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Abstract: Predicting the future trajectories of on-road vehicles is critical for
autonomous driving. In this paper, we introduce a novel prediction framework
called PRIME, which stands for Prediction with Model-based Planning. Unlike
recent prediction works that utilize neural networks to model scene context and
produce unconstrained trajectories, PRIME is designed to generate accurate and
feasibility-guaranteed future trajectory predictions. PRIME guarantees the trajec-
tory feasibility by exploiting a model-based generator to produce future trajec-
tories under explicit constraints and enables accurate multimodal prediction by
utilizing a learning-based evaluator to select future trajectories. We conduct ex-
periments on the large-scale Argoverse Motion Forecasting Benchmark, where
PRIME outperforms the state-of-the-art methods in prediction accuracy, feasibil-
ity, and robustness under imperfect tracking.
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1 Introduction

In the architecture of autonomous driving, prediction serves as the bridging module that reasons
future states based on the perceived information from upstream detection and tracking and provides
the predicted future states to facilitate the downstream planning. Therefore, making accurate and
reasonable trajectory predictions for on-road vehicles is vital for planning safe, efficient, and com-
fortable motion for self-driving vehicles (SDVs).

The widely known challenge of trajectory prediction lies in modeling multi-agent interaction and
inferring multimodal future states under driving scenarios. Traditional methods [1, 2, 3, 4, 5] pro-
duce motion forecasting by handcrafted rules or models with embedded physical and environmental
features, which are insufficient for modeling interactive agents in complex scenes. Learning-based
approaches [6, 7, 8], with deep neural networks to fuse scene context information and generate
future trajectories, significantly promote the prediction accuracy and dominate the recent motion
forecasting benchmarks for autonomous driving [9, 10].

Despite achieving steady improvement in accuracy, much less attention has been paid to the feasibil-
ity and robustness of learning-based trajectory prediction. Indeed, most traffic participants operate
under their inherent kinematic constraints (e.g., non-holonomic motion constraints for vehicles)
while in compliance with the road structure (e.g., lane connectivity, static obstacles) and semantic
information (e.g., traffic lights, speed limits). All these kinematic and environmental constraints
explicitly regularize the trajectory space. However, most existing approaches model traffic agents as
points and generate future trajectories without imposing constraints. Such constraint-free predictions
may be incompliant with kinematic or environmental characteristics and thus give rise to massive
uncertainty in the predicted future states. As a result, the downstream planning module would in-
evitably undergo some extra burdens, and even the “freezing robot problem” [11]. Furthermore, the
trajectory predictions typically generated by neural network regression have high dependences on
long-term tracking. For some dense driving scenarios where the target would be momently occluded
or suddenly appears within the sensing range, tracking results are discontinuous or not accumulated
enough. The prediction accuracy would thereby degrade under such imperfect tracking cases.
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Figure 1: Illustration of the PRIME framework. The model-based generator (left) samples feasible
future trajectories T for the target agent by taking its real-time state s0tar and HD mapM, while im-
posing explicit constraints C to guarantee trajectory feasibility. The learning-based evaluator (right)
receives the feasible trajectory set T and all observed tracks S to model the implicit interactions in
scene context and then selects a final set of trajectories Ttar ⊂ T as the prediction result.

Toward overcoming these challenges, we propose PRIME, a novel architecture for vehicle trajec-
tory prediction, as illustrated in Fig. 1. The core idea is to exploit a model-based motion planner as
the prediction generator to produce feasibility-guaranteed future trajectories under explicit physical
constraints, together with a deep neural network as the prediction evaluator to enable accurate mul-
timodal prediction by learning complex implicit interactions. To the best of our knowledge, PRIME
is the first to incorporate an interpretable motion planner in prediction learning and also the only
method that ensures kinematic and environmental feasibility in data-driven trajectory prediction.
We conduct experiments on the large-scale Argoverse motion forecasting benchmark and achieves
better prediction accuracy over the state-of-the-art. Furthermore, PRIME shows significant superi-
ority in trajectory feasibility guarantee and prediction robustness under imperfect tracking. These
attributes would facilitate more flexible and safe motion planning for SDVs.

2 Related Work

Prediction and Planning are closely intertwined in autonomous driving [12, 13, 14, 15]. Planning
is to generate constraint-compliant trajectory candidates and, after considering safety, comfort, path
progress, etc., select the best trajectory for execution by the SDV (ego agent). Prediction facilitates
the trajectory selection in planning by inferring future trajectories of the surrounding vehicles (target
agents). Their different focuses make the corresponding mainstream solutions diverge. Model-based
approaches [16, 17, 18, 19] are preferred in planning due to their interpretability and reliability in
computing safe trajectories under explicit constraints. Learning-based methods [6, 7, 20, 21], in
contrast, prevail in prediction by utilizing its advantage in modeling implicit interactions.

Some learning-based prediction works incorporate the goal-directed idea from planning to infer
the possible goals and then produce goal-conditioned trajectories [22, 23, 24, 25]. Moreover, the
novel planning-prediction-coupled frameworks are introduced to make predictions conditioned on
ego intentions [26] or motion plans [27, 28]. Although much emphasis on improving the point-level
prediction accuracy, the data-driven frameworks cannot ensure the given constraints are indeed im-
posed on trajectory generation. Despite DKM [29] embeds the two-axle vehicle kinematics [30] in
the output layer to ensure kinematic feasibility, yet still no guarantee on environmental compliance.
Inspired by the popular sampling-based paradigm in vehicle motion planning [13, 17], we employ a
model-based planner for providing feasibility-guaranteed trajectory sets, and thereby the learning-
based part is reduced to evaluate future trajectories. With making the most of model-based planning
and learning-based prediction, PRIME handles complex agent-map interactions while fulfilling en-
vironmental and kinematic constraints.

Modeling agent-map interactions is fundamental for capturing information from scene map and
dynamic agents. The rasterized representation [20, 31, 32] is proposed for learning-based methods,
which renders traffic entities into images by different colors or intensities and then encodes rasters
with Convolutional Neural Networks. As an alternative, the vectorized representation [33, 34, 25]
vectorizes scene context as nodes to construct a graph, which exploits High Definition (HD) maps
more explicitly and improves prediction accuracy. By contrast, we address the agent-map modeling
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with a hierarchical structure that incorporates the lane-association ideas from [3] while extends
to learn global scene context. To be specific, our prediction generator acts locally in a planning
manner to generate path-conditioned trajectory sets, and the prediction evaluator learns a global
understanding of the scene context by aggregating all trajectory and map features.

Generating multimodal trajectories is essential for handling the intrinsic multimodal pre-
diction distributions. Stochastic models are mostly built upon conditional variational autoen-
coder [7, 35, 36, 37, 38] and generative adversarial network [39, 40, 41, 42], while sampling with un-
controllable latent variables at inference may impede their deployment on safety-critical driving sys-
tems. Deterministic models are mainly based on multi-mode trajectory regression [43, 44, 20, 34].
To alleviate mode collapse in prediction learning, recent works decompose the task into classifica-
tion over anchor trajectories [45] or goal-conditioned trajectories [25], followed by trajectory offset
regression. However, no feasibility could be ensured for the regressed results. CoverNet [32] for-
mulates multimodal prediction by directly classifying on a pre-constructed trajectory set, but still,
its predictions may violate the agent kinematics or scene constraints. For our framework, leveraging
model-based planning as the prediction generator brings superiorities in 1) maintaining multimodal
distributions by generating trajectories on diverse reachable paths, 2) ensuring trajectory feasibil-
ity by imposing real-time constraints, 3) mitigating the high reliance on long-term tracking, and 4)
producing trajectories with continuous information rather than just discrete locations.

3 Overview

Problem formulation. Assume the self-driving vehicle is equipped with detection and tracking
modules to provide observed states S of on-road agents A and has access to HD map M. Let sti
denote the state of agent ai ∈ A at frame t, including position, heading, velocity, turning rate and
actor type, and si =

{
s−TP+1
i , s−TP+2

i , ..., s0i

}
denotes the state sequence in the observed period

TP . Given any agent as the prediction target, we denote it by atar and its surrounding agents by
Anbrs = {a1, a2, ..., am} for differentiation, with their state sequence correspondingly given as
star and Snbrs = {s1, s2, ..., sm}. Accordingly, S = {star} ∪ Snbrs and A = {atar} ∪ Anbrs.
Our objective is to predict multimodal future trajectories Ttar = {Tk|k = 1, 2, ...,K} together with
corresponding trajectory probability {pk}, where Tk denotes a predicted trajectory for target agent
atar with continuous state information up to the prediction horizon TF ,K is the number of predicted
trajectories. Additionally, it is required to ensure each prediction Tk ∈ Ttar is feasible with existing
constraints C, which includes environmental constraints CM and the kinematic constraints Ctar.

Our framework. The two-stage architecture of PRIME consists of model-based generator G and
learning-based evaluator E. Concretely, the generator G : (s0tar,M, C) 7→ (P, T ) is tasked to pro-
duce the trajectory space for the target, which is approximated by a finite set of feasible trajectories T
. This part starts with searching a set of reachable paths P = {Pj |j = 1, 2, ..., l} from HD mapM,
which provides reference path for trajectory generation. Then a classical sampling-based planner is
utilized to generate trajectory samples under constraints in C, and thus provide the feasible future
trajectory set T =

⋃l
j=1 {Tj,k|k = 1, 2, ..., nj} for the target. Tj,k denotes the k-th feasible trajec-

tory generated from path Pj , and the total number of trajectories is n =
∑l

j=1 nj . The model-based
part is specialized in generating trajectories with feasibility guaranteed but ignores multi-agent inter-
actions. The evaluator E : (P, T ,S) 7→ (Ttar, {pk}) takes charge of learning implicit interactions,
which features with a dual representation for spatial information and with the attention mechanism
to process the varying sizes of l reachable paths, m surrounding agents, and n feasible trajectories.
Notably, the evaluator E is reduced to score trajectories and select prediction results Ttar ⊂ T ,
rather than regressing position or displacement as most learning-based frameworks do.

4 Model-based Generator

4.1 Path Search

Unlike motion planning, where the reference path for the controllable ego agent is given, the future
paths of uncontrollable targets in prediction are unknown. Therefore, we conduct the path search
in advance of trajectory generation such that any prediction target could be associated with a set of
potential paths P+. Our path search algorithm Gpath : (M, s0tar) 7→ P+ is implemented by Depth-
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First-Search on HD mapM, with more details described in the supplementary material. Yielding a
potential path Pj ∈ P+ with the centerline coordinates of each lane segment sequence, we expect
all the paths of P+ to provide sufficient coverage for the future trajectory space of atar. As no
dynamic constraint is imposed in this phase, for target with current state s0tar, some paths in P+

may not be reachable at frame t = TF . For instance, a high-speed vehicle cannot change to the
opposite lane with a U-turn in few seconds. Such unreachable paths could be recognized in the
following trajectory generation phase as no trajectories samples towards them are feasible. Finally,
a set of reachable paths P ⊆ P+ would be reserved.

4.2 Trajectory Generation
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Figure 2: Trajectory generation in
a Frenét Frame

Given the potential paths in P+ as dynamic references, we
choose to generate future trajectories in a planning manner.
For SDV, motion planning typically aims at finding an optimal
trajectory to connect the current state and a goal state, essen-
tially different from prediction that infers probable trajectories
for vehicles with unknown intentions. Despite this, the model-
based generator in planning, which computes a large number
of trajectory samples for the follow-up selection, could also be
exploited in prediction.

We adopt the trajectory generation phase of Frenét plan-
ner [17] in our trajectory generator Gtraj : (P+, s0tar, C) 7→
T . Given a reference path in P+, a dynamic curvilinear frame
is given by the tangential vector ~tr and normal vector ~nr at a
certain point r on the path centerline. The Cartesian coordinate ~x = (x, y) could be converted to the
Frenét coordinate (s, d), with the relation

~x(s(t), d(t)) = ~r(s(t)) + d(t)~nr(s(t)), (1)
in which ~r represents a vector pointing from the path root, s and d denote the covered arc length
and the perpendicular offset, as illustrated in Fig. 2. The trajectory generation phase first projects
the current state s0tar onto the Frenét frame and obtains the state tuple [s0, ṡ0, s̈0, d0, ḋ0, d̈0]. The
longitudinal movement s(t) and lateral movement d(t) within the prediction horizon TF are then
generated independently by connecting the fixed start state with different end states using paramet-
ric curves to cover different driving maneuvers. Compared with planning, prediction receives less
accurate state estimation for targets and does not need fine-grained trajectories. In our trajectory gen-
erator, therefore, some high-order state variables are simplified to zero. For longitudinal movement,
we sample the target velocity ṡ(TF )← ṡi in the range of [max(0, ṡ0 − δ−TF ),min(ˆ̇s, ṡ0 + δ+TF )]

while leaving s(TF ) unconstrained. The constants δ−, δ+ and ˆ̇s are given by considering the actor
type of atar and speed limit inM, to control the longitudinal velocity ṡi in a reasonable range. Each
longitudinal trajectory si(t) is calculated using a quartic polynomial

s.t. [s(0), ṡ(0), s̈(0), ṡ(TF ), s̈(TF )] = [s0, ṡ0, 0, ṡi, 0].

For lateral movement, we sample the target offset d(TF )← dj in the range of [−dlane/2, dlane/2],
where dlane denotes lane width. Each lateral trajectory dj(t) is calculated using a quintic polynomial

s.t. [d(0), ḋ(0), d̈(0), d(TF ), ḋ(TF ), d̈(TF )] = [d0, ḋ0, 0, dj , 0, 0].

With the resulted longitudinal and lateral trajectory set Tlon and Tlat, a full trajectory ~x(s(t), d(t))
is formed by every combinations in Tlon × Tlat. Next, the trajectories incompliant with given con-
straints C would be filtered out. We first project the Frenét coordinates (s, d) back to global coordi-
nates (x, y) to check if the trajectory collides with static obstacles given in CM. For collision-free
trajectories, their high-order state variables are then converted by the Frenét-Cartesian-transfomation

[s, ṡ, s̈, d, ḋ, d̈] 7−→ [~x, v, κ, α] (2)
to check if any velocity v, acceleration α or curvature κ exceeds the kinematic constraints given in
Ctar. Finally, each reference path Pj ∈ P would generate a set of nj feasibility-guaranteed future
trajectories {Tj,k|k = 1, 2, ..., nj}, and all the trajectories together form an overall trajectory space
T . Although the constraints are set conservatively with leaving some margin for the learning-based
evaluator, our model-based generator effectively narrows down the trajectory space T by imposing
constraints. This unique advantage would set our framework with higher accuracy and robustness.
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Figure 3: PRIME framework overview. The model-based generator searches reachable paths P
through the map and produces feasible future trajectories T . The learning-based evaluator encodes
the traffic entities in (P, T ,S) and learns implicit interactions in the subsequent attention modules.
Afterwards, each future trajectory Tj,k could query its track tensor Xj(star) from P2T, interaction
tensor Yj(star) from A2A and future tensor Z(Tj,k) from F2F, and it is scored by feeding the
concatenation of these tensors to fully-connected layers. Finally, the evaluator ranks all feasible
future trajectories in T by scoring and outputs a final set of K predicted trajectories.

5 Learning-based Evaluator

5.1 State Representation

The prediction evaluator aggregates scene context, including observed state sequences S, path set
P , and future trajectory set T . To make it compatible with most existing trajectory prediction
datasets, state sequence si is reduced to history track in the learning part. Before feeding to the
network, we discretize each history track si and future trajectory Tj,k as a location sequence with
time interval ∆T , and each reference path Pj as a waypoint sequence with distance interval ∆D.
Since the longitudinal movement s and lateral offset d indicate how an agent moves relative to a
reference path, they represent the local spatial relationship more straightforwardly. For this reason,
we use the Frenét coordinates (s, d) in addition to the Cartesian coordinates (x, y) to form a dual
spatial representation. Here, the spatial information (x, y, s, d) of future trajectories in T is given
by the generator, while the (s, d) coordinates of history tracks in S are obtained by projecting (x, y)
coordinates on the corresponding reference path. Additionally, we adopt the approach of [34] to add
a binary mask b to history track’s representation (x, y, s, d, b) to indicate if the location is padded.

5.2 Encoding Scene Context

Prior to capture interrelationships between traffic entities, we first encode each kind of entity in the
scene. All encoders are structured with a temporal convolutional layer followed by a long short-term
memory (LSTM) layer. The track encoder and the future encoder employ a unidirectional LSTM
and make the last hidden state h(·) as the motion encoding for history track and future trajectory,
while the path encoder uses a bidirectional LSTM and provides the sequence of hidden states H(·)
as the path spatial encoding. Given the scene context description (S,P, T ), each reachable path
Pj ∈ P is encoded as a H(Pj), where j = 1, 2, ..., l. Considering that the Frenét representation
is dependent with the path frame, we encode all history tracks with respect to each reference path
Pj , which results in l groups of track encodings {h(star), h(s1), ..., h(sm)}j . Each future trajectory
Tj,k ∈ T is relative to its reference path Pj , so all future trajectories are encoded correspondingly
to form l groups of future encodings {h(Tj,k)|k = 1, 2, ..., nj}.

5.3 Modeling Interactions

Next is to capture the implicit interactions resulted from the static environment and multiple dynamic
agents. To fuse the spatial-temporal information from varying numbers of entities in the scene con-
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text, the attention mechanism [46] is adopted to construct four modules, namely, path to track (P2T),
path to future (P2F), agent to agent (A2A), and future to future (F2F). They are implemented in the
same way of scaled dot-product attention and use linear layers for mapping key, query and value.
The overall workflow is shown in Fig. 3. In the upper branch, P2T brings the spatial information
of each path encoding Pj into the corresponding track encodings {h(star), h(s1), ..., h(sm)}j . The
track encodings are further processed by a self-attention structure in A2A, aiming to capture the in-
teractions between agents in the past time domain. The lower branch lays emphasis on updating the
features contained in future encodings. P2F brings the spatial information of path encoding H(Pj)
into the corresponding future encodings {h(Tj,k)|k = 1, 2, ..., nj}. It is followed by F2F that fuses
all future encodings

⋃l
j=1 {h(Tj,k)|k = 1, 2, ..., nj} from different paths Pj(j = 1, 2, ..., l) using

self-attention. In particular, F2F obtains a global understanding of the reachable space given by P
and, by this way, attempts to further perceive the differences between different trajectories in T .
For any future trajectories Tj,k ∈ T , the corresponding track tensor Xj(star), interaction tensor
Yj(star) and future tensor Z(Tj,k) could be obtained from P2T, A2A and F2F modules, which are
then concatenated together to form a full description Uj,k = Concat(Xj(star),Yj(star),Z(Tj,k)).

5.4 Trajectory Scoring, Learning, and Inference

With Uj,k as a full description, we score all the n trajectories Tj,k using a maximum entropy model:

γ(Tj,k) =
exp(f(Uj,k))∑l

j=1

∑nj

k=1 exp(f(Uj,k))
, (3)

in which f(·) is implemented using a 3-layer MLP at the end of the evaluation networkE. The score
label ψ(Tj,k) is resulted from calculating the accumulated squared distance error Dist(·) between the
future trajectory Tj,k and the ground truth trajectory TGT within the prediction horizon TF :

ψ(Tj,k) =
exp(−Dist(Tj,k,TGT )/τ)∑l

j=1

∑nj

k=1 exp(−Dist(Tj,k,TGT )/τ)
, (4)

where τ is set as a temperature factor. The overall network is trained by cross entropy between the
evaluated scores and the labeled scoresL = CrossEntropy(γ(Tj,k), ψ(Tj,k)). For the inference stage
that requires K predicted trajectories, we adopt the non-maximum suppression (NMS) algorithm to
remove near-duplicate trajectories, as did in [25]. According to the predicted scores, this method
greedily picks trajectories from T and excludes the lower scored trajectory between very close
ones. Finally, K trajectories with descending order of scores form the prediction result Ttar =

{Ti|k = 1, 2, ...,K}, and the prediction probability pk is derived by pk = γ(Tk)/
∑K

k=1 γ(Tk).

6 Experiments

Dataset. Argoverse [10] is one of the largest publicly available motion forecasting datasets, which
contains over 324K data sequence collected from complex urban driving scenarios. The training,
validation, and test sets are taken from disjoint parts of the cities. Each sequence lasts for 5 seconds,
containing the centroid locations of each tracked agent sampled at 10 Hz, in which one vehicle with
relatively complex motion is marked as the prediction target. The objective is to predict its locations
3 seconds into the future, given an initial 2-second observation.

Metrics. We follow the Argoverse evaluation criteria under K = 1 and K = 6. Minimum Aver-
age Displacement Error (minADEK) is the average L2 distance error of the best predicted trajec-
tory. Minimum Final Displacement Error (minFDEK) is the L2 distance error of the best predicted
trajectory at the final timestamp. Miss Rate (MRK) is the ratio of scenarios that none of K pre-
dicted trajectories has less than 2 meters L2 final displacement error. For multimodal prediction,
the probability-based metrics p-minADEK and p-minFDEK are calculated by adding −log(p) to
minADEK and minFDEK , where p corresponds to the probability of the best predicted trajectory.
In the Argoverse benchmark, best refers to the predicted trajectory with the minimum endpoint error.

Implementation Details. Our implementation is detailed in the supplementary material. Among the
state-of-the-art methods, only LaneGCN [34] is open-source. So we use its official implementation
and Argoverse baselines [10] for additional tests about trajectory feasibility and imperfect tracking.
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Method
K=1 K=6

Infeasibility (%)
minADE minFDE MR (%) minADE minFDE p-minADE p-minFDE MR (%)

Argo-CV 3.53 7.89 83.48 3.39 7.57 5.18 9.36 81.68 0.00
Argo-LSTM+map 2.96 6.81 81.22 2.34 5.44 4.14 7.23 69.16 43.53
Argo-NN+map 3.65 8.12 83.55 2.08 4.03 3.87 5.82 58.21 86.39

LaneGCN [34] 1.71 3.78 59.05 0.87 1.36 2.66 3.16 16.34 16.52
Alibaba-ADLab 1.97 4.35 63.76 0.92 1.48 2.67 3.23 15.86 –
TNT [25] 1.78 3.91 59.72 0.94 1.54 2.73 3.33 13.28 –
Jean [21] 1.74 4.24 68.56 1.00 1.42 2.79 3.21 13.08 –
Poly 1.70 3.82 58.80 0.87 1.47 2.67 3.26 12.02 –
PRIME (Ours) 1.91 3.82 58.67 1.22 1.56 2.71 3.05 11.50 0.00

Table 1: Comparison with the Argoverse baselines and the state-of-the-art methods on the Argoverse
test set. All metrics are lower the better and Miss Rate (MR, K=6) is the key metric.

6.1 Comparison with State-of-the-art

We compare our proposed PRIME against the Argoverse baselines [10] (CV, LSTM+map,
NN+map), the top-3 methods in the Argoverse Motion Forecasting Competition 2020 (Jean [21],
Poly, Alibaba-ADLab), and the recently published state-of-the-art, LaneGCN [34] and TNT [25].
The performance comparison under Argoverse test set is shown in Table 1. It could be noted that
PRIME outperforms all other methods on Miss Rate (K = 6), which is the official ranking metric
in Argoverse Competition 2020. It reflects that our method produces accurate multimodal predic-
tions consistently in diverse scenarios. We also achieve the best on the probability-based metric p-
minFDE6, which would be highly beneficial to weigh between multiple predictions in making deci-
sions and motion plans. From the methods with public details, including LaneGCN [34], TNT [25],
and Jean [21], we can find they all perform the learning-based paradigm that utilizes neural networks
to model traffic entities and generates future trajectories, while PRIME is the only one that integrates
a model-based motion generator into prediction learning. Notably, due to the lack of more detailed
on-road information in the Argoverse dataset, such as vehicle types, bounding box, static obstacles,
etc., the quantitative result is achieved by imposing general constraints on the model-based gener-
ator. This indicates there exists more space to improve when deploying our framework in a real
autonomous driving system. Furthermore, handling environmental and dynamic constraints in an
interpretable model-based manner and generating trajectories with continuous state information is
significant for real-world deployment, which could not be reflected from the evaluation metrics.

6.2 Ablation Studies

Modules p-minADE6 p-minFDE6 MR6(%) # Params

Base 2.33 2.63 8.52 0.69 M
Base+F2F 2.31 2.61 8.23 0.72 M
Base+SD 2.29 2.58 7.81 0.99 M
Base+F2F+SD 2.29 2.57 7.51 1.02 M

Table 2: Ablation studies on the Argoverse validation set.

We ablate the F2F module and Frenét
representation (denoted by SD) from the
complete evaluation network to study
their impacts. Table 2 reports the re-
sults on the Argoverse validation set.
With P2T, P2A, and A2A attention mod-
ules capturing the basic interactions be-
tween map and agents, the base model
performs at the same level with TNT
(MR6 = 9% reported in [25]), indicat-
ing that these modules are effective in capturing agent-map interactions. As for the Frenét represen-
tation providing the local spatial relationship and the F2F module fusing all feasible trajectories to
get a global understanding of the reachable space, they both promote the performance. By compar-
ison, the inclusion of Frenét representation is more effective. Additionally, the complete network
makes the best performance with only 1.02M parameters, which indicates that separating the func-
tion of trajectory generation would reduce the learning burden while achieving high performance.
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6.3 Trajectory Feasibility

As a typical non-holonomic motion system, vehicles are constrained by inherent kinematic charac-
teristics. So we investigate the ratio of infeasible trajectories produced by prediction models. Since
the high-order states (velocity, acceleration, or turning rate) cannot be estimated accurately from
discrete locations predicted by common learning-based models, we evaluate the trajectory feasibil-
ity only using curvature. By interpolating the predicted positions with pairwise cubic splines, we
get the curvature at each point. A trajectory is labeled as infeasible if the curvature κ > 1/3 (i.e.,
the minimum turning radius is 3 meters) at any of its points. The ratio of infeasible trajectories is
shown in the last column of Table 1. Except for the physical baseline Argo-CV (Constant Veloc-
ity), the others, as representatives of the unconstrained learning-based models, have at least 16.5%
infeasible predictions. Although we only use curvature for judgment and set a fairly conservative
threshold (the minimal turning radius for a regular sedan is around 4.5 ∼ 6.0 meters), the infeasible
predictions still take up a considerable proportion, which would cause redundant burdens for SDVs
to make decisions and plans. By contrast, the model-based generator in our framework can handle
any kinematic and environmental constraints, thereby ensuring trajectory feasibility.

6.4 Imperfect Tracking

Figure 4: Comparison of prediction robustness under
imperfect tracking.

While most motion forecasting datasets
provide tracking results of a certain dura-
tion for prediction targets, a self-driving
vehicle would inevitably encounter real-
world situations where the target is lost
in some timestamps or not tracked long
enough yet. Then the prediction model
is required to robustly handle imperfect
tracks rather than being restricted to fixed-
duration tracking inputs. To let the mod-
els (ours, LaneGCN, and NN+map base-
line) be aware of imperfect tracks, we re-
trained them by randomly dropping out
tracked locations. For processing such in-
puts while keeping network structures, we
pad the locations of dropped timestamps
with the nearest tracked location and add
a dimension of the binary mask to denote
the padded location. The drop rate is ran-
domly sampled from 0 ∼ 0.6 for each data
sequence in training but fixed in testing. The drop rate is pointwise applied, i.e., 0.6 drop rate may
drop more or less than 60% of locations on a track. The last timestamp is always kept to ensure
the prediction target could be detected at inference. Fig. 4 shows how the miss rate varies with
track drop rate, we observe that our model performs stably, with only 3.6% relative increase on
MR6, while the relative increase is around 30% ∼ 40% for the others. The result indicates that the
learning-based prediction models rely on long-term tracked results to regress trajectories, while our
framework design relieves that to a certain extent, thereby improving the prediction robustness.

7 Conclusion

We present the prediction framework PRIME that learns to predict vehicle trajectories with model-
based planning. PRIME guarantees the trajectory feasibility by exploiting a model-based generator
to produce future trajectories under explicit constraints. It makes accurate trajectory predictions by
employing a learning-based evaluator to capture implicit interactions in scene context and select
future trajectories by scoring. With the novel framework design, PRIME outperforms the state-of-
the-art in prediction accuracy, feasibility, and robustness. Moreover, the advantages of reasonably
regularizing trajectory space, predicting trajectories with continuous state, and the compatibility
with on-road information would set our framework highly useful in real system deployment.
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