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Abstract

Vision-language models (VLMs) increasingly leverage diverse knowledge sources1

to address complex tasks, often encountering conflicts between their internal para-2

metric knowledge and external information. Knowledge conflicts can result in3

hallucinations and unreliable responses, but the mechanisms governing such in-4

teractions remain unknown. To address this gap, we analyze the mechanisms5

that VLMs use to resolve cross-modal conflicts by introducing a dataset of multi-6

modal counterfactual queries that deliberately contradict internal commonsense7

knowledge. We localize with logit inspection a small set of heads that control the8

conflict. Moreover, by modifying these heads, we can steer the model towards its9

internal knowledge or the visual inputs. Finally, we show that attention from such10

heads pinpoints localized image regions driving visual overrides, outperforming11

gradient-based attribution in precision.12

1 Introduction13

Vision–language models (VLMs) Alayrac et al. [2022], Li et al. [2022], Liu et al. [2023], Team14

[2024], Deitke et al. [2024] have shown remarkable versatility in various multimodal tasks, from15

image understanding to image generation. They draw on their ability to combine two key sources of16

information: a rich set of world knowledge acquired during pretraining, and contextual cues provided17

in the input prompts. However, these two sources can sometimes contradict each other, for example18

when the pretraining knowledge becomes outdated Lazaridou et al. [2021], Luu et al. [2022] or when19

prompts include intentionally misleading visual information Liu et al. [2024d]. Such conflicts often20

lead to hallucinations in model responses Cui et al. [2023], Liu et al. [2024a], Guan et al. [2024], yet21

the internal mechanisms responsible for these errors remain poorly understood.22

In this work, we analyze how VLMs resolve conflicts between visual input and internal knowledge23

by framing the problem through counterfactual image-text pairs. We prompt the VLMs with images24

depicting unusual or absurd scenes taken from the WHOOPS! dataset Guetta et al. [2023], followed25

by a sentence encouraging a typical knowledge-based continuation. As shown in Fig. 1, each input26

prompt is associated with a counterfactual pair of completions. For instance, the model may be27

shown an image of a wolf howling at the sun, a scene that contradicts commonsense knowledge, and28

asked to complete the prompt accordingly (see top-left panel). We construct the dataset such that29

VLMs, when prompted with text alone, generate commonsense responses while in the presence of the30

image, change their prediction to align with the visual context, even when it contradicts their internal31

knowledge. Building on the approach of Ortu et al. [2024], we identify which internal components of32

the model contribute the most to factual versus counterfactual predictions. We find that a small subset33

of attention heads mediates this competition, and targeted interventions on these heads can reliably34
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Figure 1: Overview of Our Approach. (Left) We construct prompts that induce a conflict between a
vision-language model’s internal factual knowledge and counterfactual visual context. (Right) We
then analyze which components in the model mediate this tension, identifying attention heads and
visual patches that favor factual or visually grounded predictions.

alter the model’s outputs. We also show that these heads are more effective than gradient-based35

methods in identifying the most important parts of an image to resolve multimodal conflicts in VLMs.36

In summary, our contributions are as follows:37

1. We construct WHOOPS-AHA!, a dataset that combines images containing counterfactual38

scene elements and commonsense textual queries, designed to analyze conflicts between39

visual context and internal knowledge (Sec. 4.1);40

2. We identify the attention heads that promote factual and counterfactual responses, ranking41

their importance with logit attribution (Sec. 4.2);42

3. By reweighting these heads, we show that we can control the tendency of the model to rely43

on the visual evidence or its internal knowledge and vice versa (Sec. 4.3);44

4. We demonstrate that direct attention attribution from conflict-resolution heads provides45

more accurate identification of counterfactual image regions than traditional gradient-based46

attribution methods (Sec. 4.4).47

2 Related Work48

Most prior work on knowledge conflicts has focused on language models and unimodal tasks, leaving49

the multimodal domain underexplored Xu et al. [2024].50

The analyses of knowledge conflicts in language models have largely been behavioral, showing that51

when resolving conflicts between contextual and internal knowledge, language models can overrely on52

their internal knowledge or contextual information, depending on factors such as model size Longpre53

et al. [2021] and conflicting external information Chen et al. [2022]. Wang et al. [2024] found that54

even SOTA language models often fail to report inconsistencies between in-context information and55

their internal knowledge. Few works have analyzed the internal mechanisms underlying conflict56

resolution. Ortu et al. [2024] identified two heads that mediate between factual and counterfactual57

information, while Jin et al. [2024] showed that pruning specific heads can steer the model’s reliance58

toward internal or contextual sources.59

In the multimodal domain, studies on VLMs have primarily focused on benchmark construction60

and black-box evaluation [Le et al., 2023, Han et al., 2024, Golovanevsky et al., 2025b, Guan et al.,61

2024]. For example, Han et al. [2024] introduced a dataset probing contextual knowledge conflicts62

introduced by deceptive visual elements in prompts, while Golovanevsky et al. [2025b] proposed63

NOTICE, using semantically corrupted image pairs to analyze attention heads behavior in LLaVA and64

BLIP. Additionally, Le et al. [2023] introduced COCO-Counterfactuals, a dataset comprising65

minimally-edited counterfactual image pairs, and Liu et al. [2024c] developed ConflictVis to66
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evaluate conflicts between visual input and parametric knowledge. However, both studies limited67

their analyses to evaluating model behavior and prompt structures, without investigating the internal68

mechanisms by which models resolve such conflicts.69

During the final phase of this project (June 2025), we discovered concurrent research by Golovanevsky70

et al. [2025a], which introduces steering vectors to control model predictions and examines how71

varying visual input affects the competition between modalities. Their approach uses pairs of images,72

one consistent with the model’s internal knowledge and one modified to introduce a counterfactual73

variation, focusing on simple object attributes such as color or size. Our approach differs in that we use74

images depicting complex scenes that contradict common sense, combined with captions specifically75

designed to generate commonsense responses aligned with the model’s internal knowledge, thereby76

generating a conflict.77

3 Background and Methods78

3.1 Model Architectures79

This study investigates how visual input interacts with the model’s internal knowledge during text80

generation in VLMs. Given a sequence of k image-text tokens, a VLM encodes the image using a81

vision encoder and the text using an embedding matrix, producing the residual stream x ∈ Rd×k,82

where d is the hidden dimension of the model. The residual stream is processed through L layers,83

each composed of an attention block al and an MLP block ml. After the final layer, it is projected to84

the vocabulary space via an unembedding matrix WU ∈ Rd×|V |.85

We focus on two models: LLaVA-NeXT-7b [Liu et al., 2024b] and Gemma3-12b [Kamath et al.,86

2025]. LLaVA-NeXT has 32 layers with 32 attention heads per layer, while Gemma3 has 48 layers87

with 16 attention heads per layer. Both models use a visual encoder to process image features, but88

generate only textual output.89

3.2 Dataset Construction90

To study how VLMs resolve conflicts between visual context and internal parametric knowledge,91

we introduce WHOOPS-AHA!, a dataset specifically designed to support mechanistic analysis of92

multimodal knowledge conflicts. To the best of our knowledge, this is the first dataset explicitly93

created for conducting mechanistic investigations in this context. Each instance in WHOOPS-AHA!94

is constructed to provoke a targeted semantic contradiction between these two sources of information95

WHOOPS-AHA! builds on the WHOOPS! collection [Guetta et al., 2023], which features 500 visually96

implausible, semantically rich scenes annotated with textual descriptions and explanations of their97

underlying anomalies Each example in WHOOPS-AHA! consists of (i) a counterfactual image, (ii)98

a sentence referring to the image, and (iii) two sets of plausible continuations: (Sfact) reflecting99

common sense knowledge, and (Scofa) consistent with the counterfactual scene represented in the100

image. For each image in WHOOPS!, we use GPT-4o to generate a sentence that references the101

anomaly, while remaining consistent with commonsense (factual) completion without visual input.102

GPT-4o is also prompted to produce a set of plausible factual tokens Sfact and visually-grounded103

counterfactual continuations Scofa. For instance, for the case of an image representing a wolf howling104

at the sun (see Fig. 1), the sentence proposed by GPT-4o is "The wolf is howling at the",105

Sfact = {"moon", "night",...} Scofa = {"sun", "daylight","morning",..}. All106

generated content is manually verified to ensure a clear distinction between factual and counterfactual107

continuations. Full prompt details are provided in appendix F.108

3.3 Analytical Tools109

Logit Inspection To identify the internal components of VLMs responsible for the competition110

between inner knowledge and conflicting visual context, we trace the evolution of token logits across111

the model’s architecture. Specifically, we apply the Logit Lens technique [Nostalgebraist, 2020],112

which projects intermediate hidden representations into the vocabulary space. This approach has113

been used in previous work to analyze token-level information flow [Nanda et al., 2023, Halawi et al.,114

2023, Yu et al., 2023, Ortu et al., 2024] in LLMs. In our setting, we apply the Logit Lens to the last115

token of the prompt and extract the logits corresponding to the tokens in Sfact and Scofa at various116
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layers and components of the model to identify the components that contribute to the promotion of117

one mechanism over the other.118

Targeted Intervention on Attention Heads To test the causal role of specific attention heads in119

promoting predictions aligned with either factual inner knowledge or counterfactual visual context, we120

intervene directly on their attention patterns during inference. We define two groups of heads based121

on Logit Inspection: factual heads (Hfact), which favor predictions based on inner knowledge, and122

counterfactual heads (Hcofa), which favor visually grounded alternatives. We apply a multiplicative123

intervention to their attention weights at the final token position (i.e., the last row of the attention124

matrix), after the softmax operation. Let Ahl
last = [Ahl

last,img,A
hl
last,text] denote the last row of the125

attention weights for head h at layer l, divided between image and text tokens. The intervention is126

defined as127

Ahl
last,img ← (1 + λ) ·Ahl

last,img (1)

if (h, l) ∈ Hcofa, and128

Ahl
last,text ← (1− λ) ·A(hl)

last,text (2)

if (h, l) ∈ Hfact.129

This targeted and bidirectional intervention alters the flow of information in a controlled way, allowing130

us to test whether modulating the influence of these heads changes the model predictions toward the131

factual or counterfactual outcome.132

Identification of Conflict-Inducing Visual Tokens To isolate the visual tokens responsible for133

introducing counterfactual information that conflicts with the inner knowledge of the model, we apply134

two methods. Both are based on a threshold parameter τ ∈ [0, 1], which controls the sensitivity of135

token selection.136

1. Most-Attended Visual Tokens: Given a set of attention heads, we select the visual tokens137

that receive at least τ times the maximum attention weight within each head. We then take138

the union of these tokens across all heads.139

2. Gradient-Based Token Importance: We compute the gradient of the logit associated with140

a target token (e.g., from Sfact or Scofa) with respect to the input visual token embeddings.141

Visual tokens whose gradient magnitudes exceed τ times the maximum are selected as142

influential.143

By varying τ , we control how many image patches are selected—from none when τ is 1, to all when144

τ is 0. This allows us to ablate different image portions and analyze how they affect the model145

predictions.146

4 Results147

4.1 Inducing the Conflict between Inner Knowledge and Visual Context148

To systematically induce competition between visual input and internal knowledge, we construct149

the WHOOPS-AHA! dataset as described in Sec. 3.2. Each example of WHOOPS-AHA! includes a150

counterfactual image, a sentence describing the image, and two sets of plausible next-word candidates151

proposed by GPT-4o: Sfact, consistent with commonsense knowledge, and Scofa aligned with the152

counterfactual visual context. We identify tfact as the token in Sfact with the highest probability using153

only the textual part of the prompt. We consider only the first token if a candidate word is tokenized154

into multiple tokens. Then, using the full multimodal input (image and text), we select tcofa as the155

token with the highest probability from Scofa. For example, when prompted with the sentence "The156

wolf is howling at the", LLaVA-NeXT and Gemma3 predict the factual token moon with157

probabilities of 78% and 100%, respectively. However, when the corresponding image is included,158

both models shift to the counterfactual token sun, with probabilities of 26% (LLaVA-NeXT) and 44%159

(Gemma3), while the probability of moon drops to 17% and 0.02%. We filter out ambiguous cases160

in which Scofa contains tokens with a probability higher than Sfact in the text-only setup, keeping161

436 examples for LLaVA-NeXT and 432 for Gemma3. In the following sections, we always prompt162
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Figure 2: Factual Prevalence in Attention and MLP Blocks. The plot shows the factual prevalence
of attention and MLP blocks in LLaVA-NeXT across layers, indicating whether each component
promotes predictions aligned with factual knowledge or counterfactual visual context. Positive values
correspond to blocks favoring the factual (commonsense) continuation. Negative values indicate
preference for the counterfactual continuation induced by the image. The results reveal a functional
distinction: attention blocks tend to support counterfactual information (left), whereas MLP blocks
frequently promote the model’s internal knowledge (right).

the model with image and text using tfact and tcofa to assess whether different model components163

promote internal knowledge or contextual information. Notably, introducing the image reduces the164

preference of the model for the commonsense token: the prediction of the factual token tfact drops165

to 27% for LLaVA-NeXT and 24% for Gemma3. This setup ensures that the image introduces a166

counterfactual signal that conflicts with the model’s inner knowledge, allowing us to analyze how167

visual input alters the model’s prediction compared to its default behavior based on factual knowledge168

alone.169

4.2 The Tension Between Inner Knowledge and Visual Context is Localized170

Building on the controlled knowledge conflict induced by WHOOPS-AHA!, we study how the171

competition between factual and counterfactual continuations is resolved internally and which172

components mediate it. To do this, we use the Logit Lens technique to analyze the hidden state173

at the final token position of the prompt, after each attention block and MLP, projecting it into the174

vocabulary space (see Sec. 3.3). We then compute, across the dataset, how often the logit of the175

factual token tfact is larger than that of the counterfactual token tcofa. This gives an accuracy score for176

each component that reflects whether it tends to promote the factual or counterfactual mechanism. To177

measure the strength of this tendency, we compute the factual preference strength, which is defined178

as the difference between the fraction of examples for which tfact > tcofa and 0.5, the random179

baseline. A value near zero indicates no consistent tendency to favor factual versus contextual180

information across the dataset, while higher values reflect stronger, more polarized behavior. This181

method allows us to localize the components that modulate the interaction between visual inputs and182

internal knowledge.183

Functional Separation Between Attention and MLP Layers. We first compare the contributions184

of attention and MLP blocks to the prediction of tfact and tcofa. Figure 2 shows the results for185

LLaVA-NeXT (see appendix C for similar results on Gemma3). Attention blocks exhibit a stronger186

tendency to favor the counterfactual visual context, whereas MLP blocks are more aligned with the187

internal factual knowledge. In particular, the influence of attention blocks increases from the middle188

layers (around layer 15), peaking in the final four layers. MLP blocks similarly show their strongest189

alignment to factual knowledge in the upper layers, with a peak at the final layer. This pattern is190

consistent with previous findings on the role of upper-layer MLPs in retrieving factual knowledge191

[Geva et al., 2021, Meng et al., 2022, Dai et al., 2022].192

Localization of the Modality Conflict to Individual Attention Heads. We next examine the role193

of individual attention heads. Figure 3-left shows the tendency for each attention head to promote194

or suppress the factual token in LlaVa-NeXT (see Appendix, Fig. 8 for Gemma3). The distribution195

shows that only a small subset of heads exhibit a strong, consistent alignment with tfact or tcofa.196

Moreover, consistently with the results at the block level, these factual and counterfactual heads are197

concentrated in the final layers of the model, indicating that the conflict between inner knowledge198
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Figure 3: Contribution of Attention Heads to Factual and Counterfactual Predictions. (Left)
Factual accuracy of individual attention heads in LLaVA-NeXT, based on Logit Lens projections at
the final token position. Blue indicates heads that tend to favor the factual token (reflecting inner
knowledge), while red indicates heads that favor the counterfactual token (introduced by the visual
context). (Right) Mean attention to image tokens at the final generation step for heads in each group.
Each group contains 20 attention heads. Counterfactual heads attend significantly more to the image
(60%) than factual heads (28%) or the model-wide average (22%), indicating that visual information
is directly propagated to the output and plays a key role in counterfactual predictions.

and visual context is resolved late in the forward pass. In the analyses of the next sections, we focus199

on the 20 heads that promote the factual and counterfactual tokens more strongly. We specifically200

choose 20 heads because this represents the optimal balance between effectiveness and stability201

of intervention. Indeed, the incremental improvement in factual accuracy begins to diminish after202

this point (see Appendix, Fig. 10). On average, the factual heads favor the tfact 85% of the time,203

and the counterfactual ones tcofa 15% of the time, indicating strong alignment with their respective204

information sources.205

Factual and Counterfactual Heads Exhibit Distinct Visual Attention Patterns. We then investi-206

gate whether heads associated with the factual mechanism or the counterfactual visual context exhibit207

distinct attention patterns – specifically, whether they attend to different token modalities (image or208

text). Since the counterfactual information is introduced through the image, a natural hypothesis209

is that counterfactual heads attend more strongly to visual tokens, while factual heads rely more210

on textual content. To test this hypothesis, for each group of heads, we sum the attention weights211

assigned to visual tokens in the last row of each head and average across the dataset. Figure 3-right212

reports the average amount of attention to the image for the two groups of heads. Heads favoring the213

counterfactual token tcofa attend to image tokens significantly more (61%) than those aligned with214

inner knowledge (29%) or the model-wide average (22%).215

Although the counterfactual signal originates in the image, it is not a priori clear that this information216

is transmitted directly to the final token. The model could, in principle, diffuse or encode this signal217

in different positions across intermediate layers. However, the observed attention patterns suggest218

that the visual context influences the output token directlyin late layers of the model, with limited219

intermediate processing. These findings are consistent for Gemma3, and we report the analysis in220

appendix C.221

4.3 Targeted Intervention on Selected Attention Heads Causally Shifts Model Behavior222

Having identified attention heads aligned with either factual knowledge or counterfactual visual223

context, we next examine whether these components play a causal role in shaping model predic-224
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tions. To this end, we apply the targeted intervention strategy introduced in section 3.3, modi-225

fying the attention weights to steer the output of the model towards one mechanism or the other.226
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Figure 4: Intervention on Target Attention
Heads. Change in factual accuracy under different
levels of intervention strength (λ). For λ < 0, we
boost the counterfactual heads (on image tokens)
and weaken the factual heads (on text tokens); for
λ > 0, we do the opposite. The intervention is
applied at the final token position, modifying only
the relevant attention values in the last row.

227

Guided by our earlier observation that counter-228

factual heads attend more to visual tokens, we229

design a bidirectional intervention that selec-230

tively adjusts attention values based on head231

type and token modality. For counterfactual232

heads, we modify their attention to image to-233

kens; for factual heads, we target their attention234

to text tokens. In both cases, we apply a multi-235

plicative adjustment at the final token position.236

Each intervention simultaneously enhances the237

attention of one group to its relevant modality238

while suppressing the other group’s attention, for239

instance increasing the attention to image tokens240

for counterfactual heads while reducing atten-241

tion to text tokens for factual heads, and vice242

versa. This approach enables us to modulate the243

relative influence of factual and counterfactual244

mechanisms on the model prediction.245

Figure 4 shows the results of our intervention246

for LLaVA-NeXT (orange profile) and Gemma3247

(green profile). For LLaVA-NeXT, the baseline248

accuracy, defined as the proportion of examples249

in which the factual token tfact receives a logit higher than the counterfactual token tcofa, is 22%.250

When we increase attention from factual heads and decrease it from counterfactual heads, the251

factual accuracy increases to 74%, indicating a strong shift towards predictions of inner knowledge.252

Conversely, reversing the intervention reduces the accuracy to 16%, confirming that these heads253

causally influence whether the model favors factual or counterfactual content. A similar trend can254

be observed for Gemma3, with an even stronger relative effect driven by its lower baseline factual255

accuracy of 18% and a peak of 83%.256

To ensure plausible interventions, we constrain the scaling parameter to λ ∈ [−3, 3] and monitor the257

position of the higher-logit token in the full next-token distribution. For example, using LLaVA-NeXT,258

the average rank of the token tfact shifts from 3 at λ = 0 to 31 at λ = 3, indicating that while the259

intervention is highly effective, it introduces some deviation in the overall logit distribution, an260

expected effect when strongly modulating internal components. To support this choice of intervention261

range, we also assess its impact on generation quality; the full results, based on KL divergence262

between generated outputs, are reported in Appendix E.263

As a control experiment to isolate the effect of targeted interventions, we randomly select 100264

attention heads and apply the same intervention for varying λ values. This manipulation does not265

produce a substantial deviation from the baseline, confirming that the observed effects are specific to266

the heads identified as aligned with factual or counterfactual mechanisms. The complete results for267

the control experiment are reported in Appendix Fig. 9.268

4.4 Counterfactual Predictions Depend on Localized Image Regions269

In the previous sections, we analyzed the conflict between contextual information and internal270

knowledge using WHOOPS-AHA! prompts, which induce a competition between counterfactual271

visual cues and factual model knowledge. This analysis revealed that specific attention heads at272

the final token position mediate this conflict, with heads aligned with the visual context attending273

strongly to image tokens and thereby injecting visually grounded information into the generation274

process. However, two key questions remain open. (i) Is the counterfactual visual signal localized275

to specific image regions or spread across the input? (ii) Is the visual signal passed directly to the276

last token position, or is it mediated by successive layers and tokens before reaching the output277

in the upper layers? To address these questions, we perform two complementary analyses: (i) we278

identify the image patches most responsible for driving counterfactual predictions using attention279
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Figure 5: Ablation of Relevant Pixels. The plot shows the effect of ablating different percentages of
image pixels in LLaVA-NeXT. The green line corresponds to pixels selected based on the highest
attention from counterfactual heads, while the orange line corresponds to pixels with the highest
gradient magnitude with respect to the counterfactual token. The gray line shows a random baseline
where pixels are removed uniformly at random.
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Figure 6: Qualitative Examples of Visual Regions Driving Counterfactual Predictions. High-
lighted image regions correspond to visual patches identified as most responsible for counterfactual
predictions using attention-based attribution. In both examples, the model generates a visually
grounded but factually incorrect token (e.g., rainbow, fruit) instead of the commonsense alternative
(black, tissue). The highlighted areas align with semantically meaningful and visually anomalous
content, demonstrating that counterfactual outputs are grounded in localized, interpretable image
features.

and gradient-based attribution methods, as described in section 3.3; and (ii) we ablate the identified280

patches by setting the corresponding visual token embeddings to zero at the input of the transformer,281

and measure the resulting change in inner knowledge accuracy. In addition to the quantitative analysis,282

we inspect the selected image patches to assess whether they correspond to intuitive counterfactual283

regions or visually salient objects contradicting the model’s internal knowledge. To test the specificity284

of our findings, we also perform a control experiment in which we randomly sample an equivalent285

number of image patches for ablation. This allows us to assess whether the identified regions are286

uniquely responsible for triggering counterfactual predictions or whether any removal of visual input287

affects the model’s behavior.288

Quantitative Analysis of Patch Attribution and Ablation The results of the experiments are289

shown in Figure 5. We observe that the ablation of visual patches identified through attention-based290

attribution leads to a sharp and consistent increase in factual accuracy as more pixels are removed291

(green profiles). For instance, in the case of LLaVA-NeXT, factual accuracy improves markedly with292

the ablation of just 10–30% of the top-ranked patches and eventually plateaus around 80%. This293

suggests that counterfactual predictions are primarily driven by a small, localized subset of visually294

salient regions. Gradient-based attribution (shown in red) also yields a substantial increase in factual295

accuracy, though the effect is less pronounced and saturates earlier, suggesting lower precision in296

identifying counterfactual-driving regions. In contrast, ablating an equivalent number of randomly297

selected patches results in only minor fluctuations in accuracy, never approaching the improvements298

achieved through targeted attribution. These findings confirm the causal role of the identified regions299

and support the hypothesis that counterfactual signals are spatially localized and semantically specific.300

8



Qualitative Analysis of Visual Attribution To assess the semantic coherence of the identified301

visual regions, we qualitatively examine examples where attribution methods highlight specific302

patches as responsible for counterfactual predictions (see Fig. 6. In many cases, these regions303

correspond to intuitive scenes that directly contradict commonsense knowledge, such as unusual304

objects, implausible substitutions, or visual features that override typical textual expectations. For305

instance, when the model predicts “rainbow” instead of “black” for a bearskin hat, the highlighted306

patches focus on the hat’s unrealistic coloring (Fig. 6-top). Similarly, when “fruit” replaces “tissue” in307

a surgical scene, the attention centers on the bright, unexpected presence of oranges on the operating308

table (Fig. 6-bottom). These observations confirm that the model’s counterfactual outputs are not309

arbitrary but grounded in semantically meaningful and localized image features.310

5 Discussion311

Our work explores how VLMs internally handle conflicts between visual input and internal factual312

knowledge, building upon earlier studies of similar phenomena. Specifically, we extend the inter-313

pretability framework of Ortu et al. [2024], originally developed for textual language models, into the314

multimodal domain. Recent related studies, such as Liu et al. [2024c] and Han et al. [2024], have315

constructed diagnostic benchmarks to measure model susceptibility to conflicting visual and textual316

cues; however, these works primarily focus on evaluating model outputs without deeply analyzing317

internal conflict-resolution mechanisms. Likewise, datasets such as HallusionBench [Guan et al.,318

2024] and PhD [Liu et al., 2025] differ significantly from our dataset in their goals and methodologies:319

HallusionBench utilizes carefully controlled image-question pairs to systematically induce halluci-320

nations, while PhD employs extensive synthetic generation to broadly cover diverse hallucination321

patterns. In contrast, our WHOOPS-AHA! dataset is specifically designed to elicit clear, controlled322

knowledge conflicts by pairing visually anomalous scenes with commonsense textual prompts, delib-323

erately provoking model-internal tensions rather than broadly diagnosing hallucinations. Thus, while324

all these datasets address related multimodal conflicts, our approach uniquely emphasizes controlled,325

interpretable conflict scenarios to facilitate detailed mechanistic analysis. Methodologically, our326

focus on mechanistic interpretability shares conceptual similarities with recent approaches such327

as Golovanevsky et al. [2025b]. However, while Golovanevsky et al. [2025b] introduce a novel328

method to identify attention heads with broad functional roles across tasks in VLMs, they do not329

examine how models resolve conflicts between visual input and internal knowledge. In contrast, we330

directly localize this competition to a small set of attention heads and demonstrate their causal role331

through targeted interventions that shift model predictions. Unlike general hallucination mitigation332

strategies proposed by Liu et al. [2024a] and Leng et al. [2023], which typically apply training333

or decoding methods at scale, our method emphasizes precise localization of conflict triggers and334

inference-time interventions. Although our analysis is not a ready-to-deploy solution, it offers a335

foundational mechanistic understanding crucial for developing targeted, interpretable interventions in336

multimodal models.337

6 Conclusion338

In this work, we investigated how counterfactual visual inputs interact with the internal knowledge339

representations of VLMs during generation. To this end, we introduced WHOOPS-AHA!, a dataset340

that pairs visually anomalous scenes with textual prompts designed to elicit either a commonsense341

(factual) continuation or one grounded in the visual counterfactual. This setup enables fine-grained342

analysis of how conflicting visual and textual cues influence model behavior. We showed that a small343

set of attention heads mediate this competition. These heads also exhibit distinct modality preferences344

and play a causal role in determining the model’s output. By intervening on their attention weights,345

we were able to shift predictions in a controlled way, favoring either the internal knowledge or the346

visual context. Finally, we demonstrated that these heads provide accurate attribution of the visual347

regions responsible for counterfactual completions, outperforming standard gradient-based attribution348

techniques. These findings contribute to a deeper mechanistic understanding of multimodal reasoning349

in VLMs and offer a foundation for developing more interpretable and controllable systems under350

conflicting input conditions.351

9



References352

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel353

Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza Ruther-354

ford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Ja-355

cob L Menick, Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Sharifzadeh,356
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A Reproducibility554

We run the experiments on one NVIDIA H100 GPU, and two GPUs for the gradient-based attribution555

tests. We use the HuggingFace Transformers library [Wolf et al., 2020] with public implementations556

of LLaVA-NeXT and Gemma3. The total compute time is 15 GPU hours. The WHOOPS! dataset557

was released with a CC-By 4.0 license.558

B Limitations559

The analysis relies on the Logit Lens technique to project intermediate hidden states into token560

logits. Although this method has been widely adopted for interpretability, it is known to introduce561

distortions due to projection from non-final residual states [Belrose et al., 2023], and should be562

interpreted as an approximate diagnostic rather than a precise decoding proxy. In our setting, we563

use a representative factual and counterfactual token per example to enable controlled comparisons.564

Although this simplifies the generative landscape of the model, it offers a practical and interpretable565

probe of the underlying mechanisms. Future work could explore more model behavior across full566

generations to complement this approach. Our attribution and intervention methods focus on attention567

heads and target the final token position. This design isolates interpretable causal signals while568

remaining tractable, though it does not capture the possible contributions of other components, such569

as MLP layers or visual encoders. Extending this framework to broader architectural elements570

is a promising direction. Finally, the WHOOPS-AHA! dataset is constructed from synthetic and571

curated inputs, which allow precise manipulation of visual-textual conflict. Although this setting572

facilitates analysis, future extensions to more naturalistic data could further validate the findings in573

less constrained contexts.574

C Experimental Analysis for Gemma-12b575
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Figure 7: Factual and Counterfactual Contributions of MLP and Attention Blocks in Gemma3.
Layer-wise deviation from 50% factual accuracy for attention and MLP blocks, as measured by the
relative logits of tfact and tcofa via Logit Lens. Positive values indicate a bias toward the factual token,
while negative values indicate preference for the counterfactual token. Consistent with trends observed
in LLaVA-NeXT, attention blocks in Gemma3 increasingly support counterfactual predictions in
higher layers, while MLP blocks show stronger alignment with internal factual knowledge.
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Figure 8: Factual and Counterfactual Contributions of Attention Heads for Gemma3. (Left)
Factual accuracy of individual attention heads in Gemma3, computed using Logit Lens projections
of the final token’s hidden state. Blue indicates heads that more frequently favor the factual token
(tfact), while red indicates those that favor the counterfactual token (tcofa). As in LLaVA-NeXT,
highly polarized heads are concentrated in the upper layers. (Right) Mean attention to image tokens
at the final generation step. Counterfactual heads attend more strongly to image tokens (52%) than
factual heads (25%) or the model-wide average (22%), highlighting the direct role of visual input in
modulating counterfactual predictions.

Image λ Caption
0 The image is a digital artwork of a young boy with a contemplative

expression. He has short, light brown hair and striking blue eyes. The
boy is wearing a striped shirt with a collar and a patterned tie.

3 The image is a digital artwork of a young child. The child is depicted
with a contemplative expression, looking slightly to the side with a
thoughtful gaze. They are holding a piece of paper or a small object in
their hand, which appears to...

10 Jimmy Wooster spr spr spr spr spr spr spr spr spr spr spr spr spr spr spr
spr spr spr spr spr spr spr spr spr spr spr spr spr spr spr spr spr spr spr
spr spr spr spr spr spr spr spr spr spr spr spr

0 The image is a dramatic and evocative artwork depicting a young girl
standing in the center, holding a flag with the colors of the French
flag—blue, white, and red.

3 The image depicts a young girl standing in the center, holding a small,
tattered flag with the design of the French flag.

10 The image shows a Telephone P p p p p p p p p p p p p p p p p p
Telephone P p p p p p p p p p p p p p p p p p Telephone P p p p

Table 1: Effect of Intervention Strength on Caption Generation Quality. Examples of captions
generated by LLaVA-NeXT under different intervention strengths (λ = 0, 3, 10). As intervention
magnitude increases, captions begin to diverge from the original output. At moderate levels (|λ| = 3),
outputs remain coherent but show lexical and structural variations. At high levels (|λ| = 10),
generations often degrade into repetitive or nonsensical sequences.
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D Additional Results576
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Figure 9: Control Experiment: Intervention on Random Attention Heads. Change in factual
accuracy under varying levels of intervention strength (λ) applied to 100 randomly selected attention
heads. The results show no substantial deviation from baseline, confirming the specificity of the
identified target heads.
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Figure 10: Effect of Intervening on Varying Numbers of Attention Heads. Change in factual
accuracy as a function of the number of attention heads involved in the intervention. Each value
x indicates that x heads are selected from both the factual and counterfactual groups. Intervention
strength is fixed at λ = 3. The results highlight that intervening on 20 heads provides the optimal
trade-off, maximizing factual accuracy without excessively affecting model stability.

E Impact of Intervention on Text Generation577

To quantify the impact of our intervention on text generation quality, we prompt the model to generate578

captions with and without intervention, and manually inspect the quality of the outputs as we increase579

the intervention strength, |λ|. We empirically observe that for |λ| greater than three, the quality of the580

generated captions degrades, and most of the time, they become agrammatical when |λ| > 10 (see581

Table 1).582

We also attempted to quantify the quality of the generated text after the intervention with a KL-583

divergence with the generated text before the intervention (|λ| > 0), which we consider as a reference584

for a well-structured sentence. Figure 11 shows the average KL-divergence across all examples in585

WHOOPS-AHA! as we increase |λ| in LLaVA-NeXT.586

The KL divergence sharply increases for |λ| < 3, and then the growth slows down and stabilizes587

around |λ| = 12 for λ < −20 and 18 for λ > 20. When the KL is smaller than 10, for λ between -3588

and 3, the output sentences have a similar quality to those generated before intervention.589
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Figure 11: KL Divergence Between Generated Captions at Different Intervention Strengths
in LLaVA-NeXT. Symmetric increase in KL divergence around λ = 0, with rapid divergence until
|λ| = 3 and stabilization near |λ| = 10. Higher intervention magnitudes cause substantial shifts in
the generated token distribution, indicating degradation in caption quality.

F Prompts For Dataset Generation590

591

Prompt Used to Generate Dataset Instances.

You are a helpful assistant expert in LLMs research.
Counterfactual Dataset Generation Prompt
Objective: Generate captions for images that highlight a clear contrast between common (factual)
and unusual (counterfactual) scenarios involving the subject depicted. Each caption must include the
subject of the image and end with "___" indicating the blank space where a single-word token is placed.
Definitions: - **Factual token**: A single word that represents typical, expected behavior or attributes
of the main subject shown in the image. - **Counterfactual token**: A single word introducing a
surprising, unexpected, or unusual element related explicitly to the same main subject; it makes sense
only if the image explicitly illustrates this twist.
Context Provided: For each image, you will receive the following textual information: - Selected
Caption: A primary description identifying the main subject clearly. - Crowd Captions: Alternative
descriptions from multiple annotators. - Designer Explanation: Explanation emphasizing the unusual
or counterintuitive aspect involving the subject. - Crowd Explanations: Multiple explanations focusing
on the unusual aspects related directly to the subject of the image.
Task Instructions:
Caption Construction: - Create exactly one neutral sentence (caption) clearly containing the main
subject depicted in the image, but avoiding the description of unusual aspects contained in the image. -
The sentence must end with an intentional blank ("___"). - Critical Requirement: The caption must
compel the model to complete the blank differently based on the context: - **Without the image**:
complete with a factual token (typical scenario involving the subject). - **With the image**: complete
with a counterfactual token (unexpected scenario explicitly depicted). - Important Constraint: Use
neutral language with NO textual hints indicating abnormality. The main subject must explicitly appear
in the caption to establish context clearly. Only the image content itself should disambiguate the
scenario. - The caption should not contain any unusual or counterintuitive elements; the unusual aspect
should be reflected solely in the image content and in the counterfactual tokens. - Make sure that if you
substitute the blank with a factual or counterfactual token, the sentence is fluent and grammatically
correct.
Explicit Single-Word Token Generation: - Generate exactly **ten single-word factual tokens** repre-
senting common scenarios involving the main subject that could complete in a grammatically correct
way the sentence. - Generate exactly **ten single-word counterfactual tokens** representing surprising
scenarios involving the same subject, justified solely by the provided image, and that could complete
the sentence in a grammatically correct way. - Strictly enforce single-word tokens; no multi-word

592
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phrases or sentences. - Ensure clear differentiation without conceptual overlap between factual and
counterfactual tokens.
JSON Output Format: Provide each caption and tokens following this exact schema:
{ "caption": "Neutral sentence explicitly containing the main subject and ending with an intentional
blank (’___’)", "factual_tokens": ["token1", "token2", "token3", "token4", "token5", ...], "counterfac-
tual_tokens": ["token1", "token2", "token3", "token4", "token5", ...], "context": { "selected_caption":
"Primary description clearly stating the main subject of the image", "crowd_captions": ["Caption
1", "Caption 2", "..."], "designer_explanation": "Explanation highlighting the unusual aspect directly
involving the main subject", "crowd_explanations": ["Explanation 1", "Explanation 2", "..."] } }
Your role is to craft neutral captions explicitly containing the main subject of each image, along with
precisely differentiated factual and counterfactual single-word tokens. The explicit presence of the
main subject in the caption must guide factual versus counterfactual completions, relying solely on the
provided image for disambiguation.

593

Prompt Used to Generate Factual and Counterfactual Tokens.

You are presented with an image and an incomplete sentence describing its content. The image
intentionally portrays an unusual scenario that contrasts typical or factual knowledge.
Your task is to generate two lists of tokens:
1. Factual Tokens (5 tokens): These tokens should represent words or concepts that accurately and
typically complete the sentence based solely on common knowledge, without considering the unusual
image.
2. Counterfactual Tokens (5 tokens): These tokens should represent words or concepts that correctly
complete the sentence when explicitly considering the unusual content depicted in the image, even if it
contradicts common factual knowledge.
Please format your response clearly as a JSON object as follows:
“‘json { "sentence": "INCOMPLETE_SENTENCE", "factual_tokens": ["token1", "token2", "token3",
"token4", "token5"], "counterfactual_tokens": ["token1", "token2", "token3", "token4", "token5"] } “‘
Choose tokens that clearly differentiate between typical knowledge and the unusual scenario depicted
by the provided image.

594
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