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ABSTRACT

Source-Free Unsupervised Domain Adaptation (SFUDA) has gained popularity
for its ability to adapt pretrained models to target domains without accessing
source domains, ensuring source data privacy. While SFUDA is well-developed in
visual tasks, its application to Time-Series SFUDA (TS-SFUDA) remains limited
due to the challenge of transferring crucial temporal dependencies across domains.
Although a few researchers attempt to address this challenge, they rely on specific
source pretraining designs, which are impractical as source data owners cannot be
expected to follow particular pretraining protocols. To solve this, we propose
Temporal Source Recovery (TemSR), a framework that recovers and transfers
temporal dependencies for effective TS-SFUDA without requiring source-specific
designs. TemSR features a recovery process that employs masking, recovery, and
optimization to generate a source-like distribution with recovered source tempo-
ral dependencies. To ensure effective recovery, we further design segment-based
regularization to restore local dependencies and anchor-based recovery diversity
maximization to enhance the diversity of the source-like distribution. With the
source-like distribution, the temporal dependencies can be effectively transferred
across domains using traditional UDA techniques. Extensive experiments across
multiple TS tasks demonstrate the effectiveness of TemSR, even surpassing exist-
ing TS-SFUDA method that requires source domain designs.

1 INTRODUCTION

With the rapid growth of the Internet of Things, Time-Series (TS) data has been increasingly critical
in various domains, such as healthcare (Klepl et al., 2024; Jin et al., 2024; Ott et al., 2022) and
industrial maintenance (Wang et al., 2024b; Chen et al., 2020). While deep learning models yield
promising results in these areas, they heavily depend on extensive labeled data, which is hard to
obtain due to high labeling costs. To address this, Unsupervised Domain Adaptation (UDA) methods
(Wilson & Cook, 2020; Wang et al., 2024a), which transfer knowledge from a labeled source domain
to an unlabeled target domain, have gained attention to reduce label reliance in TS tasks.

Although UDA techniques have proven effective, they typically require access to both source and
target domains to bridge domain gaps. However, in many real-world applications, data privacy con-
cerns prevent access to source domain data (Li et al., 2024), leaving only a pretrained model avail-
able for adaptation. This challenge significantly limits the applicability of existing UDA methods, as
they are not designed for such restricted settings. To address this issue, researchers have recently fo-
cused on a more practical scenario, Source-Free Unsupervised Domain Adaptation (SFUDA), which
adapts the pretrained model to the target domain without relying on source data, demonstrating
promising results. Despite these advancements, most existing techniques were developed for visual
tasks and overlook the temporal dependencies inherent in TS data (Ragab et al., 2023b), limiting
their generalizability to Time-Series Source-Free Unsupervised Domain Adaptation (TS-SFUDA).

In TS data, temporal dependencies refer to the temporal correlations among time points within a
sequence. For effective adaptation, transferring these dependencies from the source to the target
domain is essential to learn effective domain-invariant features for TS data (Ragab et al., 2023a;
Purushotham et al., 2017). However, without access to source data, directly transferring these de-
pendencies becomes challenging. To address this, recent research (Ragab et al., 2023b) has explored
methods to preserve temporal dependencies during source pretraining and restore them during target

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

adaptation. Although effective, these approaches require specific pretraining designs in the source
domain, which are impractical for real-world applications. Thus, a robust TS-SFUDA approach
must meet two key criteria: 1. Even without source data, the temporal dependencies can still be
transferred across domains; 2. Additional designs during source pretraining should be avoided.

Following the criteria, we introduce Temporal Source Recovery (TemSR), a novel framework to
recover and transfer source temporal dependencies for improved TS-SFUDA. TemSR contains two
steps: recovery and enhancement, jointly restoring source temporal dependencies to facilitate trans-
fer using traditional UDA techniques. In the recovery step, we apply masking, recovery, and
optimization to generate a source-like distribution with recovered source temporal dependencies.
Masked target TS samples are recovered by a recovery model, then optimized to follow a source-
like distribution by minimizing their entropy computed using a fixed pretrained source model. With
the minimized entropy on source data, the source model can produce deterministic outputs for dis-
tributions with source characteristics. By minimizing the entropy of recovered samples, this output
constraint can inversely regularize these samples, forcing them to align with the source-like distribu-
tion. Meanwhile, this process forces the recovery model to recover the source temporal dependencies
required to effectively fill in the masked parts using unmasked time points. However, focusing only
on sample-level recovery for long-term patterns may overlook local temporal dependencies, which
capture critical short-term trends and are essential for recovering source temporal dependencies.
To address this, we improve the optimization as segment-based regularization, enforcing minimal
entropy across segments in recovered samples to ensure effective recovery of local dependencies.

A crucial aspect of the recovery process is the masking, which introduces the diversity necessary
to effectively recover a source-like distribution. However, this presents challenges: a high masking
ratio may lead the recovery model to collapse into constant values for entropy minimization, like ze-
ros, while a low masking ratio may result in insufficient diversity, hindering effective recovery of the
source-like distribution. To enhance the recovery, we introduce an anchor-based recovery diversity
maximization module, where recovery diversity maximization enhances diversity in recovered sam-
ples and anchors ensure this diversity aligns with the source distribution. By effectively enhancing
diversity, this module facilitates the recovery of an optimal source-like distribution.

Our contributions are threefold. 1. We design a recovery process involving masking, recovery, and
optimization to generate a source-like distribution with recovered source temporal dependencies,
which is further refined by segment-based regularization to improve temporal dependency recovery.
2. We design an enhancement module to improve diversity in the source-like distribution through
anchor-based recovery diversity maximization, with anchors ensuring this diversity aligns with the
source distribution. By effectively enhancing diversity, this module facilitates the recovery of an op-
timal source-like distribution. 3. Extensive experiments across various TS tasks indicate the effec-
tiveness of TemSR, which even surpasses existing TS-SFUDA method that requires source pretrain-
ing designs. Additional analysis on distribution discrepancy changes between source, source-like,
and target domains further verify TemSR’s ability to recover an effective source-like domain and
thus reduce gaps between the source and target domains even without access to the source data.

2 RELATED WORK

Source-Free Unsupervised Domain Adaptation To enable effective UDA without access to
source data, researchers have explored SFUDA through model- and data-based methods (Fang
et al., 2024). Model-based approaches adapt a source pretrained model to the target domain through
self-supervised techniques, such as entropy regularization (Mao et al., 2024; Ahmed et al., 2021),
pseudo-label generation (Yang et al., 2021; Xie et al., 2022; Ding et al., 2023), and contrastive
learning (Zhang et al., 2022; Huang et al., 2021). On the other hand, data-based methods aim to re-
construct the source distribution by selecting relevant data from the target domain (Du et al., 2024;
Qiu et al., 2021) or using Generative Adversarial Networks (GANs) to synthesize source-like sam-
ples (Kurmi et al., 2021), allowing traditional UDA techniques to be applied. By effectively ‘seeing’
source distribution in a source-free setting, data-based methods can achieve more stable adaptation
by transferring useful information across domains. However, most existing SFUDA algorithms are
tailored for visual tasks and overlook crucial temporal dependencies in TS data, limiting their effec-
tiveness in TS-SFUDA. For example, the performance of data-based methods hinges on the quality
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Figure 1: Overall TemSR. An encoder pretrained on the source domain is transferred to the target
domain for adaptation without the access to source data, using source-like and target branches. In
the source-like branch, masked target samples are recovered. With the fixed source encoder, their
entropy is computed via a Segment-based Source-like Entropy loss LSSE and minimized for opti-
mization to generate a source-like distribution with restored temporal dependencies. Meanwhile, an
Anchor-based Recovery Diversity Maximization loss LARDM enhances the diversity of the gener-
ated distribution for effective recovery. Finally, source-like and target distributions are aligned with
an alignment loss LAlign, enabling the transfer of temporal dependencies for effective TS-SFUDA.

of generated source distributions. Without considering temporal dependencies, the generated distri-
butions lack key temporal information, significantly hampering adaptation performance in TS tasks.

Time-Series Unsupervised Domain Adaptation To reduce label reliance in TS tasks, UDA meth-
ods have been widely applied. The main challenge in TS UDA is transferring temporal dependencies
across domains to learn domain-invariant features (Ragab et al., 2023a), typically achieved through
metric- and adversarial-based methods. Metric-based methods extract temporal features and align
them using statistical measures such as Deep CORAL (Liu & Xue, 2021; He et al., 2023; Cai et al.,
2021), while adversarial-based methods leverage discriminators to learn domain-invariant temporal
features (Wilson et al., 2020; 2023; Purushotham et al., 2017). To enhance robustness, contrastive
learning has been explored to learn discriminative features (Eldele et al., 2023; Ozyurt et al., 2022),
and spatial dependencies have also been investigated (Wang et al., 2023; 2024a). Besides TS-related
works, video UDA has been explored Sahoo et al. (2021); Wei et al. (2023), which shares similar
sequential properties with TS data. However, video UDA methods cannot effectively leverage the
unique temporal properties of TS data, limiting their applicability in this area Ozyurt et al. (2022).

Despite their potential, TS UDA methods rely on access to source data, which may not always
be feasible due to privacy concerns. This highlights the need for TS-SFUDA, where adaptation is
performed without source data. While a few researchers (Ragab et al., 2023b) have explored this,
demonstrating the effectiveness of transferring temporal dependencies in TS-SFUDA, they required
additional designs in source pretraining to preserve the dependencies. This is impractical, as source
data holders cannot be expected to follow specific pretraining steps. To overcome this, we propose
TemSR, which effectively transfers temporal dependencies across domains without extra operations
during source pretraining, ensuring both practicality and strong performance for TS-SFUDA.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Given a labeled source domain DS = {Xi
S , y

i
S}

nS
i=1 with nS samples and an unlabeled target domain

DT = {Xi
T }

nT
i=1 with nT samples, XS and XT represent TS data with N channels and L time points,

and yS denotes source labels. We aim to train an encoder Fθ and a classifier Gϕ on the source
domain, then transfer the pretrained encoder to the target domain without accessing source data.
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Given the critical role of temporal dependencies in TS data, transferring these dependencies across
domains is key for TS-SFUDA. However, this becomes challenging in the absence of source data.
To address this, we propose generating a source-like domain with recovered temporal dependencies,
enabling traditional UDA techniques to transfer these dependencies to the target domain.

3.2 OVERALL FRAMEWORK

Fig. 1 presents the overall TemSR, where an encoder is pretrained on the source domain and then
adapted to the target domain without source data, using both the source-like and target branches. In
the source-like branch, target samples are masked and recovered. Using the fixed source encoder,
we derive entropy for the recovered samples through segment-based regularization, computing the
segment-based source-like entropy loss, which is then minimized for optimization to generate a
source-like distribution with restored temporal dependencies. To enhance the diversity of the gener-
ated distribution, we introduce an anchor-based recovery diversity maximization loss for better re-
covery. Finally, the source-like and target distributions are aligned by an alignment loss, effectively
transferring temporal dependencies across domains for TS-SFUDA. Further details are provided in
following sections, with pesudo-code available in Appendix A.10.

3.3 RECOVERY

The recovery process begins with an initialized distribution. Masking introduces diversity into the
initialized samples, which are then recovered and optimized to generate a source-like distribution
with source temporal dependencies. For more effective temporal recovery, the optimization is further
refined as segment-based regularization.

(a) Trg. Vs Src (b) Src-like initial Vs. Recover

Trg distrib. 

Src distrib. 

Src-like distrib. (Initial)

Src-like distrib. (Recover)

Figure 2: (a) Source and target distributions
are distinct but related. (b) Source-like distri-
bution, when initialized from the target dis-
tribution, can more easily be optimized to re-
semble source distribution.

Initialization A critical step in generating an ef-
fective source-like distribution is proper initializa-
tion, for which we identify two key requirements:

1. The initialized distribution should be close to the
source distribution; otherwise, obtaining an effective
source-like distribution is difficult.

2. The time points of the initialized samples must be
continuous, as random time points would hinder the
recovery of source temporal dependencies.

Existing generative methods, such as GANs, fail to
meet these requirements (see Appendix A.3), mak-
ing it difficult to generate an effective source-like
distribution with restored temporal dependencies.
To solve this, initializing the source distribution us-
ing the target distribution offers an effective solution.
As UDA typically operates on different but related
domains, the target distribution is normally not significantly different from the source distribution,
as shown in Fig. 2. By initializing a source-like domain with the target domain, we can simplify the
optimization process but also preserve the continuity of time points in the samples.

Masking and Recovery With the initialized distribution, we introduce diversity to allow opti-
mization toward the source distribution. Masking is an effective approach, as it not only introduces
diversity but also aids in recovering temporal dependencies. By masking portions of TS data, a
recovery model is forced to reconstruct masked portions with available information from unmasked
parts. To effectively recover the masked data, the model needs to understand how time points are
connected and how patterns evolve. This process encourages the model to capture the underlying
structure and temporal dependencies in TS data, allowing it to restore these dependencies during
recovery. As shown in Fig. 1, portions of the TS sequences are masked, determined by a masking
ratio pm (see sensitivity analysis in Appendix A.8). Given a target sample Xi

T , masking generates
its masked form X̄i

T = M(Xi
T ), which is recovered by a recovery model Rζ as a source-like sample

Xi
Sl = Rζ(M(Xi

T )). These recovered samples are then optimized to align with the source domain.

4
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Optimization To align the recovered samples with the source domain, we propose leveraging the
pretrained source model with entropy minimization as guidance. Entropy minimization is widely
used in model adaptation, as models with minimized entropy can produce deterministic outputs,
and this ideal output constraint can be inversely employed to guide adaptation (Li et al., 2024; Liang
et al., 2020). Inspired by this, we introduce entropy minimization to optimize the recovered samples.
With the minimized entropy on source data, the source model can produce deterministic outputs for
distributions with source characteristics. By minimizing the entropy computed by the fixed source
model for recovered samples, this constraint can inversely regularize the samples, forcing them to
align with the source distribution. Here, the recovery model is forced to capture source temporal
dependencies, as only by understanding these dependencies can the model effectively reconstruct
masked parts, minimize entropy, and ensure recovered samples align with the source distribution.

While the recovery process can generate source-like distributions with recovered temporal depen-
dencies, it primarily focuses on sample-level recovery for long-term patterns, overlooking local tem-
poral dependencies. These local dependencies offer short-term context, enabling the model to infer
with local information that may not be apparent in broader trends. This highlights the importance
of recovering local dependencies to restore natural temporal patterns and enhance overall temporal
recovery. Thus, we improve the optimization as segment-based regularization, further optimizing
segments that capture local dependencies to have minimized entropy, aligning them with source dis-
tributions. Three types of segments are extracted from the recovered sample Xi

Sl with an extraction
proportion ps, capturing local information from different regions (see examples in Appendix A.7):

1. Early Segment Xi
Sl,E : Extracts the first ps proportion of the sequence, capturing local information

at the early stage of the recovered sample Xi
Sl.

2. Late Segment Xi
Sl,L: Extracts the last ps proportion capturing local information at the later stage.

3. Segment with Recovered Parts Xi
Sl,R: Extracts all recovered portions to ensure they have mini-

mized entropy and align with the source-like distribution.

These segments effectively capture local temporal dependencies. Along with the complete recovered
sample Xi

Sl for sample-level recovery, denoted as Xi
Sl,C for consistency, we minimize their entropy:

LSegEnt =
∑

k∈{C,E,L,R}

−
∑
i

Gϕ(Fθ(Xi
Sl,k)) log Gϕ(Fθ(Xi

Sl,k)). (1)

Besides minimizing the entropy of these segments, ensuring similar entropy across segments is also
crucial. Large differences in entropy between segments may indicate disruptions in the flow of
temporal information, suggesting the model has failed to capture smooth dependencies in recovered
TS sequences. To address this, the recovered samples are designed to retain consistent entropy
values across these segments, as shown in Eq. (2). By enforcing similar entropy across different
segments, TemSR maintains a uniform level of temporal structure.

LSegSim =
∑

(k,s)∈{C,E,L,R}

(∑
i

Gϕ(Fθ(Xi
Sl,k)) log Gϕ(Fθ(Xi

Sl,k))

−
∑
i

Gϕ(Fθ(Xi
Sl,s)) log Gϕ(Fθ(Xi

Sl,s))

)
. (2)

By combining the two losses, we define the segment-based source-like entropy loss as LSeg =
LSegEnt + LSimEnt. By minimizing LSeg, we effectively generate a source-like distribution with
recovered source temporal dependencies.

3.4 ENHANCEMENT

To optimize the initial distribution as a source-like distribution, masking introduces the essential di-
versity required for effective recovery. However, masking presents challenges. A large masking ratio
can introduce sufficient diversity, increasing the chances of finding an optimal solution. However,
it risks model collapse, where the recovery model shortcuts the learning process by filling masked
parts with constant values, minimizing entropy without capturing the true underlying structure, as
proof in Appendix A.1. On the other hand, using a small masking ratio avoids this collapse but fails
to provide enough diversity for the model to learn an optimal source-like distribution.

5
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Anchor-based Recovery Diversity Maximization To effectively enhance diversity for optimal
recovery, we introduce the anchor-based recovery diversity maximization module. This module
encourages recovery diversity by maximizing the distance between recovered samples and their
original samples. By pushing the recovered samples to diverge from their original forms, the samples
are forced to enhance diversity (see proof in Appendix A.2), allowing to explore a broader range of
features that are crucial for capturing the complexity of the source distribution. However, without
proper constraints, this recovery diversity maximization may cause the recovered samples to deviate
in unintended directions, as shown in Fig. 3 (a), leading to distributions that are not aligned with the
source domain and hurting performance. To prevent this, we further introduce anchors to guide the
process and ensure that the diversity remain consistent with the source distribution. Anchors act as
reference points as shown in Fig. 3 (b), balancing diversity with fidelity to the source domain.

(a) Rec. Div. Max (b) Rec. Div. Max w/ Anchor

Trg distrib. Src distrib. 

Trg data Src-like data w/ Rec. Div. Max Anchor

Min

Figure 3: (a) Recovery diversity maximization
may cause the recovered samples to deviate in un-
intended directions without proper constraints. (b)
Anchors act as reference points, balancing diver-
sity with fidelity to the source domain.

Anchor Generation with Anchor Bank To
effectively guide optimization toward the
source distribution, generating high-quality an-
chors is crucial, as poor anchors can mislead
the model and degrade performance. For opti-
mal guidance, these anchors must closely align
with the source distribution. Thus, we pro-
pose selecting recovered samples with the low-
est entropy, as they are more likely to reflect
the source distribution and serve as ideal guides
for the recovery process. While a simple ap-
proach is to select low-entropy samples from
each batch, this may miss optimal candidates
due to batch randomness. To address this, we
implement an anchor bank, inspired by Wu
et al. (2018), to store all recovered samples with
their entropy: A = {Xi

Sl, H(Xi
Sl)}

nT
i=1, where

H(Xi
Sl) is the entropy computed by the source model. To ensure its quality, the anchor bank is con-

tinuously updated during adaptation, as shown in Fig. 1. From the anchor bank, we extract the top
k samples with the lowest entropy, denoted by Ak = {Xj

A}kj , and compute a representative anchor
by averaging these samples: X̄A =

∑k
j Xj

A/k. The value of k is set by an anchor ratio, allowing
adjustment based on dataset sizes. Further analysis of the anchor ratio is provided in Appendix A.8.

Objectives We have two key objectives: 1. Recovery Diversity Maximization: Maximize the dis-
tances between the recovered samples and their original samples; 2. Anchor Guidance: Minimize
the distances between the recovered samples and the anchor sample. However, directly pushing all
recovered samples toward the anchor risks collapse, where diversity is lost as all samples converge
to a single point. To prevent this, we introduce an additional objective that maximizes the distances
between any two recovered samples, ensuring variations among them. To achieve these objectives,
the InfoNCE loss for contrastive learning is adopted (Eldele et al., 2021), which pulls the recovered
samples toward the anchor while pushing them apart from each other and their original forms. Par-
ticularly, given recovered source-like samples Xi

Sl, original target samples Xi
T , and the anchor X̄A,

the anchor-based recovery diversity maximization loss is defined as Eq. (3), where B is batch size,
S(i, j) = exp (m(i, j)/τ), with m(i, j) = Fθ(i)(Fθ(j))T measuring the difference of samples.

LARDM = − 1

B

B∑
i=1

log
S(Xi

Sl, X̄A)

S(Xi
Sl, X̄A) + S(Xi

Sl,Xi
T ) +

∑
k ̸=i S(X

i
Sl,Xk

Sl)
. (3)

3.5 ADAPTATION

Once the source-like distribution with source temporal dependencies is generated, we transfer this
information to the target domain for adaptation. With the source temporal dependencies already
recovered, traditional UDA techniques, such as metric-based or adversarial-based methods, can be
effectively utilized for this transfer. For adaptation, we fine-tune the target encoder F̄θ̄, initialized
from the pretrained source encoder Fθ, to adapt to the target domain. To further preserve target

6
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domain information, we incorporate target entropy minimization following Liang et al. (2020), i.e.,
LTrgEnt = −

∑
i Gϕ(F̄θ̄(X

i
T )) log Gϕ(F̄θ̄(X

i
T )). The final loss function is shown in Eq. (4), includ-

ing the alignment loss LAlign computed by Deep CORAL (Sun et al., 2017; Wang et al., 2024a).

minL = λSegLSeg + λARDMLARDM + LAlign + LTrgEnt. (4)

Notably, the source-like distribution may have poor quality during initial epochs, and adaptation
at this stage could cause negative transfer. To solve this, we divide the adaptation process into
source-like optimization and transfer phases. First, the source-like distribution is optimized over
several epochs to enhance its quality. This enhanced source-like distribution is then used to transfer
dependencies to the target encoder during the transfer phase for effective domain adaptation.

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS

Datasets To comprehensively evaluate TemSR, we selected three crucial TS tasks: Human Activ-
ity Recognition (HAR) on the UCI-HAR dataset (Anguita et al., 2013), Sleep Stage Classification
(SSC) on the Sleep-EDF dataset (Goldberger et al., 2000), and Machine Fault Diagnosis (MFD)
(Lessmeier et al., 2016). Each task is assessed through ten cross-domain scenarios by following
Ragab et al. (2023a). Detailed descriptions and preprocessing are provided in Appendix A.4.

Unified Training Scheme To ensure fair comparisons with SOTAs, we utilized a consistent three-
layer CNN backbone and adhered to identical training configurations as Ragab et al. (2023b). To
consider potential data imbalances and provide comprehensive evaluations, we used the Macro F1-
score (MF1) as the primary metric. The mean and standard deviation of MF1 are reported across
three runs for each cross-domain scenario. Full details are available in Appendix A.5.

4.2 COMPARISONS WITH STATE-OF-THE-ARTS

Table 1: Detailed results of the ten HAR cross-domain scenarios in terms of MF1 score (%).

Models SF 2→11 12→16 9→18 6→23 7→13 18→27 20→5 24→8 28→27 30→20 AVG

SRC ✝ 95.69±5.72 67.13±9.83 70.07±4.71 81.01±14.9 84.5±12.08 85.95±5.00 63.30±4.13 71.59±8.56 50.24±5.92 67.91±9.21 73.73±2.68
TRG ✝ 100.0±0.00 98.50±1.30 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00 97.21±3.08 100.0±0.00 100.0±0.00 88.61±9.36 98.43±2.84

DANN ✗ 98.09±1.68 62.08±1.69 70.7±11.36 85.6±15.71 93.33±0.00 100.0±0.00 78.41±7.67 87.99±9.41 97.47±1.00 87.25±0.81 86.09±4.86
CDAN ✗ 98.19±1.57 61.20±3.27 71.3±14.64 96.73±0.00 93.33±0.00 99.61±0.67 82.02±5.43 98.59±2.44 99.12±1.52 80.70±7.43 88.07±1.22
CoDATs ✗ 86.65±4.28 61.03±2.33 80.51±8.47 92.08±4.39 92.61±0.51 97.67±1.02 82.81±7.05 94.69±1.81 92.29±9.25 80.44±5.04 86.07±2.88
CLUDA ✗ 80.33±3.81 66.67±2.24 70.35±2.13 91.14±1.70 95.28±2.62 100.0±0.00 80.73±3.24 91.67±3.15 98.96±1.47 80.43±2.34 85.55±1.24
RAINCOAT ✗ 100.0±0.00 76.28±3.18 77.35±3.70 98.14±1.20 100.0±0.00 100.0±0.00 85.73±3.02 97.67±2.31 100.0±0.00 86.46±1.04 92.16±0.83
SHOT ✓ 100.0±0.00 70.76±6.22 70.19±8.99 98.91±1.89 93.01±0.57 92.93±2.79 69.66±1.06 88.58±3.94 90.39±3.11 75.47±1.96 84.99±2.00
NRC ✓ 97.02±2.82 72.18±0.59 63.10±4.84 96.41±1.33 89.13±0.54 100.0±0.00 81.82±1.19 92.97±3.21 98.43±0.88 82.97±2.71 87.40±0.34
AaD ✓ 98.51±2.58 66.15±6.15 68.33±11.9 98.07±1.71 89.41±2.86 100.0±0.00 80.75±2.72 94.69±3.42 84.85±13.1 77.77±1.43 85.85±1.29
BAIT ✓ 98.88±1.93 56.65±2.54 80.4±13.43 100.0±0.00 97.43±3.59 100.0±0.00 80.91±1.60 100.0±0.00 100.0±0.00 82.66±1.30 89.69±1.23
MAPU ✓ 100.0±0.00 67.96±4.62 82.77±2.54 97.82±1.89 99.29±1.22 100.0±0.00 82.88±3.68 96.48±3.09 96.01±3.19 85.43±3.84 90.86±0.98
TemSR ✓ 100.0±0.00 64.21±3.04 93.65±2.02 97.82±1.89 98.95±0.01 100.0±0.00 82.32±0.73 100.0±0.00 100.0±0.00 84.10±5.52 92.10±0.33

Table 2: Detailed results of the ten SSC cross-domain scenarios in terms of MF1 score (%).

Models SF 16→1 9→14 12→5 7→18 0→11 3→19 18→12 13→17 5→15 6→2 AVG

SRC ✝ 52.93±3.42 63.99±8.04 48.79±3.31 62.33±3.86 50.43±6.26 47.38±3.36 38.35±2.03 43.80±0.12 60.13±6.36 55.67±2.20 52.38±0.47
TRG ✝ 81.52±2.06 75.79±0.88 73.87±1.43 77.74±1.86 68.26±0.73 78.79±1.49 73.51±1.73 70.39±0.75 72.17±1.99 82.11±1.13 75.41±0.43

DANN ✗ 58.68±3.29 64.29±1.08 64.65±1.83 69.54±3.00 44.13±5.84 64.09±4.48 54.33±4.81 52.31±1.70 68.03±0.29 71.78±2.24 61.18±2.31
CDAN ✗ 59.65±4.96 64.18±6.37 64.43±1.17 67.61±3.55 39.38±3.28 60.19±1.16 40.46±6.79 40.82±8.87 65.22±6.73 68.81±1.86 57.07±1.79
CoDATs ✗ 63.84±3.36 63.51±6.92 52.54±5.94 66.06±2.48 46.28±5.99 66.15±4.46 47.84±5.59 38.17±10.8 72.62±3.07 61.59±13.1 57.86±0.76
CLUDA ✗ 55.67±1.21 64.33±1.24 60.12±4.55 64.35±1.55 46.78±2.55 64.33±2.22 45.56±1.34 51.12±6.77 64.55±1.21 61.12±3.34 57.79±1.37
RAINCOAT ✗ 59.04±2.02 68.04±1.18 62.20±3.22 66.77±1.56 49.17±2.70 68.89±0.66 49.40±1.25 50.71±6.68 73.53±0.51 72.09±2.38 61.98±1.48

SHOT ✓ 59.07±2.14 69.93±0.46 62.11±1.62 69.74±1.22 50.78±1.90 65.44±1.06 48.14±11.2 56.41±1.60 55.51±9.37 64.56±2.16 60.16±3.82
NRC ✓ 52.09±1.89 58.52±0.66 59.87±2.48 66.18±0.25 47.55±1.72 64.65±2.25 52.86±6.60 56.93±2.89 61.89±5.94 66.54±2.29 58.70±2.79
AaD ✓ 57.04±2.03 65.27±1.69 61.84±1.74 67.35±1.48 44.04±2.18 52.42±4.55 40.86±8.43 58.28±6.97 63.06±12.3 59.29±2.90 56.94±3.52
BAIT ✓ 56.83±1.17 71.84±1.18 65.57±2.15 71.12±1.45 42.30±2.61 59.56±1.87 53.53±1.89 53.03±3.53 60.53±5.08 63.69±1.04 59.80±0.60
MAPU ✓ 63.85±4.63 74.73±0.64 64.08±2.21 74.21±0.58 43.36±5.49 59.03±3.60 52.82±4.94 48.09±2.25 67.04±1.22 58.98±1.07 60.61±1.28

TemSR ✓ 62.51±1.09 72.60±0.74 66.70±1.91 72.15±1.01 49.62±1.88 65.87±0.53 60.32±0.97 57.56±2.07 66.50±2.07 64.82±1.78 63.86±0.58

For comparisons, we evaluated both conventional UDA methods and SFUDA techniques by follow-
ing Ragab et al. (2023b); Yang et al. (2021; 2022). Conventional UDA methods include DANN
(Ganin et al., 2016), CDAN (Long et al., 2018), CoDATS (Wilson et al., 2020), CLUDA Ozyurt
et al. (2022), and RAINCOAT He et al. (2023), while SFUDA methods include SHOT (Liang et al.,
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Table 3: Detailed results of the ten MFD cross-domain scenarios in terms of MF1 score (%).

Models SF 0→1 1→0 1→2 2→3 3→1 0→3 1→3 2→1 3→0 3→2 AVG

SRC ✝ 26.26±5.04 68.63±6.22 72.66±0.95 96.90±1.38 99.02±1.07 42.13±8.06 96.25±3.72 86.96±0.58 46.42±2.42 71.71±6.54 70.69±2.61
TRG ✝ 100.0±0.00 97.88±1.60 99.92±0.14 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00 97.88±1.60 99.92±0.14 99.56±2.31

DANN ✗ 83.44±1.72 51.52±0.38 84.19±2.10 99.95±0.09 100.0±0.00 77.65±9.41 99.97±0.04 99.75±0.14 50.85±1.74 72.32±22.3 81.96±2.89
CDAN ✗ 84.97±0.62 52.39±0.49 85.96±0.90 99.70±0.45 100.0±0.00 85.38±0.42 100.0±0.00 99.02±0.90 62.17±6.32 79.76±2.75 84.93±1.47
CoDATs ✗ 67.42±13.3 49.92±13.7 89.05±4.73 99.21±0.79 99.92±0.14 55.68±3.07 99.95±0.09 99.75±0.29 51.77±1.86 83.36±1.25 79.60±1.27
CLUDA ✗ 84.43±1.43 55.66±5.76 81.12±1.20 91.13±1.32 93.44±1.26 89.94±2.33 97.12±0.98 91.23±0.88 73.35±3.44 79.98±6.67 83.74±1.32
RAINCOAT ✗ 88.09±1.40 59.41±6.61 83.87±0.69 93.67±1.15 94.95±0.71 91.19±0.95 97.73±0.84 92.53±0.79 78.45±2.84 84.61±0.95 86.45±1.12

SHOT ✓ 41.99±2.78 57.00±0.09 80.70±1.49 99.48±0.31 99.95±0.05 83.63±2.32 89.33±3.50 88.98±1.59 72.89±7.84 71.38±2.31 78.53±1.98
NRC ✓ 73.99±1.36 74.88±8.81 69.23±0.75 78.04±11.3 71.48±4.59 70.88±1.75 70.35±6.80 72.10±1.34 63.67±5.57 61.52±3.20 70.61±1.60
AaD ✓ 71.72±3.96 75.33±4.65 78.31±2.26 90.07±7.02 87.45±11.7 89.35±2.22 100.0±0.00 96.49±3.04 72.42±4.47 74.56±6.80 83.57±2.46
BAIT ✓ 83.1±14.69 60.51±6.43 75.9±12.51 95.57±2.85 100.0±0.00 82.12±15.5 100.0±0.00 85.12±1.49 67.21±3.33 83.37±6.34 83.29±4.60
MAPU ✓ 99.43±0.51 77.42±0.16 85.78±7.38 99.67±0.50 99.97±0.05 85.63±2.44 100.0±0.00 94.38±0.62 88.47±1.99 81.51±2.43 91.22±1.08

TemSR ✓ 99.97±0.05 87.03±4.05 84.47±5.88 95.23±3.85 100.0±0.00 99.95±0.05 100.0±0.00 96.67±4.21 87.17±1.56 81.96±5.09 93.24±1.83

2020), NRC (Yang et al., 2021), AaD (Yang et al., 2022), BAIT (Yang et al., 2023), and MAPU
(Ragab et al., 2023b). These baselines are introduced in Appendix A.6. Additionally, we report
results for source (SRC)-only and target (TRG)-only models to provide the lower and upper bounds
of adaptation. For clarity, lower/upper bounds are denoted by ✝, conventional UDA methods by
✗, and SFUDA methods by ✓. We adopted all baseline results, except BAIT, from Ragab et al.
(2023b), where each method used the same backbone as ours for fairness. BAIT, a visual-based
method for generating source-like distributions, was implemented with the same backbone and its
publicly available code. Among the SFUDA methods, only MAPU is designed for TS tasks to
transfer temporal dependencies, though it requires additional pretraining designs in source domain.

The comparisons for HAR, SSC, and MFD datasets are presented in Tables 1, 2, and 3, respectively.
The results show that although RAINCOAT outperforms our method on HAR, it is a traditional
UDA method that requires access to the source domain during adaptation. In contrast, our method
operates without source data and still achieves comparable performance, highlighting its effective-
ness. Among SFUDA methods, the methods considering temporal dependencies, including MAPU
and our approach, generally outperform other SFUDA in most cross-domain scenarios. Regarding
average performance, MAPU and our method achieve the second-best and best results, respectively,
demonstrating the importance of capturing temporal dependencies in TS-SFUDA. Specifically, when
compared to the best methods that do not consider temporal dependencies (i.e., BAIT, SHOT, and
AaD on the respective datasets), our approach yields significant improvements of 2.41%, 3.70%,
and 9.67% on the three datasets. Even compared with MAPU, our method still improves by 1.24%,
3.25%, and 2.02%. Notably, MAPU relies on source pretraining designs to capture temporal de-
pendencies, limiting its practicality. In contrast, our approach adapts entirely in the target domain
without any source pretraining operations. Moreover, TemSR effectively recovers the source distri-
bution during adaptation, facilitating a more effective transfer of temporal dependencies and thereby
achieving improved and robust performance. These results underscore that without relying on source
pretraining designs, TemSR can still transfer temporal dependencies to achieve SOTA performance
in TS-SFUDA, even surpassing the existing method that depends on such designs.

4.3 ABLATION STUDY

To validate the effectiveness of key modules, e.g., LSeg and LARDM , for recovering a source-like
distribution, we conducted the ablation study using four types of variants. The first variant, ‘Src-like
only’, uses the source-like branch directly for target prediction. The source-like branch is designed
to generate source distributions with recovered temporal dependencies, so we test whether leverag-
ing it for prediction, rather than adaptation, is a feasible approach. Second, we tested variants for
the components of LSeg. The ‘w/o LSeg’ variant removes segment-based regularization, replacing
it with sample-level entropy minimization for source-like samples, to evaluate the importance of
recovering local temporal dependencies for effective temporal recovery. Variants ‘w/o Early’, ‘w/o
Late’, ‘w/o Recover’, and ‘w/o Complete’ involve the removal of specific segments to determine
their individual contributions. ‘w/o LSegSim’ excludes the segment similarity to assess the neces-
sity of ensuring smooth dependencies across segments. Third, we tested variants for the components
of LARDM . The variant ‘w/o LARDM ’ removes the whole loss, aiming to evaluate whether the di-
versity facilitated by this module is necessary for optimal performance. The ‘w/o Anchor’ variant
removes both the anchors and their associated objectives, testing the overall utility of anchors. ‘w/o
Add. Obj.’ excludes only the additional objective while retaining the anchors. The ‘w/o Anchor
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Bank’ variant removes the anchor bank and instead generates anchors within each batch, testing
whether the anchor bank is essential for producing the high-quality anchor. The final variant, ‘w/
Random Init.’ randomly initializes the source-like domain, testing the effectiveness of initializing
this domain using the target domain.

Table 4: Ablation study for HAR, SSC, and MFD (%).

Variants HAR SSC MFD

Src-like Only 17.68±7.89 13.44±2.07 19.29±4.66

w/o LSeg 90.72±1.27 62.74±0.81 92.33±2.15
w/o Early 91.20±0.81 62.97±1.30 92.17±2.47
w/o Late 91.16±1.35 62.95±1.27 92.95±3.19
w/o Recover 91.93±0.95 63.46±0.37 92.96±0.15
w/o Complete 91.04±0.72 62.77±1.32 92.27±3.35
w/o LSegSim 91.50±0.95 63.49±0.56 92.94±2.67

w/o LARDM 90.00±2.74 62.84±1.44 92.46±2.41
w/o Anchor 88.91±1.76 62.59±0.97 91.49±2.34
w/o Add. Obj. 90.13±1.68 63.43±0.50 92.79±3.24
w/o Anchor Bank 91.97±0.97 63.23±0.11 93.09±2.32

w/ Random Init. 91.97±0.92 63.36±0.20 91.72±2.54

TemSR 92.10±0.33 63.86±0.58 93.24±1.83

The results in Table 4 summarize the aver-
age performance across all cross-domain
cases, with detailed results provided in
Appendix A.8. Here, four key insights
emerge. First, the ‘Src-like only’ vari-
ant performs poorly. While the recovered
samples successfully align with a source-
like distribution, the masking process dis-
torts their original samples, causing them
to lose sample-specific information, so di-
rectly using these recovered samples for
prediction significantly weakens perfor-
mance. This demonstrates that it is more
effective to use the source-like distribution
for transferring knowledge to the target en-
coder rather than for prediction.

Second, we can observe the effectiveness
of the components in LSeg. Removing
LSeg causes significant performance drops, highlighting the importance of recovering local tem-
poral dependencies. Among its components, the ‘Complete’ is the most significant, as it captures
global dependencies. When this component is removed, only local dependencies are captured, which
adversely affects the model’s performance. Further, the early and late segments are relatively more
impactful than the recovered segment. This is likely because the early and late segments sometimes
intersect with the recovered parts. However, this does not diminish the importance of the recovered
segment, as it focuses on the masked parts, encouraging them to align with source temporal de-
pendencies and further enhancing performance. Additionally, removing LSegSim causes a notable
decline, confirming its effectiveness.

Third, LARDM is critical for maintaining diversity among recovered samples. Removing this loss
leads to significant performance degradation, as the lack of diversity hinders the generation of an op-
timal source-like distribution. Meanwhile, removing anchors also causes notable drops, especially
under small masking ratios, due to insufficient diversity among the recovered samples. While using
anchors without the additional objective improves performance, it risks convergence to a collapsed
solution, showing the necessity of the additional objective. Similarly, removing the anchor bank
results in lower-quality anchors when generated per batch, reducing adaptation effectiveness. Fi-
nally, random initialization of the source-like domain severely reduces performance and increases
standard deviation, highlighting the difficulty in identifying an optimal solution without leveraging
the target domain for initialization.

4.4 SENSITIVITY ANALYSIS

We conducted sensitivity analysis for TemSR, focusing on key hyperparameters: λSeg and λARDM ,
which control the effects of the losses LSeg and LARDM . We adopted a wide range—[1e-3, 1e-2,
1e-1, 1, 10, 50, 100]—to assess TemSR’s sensitivity to these large variations, with larger values
indicating greater impacts.

(a) HAR (b) SSC (c) MFD

Figure 4: Analysis for λSeg.

(a) HAR (b) SSC (c) MFD

Figure 5: Analysis for λARDM .
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Fig. 4 and 5 present the analysis for λSeg and λARDM , respectively. The results show that the
performance of TemSR improves as λSeg and λARDM increase, indicating that greater weights on
these losses enhance performance, further highlighting their effectiveness. However, performance
drops sharply when these values become too large, e.g., 50 or 100. For instance, with λSeg = 10 →
100, the performance on HAR decreases significantly, i.e., from around 91% to 85%. A similar
trend is observed with λARDM . These drops occur because, at higher values, the individual loss
term dominates the adaptation process, overshadowing the contributions of other losses and thus
negatively impacting adaptation. Meanwhile, excessive values also lead to instability, especially at
100. Based on these findings, the optimal range for both λSeg and λARDM is between 1 and 10,
offering a broad range to easily facilitate optimal performance for TemSR.

4.5 DISTRIBUTION DISCREPANCY CHANGES

1.92

1.96

2

2.04

0 20 40

(a) SRC vs. SRC-Like

2

2.2

2.4

2.6

0 20 40

(b) TRG vs. SRC-Like

1.2

1.4

1.6

1.8

0 20 40

(c) SRC vs. TRG

Figure 6: Distribution discrepancies changes
(Source domain used only for computing discrep-
ancy without directly involved in adaptation).

The core objective of TemSR is to recover a
source-like domain and then perform domain
adaptation. This requires ensuring that the re-
covered source-like distribution closely resem-
bles the source distribution and that the domain
discrepancy between the source-like and target
domains is minimized. By achieving so, this
process can effectively reduce the gap between
the source and target domains. To present this
intuitively, we visualized the evolution of dis-
tribution discrepancies between source (SRC)-
like, source (SRC), and target (TRG) domains,
during the adaptation stage. The visualization
is shown in Fig. 6, where discrepancies are quantified using the KL divergence, a standard metric
for comparing distributions (Zhang et al., 2024). Notably, in this visualization, the source distribu-
tion is used only for calculating discrepancies and is not directly involved in the adaptation process.

From the figure, we observe that the discrepancy between the source and source-like domains de-
creases steadily during the adaptation stage, indicating that the recovered source-like distribution
increasingly resembles the source distribution. Meanwhile, during the initial epochs without align-
ment, we also notice an increase in the domain gap between the target and source-like domains.
After these early stages and the alignment begins, the domain gap between the target and source-like
domains gradually diminishes. By the end of adaptation, the overall domain discrepancy between
the source and target domains is effectively reduced, demonstrating the capability of TemSR to align
the two domains without requiring direct access to the source data.

5 CONCLUSION

To transfer temporal dependencies across domains for effective TS-SFUDA without relying on spe-
cific source pretraining designs, we propose the Temporal Source Recovery (TemSR) framework.
TemSR aims to recover and transfer source temporal dependencies by generating a source-like time-
series distribution. The framework features a recovery process that employs masking, recovery, and
optimization to create the source-like distribution with recovered temporal dependencies. For effec-
tive recovery, we further improve the optimization as segment-based regularization to restore local
temporal dependencies and design an anchor-based recovery diversity maximization loss to enhance
diversity in the source-like distribution. The recovered source-like distribution is then adapted to
the target domain using traditional UDA techniques. Additional analysis of distribution discrepancy
changes between source, source-like, and target domains confirms TemSR’s ability to recover and
align the source-like domain, ultimately reducing gaps between the source and target domains. Ex-
tensive experiments further demonstrate the effectiveness of TemSR, achieving SOTA performance
and even surpassing the existing TS-SFUDA method that relies on source-specific designs.
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A APPENDIX

A.1 TRIVIAL SOLUTIONS WITH LARGE MASKING RATIO

Theorem 1 With a high masking ratio, the recovery model is prone to collapsing to a constant value
for the source-like domain, thus impairing the performance of domain adaptation.

Proof:
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Given Conditions

• Xi
T is a time-series sample from the target domain;

• M(Xi
T ) is the masking operation applied to Xi

T , with a masking ratio pm, where pm repre-
sents the proportion of the input that is masked.;

• Rζ is the recovery model, parameterized by ζ, which recovers a source-like sample Xi
Sl =

Rζ(M(Xi
T )) from the masked input;

• Fθ is the fixed pretrained encoder for the source-like branch, aiming to extract features z
from the recovered sample Xi

Sl;
• p(z) denotes the probability distribution of the feature representations.

The entropy of the feature distribution is given by the following, and the training objective is mini-
mizing this entropy,

H(p(z)) = −
∫

p(z) log p(z) dz. (5)

Feature Collapse in High Masking Ratio As the masking ratio pm increases toward 1, the
masked sample M(Xi

T ) contains minimal information about the original target data Xi
T . Conse-

quently, the recovery model Rζ faces increasing difficulty in reconstructing meaningful samples.
To achieve the training objectives in Eq. (5) for entropy minimization, the model may try to find a
degenerate solution where the recovered sample Xi

Sl = Rζ(M(Xi
T )) becomes constant across the

masked region, as doing so can easily minimize entropy to zero.

Specifically, for a high masking ratio, Xi
Sl is approximated by a constant value c, i.e.

Xi
Sl ≈ c with pm ≈ 1. (6)

Passing this constant through the encoder results in constant feature representations:

z = Fθ(Xi
Sl) ≈ Fθ(c) = z0. (7)

In this case, the distribution of z collapses to a Dirac delta function centered at z0:

p(z) = δ(z− z0). (8)

By substituting Eq. (8) into the entropy (5) and using the property δ(x) log δ(x) = 0 for a delta
function p(z) = δ(z− z0), we derive the entropy of the collapsed features:

H(p(z)) = −
∫

δ(z− z0) log δ(z− z0) dz = 0. (9)

This implies that the entropy H(p(z)) reaches its minimum value of zero, which satisfies the opti-
mization objective but results in feature collapse. The model converges to a trivial solution where
no meaningful variability in the recovered source-like sample exists.

Conclusion Given the high masking ratio, the recovery model Rζ is unable to generate a valid re-
construction of the source-like sample. Instead, it defaults to generating a constant value to minimize
the entropy, resulting in collapsed features that carry no useful information. This trivial solution,
characterized by p(z) = δ(z − z0), leads to zero entropy, but the recovered sample fails to capture
the temporal dependencies required for successful domain adaptation. In contrast, a lower masking
ratio provides the recovery model with sufficient context, allowing for more meaningful reconstruc-
tions. When paired with our designed anchor-based recovery diversity maximization module, this
results in diverse, temporally coherent recovered samples. Thus, a lower masking ratio, in conjunc-
tion with diversity-enhancing techniques, is critical to ensuring effective recovery and adaptation.
(Sec 3.4 Enhancement.)

A.2 IMPROVED DIVERSITY WITH RECOVERY DIVERSITY MAXIMIZATION

Theorem 2 Maximizing the distance between original samples Xi
T and recovered samples Xi

Sl en-
hances the diversity of the recovered samples.

Proof:
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Given Conditions

• Xi
T is a time-series sample from the target domain.

• Xi
Sl is the corresponding recovered sample, generated by the recovery model Rζ , i.e.,

Xi
Sl = Rζ(M(Xi

T )), where M(Xi
T ) is the masked version of Xi

T .

• p(Xi
T ,Xi

Sl) denotes the joint probability distribution of the original samples Xi
T and recov-

ered samples Xi
Sl.

• d(Xi
T ,Xi

Sl) is the distance between the original and recovered samples.

Conditional Entropy and Diversity The conditional entropy H(Xi
Sl|Xi

T ) measures the uncer-
tainty in the recovered samples Xi

Sl, given the original samples Xi
T . As Xi

Sl = Rζ(M(Xi
T )), higher

conditional entropy implies greater uncertainty of Xi
Sl generated from Xi

T , suggesting a wider range
of possible outcomes for the recovered samples from their original samples. Therefore, increasing
the conditional entropy directly corresponds to enhancing the diversity of the recovered samples.

Conditional Entropy Equation The conditional entropy H(Xi
Sl|Xi

T ) quantifies the uncertainty in
Xi
Sl, given Xi

T , and is defined as:

H(Xi
Sl|Xi

T ) = −
∑
Xi
T

∑
Xi
Sl

p(Xi
T ,Xi

Sl) log p(X
i
Sl|Xi

T ). (10)

This equation measures how much uncertainty remains in Xi
Sl after observing Xi

T . Higher values of
H(Xi

Sl|Xi
T ) indicate greater diversity in the recovered samples.

Probability Decay with Distance We now show that the joint probability p(Xi
T ,Xi

Sl) is inversely
related to the distance d(Xi

T ,Xi
Sl). Intuitively, nearby events have higher probabilities, while distant

events have lower probabilities.

For example, in a Gaussian distribution, the probability density decays as the distance between Xi
T

and Xi
Sl increases. Specifically:

p(Xi
T ,Xi

Sl) ∝ exp

(
−d(Xi

T ,Xi
Sl)

2

2σ2

)
. (11)

Here, d(Xi
T ,Xi

Sl) is the distance between the original and recovered samples, and σ2 is the variance.
As d(Xi

T ,Xi
Sl) increases, the probability p(Xi

T ,Xi
Sl) decays exponentially.

Since the joint probability p(Xi
T ,Xi

Sl) decreases as d(Xi
T ,Xi

Sl) increases, the conditional entropy
H(Xi

Sl|Xi
T ) from Eq. (10) also increases, indicating the uncertainty in Xi

Sl, given Xi
T , increases.

Conclusion Maximizing the distance d(Xi
T ,Xi

Sl) decreases the joint probability p(Xi
T ,Xi

Sl), thus
increasing the uncertainty and, therefore, the conditional entropy H(Xi

Sl|Xi
T ). As higher conditional

entropy corresponds to greater diversity in the recovered samples, we conclude that maximizing
the distance between the original and recovered samples enhances the diversity of the recovered
distribution. (Sec 3.4 Enhancement.)

A.3 DISCUSSION OF GANS FOR SOURCE-LIKE DOMAIN INITIALIZATION

GAN-based works fail to meet the two outlined requirements for two reasons:

1. GANs typically use a random noise vector sampled from a standard distribution (e.g., Gaussian
or uniform) as the initial input to the generator. This random initialization normally diverges sig-
nificantly from the source distribution, expanding the solution space and making it challenging to
converge to an optimal source-like distribution.

2. GANs are not inherently designed to handle sequential data or temporal dependencies, as they
treat each generated sample independently without enforcing continuity between data points, so it
may generate the random time points and fail to capture the temporal coherence.
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A.4 DATASET DETAILS AND PROCESSINGS

A.4.1 UCI-HAR DATASET

The UCI-HAR dataset is tailored for human activity recognition tasks, comprising sensor data col-
lected from 30 distinct users, each representing a separate domain. Each participant performs six
activities: walking, walking upstairs, walking downstairs, standing, sitting, and lying down. The
data is recorded using three types of sensors—accelerometers, gyroscopes, and body sensors—each
capturing data on three axes. Thus, there are totally nine channels per sample, with each channel
containing 128 data points. Following prior research (Ragab et al., 2023a), we employed a window
size of 128 for sample extraction and applied min-max normalization for data preprocessing.

A.4.2 SLEEP-EDF DATASET

The Sleep-EDF dataset is designed for sleep stage classification. It includes recordings from six
channels monitoring various physiological signals, such as EEG (Epz-Cz, Pz-Oz), EOG, and EMG.
Based on prior research (Ragab et al., 2023b) and due to the high information content in the Epz-Cz
channel, we utilized only this channel in our experiments. The dataset comprises recordings from 20
subjects, each is treated as a domain because different persons have various personal habits. Each
subject can be classified into five sleep stages: wake, light sleep stage 1 (N1), light sleep stage 2
(N2), deep sleep stage 3 (N3), and rapid eye movement (REM) (Goldberger et al., 2000). Notably,
each sample in the dataset corresponds to a 30-second window of physiological data, recorded at a
sampling rate of 100 Hz, resulting in 3000 timestamps per sample.

A.4.3 MFD DATASET

The MFD dataset, collected by Paderborn University, is used for machine fault diagnosis, where
vibration signals are leveraged to identify different types of incipient faults. Data was collected
under four distinct working conditions, each treated as a separate domain. Each sample consists of
a single univariate channel containing 5120 data points. (Sec 4.1 Datasets.)

A.5 MODEL DETAILS

In our study, we adopted the encoder architecture presented in previous works (Ragab et al.,
2023b;a), which is a 1-dimensional Convolutional Neural Network (CNN) comprising three lay-
ers with filter sizes of 64, 128, and 128, respectively. Each convolutional layer is followed by a
Rectified Linear Unit (ReLU) activation function and batch normalization.

In the adaptation stage, we apply masking to generate masked samples, adopting a masking ratio of
1/8 across all datasets. To recover the masked samples, we designed a recovery model Rζ , achieved
by a two-layer Long Short-Term Memory network. The hidden dimension is set to 64 for the HAR
and SSC tasks, and 128 for the MFD task, due to the longer time sequences in the latter. To generate
anchor samples, we used an anchor ratio of 0.3 for all datasets, meaning the 30% of samples with
the lowest entropy in the anchor bank are selected as anchor samples. For the temperature factor in
Eq. (3) to achieve better anchor-based recovery diversity maximization, we used 0.05 for the MFD
and EEG tasks, and 0.01 for the HAR task. (Sec 4.1 Unified Training Scheme.)

Table 5: Model parameters for baselines and ours.

Models
HAR SSC MFD

Batch Size Epochs
Learning Rates (LR)

Batch Size Epochs
Learning Rates (LR)

Batch Size Epochs
Learning Rates (LR)

Pretrain LR Adapt LR Pretrain LR Adapt LR Pretrain LR Adapt LR

DANN 32 40 - 1e-2 32 40 - 5e-4 32 40 - 5e-4
CDAN 32 40 - 1e-2 32 40 - 1e-3 32 40 - 1e-3
CoDATS 32 40 - 1e-3 32 40 - 1e-2 32 40 - 5e-4
CLUDA 32 40 - 1e-3 32 40 - 1e-3 32 40 - 1e-3
RAINCOAT 32 50 - 5e-4 128 40 - 2e-3 32 40 - 1e-3
SHOT 32 40 1e-3 1e-4 32 40 3e-3 1e-5 32 40 1e-3 1e-5
NRC 32 40 3e-3 1e-5 32 40 3e-3 1e-5 32 40 1e-3 1e-5
AaD 32 40 3e-3 1e-4 32 40 3e-3 1e-5 32 40 1e-3 1e-5
BAIT 32 40 5e-4 1e-4 32 40 1e-3 5e-5 32 40 1e-3 1e-5
MAPU 32 40 1e-3 1e-4 32 40 3e-3 1e-5 32 40 1e-3 1e-5
TemSR 32 40 1e-3 5e-4 32 40 1e-3 5e-5 32 40 3e-3 7e-6
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A.6 BASELINE DETAILS

We incorporate both conventional UDA approaches and source-free UDA (SFUDA) techniques,
following prior work (Yang et al., 2022; Ragab et al., 2023b). Below is a summary of each base-
line. Meanwhile, we provide the parameters used in each baseline, as shown in Table 5. (Sec 4.2
Comparisons with State-of-the-Arts)

Conventional UDA methods

• Domain-Adversarial Training of Neural Networks (DANN) (Ganin et al., 2016): DANN
utilizes adversarial learning to push the encoder to generate domain-invariant features that
a domain discriminator cannot tell which domain the sample comes from.

• Conditional Domain Adversarial Network (CDAN) (Long et al., 2018): CDAN leverages
class-wise information with adversarial alignment for effective domain adaptation.

• Convolutional deep adaptation for time series (CoDATS) (Wilson et al., 2020): CoDATS
uses adversarial learning to enhance adaptation performance, specifically targeting time-
series data with limited supervision.

• Contrastive Learning-based Unsupervised Domain Adaptation (CLUDA): CLUDA lever-
ages contrastive learning to capture contextual representations of time-series data, pre-
serving label information and enabling domain-invariant alignment of contextual features
across domains.

• fRequency-augmented AlIgN-then-Correct for dOmain Adaptation for Time series (RAIN-
COAT): RAINCOAT tackles feature and label shifts by integrating both temporal and fre-
quency features, aligning them across domains, and correcting misalignments to enhance
the detection of domain-specific labels.

Source-free UDA methods

• Source Hypothesis Transfer (SHOT) (Liang et al., 2020): SHOT maximizes mutual infor-
mation loss and employs self-supervised pseudo-labeling to extract target features aligned
with the source hypothesis, enabling adaptation without requiring source data labels.

• Exploiting the intrinsic neighborhood structure (NRC) (Yang et al., 2021): NRC explores
the underlying neighborhood structure in target data by forming distinct clusters and ensur-
ing label consistency within them, addressing the challenge of unlabeled target domains.

• Attracting and dispersing (AaD) (Yang et al., 2022): AaD promotes consistent predictions
within neighboring feature spaces, exploiting the intrinsic structure of unlabeled target data
to improve adaptation.

• BAIT (Yang et al., 2023): BAIT uses a bait classifier to identify misclassified target features
and subsequently updates the feature extractor to guide these difficult features toward the
correct side of the decision boundary.

• Mask and impute (MAPU) (Ragab et al., 2023b): MAPU captures temporal dependen-
cies in TS data by designing a temporal imputer in the source pretraining stage, and then
restoring the temporal dependencies with the fixed imputer in the target adaptation stage
for temporal dependency transfer.

A.7 INTUITIVE EXAMPLES FOR SEGMENT

Fig. 7 provides intuitive examples for generating segments from an recovered sample. Here, to
intuitively illustrate masking parts and the extraction proportion of 4/6, the complete recovered
sample is split into six portions. Fig. 7 (a) shows the complete version, with portions B, C, D, and
E masked and recovered. Fig. 7 (b) demonstrates the extraction for the ‘Early’ segment, where
portions A, B, C, and D are selected, capturing the information at the early stage of the sequence.
Fig. 7 (c) shows the extraction for the ‘Late’ segment, selecting portions C, D, E, and F. Fig. 7 (d)
shows the ‘Recovered Parts’ segment, where the portions containing recovered parts, including B,
C, D, and E, have been extracted. (Sec 3.3 Optimization.)
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A B C D E F A B C D C D E F B C D E

(a) Complete (b) Early (c) Late (d) Recovered Parts

Figure 7: (a) The complete recovered sample. (b) (c) (d) Extracted segment for ‘Early’, ‘Late’, and
‘Recovered Parts’ containing four portions from different regions of the recovered sample.
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Figure 8: Analysis for Masking Ratio.

A.8 ADDITIONAL RESULTS

Due to space limitations in the main paper, we here provide the analysis for the masking ratio, the
anchor ratio, the extraction proportion, and the detailed results of the ablation study.

Effect of Masking Ratio The masking ratio, which introduces diversity to the initial distribution
for optimization as a source-like distribution, has been tested with values of [1/8, 2/8, 3/8, 4/8, 5/8,
6/8] following Ragab et al. (2023b), with larger values indicating more information removed in the
sample. Fig. 8 shows the impact of various masking ratios, suggesting that smaller masking ratios
lead to better performance. As discussed in Sec 3.4, while higher masking ratios introduce more
diversity to the source-like distribution, they can cause the model to collapse by exploiting shortcuts,
e.g., recovering the masked samples as a constant value. Although smaller masking ratios may limit
diversity, our proposed recovery diversity maximization loss compensates for this by balancing the
need for diversity with fidelity to the source domain. Thus, smaller masking ratios, e.g., 1/8 or 2/8,
are recommended for achieving optimal results. (Sec 3.3 Masking and Recovery.)

Effect of Anchor Ratio The anchor ratio, which determines the top-k samples with the lowest
entropy to generate the representative anchor, has been evaluated using [0.1, 0.3, 0.5, 0.7, 0.9],
with larger values indicating more samples selected for generating the anchor sample. For example,
0.1 represents the 10% of samples with lowest entropy being selected for anchor generation. Fig.
9 shows the sensitivity of TemSR to different anchor ratios, where smaller anchor ratios tend to
yield better results. This is because samples with the lowest entropy are more likely to produce
high-quality anchors with greater confidence. In contrast, larger anchor ratios may include samples
with lower confidence (with larger entropy), leading to less accurate anchors and, consequently,

(a) HAR (b) SSC (c) MFD
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Figure 9: Analysis for Anchor Ratio.
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poorer guidance during the adaptation process. From these results, anchor ratios of 0.1 or 0.3 are
recommended for generating effective anchors to enhance performance. (Sec 3.4 Anchor Generation
with Anchor Bank)

(a) HAR (b) SSC (c) MFD
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Figure 10: Analysis for extraction proportion.

Effect of Extraction Proportion The extrac-
tion proportion determines the amount of local
information in each segment. To evaluate its
effectiveness, we tested the values within [7/8,
6/8, 5/8, 4/8, 3/8, 2/8]. A value of 1 represents
segments containing only global information,
while smaller values indicate that more local in-
formation is involved in entropy minimization.
Fig. 10 presents the analysis of extraction pro-
portions. From the figure, we observe that re-
ducing the extraction proportion, e.g., from 7/8
to 6/8, can improve performance. This is because a lower proportion allows more local informa-
tion to be included for entropy minimization, aligning the local distribution in recovered samples
with the source distribution and thus achieving better source temporal recovery. However, with too
small values, e.g., 2/8, each segment loses too much useful information from the recovered sample,
making it hard to capture meaningful local dependencies. This leads the recovery model to misin-
terpret entropy minimization and produce ineffective source-like distributions, ultimately negatively
impacting adaptation performance. Thus, an extraction proportion of 6/8 or 5/8 would be better for
the optimization of the local distribution.

Detailed Results for Ablation Study The detailed results of the ablation study can be found in
Tables 6, 7, and 8 for HAR, SSC, and MFD, respectively, further highlighting the importance of
each module in generating a robust recovered source-like distribution for effective TS-SFUDA. (Sec
4.3 Ablation Study)

Table 6: Detailed ablation study of the ten HAR cross-domain scenarios regarding MF1 score (%).

Variants 2→11 12→16 9→18 6→23 7→13 18→27 20→5 24→8 28→27 30→20 Avg.

Src-like Only 26.39±9.04 27.33±9.20 09.76±5.91 12.75±4.38 18.87±5.64 19.45±10.6 21.61±7.41 12.57±5.56 19.45±0.32 8.63±1.48 17.68±7.89

w/o LSeg 100.0±0.00 63.22±3.54 88.74±3.73 98.36±2.31 98.95±0.00 100.0±0.00 80.32±0.73 97.04±3.13 100.0±0.00 80.60±5.80 90.72±1.27
w/o Early 100.0±0.00 64.88±5.86 89.83±3.38 97.55±1.63 98.75±0.13 100.0±0.00 81.15±1.24 98.04±2.23 100.0±0.00 81.82±5.65 91.20±0.81
w/o Late 100.0±0.00 62.66±3.53 91.08±2.80 97.82±1.89 99.30±0.61 100.0±0.00 83.15±2.40 96.67±3.26 100.0±0.00 80.96±2.75 91.16±1.35
w/o Recover 100.0±0.00 66.87±5.42 90.31±4.11 96.73±0.00 98.31±0.06 100.0±0.00 82.73±1.43 100.0±0.00 100.0±0.00 84.35±5.47 91.93±0.95
w/o Complete 100.0±0.00 62.37±3.70 91.08±2.80 97.82±1.89 98.86±0.05 100.0±0.00 82.53±0.89 95.56±6.29 100.0±0.00 82.20±6.00 91.04±0.72
w/o LSegSim 100.0±0.00 62.66±3.53 91.40±2.58 97.82±1.89 99.48±0.74 100.0±0.00 82.32±0.27 97.45±4.42 100.0±0.00 83.84±5.43 91.50±0.95

w/o LARDM 100.0±0.00 63.99±1.82 90.46±1.33 96.73±0.00 92.80±6.90 94.90±8.83 85.55±3.94 96.71±5.45 100.0±0.00 78.88±8.45 90.00±2.74
w/o Anchor 100.0±0.00 62.15±4.19 89.96±2.11 96.73±0.50 85.76±0.58 96.36±6.31 84.23±2.44 95.02±9.91 100.0±0.00 78.9±12.23 88.91±1.76
w/o Add. Obj. 99.45±0.78 61.33±3.03 83.95±1.08 98.37±2.31 96.14±3.97 100.0±0.00 82.55±0.75 96.97±6.06 100.0±0.00 82.55±8.84 90.13±1.68
w/o Anchor Bank 100.0±0.00 63.44±3.87 94.79±0.67 96.73±1.79 98.95±0.47 100.0±0.00 81.72±0.67 100.0±0.00 100.0±0.00 84.10±5.52 91.97±0.97

w/ Random Init. 100.0±0.00 62.80±4.74 93.26±4.92 97.82±1.89 98.95±0.07 100.0±0.00 82.40±1.11 100.0±0.00 100.0±0.00 84.52±4.53 91.97±0.92

TemSR 100.0±0.00 64.21±3.04 93.65±2.02 97.82±1.89 98.95±0.01 100.0±0.00 82.32±0.73 100.0±0.00 100.0±0.00 84.10±5.52 92.10±0.33

Table 7: Detailed ablation study of the ten SSC cross-domain scenarios regarding MF1 score (%).

Variants 16→1 9→14 12→5 7→18 0→11 3→19 18→12 13→17 5→15 6→2 Avg.

Src-like Only 13.54±5.76 13.74±3.17 11.45±1.63 11.49±0.49 33.65±2.71 22.77±18.0 09.87±2.21 03.85±2.56 06.22±0.00 07.83±4.41 13.44±2.07

w/o LSeg 62.08±1.04 71.44±2.19 67.61±3.40 71.59±1.05 47.67±5.48 65.83±0.47 59.76±0.16 55.98±0.88 64.78±1.43 60.68±2.36 62.74±0.81
w/o Early 62.26±1.14 70.49±2.24 65.82±2.25 72.41±0.40 49.92±1.99 65.48±0.50 60.05±1.01 56.63±1.52 65.73±3.11 60.87±3.30 62.97±1.30
w/o Late 61.66±0.20 71.89±0.36 65.42±1.56 71.44±0.63 51.32±2.11 65.60±0.60 60.40±0.88 56.61±0.35 63.99±3.09 61.18±3.71 62.95±1.27
w/o Recover 62.26±1.14 72.44±0.75 66.40±2.13 71.54±0.40 49.84±2.07 65.68±0.59 60.72±0.98 56.68±2.05 66.40±1.51 62.66±1.73 63.46±0.37
w/o Complete 61.73±0.19 70.42±2.17 65.44±1.52 72.30±0.48 49.92±1.99 62.15±0.27 59.03±1.01 57.97±1.97 66.56±2.16 62.21±3.38 62.77±1.32
w/o LSegSim 61.60±0.30 71.07±1.38 67.09±2.59 72.04±0.27 49.89±2.02 65.50±0.67 60.19±0.29 56.76±2.43 66.24±0.45 64.56±1.90 63.49±0.56

w/o LARDM 61.94±0.86 71.72±2.40 67.48±3.46 70.92±2.85 46.79±7.38 63.45±0.79 60.29±0.72 55.58±2.21 66.55±2.08 63.63±3.66 62.84±1.44
w/o Anchor 46.43±7.75 67.45±3.32 70.69±3.20 62.14±0.72 71.13±1.92 63.59±0.43 58.59±2.25 58.15±2.12 64.96±0.30 62.78±5.73 62.59±0.97
w/o Add. Obj. 62.72±1.05 71.70±2.51 65.14±3.66 71.76±1.52 47.92±5.72 66.72±0.62 60.05±0.62 57.21±2.50 66.46±0.33 64.64±2.10 63.43±0.50
w/o Anchor Bank 62.01±1.28 70.82±2.51 66.88±1.59 71.72±1.15 45.20±6.06 66.08±0.81 59.78±1.00 57.68±2.33 68.03±2.46 64.12±1.17 63.23±0.11

w/ Random Init. 62.04±1.24 70.68±1.98 66.84±1.72 72.00±1.18 47.56±5.14 65.49±0.09 61.66±2.29 58.23±1.76 64.64±0.46 64.49±1.37 63.36±0.20

TemSR 62.51±1.09 72.60±0.74 66.70±1.91 72.15±1.01 49.62±1.88 65.87±0.53 60.32±0.97 57.56±2.07 66.50±2.07 64.82±1.78 63.86±0.58

A.9 COMPUTATION COMPLEXITY ANALYSIS

Model complexity analysis is crucial for assessing the practicality of TS-SFUDA techniques for
real-world applications. As all methods utilize the same backbone, conducting a complexity anal-
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Table 8: Detailed ablation study of the ten MFD cross-domain scenarios regarding MF1 score (%).

Variants 0→1 1→0 1→2 2→3 3→1 0→3 1→3 2→1 3→0 3→2 Avg.

Src-like Only 15.75±8.83 20.85±0.00 20.85±0.00 15.74±8.82 15.75±8.83 20.31±0.23 16.82±0.94 20.81±0.93 20.84±4.01 25.14±0.31 19.29±4.66

w/o LSeg 99.96±0.06 85.82±4.89 82.57±5.34 94.65±3.34 99.98±0.03 91.88±0.06 100.0±0.00 96.02±0.11 88.52±0.74 83.88±0.50 92.33±2.15
w/o Early 99.76±0.24 86.68±3.73 82.92±4.50 95.18±4.11 100.0±0.00 96.92±2.11 100.0±0.00 94.52±3.21 85.52±0.38 80.24±2.65 92.17±2.47
w/o Late 99.86±0.24 86.56±3.70 81.36±6.86 97.59±2.90 100.0±0.00 97.78±1.12 100.0±0.00 95.09±5.44 87.78±0.43 83.51±10.1 92.95±3.19
w/o Recover 99.75±0.35 88.70±0.04 80.77±5.35 96.30±4.89 99.96±0.06 99.62±0.12 100.0±0.00 97.23±0.29 87.25±0.62 79.95±0.45 92.96±0.15
w/o Complete 99.86±0.24 86.59±3.73 80.40±5.19 97.48±4.09 100.0±0.00 96.79±0.00 100.0±0.00 94.88±5.15 85.44±1.05 81.28±0.53 92.27±3.35
w/o LSegSim 99.70±0.26 86.60±3.74 84.49±5.95 95.26±4.04 99.92±0.14 99.92±0.01 100.0±0.00 96.24±3.33 87.18±0.74 80.09±8.43 92.94±2.67

w/o LARDM 85.31±5.31 85.88±6.04 85.99±3.54 95.20±3.87 99.97±0.05 99.92±0.08 100.0±0.00 96.75±3.93 88.51±0.53 87.06±8.16 92.46±2.41
w/o Anchor 85.38±5.33 82.13±3.77 99.97±0.05 83.52±5.29 95.20±3.87 99.85±0.02 100.0±0.00 95.68±2.57 87.54±0.54 85.67±6.28 91.49±2.34
w/o Add. Obj. 98.06±0.48 85.43±4.70 83.00±5.38 95.68±3.80 99.94±0.10 99.98±0.02 100.0±0.00 96.67±3.54 86.78±1.77 82.36±6.74 92.79±3.24
w/o Anchor Bank 100.0±0.00 86.92±3.95 80.15±4.76 97.53±2.92 100.0±0.00 99.95±0.05 100.0±0.00 96.33±3.54 87.65±1.44 82.33±6.47 93.09±2.32

w/ Random Init. 86.73±6.40 86.17±4.30 87.15±6.26 94.66±3.46 99.98±0.04 99.72±0.04 100.0±0.00 95.68±3.52 86.23±1.54 80.89±6.42 91.72±2.54

TemSR 99.97±0.05 87.03±4.05 84.47±5.88 95.23±3.85 100.0±0.00 99.95±0.05 100.0±0.00 96.67±4.21 87.17±1.56 81.96±5.09 93.24±1.83

ysis using standard metrics such as FLOPs or the number of parameters becomes challenging. In-
stead, considering that each method involves distinct operations during the adaptation stage, which
can influence runtime, we compare their computational complexity by measuring the running time.
Specifically, each method is executed once across all cross-domain cases on an RTX 3080Ti GPU.
To ensure fairness, the analysis focuses exclusively on source-free UDA techniques.

From the results in Table 9, we observe that traditional methods generally require less time as they
lack additional operations for recovering source temporal dependencies, which contributes to their
poorer performance. While MAPU and TemSR incorporate additional operations, the extra runtime
required is minimal (only a few seconds). Notably, compared to MAPU, TemSR does not rely on
specific pretraining steps, thus resulting in reduced runtime overall. This demonstrates that TemSR
not only effectively recovers temporal dependencies during the adaptation stage but also achieves
this with limited computational resources, ensuring practical applicability.

Table 9: Running time comparisons of TS-SFUDA techniques.

Models SHOT NRC AaD BAIT MAPU TemSR

Training Time/s 70.43 66.63 72.94 74.36 89.79 83.24

A.10 PSEUDOCODE OF OVERALL ADAPTATION PROCESS

The pseudo-code can be found in Algorithm 1, showing the training process of TemSR. (Sec 3.2
Overall Framework.)
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Algorithm 1 Overall Adaptation Process

# X_T, target sample [N, L], N: number of sensors, L: time length

# M: masking function
# H: entropy computation function

# F_S: source domain pretrained encoder
# G: source domain pretrained classifier

# F_T: target domain encoder, initialized by F_S
# R: recovery model

# A_B: anchor bank storing recovered samples
# E_B: entropy bank storing entropy values for recovered samples

# num_epochs: number of training epochs

F_S.eval() # Freeze source encoder
G.eval() # Freeze source classifier
F_T.train() # Trainable target encoder
R.train() # Trainable recovery model

# Initialize anchor and entropy banks
A_B.initial()
E_B.initial()

for epo in num_epochs:

# Step 1: Masking and recovery
X_hat = M(X_T) # Mask the target sample
X_Sl = R(X_hat) # Recover masked target sample

# Step 2: Update anchor and entropy banks
E_Sl = H(G(F_S(X_Sl))) # Compute entropy of recovered sample
A_B.update(X_Sl.detach()) # Update anchor bank with recovered samples
E_B.update(E_Sl.detach()) # Update entropy bank

# Step 3: Compute anchor-based recovery diversity maximization (L_ARDM)
A = A_B.index(top_k(E_B)) # Select top samples by entropy
L_ARDM = Anchor_Info_Max(X_Sl, X_T, A)

# Step 4: Compute segment-based entropy loss (L_Seg)
L_Seg = Segment_Entropy(X_Sl)

# Step 5: Compute feature alignment loss (L_Align)
h_Sl = F_S(X_Sl) # Extract features of source-like samples
h_T = F_T(X_T) # Extract features of target samples
L_Align = Alignment(h_Sl, h_T) # Align source-like and target features

# Step 6: Compute target entropy loss (L_TrgEnt)
L_TrgEnt = H(G(h_T)) # Compute entropy of target prediction

# Step 7: Cycle between source-like optimization and adaptation
if epo in source-like optimization phase:

loss = combine_losses(L_ARDM, L_Seg, L_TrgEnt) # Source-like optimization
else:

loss = combine_losses(L_Align, L_TrgEnt) # Adaptation

# Step 8: Backpropagation and optimization
loss.backward()
optimizer.step()
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