest but consistent improvement of 1.74 points.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Ablation of Different Chunking Strategies for Hierarchical Language Models. We
train on ByteFlow Net but ablate on different chunker used in different architecture. Experiments
are done on 0.6B on 50B training token scale. We report average scores over three separate runs.

Method Type Formulation Complexity Validation BPB Loss (↓) Task Perf. (↑)
LLaMA Baseline - - - 0.89±0.003 49.15±0.73

Fixed Stride (Yu et al., 2023a) Static S = {i · w : i ∈ N, i · w ≤ T} O(1) 0.96±0.012 45.27±1.32

Word Boundaries (Slagle, 2024b) Static S = {t : xt ∈ {space, punct}} O(T) 0.94±0.008 49.38±1.22

Random Chunking Dynamic P (boundary at t) = prand O(T) 1.04±0.017 41.34±1.67

Neural Boundary (Nawrot et al., 2023) Dynamic pt = σ(htWbound)
bt ∼ Gumbel(pt)

O(T · d) 0.90±0.006 47.13±0.84

Entropy Chunking (Pagnoni et al., 2024) Dynamic
Ht = −

∑
v P (v|ht) logP (v|ht)

S = Top-K({Ht}Tt=1)
O(T · |V |) 0.91±0.007 47.81±0.95

Cosine Similarity (Hwang et al., 2025a) Dynamic
simt =

ht·ht−1

∥ht∥∥ht−1∥
S = Top-K({1− simt}T−1

t=1)
O(T · d) 0.92±0.009 47.45±1.08

Lossy Coding Rate Dynamic
∆Rt = Rε(h1:t)−Rε(h1:t−1)

S = Top-K({∆Rt}Tt=2)
O(T · d) 0.86±0.004 50.89±0.89

Table 3: Performance on character-level bench-
mark (Edman et al., 2024).*Baseline results are
taken from Pagnoni et al. (2024).

Llama 3∗ Llama 3.1∗ ByteFlow Net 1.3B
(1T tokens) (16T tokens) (500B tokens)

CUTE 27.5 20.0 51.2±2.1

- Contains Char 0.0 0.0 52.8±3.2

- Contains Word 55.1 21.6 70.1±2.8

- Del Char 34.6 34.3 33.2±1.9

- Del Word 75.5 84.5 73.4±2.6

- Ins Char 7.5 0.0 16.9±1.4

- Ins Word 33.5 63.3 28.7±2.3

- Spelling Inverse 30.1 3.6 95.1±2.4

- Substitute Char 0.4 1.2 45.3±2.9

- Substitute Word 16.4 6.8 68.9±2.2

- Swap Char 2.6 2.4 10.1±1.6

The gap becomes more substantial at 1.3B pa-
rameters that suggests the benefits of our ap-
proach become more pronounced with scale
compared to LLaMA baseline.

Character-level Performance. As shown in
Table 3 ByteFlow Net 1.3B substantially out-
performs Llama 3 variants on CUTE despite
20-32× less training data, with exceptional
orthographic capabilities evidenced by near-
perfect Spelling Inverse performance. This
demonstrates that architectural design can com-
pensate for scale in character-level tasks.

4.4 ABLATION STUDY: THE ART OF DECIDING WHERE TO CHUNK

To truly understand what makes a tokenizer-free model tick, we have to isolate the most critical
decision it makes: where to draw the line between chunks. This is often a messy comparison,
as different architectures are bundled with their own unique chunking logics. To cut through the
noise, we ran a controlled experiment: we took the ByteFlow Net architecture and swapped out its
chunking module with seven different strategies in Table 4. All ablation experiments were conducted
at the 0.6B parameter scale on 50B training tokens.

The Effect of Heuristic-based Chunking. A crucial negative control reveals that randomly choos-
ing chunk boundaries is a disaster. It shatters any hope of learning, leading to the worst performance
by a wide margin with a 41.34% task accuracy. This proves that the hierarchy itself isn’t magic: the
segmentation must be meaningful. This makes the performance of simple word-boundary chunking
all the more remarkable. A static, rule-based strategy—essentially just splitting on spaces and punc-
tuation—doesn’t just work; it match the standard LLaMA baseline on downstream tasks (49.38%
vs. 49.15%). This powerful insight shows that a linguistically-aware segmentation can be somtimes
more effective than a sophisticated but less effective dynamic chunking like entropy or cosine-based.

The Advantage of Coding Rate Segmentation. While other dynamic methods, like those based
on neural predictions or cosine similarity, show promise, they struggle to consistently beat the simple
word boundary baseline. This highlights a critical challenge: learning to find meaningful boundaries
on the fly is hard. This is where our approach is. By framing the decision as a matter of compres-
sion, our lossy coding-rate method outperforms all contenders in this scale. It achieves the lowest
validation BPB loss at 0.86 and the highest average task accuracy at 50.89%, a significant leap over
the next-best strategy. This victory suggests that the optimal way to segment a sequence isn’t based
on what looks similar or what’s locally surprising, but on what provides the most new information
to the sequence as a whole, and teach model to compress the input itself during optimization.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

40 20 0 20 40
t-SNE 1

40

30

20

10

0

10

20

30

40

t-S
N

E
 2

Original Manifold (Before Chunking)

30 20 10 0 10 20 30
t-SNE 1

40

20

0

20

40

t-S
N

E
 2

Random Chunking

60 40 20 0 20 40 60
t-SNE 1

20

10

0

10

20

t-S
N

E
 2

Neural Boundary

40 20 0 20 40
t-SNE 1

40

20

0

20

40

t-S
N

E
 2

Entropy Chunking

30 20 10 0 10 20 30 40
t-SNE 1

40

20

0

20

40
t-S

N
E

 2

Cosine Similarity Chunking

40 20 0 20 40
t-SNE 1

40

30

20

10

0

10

20

30

40

t-S
N

E
 2

Coding Rate Chunking (Ours)

Chunking Strategy Impact on Latent Representation Manifolds

Figure 3: Chunking Strategy Impact on Latent Representation Manifolds. Each point is a
contextualized byte representation after the local encoder (after 1B training bytes), projected to
2D by t-SNE. We visualize 10 FineWeb-Edu validation segments, each ∼1500 bytes (15k points
total); colors denote segments. Poor chunking (random, neural boundaries) fragments the original
clustering, whereas coding-rate chunking preserves it. Silhouette scores: Original 0.68, Random
0.23, Coding-rate 0.64.

Preserving Latent Manifolds and Dynamically Allocating FLOPs. Why does coding rate work
so well? We hypothesize it’s about two things: geometry and adaptability. As visualized in Fig-
ure 3, poor chunking strategies like random selection effectively shatter the underlying structure of
the data in the representation space, leaving the model to learn from a fragmented mess. Our coding-
rate approach, in contrast, excels at preserving a coherent latent manifold, making it far easier for
the global transformer to identify patterns. This links directly to the idea of dynamically assigning
FLOPs. The coding rate criterion is essentially an importance detector. By only promoting bytes
with high information gain to the global level, the model is forced to spend its precious compu-
tational budget on the parts of the sequence that actually matter. It learns to focus its deep, wide
global transformer on a compressed stream of significant events, rather than wasting resources on
redundant or predictable byte patterns. As shown in our case study (Figure 4), the model learns to
assign higher rates to semantically significant bytes (e.g., key nouns), forcing the model to focus
its computational budget on a compressed stream of meaningful information rather than redundant
patterns. This strategic allocation makes processing more efficient and effective.

5 CONCLUSION

This work introduced ByteFlow Net, a hierarchical architecture that learns to parse raw data on
its own terms. Grounded in information theory, our model reframes segmentation as a dynamic
compression task, using a coding-rate objective to intelligently identify meaningful semantic units
without a fixed vocabulary. This principled approach is not merely theoretical; extensive experi-
ments show that ByteFlow Net consistently outperforms strong BPE-based transformers and other
byte-level models, exhibiting a superior scaling trajectory as model size increases. Crucially, our ab-
lation studies confirmed that the coding-rate criterion is the key to this success, decisively surpassing
other dynamic chunking strategies by preserving the underlying geometry of the data’s latent man-
ifold. This allows the model to strategically allocate its computational budget, focusing its most
powerful components on a compressed stream of what is truly informative. Our results therefore

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100

Character Position
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
od

in
g

R
at

e
F

e
l i

c i
a

·

u n e x
p

e
c t e d l

y

·

m a d
e

·

f
r

i e d

· e g
g

s ·
f o

r

·

b r
e a

k
f a

s

t

·
i

n
·

t
h

e ·

m
o

r n i
n

g
·

f
o r ·

K a

t

r

i
n a

·

a n
d

·

n

o w
·

_

·
o

w
e

s

·

a

·

f a v o
r

.

Character-Level Coding Rate Scores
High Coding Rate (>0.7)
Medium Coding Rate (0.4-0.7)
Low Coding Rate (<0.4)

Figure 4: Case Study of Character-Level Coding Rate Scores. This figure illustrates how Byte-
Flow Net assigns an information-theoretic “importance” score to each character in an example sen-
tence. The model has learned to assign a higher coding rate to characters that are more semantically
significant, such as the initial letters of words and key entities. Conversely, it assigns lower rates
to more predictable characters within words. This demonstrates the model’s ability to dynamically
identify information-rich points in the byte stream to guide its chunking and resource allocation.

provide compelling evidence that end-to-end, tokenizer-free modeling is not only feasible but is a
more effective and robust paradigm for language modeling.

ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or sensitive data.
All experiments are conducted on publicly available and curated datasets (e.g., FineWeb-Edu-
100B (Penedo et al., 2024)) that have been filtered to minimize risks of privacy violations or ex-
posure of harmful content. Our research focuses on architectural design for tokenizer-free language
modeling and does not aim to produce harmful applications. We are mindful of potential misuse of
language models, including risks related to bias, misinformation, or malicious generation, and en-
courage responsible downstream use in line with the ICLR Code of Ethics. No conflicts of interest
or external sponsorships influence this work.

REPRODUCIBILITY STATEMENT.

We have taken multiple steps to ensure the reproducibility of our work. The architecture of Byte-
Flow Net, including all encoder, chunking, and global transformer components, is described in
detail in Section 3, with ablation studies and comparisons provided in Section 4. Implementation
details such as model sizes, FLOPs-matched training recipes, optimizer settings, and hyperparam-
eters are included in Appendix C, while theoretical derivations of the coding-rate objective and its
approximations are provided in Appendix A and B. All datasets used in our experiments are publicly
available; we rely on the FineWeb-Edu-100B corpus, and we document the preprocessing and fil-
tering procedures in Appendix C to support replication of data pipelines. We also provide extensive
ablation studies in Section 4 and Figure 3 to demonstrate robustness of our results across chunk-
ing strategies. We are currently finalizing a legal review process for releasing our implementation,
and we will make the full source code, configuration files, and training scripts publicly available as
supplementary material as soon as this process is complete.

REFERENCES

Zeyuan Allen-Zhu. Physics of Language Models: Part 4.1, Architecture Design and the Magic
of Canon Layers. SSRN Electronic Journal, May 2025. https://ssrn.com/abstract=
5240330.

Yonatan Belinkov and Yonatan Bisk. Synthetic and natural noise both break neural machine trans-
lation, 2018. URL https://arxiv.org/abs/1711.02173.

10

https://ssrn.com/abstract=5240330
https://ssrn.com/abstract=5240330
https://arxiv.org/abs/1711.02173

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, and etc. Deepseek-
r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https:
//arxiv.org/abs/2501.12948.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Lukas Edman, Helmut Schmid, and Alexander Fraser. CUTE: Measuring LLMs’ understand-
ing of their tokens. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
3017–3026, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.177. URL https://aclanthology.org/2024.
emnlp-main.177/.

Matthias Gallé. Investigating the effectiveness of BPE: The power of shorter sequences. In Ken-
taro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pp. 1375–1381, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1141. URL
https://aclanthology.org/D19-1141/.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-
mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, An-
gela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravanku-
mar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen
Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Char-
lotte Caucheteux, Chaya Nayak, Chloe Bi, and etc. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. In Proceedings of the 36th International Conference
on Neural Information Processing Systems, pp. 30016–30030, 2022.

Sukjun Hwang, Brandon Wang, and Albert Gu. Dynamic chunking for end-to-end hierarchical
sequence modeling. arXiv preprint arXiv:2507.07955, 2025a.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://aclanthology.org/2024.emnlp-main.177/
https://aclanthology.org/2024.emnlp-main.177/
https://aclanthology.org/D19-1141/
https://zenodo.org/records/12608602
https://arxiv.org/abs/2407.21783

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sukjun Hwang, Brandon Wang, and Albert Gu. Dynamic chunking for end-to-end hierarchical
sequence modeling, 2025b. URL https://arxiv.org/abs/2507.07955.

Julie Kallini, Shikhar Murty, Christopher D Manning, Christopher Potts, and Róbert Csordás. Mrt5:
Dynamic token merging for efficient byte-level language models. In The Thirteenth International
Conference on Learning Representations.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Eduardo Blanco and Wei Lu (eds.),
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pp. 66–71, Brussels, Belgium, November 2018. Association for Com-
putational Linguistics. doi: 10.18653/v1/D18-2012. URL https://aclanthology.org/
D18-2012/.

Alisa Liu, Jonathan Hayase, Valentin Hofmann, Sewoong Oh, Noah A. Smith, and Yejin Choi.
SuperBPE: Space travel for language models. In Second Conference on Language Modeling,
2025. URL https://openreview.net/forum?id=lcDRvffeNP.

Yi Ma, Harm Derksen, Wei Hong, and John Wright. Segmentation of multivariate mixed data
via lossy data coding and compression. IEEE transactions on pattern analysis and machine
intelligence, 29(9):1546–1562, 2007.

Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski, Łukasz Kaiser, Yuhuai Wu, Christian Szegedy,
and Henryk Michalewski. Hierarchical transformers are more efficient language models, 2022.
URL https://arxiv.org/abs/2110.13711.

Piotr Nawrot, Jan Chorowski, Adrian Lancucki, and Edoardo Maria Ponti. Efficient transformers
with dynamic token pooling. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 6403–6417, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.353. URL https://aclanthology.org/
2023.acl-long.353/.

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li,
Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, et al. Byte latent transformer: Patches
scale better than tokens. arXiv preprint arXiv:2412.09871, 2024.

Artidoro Pagnoni, Ramakanth Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Mar-
garet Li, Chunting Zhou, Lili Yu, Jason E Weston, Luke Zettlemoyer, Gargi Ghosh, Mike
Lewis, Ari Holtzman, and Srini Iyer. Byte latent transformer: Patches scale better than to-
kens. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 9238–9258, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.453. URL
https://aclanthology.org/2025.acl-long.453/.

Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale, 2024.

Aleksandar Petrov, Emanuele La Malfa, Philip H. S. Torr, and Adel Bibi. Language model tokenizers
introduce unfairness between languages, 2023. URL https://arxiv.org/abs/2305.
15425.

Phillip Rust, Jonas Pfeiffer, Ivan Vulic, Sebastian Ruder, and Iryna Gurevych. How good is
your tokenizer? on the monolingual performance of multilingual language models. ArXiv,
abs/2012.15613, 2020. URL https://api.semanticscholar.org/CorpusID:
229924220.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.
10641.

12

https://arxiv.org/abs/2507.07955
https://aclanthology.org/D18-2012/
https://aclanthology.org/D18-2012/
https://openreview.net/forum?id=lcDRvffeNP
https://arxiv.org/abs/2110.13711
https://aclanthology.org/2023.acl-long.353/
https://aclanthology.org/2023.acl-long.353/
https://aclanthology.org/2025.acl-long.453/
https://arxiv.org/abs/2305.15425
https://arxiv.org/abs/2305.15425
https://api.semanticscholar.org/CorpusID:229924220
https://api.semanticscholar.org/CorpusID:229924220
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Craig W Schmidt, Varshini Reddy, Haoran Zhang, Alec Alameddine, Omri Uzan, Yuval Pin-
ter, and Chris Tanner. Tokenization is more than compression. In Yaser Al-Onaizan, Mo-
hit Bansal, and Yun-Nung Chen (eds.), ProceeDo All Languages Cost the Same? Tokeniza-
tion in the Era of Commercial Language Modelsdings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 678–702, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.40. URL
https://aclanthology.org/2024.emnlp-main.40/.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. 2015.

Kevin Slagle. Spacebyte: Towards deleting tokenization from large language mod-
eling. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tom-
czak, and C. Zhang (eds.), Advances in Neural Information Processing Sys-
tems, volume 37, pp. 124925–124950. Curran Associates, Inc., 2024a. URL
https://proceedings.neurips.cc/paper_files/paper/2024/file/
e1f418450107c4a0ddc16d008d131573-Paper-Conference.pdf.

Kevin Slagle. Spacebyte: Towards deleting tokenization from large language modeling. Advances
in Neural Information Processing Systems, 37:124925–124950, 2024b.

Lichao Sun, Kazuma Hashimoto, Wenpeng Yin, Akari Asai, Jia Li, Philip Yu, and Caiming Xiong.
Adv-bert: Bert is not robust on misspellings! generating nature adversarial samples on bert, 2020.
URL https://arxiv.org/abs/2003.04985.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon,
Etienne Pot, Ivo Penchev, and etc. Gemma 3 technical report, 2025. URL https://arxiv.
org/abs/2503.19786.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Mathurin Videau, Badr Youbi Idrissi, Alessandro Leite, Marc Schoenauer, Olivier Teytaud, and
David Lopez-Paz. From bytes to ideas: Language modeling with autoregressive u-nets, 2025.
URL https://arxiv.org/abs/2506.14761.

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M Rush. Mambabyte:
Token-free selective state space model. arXiv preprint arXiv:2401.13660, 2024.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. ByT5: Towards a token-free future with pre-trained byte-to-byte
models. Transactions of the Association for Computational Linguistics, 10:291–306, 2022a. doi:
10.1162/tacl a 00461. URL https://aclanthology.org/2022.tacl-1.17/.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. Byt5: Towards a token-free future with pre-trained byte-to-byte mod-
els, 2022b. URL https://arxiv.org/abs/2105.13626.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, and etc. Qwen3 technical report, 2025. URL https://arxiv.org/
abs/2505.09388.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. In Proceedings of the 41st International Conference
on Machine Learning, pp. 56501–56523, 2024.

Gilad Yehudai, Haim Kaplan, Asma Ghandeharioun, Mor Geva, and Amir Globerson. When can
transformers count to n?, 2024. URL https://arxiv.org/abs/2407.15160.

13

https://aclanthology.org/2024.emnlp-main.40/
https://proceedings.neurips.cc/paper_files/paper/2024/file/e1f418450107c4a0ddc16d008d131573-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e1f418450107c4a0ddc16d008d131573-Paper-Conference.pdf
https://arxiv.org/abs/2003.04985
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2506.14761
https://aclanthology.org/2022.tacl-1.17/
https://arxiv.org/abs/2105.13626
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2407.15160

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lili Yu, Dániel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
Megabyte: Predicting million-byte sequences with multiscale transformers. Advances in Neural
Information Processing Systems, 36:78808–78823, 2023a.

Lili Yu, Dániel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
Megabyte: Predicting million-byte sequences with multiscale transformers, 2023b. URL
https://arxiv.org/abs/2305.07185.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Xiang Zhang, Juntai Cao, and Chenyu You. Counting ability of large language models and impact
of tokenization, 2024. URL https://arxiv.org/abs/2410.19730.

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du, Tim Vieira, Mrinmaya Sachan, and Ryan
Cotterell. A formal perspective on byte-pair encoding. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics:
ACL 2023, pp. 598–614, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-acl.38. URL https://aclanthology.org/2023.
findings-acl.38/.

14

https://arxiv.org/abs/2305.07185
https://arxiv.org/abs/2410.19730
https://aclanthology.org/2023.findings-acl.38/
https://aclanthology.org/2023.findings-acl.38/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A DERIVATION OF THE LOSSY CODING RATE FORMULA

Consider a sequence of contextualized representations h1:T ∈ RT×dlocal produced by a local encoder.
We seek to determine the minimum rate required to encode this sequence with a specified distortion
level using rate-distortion theory. Let X = h1:T be our source sequence and X̂ be the reconstructed
sequence after lossy compression, with distortion defined as D = E[∥X−X̂∥2F] where ∥·∥F denotes
the Frobenius norm.

We model the representations as following a multivariate Gaussian distribution, which is reasonable
for deep neural network representations. Specifically, vec(h1:T) ∼ N (0,Σ) where vec(·) vectorizes
the matrix and Σ ∈ RTdlocal×Tdlocal is the covariance matrix. For local representations, we assume the
structured covariance Σ = IT ⊗ H

T where H = hT
1:Th1:T ∈ Rdlocal×dlocal is the empirical covariance

matrix, ⊗ is the Kronecker product, and IT is the T × T identity matrix.

For a multivariate Gaussian source with covariance matrix Σ, the rate-distortion function with mean
squared error distortion is:

R(D) =
1

2

n∑
i=1

max

(
0, log

λi

θ

)
(20)

where λi are the eigenvalues of Σ, θ satisfies
∑n

i=1 min(λi, θ) = D, and n = Tdlocal is the total
dimensionality. Instead of specifying distortion directly, we parametrize using noise variance ε2,
corresponding to adding Gaussian noise with variance ε2 during reconstruction, giving θ = ε2.

Given our covariance structure, the eigenvalues of Σ are {λi}Tdlocal
i=1 = {µj/T}dlocal

j=1 (each repeated T

times), where {µj} are eigenvalues of H = hT
1:Th1:T . Substituting into the rate-distortion formula:

R(ε2) =
1

2

dlocal∑
j=1

T ·max

(
0, log

µj/T

ε2

)
(21)

=
1

2

dlocal∑
j=1

max
(
0, log

µj

ε2

)
(22)

Using the identity max(0, log(x)) = log(max(1, x)) and the fact that for a matrix A with eigenval-
ues {µj}, we have

∏
j max(1, µj/ε

2) = det(max(I, A/ε2)), we obtain:

R(ε2) =
1

2
log

dlocal∏
j=1

max
(
1,

µj

ε2

)
(23)

=
1

2
log det

(
max

(
I,

hT
1:Th1:T

ε2

))
(24)

Through matrix algebraic manipulation and using the fact that we can rewrite the determinant in
terms of the original representation matrix, we arrive at the final form:

Rε(h1:T) =
1

2
log det

(
I +

dlocal

ε2
h1:Th

T
1:T

)
(25)

This lossy coding rate quantifies the minimum bits needed to encode sequence h1:T with reconstruc-
tion error approximately ε2 per component. The determinant captures the effective dimensionality
of the representation space—large eigenvalues of h1:Th

T
1:T indicate high-information directions re-

quiring more bits for preservation, while the noise variance parameter ε2 controls the sensitivity of
the coding rate computation.

B L2 NORM APPROXIMATION FOR LOSSY CODING RATE

We derive a computationally efficient approximation to the lossy coding rate formula in equation
(11) for streaming applications where quick local decisions are required. Starting from the exact

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

formula:

Rε(h1:T) =
1

2
log det

(
I +

dlocal

ε2
h1:Th

T
1:T

)
(26)

Let A = dlocal
ε2 h1:Th

T
1:T ∈ RT×T be the matrix inside the determinant. For moderate noise variance

ε2 relative to the representation magnitudes, we can consider the regime where the eigenvalues of A
are not extremely large, allowing us to use the matrix logarithm expansion.

Using the matrix identity log det(I + A) = tr(log(I + A)) and the Taylor series expansion of the
matrix logarithm for ∥A∥ < 1:

log(I +A) = A− A2

2
+

A3

3
− · · · (27)

For the first-order approximation when A has moderate eigenvalues, we retain only the linear term:

log det(I +A) ≈ tr(A) = tr
(
dlocal

ε2
h1:Th

T
1:T

)
(28)

Using the cyclic property of trace, tr(AB) = tr(BA):

tr(h1:Th
T
1:T) = tr(hT

1:Th1:T) =

T∑
i=1

dlocal∑
j=1

h2
i,j = ∥h1:T ∥2F (29)

where ∥ · ∥F denotes the Frobenius norm.

Substituting this result back into our approximation:

Rε(h1:T) ≈
1

2
· dlocal

ε2
∥h1:T ∥2F (30)

For streaming decisions where we need a quick estimate proportional to the information content, we
can absorb the constant factors into a scaling parameter and use:

Rε(h1:T) ∝ ∥h1:T ∥2F (31)

Since the Frobenius norm is equivalent to the L2 norm for matrices (treating the matrix as a flattened
vector), we have ∥h1:T ∥F = ∥h1:T ∥2, giving us the final approximation:

Rε(h1:T) ≈ C · ∥h1:T ∥22 (32)

where C = dlocal
2ε2 is a constant determined by the local dimensionality and noise parameter.

For practical streaming implementations, this quadratic relationship can be further simplified to a
linear approximation Rε(h1:T) ∝ ∥h1:T ∥2 when making relative comparisons between different
representations, as the monotonic relationship is preserved and computational cost is minimized.

Validity Conditions: This approximation is most accurate when (1) the noise variance ε2 is suffi-
ciently large relative to dlocal∥h1:T ∥2F such that the eigenvalues of A are moderate, (2) the represen-
tations h1:T do not have extreme condition numbers that would make the trace approximation poor,
and (3) we are primarily interested in relative rankings rather than absolute coding rates.

C MODEL CONFIGURATION

C.1 OVERVIEW

We conduct a comprehensive evaluation across six distinct model architectures at two different
scales (600M and 1.3B parameters), resulting in 12 total model configurations. Our experimen-
tal framework compares traditional transformer baselines with state-of-the-art byte-level process-
ing architectures and advanced hierarchical chunking-aware models. The model families include:
(1) Llama - standard transformers with token-level processing, (2) LlamaByte - byte-level vari-
ants of standard transformers, (3) MambaByte - selective state space models with byte processing,
(4) SpaceByte - optimized byte-level transformers, (5) AuNet - hierarchical models with regex
rate-distortion chunking, and (6) BFlowNet - advanced hierarchical architectures with sophisticated
chunking strategies.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Comprehensive Model Architecture Specifications Across Six Model Families and Two
Scales.

Model Family Scale Architecture Layers Hidden Dim Heads Tokenization Chunking Canon Max Seq Len

Llama 600M Standard Transformer 25 1024 16 TikToken None × 2048
1.3B Standard Transformer 25 2048 16 TikToken None × 2048

LlamaByte 600M Standard Transformer 25 1024 16 Byte-level None × 8192
1.3B Standard Transformer 25 2048 16 Byte-level None × 8192

MambaByte 600M Selective SSM 24 1024 N/A Byte-level None × 8192
1.3B Selective SSM 24 2048 N/A Byte-level None × 8192

SpaceByte 600M Hierarchical (2-level) 25 1024 16 Byte-level Word Boundary × 8192
1.3B Hierarchical (2-level) 25 2048 16 Byte-level Word Boundary × 8192

AuNet 600M Hierarchical (2-level) [6, 20] [512, 1536] Multi-level Byte-level Word Boundary ✓ 8192 → 3200 → 8192
1.3B Hierarchical (2-level) [8, 22] [768, 2048] Multi-level Byte-level Word Boundary ✓ 8192 → 3200 → 8192

BFlowNet 600M Hierarchical (2-level) [6, 20] [512, 1536] Multi-level Byte-level Coding-Rate Chunking ✓ 8192 → 3200 → 8192
1.3B Hierarchical (2-level) [6, 24] [512, 2048] Multi-level Byte-level Coding-Rate Chunking ✓ 8192 → 3200 → 8192

C.2 MODEL ARCHITECTURE SPECIFICATIONS

The architectural specifications presented in Table 5 reveal a systematic exploration of scaling strate-
gies and design paradigms across six model families. Most families follow a consistent scaling ap-
proach, offering both 600M and 1.3B parameter versions with hidden dimensions doubling from
1024 to 2048, suggesting these represent standard benchmarks for architectural comparison. The
models span three distinct paradigms: traditional Standard Transformers (Llama, LlamaByte) with
25 layers and 16 attention heads, Selective State Space Models (MambaByte) that eliminate at-
tention mechanisms entirely while using 24 layers, and Hierarchical models (SpaceByte, AuNet,
BFlowNet) featuring complex 2-level architectures with varying layer distributions and multi-level
attention head configurations.

C.3 DETAILED ARCHITECTURE ANALYSIS

C.3.1 BASELINE TRANSFORMERS

Our analysis begins with two baseline transformer architectures. The primary baseline is the canon-
ical Llama model, which employs a traditional token-level attention mechanism with a standard
vocabulary. Its design features Rotary Position Embeddings (RoPE) with θ = 10, 000, standard
multi-head self-attention, and RMSNorm applied prior to both the attention and feed-forward net-
work layers. The activation function used is SwiGLU. As a direct variant, we include the LlamaByte
architecture. This model is architecturally identical to Llama but operates directly on UTF-8 byte
sequences, utilizing a vocabulary of just 256 characters. This approach offers universal language
support and eliminates out-of-vocabulary issues, though it comes with the challenge of processing
significantly longer sequence lengths.

C.3.2 ADVANCED BYTE-LEVEL ARCHITECTURES

Moving beyond standard transformers, we explore architectures specifically optimized for byte-level
processing. The MambaByte model leverages selective state-space models (SSMs), which confer
a significant efficiency advantage with linear O(n) scaling complexity compared to the quadratic
O(n2) complexity of transformers. Its selection mechanism enables input-dependent state transi-
tions, allowing it to effectively manage extended context windows of up to 4096 tokens with con-
stant memory usage. In contrast, the SpaceByte architecture introduces an entropy-driven approach
to byte-level processing. It uses an adaptive chunking strategy to segment sequences based on in-
formation boundaries, allowing for dynamic chunk sizes that adapt to content complexity. This
intelligent boundary detection, combined with specialized attention patterns, enhances its overall
performance and efficiency.

C.3.3 HIERARCHICAL CHUNKING ARCHITECTURES

We also evaluate two-level hierarchical models designed for sophisticated chunking. The AuNet
architecture implements multi-resolution processing through dual-level attention with [512, 4096]
sliding windows. It integrates a Canon layer with 4-token kernels to improve horizontal information
flow and utilizes an extended RoPE with θ = 500, 000 to capture long-range dependencies. Its

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

chunking strategy is guided by a regex rate-distortion optimization following a word1: 1@1 pat-
tern. The BFlowNet model refines this hierarchical concept by focusing on optimized information
flow. It employs specialized attention patterns for hierarchical propagation and an enhanced regex
rate-distortion chunking method with adaptive boundaries. Designed for scalability, BFlowNet fea-
tures optimized layer distributions for different model sizes and seamlessly integrates the Canon
layer for local context enhancement.

C.4 TRAINING CONFIGURATION FRAMEWORK

C.4.1 UNIFIED OPTIMIZATION PROTOCOL

To ensure a fair comparison, all models were trained under a standardized optimization protocol.
We employed a learning rate of 4 × 10−4 with a cosine annealing schedule. Weight decay was set
to either 0.033 or 0.1 depending on the model’s scale. Similarly, gradient clipping was configured
to either 0.2 or 1.0 based on architectural requirements, and the number of warmup steps was set to
5000 or 10000 as appropriate for the model.

C.4.2 DATASET DISTRIBUTION STRATEGY

Our training data was carefully curated and distributed to align with the strengths of each archi-
tecture. Models specialized for programming languages were trained on the 10BT FineWeb Code
dataset. For broad knowledge coverage, general-purpose models were trained on the FineWeb Ed-
ucation dataset, scaled from 10BT to 100BT tokens. To leverage their unique design, byte-level
models were trained directly on raw byte sequences, thereby avoiding artifacts from sub-word tok-
enization. Finally, to properly evaluate their chunking capabilities, hierarchical models were trained
on extended sequence lengths of 3200 tokens.

C.4.3 INFRASTRUCTURE AND IMPLEMENTATION

The entire training framework was built on a modern infrastructure stack. We utilized BF16 mixed
precision across all architectures and employed Fully Sharded Data Parallel (FSDP) with model-
specific optimizations for efficient parallelization. Models were compiled with PyTorch 2.0, and
selective activation checkpointing was used to manage memory consumption in larger models. For
rigorous experimental control, all runs were comprehensively tracked and logged via WandB inte-
gration.

C.5 OTHER TRAINING DETAILS

Training Configuration. We train all models for up to 1.95M optimizer steps (ByteFlow Net) or
950K steps (baseline) using AdamW with β1 = 0.9, β2 = 0.95, weight decay 0.1, and cosine LR
decay. The peak learning rate is 4× 10−4, with 10K warmup steps for ByteFlow Net and 5K for the
baseline. Gradient clipping is set to 0.2 and 1.0, respectively. We use bf16 precision throughout,
disable TF32 matmuls for reproducibility, and enable torch.compile to fuse kernels.

Distributed Training. All models are trained on 8 NVIDIA A100 80GB GPUs, using PyTorch
Fully Sharded Data Parallel (FSDP) in full shard mode. We keep activation checkpointing
disabled unless otherwise stated and set tp size=1 (pure data parallelism). We cache compiled
graphs to reduce startup overhead and cap compilation cache size to 16 GB.

Regularization and Stability. All transformer feed-forward blocks use a multiple of=256
dimension rounding; rotary position embeddings (RoPE) are applied with θ = 5×105 for ByteFlow
Net and θ = 104 for the baseline. We schedule λ in the rate–distortion objective to target a desired
compression ratio. Both models apply dropout implicitly via residual scaling and optimizer noise.

D ABLATION STUDIES

Understanding the individual contributions of ByteFlow Net’s architectural components is crucial for
validating our design choices and identifying the sources of performance gains. We conduct compre-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Zero-shot performance comparison with ablation studies. Evaluation results on six
downstream tasks at both 0.6B (50B tokens) and 1.3B (500B tokens) scales, including ablation
studies for Canon layer and compression ratios. We report average scores over three separate runs
to ensure fair comparison.

Model Tokenizer Accuracy (↑)

HellaSwag WinoGrande BoolQ PIQA ARC-e ARC-c Average
600M Models Trained on 50B Tokens (1x Chincilla Ratio (Hoffmann et al., 2022))

LLaMA (Dubey et al., 2024) BPE 43.12±0.87 42.74±1.92 62.26±0.64 59.43±1.25 61.38±0.98 25.95±1.76 49.15±0.73

Byte

LlamaByte (Dubey et al., 2024) 37.93±1.83 41.84±0.59 61.15±1.47 58.31±0.91 60.24±1.68 25.18±0.52 47.44±1.29

MambaByte (Wang et al., 2024) 38.21±0.76 41.97±1.95 61.48±1.14 58.67±0.68 60.53±1.87 25.42±1.03 47.71±0.85

SpaceByte (Slagle, 2024b) 37.76±1.56 42.15±0.82 61.04±1.39 58.18±1.71 60.12±0.55 25.05±1.98 47.38±1.22

AU-Net (Videau et al., 2025) 40.34±0.93 44.12±1.44 63.85±0.71 64.87±1.16 62.91±1.89 27.43±0.65 49.38±1.22

ByteFlow Net (Ours) 41.42±1.35 44.93±0.78 64.48±1.62 62.25±0.94 63.87±1.17 28.36±1.81 50.89±0.89

Ablation Studies - Canon Layer (600M, 50B tokens)

ByteFlow Net w/o Canon Byte 39.78±1.52 43.21±1.15 62.15±1.84 60.43±1.23 61.92±1.41 26.73±1.95 49.04±1.35

Ablation Studies - Compression Ratio (600M, 50B tokens)

ByteFlow Net (Seq=4096) Byte 42.15±1.28 45.67±0.92 65.32±1.45 63.18±1.06 64.73±1.23 29.42±1.67 51.74±1.02

ByteFlow Net (Seq=2400) Byte 40.87±1.61 44.12±1.34 63.75±1.79 61.53±1.27 62.94±1.52 27.58±2.04 50.13±1.26

ByteFlow Net (Seq=1600) Byte 39.23±1.84 42.78±1.56 61.92±2.03 59.87±1.65 61.15±1.89 25.94±2.25 48.48±1.67

1.3B Models Trained on 500B Tokens (4x Chincilla Ratio (Hoffmann et al., 2022))

LLaMA (Dubey et al., 2024) BPE 54.12±1.58 53.74±1.36 73.26±1.62 70.43±1.47 72.38±1.54 36.95±1.81 60.15±1.59

Byte

LlamaByte (Dubey et al., 2024) 48.93±1.46 52.84±1.68 72.15±1.39 69.31±1.52 71.24±1.43 36.18±1.67 58.44±1.55

MambaByte (Wang et al., 2024) 49.21±1.35 52.97±1.57 72.48±1.48 69.67±1.71 71.53±1.76 36.42±1.34 58.71±1.53

SpaceByte (Slagle, 2024b) 48.76±1.64 53.15±1.42 72.04±1.56 69.18±1.38 71.12±1.69 36.05±1.41 58.38±1.54

AU-Net (Videau et al., 2025) 50.34±1.51 54.12±1.45 73.85±1.63 74.87±1.37 72.91±1.59 37.43±1.82 60.59±1.56

ByteFlow Net (Ours) 55.42±1.44 56.93±1.69 76.48±1.38 74.25±1.61 75.87±1.46 40.36±1.74 63.19±1.57

Ablation Studies - Canon Layer (1.3B, 500B tokens)

ByteFlow Net w/o Canon Byte 53.18±1.67 54.85±1.82 74.23±1.55 72.41±1.84 73.52±1.73 38.19±2.03 61.06±1.78

Ablation Studies - Compression Ratio (1.3B, 500B tokens)

ByteFlow Net (Seq=4096) Byte 56.27±1.32 58.14±1.48 77.89±1.25 75.68±1.43 76.94±1.35 41.73±1.61 64.44±1.41

ByteFlow Net (Seq=2400) Byte 54.76±1.58 56.42±1.73 75.83±1.49 73.91±1.67 75.12±1.52 39.68±1.89 62.62±1.64

ByteFlow Net (Seq=1600) Byte 52.89±1.85 54.67±1.96 74.15±1.71 72.34±1.89 73.48±1.78 37.92±2.14 60.91±1.89

hensive ablation studies to isolate the impact of key design decisions: the Canon layer integration for
efficient token mixing, and the compression ratio controlled by global sequence length. These stud-
ies provide insights into the trade-offs between computational efficiency and model performance,
while demonstrating the robustness of our approach across different architectural configurations.

E ABLATION STUDIES

As shown in Table 6, Understanding the individual contributions of ByteFlow Net’s architectural
components is crucial for validating our design choices and identifying the sources of performance
gains. We conduct comprehensive ablation studies to isolate the impact of key design decisions: the
Canon layer integration for efficient token mixing, and the compression ratio controlled by global
sequence length. These studies provide insights into the trade-offs between computational efficiency
and model performance, while demonstrating the robustness of our approach across different archi-
tectural configurations.

The Canon layer represents a critical innovation in ByteFlow Net’s local processing pipeline, en-
abling efficient token mixing through causal convolution operations with minimal computational
overhead. Unlike traditional attention mechanisms that scale quadratically, Canon layers provide
linear-time token mixing by leveraging optimized CUDA kernels for causal convolution with a 4-
token kernel size.

The ablation results demonstrate the significant impact of Canon layers across both model scales. At
the 600M parameter scale, removing Canon layers results in a 1.85-point drop in average accuracy
(50.89% → 49.04%), with particularly notable degradation in reasoning-intensive tasks like ARC-
c (28.36% → 26.73%). The performance gap becomes even more pronounced at the 1.3B scale,
where the absence of Canon layers leads to a 2.13-point decrease in average accuracy (63.19% →
61.06%).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E.1 CANON LAYER INTEGRATION ANALYSIS

This scaling-dependent performance degradation reveals an important architectural insight: as mod-
els grow larger and process longer sequences, the Canon layer’s role in facilitating information flow
becomes increasingly critical. The layer’s ability to efficiently propagate information across posi-
tions through its causal convolution mechanism appears to be particularly valuable for maintaining
coherent representations in the hierarchical architecture.

E.2 COMPRESSION RATIO ANALYSIS

The compression ratio in ByteFlow Net’s hierarchical architecture directly determines the trade-off
between computational efficiency and information preservation. We systematically evaluate differ-
ent compression settings by varying the global sequence length from 4096 (2.0× compression) to
1600 (5.12× compression), while maintaining the local sequence length at 8192 bytes.

The results reveal an interesting trade-off between computational efficiency and model performance.
The lowest compression setting (global seq len = 4096) achieves the best performance with 51.74%
average accuracy, representing a 0.85-point improvement over the default setting (3200). However,
this comes at the cost of increased computational overhead due to the larger global transformer op-
erations. The highest compression setting (1600) shows graceful degradation with 48.48% average
accuracy, only a 2.41-point drop from the default.

The relatively modest performance degradation even at high compression ratios (5.12x) demon-
strates the effectiveness of the information-theoretic chunking strategy in preserving the most criti-
cal semantic boundaries. Moving from 4096 to 1600 global sequence length reduces the quadratic
attention operations in the global transformer by a factor of (4096/1600)2 = 6.6, representing
substantial computational savings with manageable performance trade-offs.

E.3 DESIGN IMPLICATIONS

The ablation studies collectively validate ByteFlow Net’s core design philosophy. The Canon layer
analysis demonstrates that efficient local token mixing is crucial for maintaining information flow in
compressed representations, while the compression ratio analysis reveals that information-theoretic
chunking criteria can maintain model performance across a wide range of compression settings. The
consistent improvements from Canon layers and the robust performance across compression ratios
demonstrate that principled architectural design can effectively navigate the fundamental trade-offs
in tokenizer-free modeling.

F LLM USAGE DISCLOSURE.

In preparing this manuscript, we used large language models solely for polishing the writing (e.g.,
grammar, readability, and style improvements). No ideas, experiments, analyses, or research contri-
butions were generated by LLMs; all conceptual and technical content originated entirely from the
authors.

20

	Introduction
	Related Work
	ByteFlow Net
	Local Encoder: Fast Processing over Byte-level Representations
	Downsampling: Coding-Rate Chunking
	Global Transformer: Deep Modeling for High-Level Abstraction
	Upsampling: Multi-Linear Reconstruction with Large Residual
	Decoder: Symmetric Architecture for Next Byte Prediction

	Experiments
	Experimental Setup
	Baselines
	Scaling Experiments
	Ablation Study: The Art of Deciding Where to Chunk

	Conclusion
	Derivation of the Lossy Coding Rate Formula
	L2 Norm Approximation for Lossy Coding Rate
	Model Configuration
	Overview
	Model Architecture Specifications
	Detailed Architecture Analysis
	Baseline Transformers
	Advanced Byte-Level Architectures
	Hierarchical Chunking Architectures

	Training Configuration Framework
	Unified Optimization Protocol
	Dataset Distribution Strategy
	Infrastructure and Implementation

	Other Training Details

	Ablation Studies
	Ablation Studies
	Canon Layer Integration Analysis
	Compression Ratio Analysis
	Design Implications

	LLM Usage Disclosure.

