Under review as a conference paper at ICLR 2026

BYTEFLOW: LANGUAGE MODELING THROUGH ADAP-
TIVE BYTE COMPRESSION WITHOUT A TOKENIZER

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern language models (LMs) still rely on fixed, pre-defined subword tokeniza-
tions. Once a tokenizer is trained, the LM can only operate at this fixed level
of granularity, which often leads to brittle and counterintuitive behaviors even in
otherwise strong reasoning models. We introduce ByteFlow Net, a new hierar-
chical architecture that removes tokenizers entirely and instead enables models
to learn their own segmentation of raw byte streams into semantically meaning-
ful units. ByteFlow Net performs compression-driven segmentation based on the
coding rate of latent representations, yielding adaptive boundaries while preserv-
ing a static computation graph via Top-I selection. Unlike prior self-tokenizing
methods that depend on brittle heuristics with human-designed inductive biases,
ByteFlow Net adapts its internal representation granularity to the input itself. Ex-
periments demonstrate that this compression-based chunking strategy yields sub-
stantial performance gains, with ByteFlow Net outperforming both BPE-based
Transformers and previous byte-level architectures. These results suggest that
end-to-end, tokenizer-free modeling is not only feasible but also more effective,
opening a path toward more adaptive, robust, and information-grounded language
models.

1 INTRODUCTION

Tokenization is a foundational step in every language model pipeline (Grattafiori et al., 2024; Team
et al., 2025; DeepSeek-Al et al., 2025; Yang et al., 2025). The model’s first action is to segment raw
input—>be it text, code, or other modalities—into discrete tokens. This seemingly simple decision
carries profound consequences, defining the model’s vocabulary, sequence lengths, and the very
granularity of its learned representations. The primary limitation of dominant strategies like byte-
pair encoding (BPE) (Sennrich et al., 2015; Gall¢é, 2019; Liu et al., 2025) is their static nature. After
training, they apply a fixed segmentation logic to all inputs, ignoring context, linguistic nuance, or
task-specific requirements. This static property on subword level is the source of many wierd model
behaviors, such as difficulties with counting, arithmetic, structured data, and multilingual text (Rust
et al., 2020; Zhang et al., 2024; Yehudai et al., 2024). At a more fundamental level, tokenization
introduces a non-learnable stage into the pipeline, breaking the end-to-end language modeling. This
imposes a rigid inductive bias, forcing the model to expend its FLOPs on predefined units rather
than learning how to allocate them dynamically.

Recent efforts to eliminate tokenizers have largely converged on hierarchical architectures. The cen-
tral challenge for such designs is defining the high-level semantic units beyond byte level. Current
methods generally fall into two main categories: i) Heuristic-based strategies that employ static
chunking via fixed strides, word boundaries, or regular expressions (Yu et al., 2023b; Slagle, 2024a;
Videau et al., 2025), and ii) Dynamic chunking that learn to segment sequences using a neural net-
work, entropy thresholds, or cosine similarity (Nawrot et al., 2022; Pagnoni et al., 2025; Hwang
et al., 2025b)'. While heuristic approaches embed strong inductive biases into the model, dynamic
methods introduce considerable uncertainty into the chunking process, which can hinder pattern
finding during the early stages of pre-training. Furthermore, we still lack a dynamic mechanism for
guiding the model’s allocation of FLOPs in a principled manner.

"H-Net (Hwang et al., 2025a) is our concurrent work that also explores end-to-end tokenizer-free modeling.
We contrast our chunking approach with theirs in § 4.4.

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

" (c) FLOPs assignment \

Local Decoder

Upsampler

1
I
1
1
1
I
1
1
]
\

/’(b) Canon Layer in Encoder & Decoder N

—
he=wi Qe +w, Qo w3 O hey + Wy O hg

Causal_conv1d (kernel size = 4)

|

I

1

1

1

1

1

1

1

1 Sliding Canon
v

\

i Canon
. SwiGLU
Window Attn Layer Layer
N ’
N e e e e e e e e e -
A ST TTTT ST TSI TIT T T T T T TS TS N
+ (a) Coding-Rate Based Chunking N

Downsampled Sequence | Latent Manifolds |

EIII-I-'
T

Original Byte Sequence Repr. Space

N argmin R(:)—R(‘) L

I
I
1
1
I
I
1
1
I
I
1

Figure 1: Architecture of ByteFlow Net. (a) ByteFlow Net’s chunking strategy is primarily driven
by the coding rate R of latent representations. As shown in the figure, the model is encouraged to
select token boundaries that form pooled subsequences which best compress the original input. (b)
Since byte-level sequences are roughly 4x longer, directly applying O(n?d) softmax attention be-
comes prohibitively expensive. To address this, we adopt sliding-window attention (SWA) combined
with canon layers (Allen-Zhu, 2025), enabling efficient and low-cost token mixing. (¢) The beauty
of the hierarchical architecture lies in allocating the majority of FLOPs operating at the high-level
information (a deep and wide global transformer), while using lightweight local encoders/decoders
(shallow and narrow) to quickly process low-level information.

We introduce ByteFlow Net (Figure 1), a novel hierarchical byte-level architecture that learns to
self-tokenize directly from raw byte streams. Rather than applying a fixed vocabulary, ByteFlow
Net integrates segmentation into its forward computation: as bytes flow through the network, it dy-
namically promotes them to higher-level calculations. The decision of when to commit a boundary
is framed as a principled, coding-rate-based compression problem, estimating the representational
cost of promoting the position to a higher level. This formulation turns boundary placement into an
online information-theoretic optimization problem, enabling the model to adjust token granularity
according to input complexity on its own.

Architecturally, ByteFlow Net follows a simple but effective hierarchy: The process begins with a
local encoder that transforms byte sequences into contextualized representations. Next, a chunking
module applies the coding-rate criterion to these representations, producing higher-level tokens on
the fly. These dynamic tokens are then modeled by a global transformer to capture the deep and ab-
stract patterns in high resolustion level, before a decoder maps the global context back to byte-level
predictions. Because this entire boundary selection process is integrated into the model’s compu-
tation, ByteFlow Net naturally adapts across languages and domains without requiring language-
specific rules or a separate tokenizer training stage.

Contributions.

* We introduce a new paradigm that replaces static tokenization with dynamic, learned seg-
mentation. Our architecture, ByteFlow Net, operates end-to-end on raw bytes, using a
principled information-theoretic objective to identify meaningful units on the fly.

* We demonstrate superior performance and scaling through extensive experiments. Byte-
Flow Net consistently outperforms both strong LLaMA baseline and other byte-level archi-

Under review as a conference paper at ICLR 2026

tectures on pre-training loss and downstream tasks, showing that end-to-end, tokenizer-free
modeling is not only feasible but more effective.

* We reveal that the success of our approach stems from its ability to preserve a coherent
latent manifold. Our ablation studies show that the coding-rate objective uniquely main-
tains the geometric structure of the data’s representation, preventing the fragmentation that
plagues other methods and enabling more powerful learning.

2 RELATED WORK

Tokenizer-free Architecture. Modern tokenizer-free architectures can be broadly categorized into

three main approaches:

* Pure Byte-Level Modeling: These models perform language modeling directly on raw
byte sequences (Xue et al., 2022a). Given that the O(n?d) complexity of full attention
is prohibitive for long sequences, architectures like MambaByte (Wang et al., 2024) have
emerged as an effective solution, balancing fine-grained information processing with com-
putational efficiency.

* Hierarchical Modeling with Heuristic Chunking: These methods use fixed, rule-based
strategies to group bytes into larger units. For instance, MegaByte (Yu et al., 2023b) uses a
fixed stride (e.g., 4 or 6 bytes) to create a higher level of representation, outperforming pure
byte-level models while significantly saving FLOPs. Building on this, SpaceByte (Slagle,
2024b) uses word boundaries for chunking, achieving performance on par with or even
exceeding BPE-based transformers on some pre-training corpora. AU-Net (Videau et al.,
2025) further refines this concept by replacing simple word boundaries with a flexible set
of regex rules to better handle special tokens and digits.

* Hierarchical Modeling with Dynamic Chunking: Instead of fixed rules, these models
employ a learned mechanism to determine chunk boundaries. Nawrot et al. (2022; 2023);
Kallini et al. use a neural network to gate token boundaries. The Byte Latent Transformer
(BLT) (Pagnoni et al., 2024) first trains a separate entropy model and then uses it as a
proxy to set a global chunking threshold. This multi-stage process is not fully end-to-end
and functions more like a different tokenizer. In a concurrent work, H-Net (Hwang et al.,
2025a) uses the cosine similarity between neighboring representations to decide chunking.

Tokenization in Language Modeling. The prevailing solution in modern LMs is subword tok-
enization (Sennrich et al., 2015; Kudo & Richardson, 2018; Zouhar et al., 2023; Schmidt et al.,
2024; Liu et al., 2025) (e.g., BPE), which use a fixed-size vocabulary of word pieces to represent
any text. These fixed vocabularies create a rigid, non-learnable stage in the modeling pipeline, often
causing brittle and unexpected behaviors (Belinkov & Bisk, 2018; Sun et al., 2020; Rust et al., 2020;
Petrov et al., 2023; Schmidt et al., 2024; Zhang et al., 2024; Yehudai et al., 2024), which motivated

the development of modern tokenizer-free models that operate directly on raw bytes.

3 BYTEFLOW NET

Overview. ByteFlow Net is a hierarchical architecture that operates through five main stages: local

encoder, downsampling (coding-rate chunking), global modeling, upsampling, and decoder:

1. e VT Local Encoder, hy.p € RTXdew (contextualized byte representations) (D
Downsampling, 21,5 € REXdao (adaptive chunking, K < T) 2)
m J1.K € RE X dyiaba (High-resolution level modeling) 3)
M) s1.p € RT*dea (reconstruct to original length) @)
Decoder p(xry1]) €V (next byte prediction) 5)

Here T is the input sequence length, V' € AZ2°8 (contains 256 UTF-8 Byte plus two BOS/EOS
tokens) is the byte vocabulary, and diocal, dglobal are the hidden dimensions at local and global levels.

Under review as a conference paper at ICLR 2026

3.1 LocAL ENCODER: FAST PROCESSING OVER BYTE-LEVEL REPRESENTATIONS

The local encoder are stacked small transformer. The input byte sequence 1.7 € V7 first embedded

into a continuous representation hg?)T by the learned byte embedding matrix, then transformed into
contextualized representations .y € RT X ocal

Transformer Blocks with Sliding Window Attention. We stack E pre-norm causal transformer
blocks. For each layer I € {1,..., E} and positiont € {1,...,T}:

5 _ LN(hﬁl_l)), (6)
W = Canon(h{!™ + SWA(Q,K, V), Q. K, V = uf) Xq,ul)) Xk, ul} Xy ()
o0 _ LN(]}EZ)), ®)
hﬁl) = Canon(ilgl) + SWiGLU(Ugl)))a ©

where: LN(-) denotes layer normalization. SWA (-) represents sliding window attention (SWA) with
window size woca. This reduces computational complexity from O(T?) to O(T - Wiocal)-

SwiGLU(:) is the gated activation function SwiGLU(z) = Swish(xW1)® (2W2), where Wy, W5 €
Rica i are learned projection matrices, dyr is the feed-forward hidden dimension, Swish(z) =
x - o(x) with o(-) being the sigmoid function, and ® denotes element-wise multiplication.

Canon Layer. Canon layer are introduced in Allen-Zhu (2025) to foster the token mixing:

(1)

Canon(h;) =wy® 1" +w; ®/'/7| + wo ®/1,7, +ws®h, (10)

where w; € R%~ are learned gating vectors. They are basically causal_conv1d with kernel size
=4, so highly efficient CUDA operator are supported.

Why SWA + Canon Layer for Token Mixing. Theoretically 1f we use SWA along, given a se-
quence length 7" and window size wjeca, We will need at least T encoder layers to ensure every
byte posmon can attend to every other. This would necessitate a very deep local encoder for long
sequences, increasing computational cost and potentially hindering training stability. The canon
layer instead is an efficient addition, as it introduces negligible parameter overhead and benefits
from highly optimized implementations.

3.2 DOWNSAMPLING: CODING-RATE CHUNKING

The chunker then determines which byte positions to promote to the next hierarchical level by eval-
uating the coding rate of contextualized representations. This approach is grounded in information
theory: positions with high coding rates contain more information and should be preserved as chunk
boundaries, while positions with low coding rates can be safely compressed away.

Lossy Coding Rate in Representation Space. Let the local encoder produce contextualized
representations hi.p € R7Xdew The lossy coding rate (Cover, 1999; Ma et al., 2007)" for
hyp € RT>* o jg:

1 doca
Ra(hl:T) = 5 IOg det (I + 2_2 lhl:Th;r:T>) (11)

where €2 is a noise variance parameter that controls the sensitivity of the coding rate computation.

R.(hy.T) is large when the representation hy.r has large eigenvalues and spans diverse directions in
the representation space, indicating high information position that warrants preservation.

Streaming Decision. Let the local encoder produce contextualized representations hi.p €
RT > The marginal coding rate at position ¢ measures the information gain from including
the ¢-th byte:

AR; = Rc(hi1:t) — Re(h1:4—1)- (12)

2We provide theoretical derivation in Appendix A and a fast approximation in Appendix B.

Under review as a conference paper at ICLR 2026

AR, is large when position ¢ introduces large information gain, indicating a natural segmentation
boundary. Given the target global sequence length K, the chunking procedure begins by com-
puting marginal coding rates AR, for all positions ¢t € {2,3,...,T}. We initialize the selected
positions with § = {1} to always include the BOS token, then identify the (K — 1) positions
with the largest AR; values. Finally, we sort these selected positions chronologically to obtain
S ={s1,82,...,8K} where s = 1 and 51 < sg < -+ < sk. During teacher-forced training, Top-
K uses the full-sequence importance profile to allocate global compute, but causal masks ensure
predictions never access future byte content.

After selecting K positions’, we extract the corresponding representations [k, , hs,, ..., hsy] €
RE > and map them to the global representation space: z1.x = [hs,,hsy,- - - s 1 1 Woroj
REXdonat | ywhere Wyyop € R X deionl s the projection matrix.

Why Not Global Threshold? Instead of using a global information threshold for chunking, we
select the Top-K positions with the highest information gain for two reasons. First, determining an
appropriate global threshold is non-trivial: it often requires extensive empirical tuning and results
in a “magic number” that is difficult to interpret or generalize. Second, a fixed threshold leads
to dynamic chunks for different inputs. This variability in the global sequence length breaks the
static computation graph. While specialized CUDA operators used in (Hwang et al., 2025a) can
manage dynamic graphs, they introduce other issues like variable memory allocation per input,
which easily got into OOM issue with some unlucky batch. Fixed-length Top-/ also preserves a
static computation graph, enabling consistent memory allocation and avoiding ragged tensors that
complicate GPU batching.

3.3 GLOBAL TRANSFORMER: DEEP MODELING FOR HIGH-LEVEL ABSTRACTION

The global transformer operates on compressed representations 2.z € R *deoni ysing full causal
attention. Since K < T, we employ a deep (G layers) and wide (dgiobal > dioca) architecture that
concentrates computational budget on high-level reasoning:

g1:x = Transformergiopa (21:1c), FLOPs ~ O(G - K* - délobal) (13)

The quadratic attention complexity O(K?) remains tractable due to compression, while the large
hidden dimension dgopa and depth G enable sophisticated modeling of long-range dependencies
and abstract patterns.

3.4 UPSAMPLING: MULTI-LINEAR RECONSTRUCTION WITH LARGE RESIDUAL

Given processed global representations g;.x and selected positions S = {sq,..., sk}, we recon-
struct full-length representations using position-specific transformations:

chunk(t) = argmax{s; : s; <t}, (14)
7
t
bin(t) = | 75| BT (15)
8¢ = Gehunk(t) Whin(t)s Whoint) € {W1, ..., Wg}, (16)
St :ht+§t' (17)
where we share upsampling parameters across B bins (default B = 16), making the overhead

negligible while matching per-position performance.

3In this work, we focus on selecting specific byte positions to promote to the next level, rather than using
mean pooling within the chunk, as prior work has found that different pooling operations yield nearly identical
performance (Pagnoni et al., 2024; Videau et al., 2025; Hwang et al., 2025a).

Under review as a conference paper at ICLR 2026

3.5 DECODER: SYMMETRIC ARCHITECTURE FOR NEXT BYTE PREDICTION

The decoder uses identical architecture to the local encoder (sliding window attention + Canon
layers) operating on upsampled representations s;.7:

P(xi41]21.4) = softmax(Transformergecoder (1.7)t Wout), (18)

where We,, € R IVI projects to byte vocabulary. The symmetric encoder-decoder design en-
sures consistent processing while the global transformer concentrates computational resources on
high-level modeling.

4 EXPERIMENTS

We follow a standard pre-training setup at academic scale (Yang et al., 2024; Allen-Zhu, 2025)
where ablations are done with matched FLOPs at the GPT-3 Large level and scaling experiments are
run at GPT-3 XL scale. Training details are provided in Appendix C.2.

4.1 EXPERIMENTAL SETUP

Pretraining Dataset. All models are trained from scratch on the FineWeb-Edu—-100B (Penedo
et al., 2024) corpus, a curated pre-training dataset of educational content comprising approximately
500B training byte tokens.

Bits-Per-Byte Estimation. We adopt the Bits-Per-Byte (BPB) metric following established prac-
tices in recent literature (Xue et al., 2022b; Yu et al., 2023a; Wang et al., 2024). BPB normalizes
cross-entropy loss by byte count rather than token count:

o LCE(X)
BPB(x) = 7111(2) - (19)

where Lo g (x) is the cross-entropy loss over data x and npy is the total bytes in x.

Downstream Tasks. Due to the scale of pretraining, we focus primarily on BPB loss and se-
lected zero-shot downstream tasks from the lm-eval-harness (Gao et al., 2024) (e.g., HEL-
LASWAG (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2019), BooLQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), ARC (Clark et al., 2018)) for the ByteFlow Net runs. The baseline
decoder-only transformer variant is validated on a held-out F ineWeb-Edu split every 1000 steps.

4.2 BASELINES
We compare against several representative architectures:

 Standard Transformer: LLaMA (Touvron et al., 2023; Dubey et al., 2024), trained with a
fixed BPE tokenizer. This serves as the strong tokenized baseline.

* Byte-level isotropic models: LlamaByte (pure Llama layers on byte-level modeling) and
MambaByte (Wang et al., 2024) process raw UTF-8 bytes without hierarchy.

* Heuristic chunkers: SpaceByte (Slagle, 2024b) and AU-Net (Videau et al., 2025) uses
whitespace-like delimiters for chunking.

* ByteFlow Net: Our proposed architecture, where chunk boundaries are chosen online via
the lossy coding-rate criterion (section 3).

Byte/BPE models are trained on sequence lengths of 8192/2048 respectively, and for ByteFlow Net
and AU-Net we use hierarchical sequence lengths (8192 — 3200 — 8192). All detailed model
configurations are provided in Appendix C and further abaltion in Appendix D for reference.

Training-time efficiency. We profile controlled runs on 8 x A100-80GB with matched FLOPs bud-
gets. Table 1 shows ByteFlow Net attains a strong efficiency—performance balance: it trains com-
petitively among hierarchical byte models while achieving the best BPB and downstream accuracy.

6

Under review as a conference paper at ICLR 2026

600M Model on 50B Training Byte Tokens 1.3B Model on 500B Training Byte Tokens

1.3 :
: —— Llama 0.6B 0.95 —— Llama 1.3B
| —— AU-Net 0.6B —— AU-Net 1.3B
| —— SpaceByte 0.6B —— SpaceByte 1.3B
1.2 25B Training Bytes : —— LlamaByte 0.6B —— LlamaByte 1.3B
: —— MambaByte 0.6B —— MambaByte 1.3B
o | == ByteFlow Net 0.6B (Ours) o 0.90 = ByteFlow Net 1.3B (Ours)
] ! g
> | >
o) H o
C 11 ! o
3 | ByteFlow Net 0.6B g ByteFlow Net achieves
" : ertakes Llama 0.6B & 0.85 best scaling performance
= ! =
m : m
c 10 1 c
o o
=) =}
© ©
o T 0.80
© ©
=09 >
0.75
0.8 I
1
1
1
0B 108 20B 30B 40B 50B 50B 100B 1508 2008 2508 3008 350B

Total Training Bytes Total Training Bytes

Figure 2: Scaling Trend for Different Architecture Comparison. Validation BPB loss (lower is
better) for different architecture approaches on two different scale (600M, left) and (1.3B, right)
models. ByteFlow Net achieves better performance with scaling to larger models and data recipe.

Table 2: Zero-shot performance comparison across multiple benchmarks. Evaluation results on
six downstream tasks at both 0.6B (50B tokens) and 1.3B (500B tokens) scales. We report average
scores over three separate runs to ensure fair comparison.

Accuracy (1)
HellaSwag WinoGrande BoolQ PIQA ARC-e ARC-c Average
600M Models Trained on 50B Tokens (1x Chincilla Ratio (Hoffmann et al., 2022))

Model Tokenizer

LLaMA (Dubey et al., 2024) BPE 43124057 42741190 62261061 59431125 61.3810.08 25951176 49.1510.7
LlamaByte (Dubey et al., 2024) 37934183 41.841059 61.154147 58.3140.91 60.2441 68 25.1810.50 47.4441.29
MambaByte (Wang et al., 2024) 38214076 41974195 61484114 58.671068 60.5311.87 25424103 47. 714085
SpaceByte (Slagle, 2024b) Byte 37764156 42.151082 61.041159 58184171 60.1210.55 25.0541 95 473811 22
AU-Net (Videau et al., 2025) 403410035 44121141 63.8510.71 64.871116 629111 80 27431065 49.3841 20
ByteFlow Net (OUI‘S) 41.4211_35 44-9310.78 64.48:&1_62 62.25;&0_94 63.87:&1_17 28.36:&1_81 50.8910_89
1.3B Models Trained on 500B Tokens (4x Chincilla Ratio (Hoffinann et al., 2022))
LLaMA (Dubey et al., 2024) BPE 54.124158 53741136 73.2611.62 70431147 72.3841.514 36954181 60.1541 59
LlamaByte (Dubey et al., 2024) 48.9311.46 52.844168 72154139 69314152 712441 43 36.1811 67 58.4441 55
MambaByte (Wang et al., 2024) 49214135 52974157 72484148 69.67+1.71 71.5341.76 36424134 58.714153
SpaceByte (Slagle, 2024b) Byte 48764164 53.154142 72.041156 69.1841 38 71.1251.09 36.0541 41 583811 54
AU-Net (Videau et al., 2025) 50344151 54124145 73.854163 74871137 72914159 37434182 60.59+156
ByteFlow Net (OUI‘S) 55.4211_44 56.93:&1_69 76.48;&1_38 74.25;&1_51 75.87:&1_46 40.36:&1_74 63.1911_57

Table 1: Training-time efficiency comparison at
0.6B scale (50B tokens). WPS = words/sec x10%.
4.3 SCALING EXPERIMENTS

Model FLOPs (x10%!) WPSt Iter(s)| Val BPB|
. . . . LLaMA (BPE 1.02 93 38 0.89
Superior Scaling Behavior. The scaling AUNe fheu,j 104 83 a1 091
1 1) 1 Cosine chunking 1.02 73 3.8 0.92
curves in Figure 2 reveal encouraging trends for Btcbion (log-so) e I b Voe
ByteFlow Net across both model sizes. At the ByteFlow (L2 approx.) 1.01 8.5 3.9 0.87

600M parameter scale, ByteFlow Net demon-

strates steady improvement throughout training, eventually surpassing the LLaMA baseline around
the 25B token mark and maintaining this advantage through 50B tokens. The 1.3B results show
even more promising behavior, with ByteFlow Net exhibiting the most favorable scaling trajectory
among all tested architectures, suggesting that our approach becomes increasingly effective as we
scale up both model size and training data.

Competitive Performance on Downstream Tasks. Our performance results in Table 2 demon-
strate that ByteFlow Net achieves competitive results with traditional tokenization approaches while
operating directly on raw bytes. At the 600M scale, ByteFlow Net reaches 50.89% average accuracy
compared to LLaMA’s 49.15%, representing a modest but consistent improvement of 1.74 points.

Under review as a conference paper at ICLR 2026

Table 4: Ablation of Different Chunking Strategies for Hierarchical Language Models. We
train on ByteFlow Net but ablate on different chunker used in different architecture. Experiments
are done on 0.6B on 50B training token scale. We report average scores over three separate runs.

Method Type Formulation Complexity Validation BPB Loss (|) Task Perf. (1)
LLaMA Baseline - - - 0.8940.003 49.1510.73
Fixed Stride (Yu et al., 2023a) Static S={i-w:ieNji-w<T} 0o(1) 0.96.+0.012 45271132
Word Boundaries (Slagle, 2024b) Static S ={t: x; € {space, punct}} o(T) 0.94 10,008 493811 22
Random Chunking Dynamic P(boundary at t) = Prang O(T) 1.0410.017 41.3441 67
Neural Boundary (Nawrot et al., 2023) Dynamic P = 0 (hWhouna) O(T - d) 0.90 10,006 47134084

by ~ Gumbel(p;)
Hy = -3, P(vlhy)log P(v]h)

ing (Pagnoni et al., 2024 i g . . 5
Entropy Chunking (Pagnoni et al., 2024) Dynamic S = Top-K({H}T,) o(T - |V]) 0.9140.007 47.8110.95
. [
e . sim;, = o=t
Cosine Similarity (Hwang et al., 2025a Dynamic el =11l O(T-d 0.92 47.45
y (g) y 5 = Top-K({1 — sim,},T;ll) () +£0.009 +1.08
Lossy Coding Rate Dynamic 20 = Helh) ~ Re(hi:i-1) o(T - d) 0.86.40.004 50891050

S = TopK({AR)L)

Table 3: Performance on character-level bench-
mark (Edman et al., 2024)."Baseline results are
taken from Pagnoni et al. (2024).

The gap becomes more substantial at 1.3B pa-
rameters that suggests the benefits of our ap-
proach become more pronounced with scale

Compared to LLaMA baseline Llama 3* Llama 3.1 ByteFlow Net 1.3B
: (1T tokens) (16T tokens) (500B tokens)

. CUTE 275 20.0 51240,
Character-level Performance. As shown in - Contains Char 0.0 0.0 52.8135
o) : _ - Contains Word 55.1 21.6 701458
Table 3 ByteFlow Net.1.3B substantially oqt bulche e 33 B
performs Llama 3 variants on CUTE despite - Del Word 75.5 84.5 73410
_ P : : - Ins Char 7.5 0.0 169414
20-32x le.ss training .data, .w1th exceptional ~ ~ Mt 15 033 TR I
orthographic capabilities evidenced by near- - Spelling Inverse ~ 30.1 3.6 95,1424
: : - Substitute Char 0.4 1.2 453159
perfect Spelling Invefse performgnce. This g e word \oa s 6301
demonstrates that architectural design can com- - Swap Char 26 24 101416

pensate for scale in character-level tasks.

4.4 ABLATION STUDY: THE ART OF DECIDING WHERE TO CHUNK

To truly understand what makes a tokenizer-free model tick, we have to isolate the most critical
decision it makes: where to draw the line between chunks. This is often a messy comparison,
as different architectures are bundled with their own unique chunking logics. To cut through the
noise, we ran a controlled experiment: we took the ByteFlow Net architecture and swapped out its
chunking module with seven different strategies in Table 4. All ablation experiments were conducted
at the 0.6B parameter scale on 50B training tokens.

The Effect of Heuristic-based Chunking. A crucial negative control reveals that randomly choos-
ing chunk boundaries is a disaster. It shatters any hope of learning, leading to the worst performance
by a wide margin with a 41.34% task accuracy. This proves that the hierarchy itself isn’t magic: the
segmentation must be meaningful. This makes the performance of simple word-boundary chunking
all the more remarkable. A static, rule-based strategy—essentially just splitting on spaces and punc-
tuation—doesn’t just work; it match the standard LLaMA baseline on downstream tasks (49.38%
vs. 49.15%). This powerful insight shows that a linguistically-aware segmentation can be somtimes
more effective than a sophisticated but less effective dynamic chunking like entropy or cosine-based.

The Advantage of Coding Rate Segmentation. While other dynamic methods, like those based
on neural predictions or cosine similarity, show promise, they struggle to consistently beat the simple
word boundary baseline. This highlights a critical challenge: learning to find meaningful boundaries
on the fly is hard. This is where our approach is. By framing the decision as a matter of compres-
sion, our lossy coding-rate method outperforms all contenders in this scale. It achieves the lowest
validation BPB loss at 0.86 and the highest average task accuracy at 50.89%, a significant leap over
the next-best strategy. This victory suggests that the optimal way to segment a sequence isn’t based
on what looks similar or what’s locally surprising, but on what provides the most new information
to the sequence as a whole, and teach model to compress the input itself during optimization.

Under review as a conference paper at ICLR 2026

Chunking Strategy Impact on Latent Representation Manifolds
Original Manifold (Before Chunking) Random Chunking Neural Boundary

40
20

20

o~ o~ o~
wo & w o w
z o z Zz
%) Ew %)
PURST & P
-20
-20 -10
=30
-40 20
-40
-40 -20 0 20 40 -30 -20 -10 0 10 20 30 -60 -40 =20 0 20 40 60
t-SNE 1 t-SNE 1 t-SNE 1
Entropy Chunking Cosine Similarity Chunking Coding Rate Chunking (Ours)
40
40 40 30
20
20 20
~ o~ o 1
w w w
Z Z o0 z 0
%) » %)
A & = =10
-20 20 -20
-30
-40
—40 -40
-40 -20 0 20 40 -30 -20 -10 0 10 20 30 40 -40 =20 0 20 40
t-SNE 1 t-SNE 1 t-SNE 1

Figure 3: Chunking Strategy Impact on Latent Representation Manifolds. Each point is a
contextualized byte representation after the local encoder (after 1B training bytes), projected to
2D by t-SNE. We visualize 10 FineWeb-Edu validation segments, each ~1500 bytes (15k points
total); colors denote segments. Poor chunking (random, neural boundaries) fragments the original
clustering, whereas coding-rate chunking preserves it. Silhouette scores: Original 0.68, Random
0.23, Coding-rate 0.64.

Preserving Latent Manifolds and Dynamically Allocating FLOPs. Why does coding rate work
so well? We hypothesize it’s about two things: geometry and adaptability. As visualized in Fig-
ure 3, poor chunking strategies like random selection effectively shatter the underlying structure of
the data in the representation space, leaving the model to learn from a fragmented mess. Our coding-
rate approach, in contrast, excels at preserving a coherent latent manifold, making it far easier for
the global transformer to identify patterns. This links directly to the idea of dynamically assigning
FLOPs. The coding rate criterion is essentially an importance detector. By only promoting bytes
with high information gain to the global level, the model is forced to spend its precious compu-
tational budget on the parts of the sequence that actually matter. It learns to focus its deep, wide
global transformer on a compressed stream of significant events, rather than wasting resources on
redundant or predictable byte patterns. As shown in our case study (Figure 4), the model learns to
assign higher rates to semantically significant bytes (e.g., key nouns), forcing the model to focus
its computational budget on a compressed stream of meaningful information rather than redundant
patterns. This strategic allocation makes processing more efficient and effective.

5 CONCLUSION

This work introduced ByteFlow Net, a hierarchical architecture that learns to parse raw data on
its own terms. Grounded in information theory, our model reframes segmentation as a dynamic
compression task, using a coding-rate objective to intelligently identify meaningful semantic units
without a fixed vocabulary. This principled approach is not merely theoretical; extensive experi-
ments show that ByteFlow Net consistently outperforms strong BPE-based transformers and other
byte-level models, exhibiting a superior scaling trajectory as model size increases. Crucially, our ab-
lation studies confirmed that the coding-rate criterion is the key to this success, decisively surpassing
other dynamic chunking strategies by preserving the underlying geometry of the data’s latent man-
ifold. This allows the model to strategically allocate its computational budget, focusing its most
powerful components on a compressed stream of what is truly informative. Our results therefore

Under review as a conference paper at ICLR 2026

Character-Level Coding Rate Scores

I High Coding Rate (>0.7)
4
! N Medium Coding Rate (0.4-0.7)
Low Coding Rate (<0.4)
e r
10E I a ni

i un®yx

®

Coding Rate

s
°

20 40 60 80 100

Character Position

Figure 4: Case Study of Character-Level Coding Rate Scores. This figure illustrates how Byte-
Flow Net assigns an information-theoretic “importance” score to each character in an example sen-
tence. The model has learned to assign a higher coding rate to characters that are more semantically
significant, such as the initial letters of words and key entities. Conversely, it assigns lower rates
to more predictable characters within words. This demonstrates the model’s ability to dynamically
identify information-rich points in the byte stream to guide its chunking and resource allocation.

provide compelling evidence that end-to-end, tokenizer-free modeling is not only feasible but is a
more effective and robust paradigm for language modeling.

ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or sensitive data.
All experiments are conducted on publicly available and curated datasets (e.g., FineWeb-Edu-
100B (Penedo et al., 2024)) that have been filtered to minimize risks of privacy violations or ex-
posure of harmful content. Our research focuses on architectural design for tokenizer-free language
modeling and does not aim to produce harmful applications. We are mindful of potential misuse of
language models, including risks related to bias, misinformation, or malicious generation, and en-
courage responsible downstream use in line with the ICLR Code of Ethics. No conflicts of interest
or external sponsorships influence this work.

REPRODUCIBILITY STATEMENT.

We have taken multiple steps to ensure the reproducibility of our work. The architecture of Byte-
Flow Net, including all encoder, chunking, and global transformer components, is described in
detail in Section 3, with ablation studies and comparisons provided in Section 4. Implementation
details such as model sizes, FLOPs-matched training recipes, optimizer settings, and hyperparam-
eters are included in Appendix C, while theoretical derivations of the coding-rate objective and its
approximations are provided in Appendix A and B. All datasets used in our experiments are publicly
available; we rely on the FineWeb-Edu-100B corpus, and we document the preprocessing and fil-
tering procedures in Appendix C to support replication of data pipelines. We also provide extensive
ablation studies in Section 4 and Figure 3 to demonstrate robustness of our results across chunk-
ing strategies. We are currently finalizing a legal review process for releasing our implementation,
and we will make the full source code, configuration files, and training scripts publicly available as
supplementary material as soon as this process is complete.

REFERENCES

Zeyuan Allen-Zhu. Physics of Language Models: Part 4.1, Architecture Design and the Magic
of Canon Layers. SSRN Electronic Journal, May 2025. https://ssrn.com/abstract=
5240330.

Yonatan Belinkov and Yonatan Bisk. Synthetic and natural noise both break neural machine trans-
lation, 2018. URL https://arxiv.org/abs/1711.02173.

10

https://ssrn.com/abstract=5240330
https://ssrn.com/abstract=5240330
https://arxiv.org/abs/1711.02173

Under review as a conference paper at ICLR 2026

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432-7439, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, and etc. Deepseek-
rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https:
//arxiv.org/abs/2501.12948.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Lukas Edman, Helmut Schmid, and Alexander Fraser. CUTE: Measuring LLMs’ understand-
ing of their tokens. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
3017-3026, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.177. URL https://aclanthology.org/2024.
emnlp-main.177/.

Matthias Gallé. Investigating the effectiveness of BPE: The power of shorter sequences. In Ken-
taro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pp. 1375-1381, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1141. URL
https://aclanthology.org/D19-1141/.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-
mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, An-
gela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravanku-
mar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen
Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Char-
lotte Caucheteux, Chaya Nayak, Chloe Bi, and etc. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. In Proceedings of the 36th International Conference
on Neural Information Processing Systems, pp. 30016-30030, 2022.

Sukjun Hwang, Brandon Wang, and Albert Gu. Dynamic chunking for end-to-end hierarchical
sequence modeling. arXiv preprint arXiv:2507.07955, 2025a.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://aclanthology.org/2024.emnlp-main.177/
https://aclanthology.org/2024.emnlp-main.177/
https://aclanthology.org/D19-1141/
https://zenodo.org/records/12608602
https://arxiv.org/abs/2407.21783

Under review as a conference paper at ICLR 2026

Sukjun Hwang, Brandon Wang, and Albert Gu. Dynamic chunking for end-to-end hierarchical
sequence modeling, 2025b. URL https://arxiv.org/abs/2507.07955.

Julie Kallini, Shikhar Murty, Christopher D Manning, Christopher Potts, and Rébert Csordas. Mrt5:
Dynamic token merging for efficient byte-level language models. In The Thirteenth International
Conference on Learning Representations.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Eduardo Blanco and Wei Lu (eds.),
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pp. 66—71, Brussels, Belgium, November 2018. Association for Com-
putational Linguistics. doi: 10.18653/v1/D18-2012. URL https://aclanthology.org/
D18-2012/.

Alisa Liu, Jonathan Hayase, Valentin Hofmann, Sewoong Oh, Noah A. Smith, and Yejin Choi.
SuperBPE: Space travel for language models. In Second Conference on Language Modeling,
2025. URL https://openreview.net/forum?id=1cDRvffeNP.

Yi Ma, Harm Derksen, Wei Hong, and John Wright. Segmentation of multivariate mixed data

via lossy data coding and compression. [EEE transactions on pattern analysis and machine
intelligence, 29(9):1546-1562, 2007.

Piotr Nawrot, Szymon Tworkowski, Michat Tyrolski, Lukasz Kaiser, Yuhuai Wu, Christian Szegedy,
and Henryk Michalewski. Hierarchical transformers are more efficient language models, 2022.
URL https://arxiv.org/abs/2110.13711.

Piotr Nawrot, Jan Chorowski, Adrian Lancucki, and Edoardo Maria Ponti. Efficient transformers
with dynamic token pooling. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 6403—6417, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.353. URL https://aclanthology.org/
2023.acl-1long.353/.

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li,
Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, et al. Byte latent transformer: Patches
scale better than tokens. arXiv preprint arXiv:2412.09871, 2024.

Artidoro Pagnoni, Ramakanth Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Mar-
garet Li, Chunting Zhou, Lili Yu, Jason E Weston, Luke Zettlemoyer, Gargi Ghosh, Mike
Lewis, Ari Holtzman, and Srini Iyer. Byte latent transformer: Patches scale better than to-
kens. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 9238-9258, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.453. URL
https://aclanthology.org/2025.acl-1ong.453/.

Guilherme Penedo, Hynek Kydlicek, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale, 2024.

Aleksandar Petrov, Emanuele La Malfa, Philip H. S. Torr, and Adel Bibi. Language model tokenizers
introduce unfairness between languages, 2023. URL https://arxiv.org/abs/2305.
15425.

Phillip Rust, Jonas Pfeiffer, Ivan Vulic, Sebastian Ruder, and Iryna Gurevych. How good is
your tokenizer? on the monolingual performance of multilingual language models. ArXiv,
abs/2012.15613, 2020. URL https://api.semanticscholar.org/CorpusID:
229924220.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.
10641.

12

https://arxiv.org/abs/2507.07955
https://aclanthology.org/D18-2012/
https://aclanthology.org/D18-2012/
https://openreview.net/forum?id=lcDRvffeNP
https://arxiv.org/abs/2110.13711
https://aclanthology.org/2023.acl-long.353/
https://aclanthology.org/2023.acl-long.353/
https://aclanthology.org/2025.acl-long.453/
https://arxiv.org/abs/2305.15425
https://arxiv.org/abs/2305.15425
https://api.semanticscholar.org/CorpusID:229924220
https://api.semanticscholar.org/CorpusID:229924220
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641

Under review as a conference paper at ICLR 2026

Craig W Schmidt, Varshini Reddy, Haoran Zhang, Alec Alameddine, Omri Uzan, Yuval Pin-
ter, and Chris Tanner. Tokenization is more than compression. In Yaser Al-Onaizan, Mo-
hit Bansal, and Yun-Nung Chen (eds.), ProceeDo All Languages Cost the Same? Tokeniza-
tion in the Era of Commercial Language Modelsdings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 678-702, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.40. URL
https://aclanthology.org/2024.emnlp-main.40/.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. 2015.

Kevin Slagle. Spacebyte: Towards deleting tokenization from large language mod-
eling. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tom-
czak, and C. Zhang (eds.), Advances in Neural Information Processing Sys-
tems, volume 37, pp. 124925-124950. Curran Associates, Inc., 2024a. URL
https://proceedings.neurips.cc/paper_files/paper/2024/file/
elf418450107c4a0ddc16d008d131573-Paper-Conference.pdf.

Kevin Slagle. Spacebyte: Towards deleting tokenization from large language modeling. Advances
in Neural Information Processing Systems, 37:124925-124950, 2024b.

Lichao Sun, Kazuma Hashimoto, Wenpeng Yin, Akari Asai, Jia Li, Philip Yu, and Caiming Xiong.
Adv-bert: Bert is not robust on misspellings! generating nature adversarial samples on bert, 2020.
URL https://arxiv.org/abs/2003.04985.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon,
Etienne Pot, Ivo Penchev, and etc. Gemma 3 technical report, 2025. URL https://arxiv.
org/abs/2503.19786.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Mathurin Videau, Badr Youbi Idrissi, Alessandro Leite, Marc Schoenauer, Olivier Teytaud, and
David Lopez-Paz. From bytes to ideas: Language modeling with autoregressive u-nets, 2025.
URL https://arxiv.org/abs/2506.14761.

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M Rush. Mambabyte:
Token-free selective state space model. arXiv preprint arXiv:2401.13660, 2024.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. ByT5: Towards a token-free future with pre-trained byte-to-byte
models. Transactions of the Association for Computational Linguistics, 10:291-306, 2022a. doi:
10.1162/tacl_.a_00461. URL https://aclanthology.org/2022.tacl-1.17/.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. Byt5: Towards a token-free future with pre-trained byte-to-byte mod-
els, 2022b. URL https://arxiv.org/abs/2105.13626.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, and etc. Qwen3 technical report, 2025. URL https://arxiv.org/
abs/2505.09388.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. In Proceedings of the 41st International Conference
on Machine Learning, pp. 56501-56523, 2024.

Gilad Yehudai, Haim Kaplan, Asma Ghandeharioun, Mor Geva, and Amir Globerson. When can
transformers count to n?, 2024. URL https://arxiv.org/abs/2407.15160.

13

https://aclanthology.org/2024.emnlp-main.40/
https://proceedings.neurips.cc/paper_files/paper/2024/file/e1f418450107c4a0ddc16d008d131573-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e1f418450107c4a0ddc16d008d131573-Paper-Conference.pdf
https://arxiv.org/abs/2003.04985
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2506.14761
https://aclanthology.org/2022.tacl-1.17/
https://arxiv.org/abs/2105.13626
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2407.15160

Under review as a conference paper at ICLR 2026

Lili Yu, Daniel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
Megabyte: Predicting million-byte sequences with multiscale transformers. Advances in Neural
Information Processing Systems, 36:78808-78823, 2023a.

Lili Yu, Daniel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
Megabyte: Predicting million-byte sequences with multiscale transformers, 2023b. URL
https://arxiv.org/abs/2305.07185.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Xiang Zhang, Juntai Cao, and Chenyu You. Counting ability of large language models and impact
of tokenization, 2024. URL https://arxiv.org/abs/2410.19730.

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du, Tim Vieira, Mrinmaya Sachan, and Ryan
Cotterell. A formal perspective on byte-pair encoding. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics:
ACL 2023, pp. 598-614, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-acl.38. URL https://aclanthology.org/2023.
findings-acl.38/.

14

https://arxiv.org/abs/2305.07185
https://arxiv.org/abs/2410.19730
https://aclanthology.org/2023.findings-acl.38/
https://aclanthology.org/2023.findings-acl.38/

Under review as a conference paper at ICLR 2026

A DERIVATION OF THE LOSSY CODING RATE FORMULA

Consider a sequence of contextualized representations hy.7 € RT* ke produced by a local encoder.
We seek to determine the minimum rate required to encode this sequence with a specified distortion

level using rate-distortion theory. Let X = hy.p be our source sequence and X be the reconstructed

sequence after lossy compression, with distortion defined as D = E[|| X — X||%] where ||-|| denotes
the Frobenius norm.

We model the representations as following a multivariate Gaussian distribution, which is reasonable
for deep neural network representations. Specifically, vec(hy.7) ~ N (0, 2) where vec(-) vectorizes
the matrix and ¥ € R7%eca XT'dioca i the covariance matrix. For local representations, we assume the
structured covariance ¥ = I ® % where H = h{Thl:T € Rtoca X dioca jg the empirical covariance
matrix, ® is the Kronecker product, and I is the 7' x T identity matrix.

For a multivariate Gaussian source with covariance matrix 32, the rate-distortion function with mean
squared error distortion is:

R(D) = % > max (o, log 2) (20)
i=1

where \; are the eigenvalues of X, 6 satisfies Y-, min(\;,0) = D, and n = T'djocq is the total
dimensionality. Instead of specifying distortion directly, we parametrize using noise variance 2,

corresponding to adding Gaussian noise with variance £ during reconstruction, giving § = £2.

Given our covariance structure, the eigenvalues of ¥ are {\; } 2%t = {11, /T}%<4 (each repeated T

j=1
times), where {1} are eigenvalues of H = h{.;hi.7. Substituting into the rate-distortion formula:
diocal
1 i/T
R(e?) = 3 ZT - max <0710g 'ujsé) 2D
=1
1 iocal 1
= 3> max (0, log E—;) 22)
j=1

Using the identity max(0, log(z)) = log(max(1, z)) and the fact that for a matrix A with eigenval-
ues {115}, we have []; max(1, w;/€?) = det(max(I, A/<?)), we obtain:

dlocal

1 .
R(e?) = 5 log]] max (1, ’EL;) 23)
i=1
1 T b
= —logdet (max (I, hirhir (24)
2 g2

Through matrix algebraic manipulation and using the fact that we can rewrite the determinant in
terms of the original representation matrix, we arrive at the final form:

1 d
Ra(hlzT) = §1Og det (I + Z);al hl:Th{:T> (25)

This lossy coding rate quantifies the minimum bits needed to encode sequence h1. with reconstruc-
tion error approximately 2 per component. The determinant captures the effective dimensionality
of the representation space—Ilarge eigenvalues of hy.7h? ;. indicate high-information directions re-
quiring more bits for preservation, while the noise variance parameter £2 controls the sensitivity of
the coding rate computation.

B L2 NORM APPROXIMATION FOR L0OSSY CODING RATE

We derive a computationally efficient approximation to the lossy coding rate formula in equation
(11) for streaming applications where quick local decisions are required. Starting from the exact

15

Under review as a conference paper at ICLR 2026

formula:

1
Re(hlzT)zzlogdet< d“’“lthh) (26)

Let A = % hy.phT,. € RT*T be the matrix inside the determinant. For moderate noise variance

2 relative to the representation magnitudes, we can consider the regime where the eigenvalues of A
are not extremely large, allowing us to use the matrix logarithm expansion.

Using the matrix identity logdet(+ A) = tr(log(/ + A)) and the Taylor series expansion of the
matrix logarithm for || A|| < 1:

A2 A3
logll+A)=A——+— —--- 27)
2 3
For the first-order approximation when A has moderate eigenvalues, we retain only the linear term:
d
logdet(I + A) =~ tr(A) =tr <10;alh1:Th£T> (28)
€
Using the cyclic property of trace, tr(AB) = tr(BA):
T diocal
tw(hyrhly) = tw(hiphir) = > > hi; = [lhrlF (29)
i=1 j=1
where || - || denotes the Frobenius norm.
Substituting this result back into our approximation:
1 d
Re(hir) ~ 5 - =5 |hur b (30)

2

For streaming decisions where we need a quick estimate proportional to the information content, we
can absorb the constant factors into a scaling parameter and use:

Re(hyr) o< |[har |7 €1y

Since the Frobenius norm is equivalent to the L2 norm for matrices (treating the matrix as a flattened
vector), we have ||h1.7||F = ||h1.7]|2, giving us the final approximation:

Re(hir) = C - [lhir|3 (32)

where C' = d“’“l is a constant determined by the local dimensionality and noise parameter.

For practical streaming implementations, this quadratic relationship can be further simplified to a
linear approximation R.(h1.7) o ||hi.7||2 when making relative comparisons between different
representations, as the monotonic relationship is preserved and computational cost is minimized.

Validity Conditions: This approximation is most accurate when (1) the noise variance £ is suffi-

ciently large relative to djocal||h1.7||% such that the eigenvalues of A are moderate, (2) the represen-
tations hy.7 do not have extreme condition numbers that would make the trace approximation poor,
and (3) we are primarily interested in relative rankings rather than absolute coding rates.

C MODEL CONFIGURATION

C.1 OVERVIEW

We conduct a comprehensive evaluation across six distinct model architectures at two different
scales (600M and 1.3B parameters), resulting in 12 total model configurations. Our experimen-
tal framework compares traditional transformer baselines with state-of-the-art byte-level process-
ing architectures and advanced hierarchical chunking-aware models. The model families include:
(1) Llama - standard transformers with token-level processing, (2) LlamaByte - byte-level vari-
ants of standard transformers, (3) MambaByte - selective state space models with byte processing,
(4) SpaceByte - optimized byte-level transformers, (5) AulNet - hierarchical models with regex
rate-distortion chunking, and (6) BFlowNet - advanced hierarchical architectures with sophisticated
chunking strategies.

16

Under review as a conference paper at ICLR 2026

Table 5: Comprehensive Model Architecture Specifications Across Six Model Families and Two
Scales.

Model Family Scale Architecture Layers Hidden Dim Heads Tokenization ~Chunking Canon Max Seq Len

Llama 600M Standard Transformer 25 1024 16 TikToken None x 2048
1.3B Standard Transformer 25 2048 16 TikToken None X 2048
LlamaByte 600M Standard Transformer 25 1024 16 Byte-level None X 8192
t4 1.3B Standard Transformer 25 2048 16 Byte-level None X 8192
MambaByt 600M Selective SSM 24 1024 N/A Byte-level None X 8192
ambabyle 13B Selective SSM 24 2048 N/A Byte-level None x 8192
SpaceByte 600M Hierarchical (2-level) 25 1024 16 Byte-level ‘Word Boundary X 8192
P Y 1.3B Hierarchical (2-level) 25 2048 16 Byte-level ‘Word Boundary X 8192

AuNet 600M Hierarchical (2-level) [6,20] [512, 1536] Multi-level ~ Byte-level Word Boundary v 8192 — 3200 — 8192

1.3B Hierarchical (2-level) [8,22] [768, 2048] Multi-level ~ Byte-level ‘Word Boundary v 8192 — 3200 — 8192

BFlowNet 600M Hierarchical (2-level) [6,20] [512, 1536] Multi-level ~ Byte-level Coding-Rate Chunking v 8192 — 3200 — 8192

1.3B Hierarchical (2-level) [6,24] [512,2048] Multi-level ~ Byte-level Coding-Rate Chunking v/ 8192 — 3200 — 8192

C.2 MODEL ARCHITECTURE SPECIFICATIONS

The architectural specifications presented in Table 5 reveal a systematic exploration of scaling strate-
gies and design paradigms across six model families. Most families follow a consistent scaling ap-
proach, offering both 600M and 1.3B parameter versions with hidden dimensions doubling from
1024 to 2048, suggesting these represent standard benchmarks for architectural comparison. The
models span three distinct paradigms: traditional Standard Transformers (Llama, LlamaByte) with
25 layers and 16 attention heads, Selective State Space Models (MambaByte) that eliminate at-
tention mechanisms entirely while using 24 layers, and Hierarchical models (SpaceByte, AuNet,
BFlowNet) featuring complex 2-level architectures with varying layer distributions and multi-level
attention head configurations.

C.3 DETAILED ARCHITECTURE ANALYSIS
C.3.1 BASELINE TRANSFORMERS

Our analysis begins with two baseline transformer architectures. The primary baseline is the canon-
ical Llama model, which employs a traditional token-level attention mechanism with a standard
vocabulary. Its design features Rotary Position Embeddings (RoPE) with § = 10,000, standard
multi-head self-attention, and RMSNorm applied prior to both the attention and feed-forward net-
work layers. The activation function used is SwiGLU. As a direct variant, we include the LlamaByte
architecture. This model is architecturally identical to Llama but operates directly on UTF-8 byte
sequences, utilizing a vocabulary of just 256 characters. This approach offers universal language
support and eliminates out-of-vocabulary issues, though it comes with the challenge of processing
significantly longer sequence lengths.

C.3.2 ADVANCED BYTE-LEVEL ARCHITECTURES

Moving beyond standard transformers, we explore architectures specifically optimized for byte-level
processing. The MambaByte model leverages selective state-space models (SSMs), which confer
a significant efficiency advantage with linear O(n) scaling complexity compared to the quadratic
O(n?) complexity of transformers. Its selection mechanism enables input-dependent state transi-
tions, allowing it to effectively manage extended context windows of up to 4096 tokens with con-
stant memory usage. In contrast, the SpaceByte architecture introduces an entropy-driven approach
to byte-level processing. It uses an adaptive chunking strategy to segment sequences based on in-
formation boundaries, allowing for dynamic chunk sizes that adapt to content complexity. This
intelligent boundary detection, combined with specialized attention patterns, enhances its overall
performance and efficiency.

C.3.3 HIERARCHICAL CHUNKING ARCHITECTURES

We also evaluate two-level hierarchical models designed for sophisticated chunking. The AuNet
architecture implements multi-resolution processing through dual-level attention with [512, 4096]
sliding windows. It integrates a Canon layer with 4-token kernels to improve horizontal information
flow and utilizes an extended RoPE with § = 500,000 to capture long-range dependencies. Its

17

Under review as a conference paper at ICLR 2026

chunking strategy is guided by a regex rate-distortion optimization following awordl: 1@1 pat-
tern. The BFlowNet model refines this hierarchical concept by focusing on optimized information
flow. It employs specialized attention patterns for hierarchical propagation and an enhanced regex
rate-distortion chunking method with adaptive boundaries. Designed for scalability, BFlowNet fea-
tures optimized layer distributions for different model sizes and seamlessly integrates the Canon
layer for local context enhancement.

C.4 TRAINING CONFIGURATION FRAMEWORK
C.4.1 UNIFIED OPTIMIZATION PROTOCOL

To ensure a fair comparison, all models were trained under a standardized optimization protocol.
We employed a learning rate of 4 x 10~# with a cosine annealing schedule. Weight decay was set
to either 0.033 or 0.1 depending on the model’s scale. Similarly, gradient clipping was configured
to either 0.2 or 1.0 based on architectural requirements, and the number of warmup steps was set to
5000 or 10000 as appropriate for the model.

C.4.2 DATASET DISTRIBUTION STRATEGY

Our training data was carefully curated and distributed to align with the strengths of each archi-
tecture. Models specialized for programming languages were trained on the 10BT FineWeb Code
dataset. For broad knowledge coverage, general-purpose models were trained on the FineWeb Ed-
ucation dataset, scaled from 10BT to 100BT tokens. To leverage their unique design, byte-level
models were trained directly on raw byte sequences, thereby avoiding artifacts from sub-word tok-
enization. Finally, to properly evaluate their chunking capabilities, hierarchical models were trained
on extended sequence lengths of 3200 tokens.

C.4.3 INFRASTRUCTURE AND IMPLEMENTATION

The entire training framework was built on a modern infrastructure stack. We utilized BF16 mixed
precision across all architectures and employed Fully Sharded Data Parallel (FSDP) with model-
specific optimizations for efficient parallelization. Models were compiled with PyTorch 2.0, and
selective activation checkpointing was used to manage memory consumption in larger models. For
rigorous experimental control, all runs were comprehensively tracked and logged via WandB inte-
gration.

C.5 OTHER TRAINING DETAILS

Training Configuration. We train all models for up to 1.95M optimizer steps (ByteFlow Net) or
950K steps (baseline) using AdamW with 81 = 0.9, 82 = 0.95, weight decay 0.1, and cosine LR
decay. The peak learning rate is 4 x 10~*, with 10K warmup steps for ByteFlow Net and 5K for the
baseline. Gradient clipping is set to 0.2 and 1.0, respectively. We use bf16 precision throughout,
disable TF 32 matmuls for reproducibility, and enable torch . compile to fuse kernels.

Distributed Training. All models are trained on 8 NVIDIA A100 80GB GPUs, using PyTorch
Fully Sharded Data Parallel (FSDP) in full_shard mode. We keep activation checkpointing
disabled unless otherwise stated and set tp_size=1 (pure data parallelism). We cache compiled
graphs to reduce startup overhead and cap compilation cache size to 16 GB.

Regularization and Stability. All transformer feed-forward blocks use a multiple_of=256
dimension rounding; rotary position embeddings (RoPE) are applied with § = 5 x 10° for ByteFlow
Net and 6 = 10* for the baseline. We schedule) in the rate—distortion objective to target a desired
compression ratio. Both models apply dropout implicitly via residual scaling and optimizer noise.

D ABLATION STUDIES

Understanding the individual contributions of ByteFlow Net’s architectural components is crucial for
validating our design choices and identifying the sources of performance gains. We conduct compre-

18

Under review as a conference paper at ICLR 2026

Table 6: Zero-shot performance comparison with ablation studies. Evaluation results on six
downstream tasks at both 0.6B (50B tokens) and 1.3B (500B tokens) scales, including ablation
studies for Canon layer and compression ratios. We report average scores over three separate runs
to ensure fair comparison.

Accuracy (1)
HellaSwag WinoGrande BoolQ PIQA ARC-e ARC-c Average
600M Models Trained on 50B Tokens (1x Chincilla Ratio (Hoffmann et al., 2022))

Model Tokenizer

LLaMA (Dubey et Ell., 2024) BPE 43-1210.87 42.74:&1_92 62.26:&0_64 59.43;&1_25 61.3810_98 25-9511.76 49,1510_73
LlamaByte (Dubey et al., 2024) 37931183 41841059 61.1541.47 58314091 60.2411 63 25.18 10,50 47.4441 .99
MambaByte (Wang et 211., 2024) 38»21i0.76 41~97i1.95 61.4811,14 58.67i(‘|_ﬁg 60~53i1.87 25-42i1.03 47.71i0_g5
SpaceByle (Slagle, 2024b) Byte 37.7611_56 42~15:EO.82 61.0411,39 58.1811_71 60.1210_55 25.0511_93 47.3811_22
AU-Net (Vidcau et al., 2()25) 40~34i0.93 44~12i1.44 63.85i0>71 64.8711 .16 62.914,1,59 27.43+0_65 49.38+]_22
ByteF]ow Net (Ours) 41-42i1.35 44-93i0.78 64.48i1,62 62.25i0_g4 63.87i1,17 28.36i1'81 50.89i0.89
Ablation Studies - Canon Layer (600M, 50B tokens)
ByteFlow Net w/o Canon Byte 39.7811_52 43.213:1,15 62‘153:1‘84 60.43i1_23 61.923:1,41 26.73i1_95 49~04i1.35
Ablation Studies - Compression Ratio (600M, 50B tokens)
ByteFlow Net (Seq=4096) Byte 42-15i1.28 45.67i0,92 65.32i1,45 63-18i1_06 64.73i1_23 29'42i1.67 51-74i1.02
ByteFlow Net (Seq=2400) Byle 40~87i1.61 44~12i1.34 634751179 61-53il.27 62.94i1>52 27.58i2_04 50-13i1.26
ByteFlow Net (Seq=1600) Byte 39.231184 427841156 61921503 59.8711.65 61.1541 89 25.9415 05 48.4811 67
1.3B Models Trained on 500B Tokens (4x Chincilla Ratio (Hoffimann et al., 2022))
LLaMA (Dubey et Ell., 2024) BPE 541211.58 5374:&1.36 73.26:&1_62 70.4311_47 72.3811_54 36.95;&1_81 60.1511_59
LlamaByte (Dubey et al., 2024) 48931145 52.84116s 72151130 69310150 71.2401 43 36.1841 67 58.4441 55
MambaByte (Wang et Lll,, 2024) 49.2111_35 52.9711_57 72.4811,48 69.67;&1_71 715311.76 36.42;&1_34 58,7111_53
SpaceByle (Slaglc, 2024b) By[C 48.76i1_64 53~15i1.42 72~04i1.56 69.18i1_38 71~12i1.69 36.05i1_41 58.38i1__54
AU-Net (Videau et al., 2025) 5034115 54124145 73.85:163 74871137 72.91 1150 37431180 60.5911 56
ByteFlow Net (Ours) 55424144 56931169 76484138 74.25+161 75874146 40.36+1 74 63.194 57
Ablation Studies - Canon Layer (1.3B, 500B tokens)
ByteFlow Net w/o Canon Bth 53,183:1_57 54.853:1,82 74.233:1,55 72.41i1_g4 73.523:1,73 38‘19i2_03 61,063:1_73
Ablation Studies - Compression Ratio (1.3B, 500B tokens)
ByteFlow Net (Seq=4096) Byle 56.27i1_32 58.14i1>45 77.89i1>25 75.6811 43 76.94i1>35 41'73i1 61 64.44i]_41
ByteFlow Net (Seq=2400) Byte 54764158 56424173 75834149 73914167 75124150 39.6841 89 62.6241 64
ByteFlow Net (Seq=1600) Byte 52894185 54.674+196 74154171 72341189 73.4841.78 37.9249.14 60.9141 59

hensive ablation studies to isolate the impact of key design decisions: the Canon layer integration for
efficient token mixing, and the compression ratio controlled by global sequence length. These stud-
ies provide insights into the trade-offs between computational efficiency and model performance,
while demonstrating the robustness of our approach across different architectural configurations.

E ABLATION STUDIES

As shown in Table 6, Understanding the individual contributions of ByteFlow Net’s architectural
components is crucial for validating our design choices and identifying the sources of performance
gains. We conduct comprehensive ablation studies to isolate the impact of key design decisions: the
Canon layer integration for efficient token mixing, and the compression ratio controlled by global
sequence length. These studies provide insights into the trade-offs between computational efficiency
and model performance, while demonstrating the robustness of our approach across different archi-
tectural configurations.

The Canon layer represents a critical innovation in ByteFlow Net’s local processing pipeline, en-
abling efficient token mixing through causal convolution operations with minimal computational
overhead. Unlike traditional attention mechanisms that scale quadratically, Canon layers provide
linear-time token mixing by leveraging optimized CUDA kernels for causal convolution with a 4-
token kernel size.

The ablation results demonstrate the significant impact of Canon layers across both model scales. At
the 600M parameter scale, removing Canon layers results in a 1.85-point drop in average accuracy
(50.89% — 49.04%), with particularly notable degradation in reasoning-intensive tasks like ARC-
¢ (28.36% — 26.73%). The performance gap becomes even more pronounced at the 1.3B scale,
where the absence of Canon layers leads to a 2.13-point decrease in average accuracy (63.19% —
61.06%).

19

Under review as a conference paper at ICLR 2026

E.1 CANON LAYER INTEGRATION ANALYSIS

This scaling-dependent performance degradation reveals an important architectural insight: as mod-
els grow larger and process longer sequences, the Canon layer’s role in facilitating information flow
becomes increasingly critical. The layer’s ability to efficiently propagate information across posi-
tions through its causal convolution mechanism appears to be particularly valuable for maintaining
coherent representations in the hierarchical architecture.

E.2 COMPRESSION RATIO ANALYSIS

The compression ratio in ByteFlow Net’s hierarchical architecture directly determines the trade-off
between computational efficiency and information preservation. We systematically evaluate differ-
ent compression settings by varying the global sequence length from 4096 (2.0x compression) to
1600 (5.12x compression), while maintaining the local sequence length at 8192 bytes.

The results reveal an interesting trade-off between computational efficiency and model performance.
The lowest compression setting (global seq len = 4096) achieves the best performance with 51.74%
average accuracy, representing a 0.85-point improvement over the default setting (3200). However,
this comes at the cost of increased computational overhead due to the larger global transformer op-
erations. The highest compression setting (1600) shows graceful degradation with 48.48% average
accuracy, only a 2.41-point drop from the default.

The relatively modest performance degradation even at high compression ratios (5.12x) demon-
strates the effectiveness of the information-theoretic chunking strategy in preserving the most criti-
cal semantic boundaries. Moving from 4096 to 1600 global sequence length reduces the quadratic
attention operations in the global transformer by a factor of (4096/1600)> = 6.6, representing
substantial computational savings with manageable performance trade-offs.

E.3 DESIGN IMPLICATIONS

The ablation studies collectively validate ByteFlow Net’s core design philosophy. The Canon layer
analysis demonstrates that efficient local token mixing is crucial for maintaining information flow in
compressed representations, while the compression ratio analysis reveals that information-theoretic
chunking criteria can maintain model performance across a wide range of compression settings. The
consistent improvements from Canon layers and the robust performance across compression ratios
demonstrate that principled architectural design can effectively navigate the fundamental trade-offs
in tokenizer-free modeling.

F LLM USAGE DISCLOSURE.

In preparing this manuscript, we used large language models solely for polishing the writing (e.g.,
grammar, readability, and style improvements). No ideas, experiments, analyses, or research contri-
butions were generated by LLMs; all conceptual and technical content originated entirely from the
authors.

20

	Introduction
	Related Work
	ByteFlow Net
	Local Encoder: Fast Processing over Byte-level Representations
	Downsampling: Coding-Rate Chunking
	Global Transformer: Deep Modeling for High-Level Abstraction
	Upsampling: Multi-Linear Reconstruction with Large Residual
	Decoder: Symmetric Architecture for Next Byte Prediction

	Experiments
	Experimental Setup
	Baselines
	Scaling Experiments
	Ablation Study: The Art of Deciding Where to Chunk

	Conclusion
	Derivation of the Lossy Coding Rate Formula
	L2 Norm Approximation for Lossy Coding Rate
	Model Configuration
	Overview
	Model Architecture Specifications
	Detailed Architecture Analysis
	Baseline Transformers
	Advanced Byte-Level Architectures
	Hierarchical Chunking Architectures

	Training Configuration Framework
	Unified Optimization Protocol
	Dataset Distribution Strategy
	Infrastructure and Implementation

	Other Training Details

	Ablation Studies
	Ablation Studies
	Canon Layer Integration Analysis
	Compression Ratio Analysis
	Design Implications

	LLM Usage Disclosure.

