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Abstract

Vision-language models (VLMs) increasingly combine both visual and textual
information to perform complex tasks. However, conflicts between their internal
knowledge and external visual input can lead to hallucinations and unreliable
predictions. In this work, we investigate the mechanisms that VLMs use to resolve
cross-modal conflicts by introducing a dataset of multimodal counterfactual queries
that deliberately contradict internal commonsense knowledge. Through logit
inspection, we identify a small set of attention heads that mediate this conflict. By
intervening in these heads, we can steer the model towards its internal knowledge
or the visual inputs. Our results show that attention from these heads effectively
locates image regions that influence visual overrides, providing a more precise
attribution compared to gradient-based methods. 1

1 Introduction

Vision–language models (VLMs) [Alayrac et al., 2022, Li et al., 2022, Liu et al., 2023, Team, 2024,
Deitke et al., 2024] have shown remarkable versatility in various multimodal tasks, from image
understanding to image generation. They draw on their ability to combine two key sources of
information: a rich set of world knowledge acquired during pretraining, and contextual cues provided
in the input prompts. However, these two sources can sometimes contradict each other, for example,
when the pretraining knowledge becomes outdated [Lazaridou et al., 2021, Luu et al., 2022] or when
prompts include intentionally misleading visual information [Liu et al., 2024d]. Such conflicts often
lead to hallucinations in model responses [Cui et al., 2023, Liu et al., 2024a, Guan et al., 2024], yet
the internal mechanisms responsible for these errors remain poorly understood [Xu et al., 2024].

In this work, we analyze how VLMs resolve conflicts between visual input and internal knowledge
by framing the problem through counterfactual image-text pairs. We prompt the VLMs with images
depicting unusual or absurd scenes taken from the WHOOPS! dataset [Guetta et al., 2023], followed
by a sentence encouraging a typical knowledge-based continuation. As shown in fig. 1, each input
prompt is associated with a counterfactual pair of completions. For instance, the model may be
shown an image of a wolf howling at the sun, a scene that contradicts commonsense knowledge, and
asked to complete the prompt accordingly (see top-left panel). We construct the dataset such that
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Figure 1: Overview of our approach. (Left) We construct prompts that induce a conflict between a
vision-language model’s internal factual knowledge and counterfactual visual context. (Right) We
then analyze which components in the model mediate this tension, identifying attention heads and
visual patches that favor factual or visually grounded predictions.

VLMs, when prompted with text alone, generate commonsense responses while in the presence of the
image, change their prediction to align with the visual context, even when it contradicts their internal
knowledge. Building on the approach of Ortu et al. [2024], we identify which internal components of
the model contribute the most to factual versus counterfactual predictions. We find that a small subset
of attention heads mediates this competition, and targeted interventions on these heads reliably alter
the model’s outputs. We also show that these heads are more effective than gradient-based methods
in identifying the most important parts of an image to resolve multimodal conflicts in VLMs.

In summary, our contributions are as follows:

1. We construct WHOOPS-AHA!, a dataset that combines images containing counterfactual
scene elements and commonsense textual queries, designed to analyze conflicts between
visual context and internal knowledge (sec. 5.1);

2. We identify the attention heads that promote factual and counterfactual responses, ranking
their importance with logit attribution (sec. 5.2);

3. By reweighting these heads, we show that we can control the tendency of the model to rely
on the visual evidence or its internal knowledge and vice versa (sec. 5.3);

4. We demonstrate that direct attention attribution from conflict-resolution heads provides
more accurate identification of counterfactual image regions than traditional gradient-based
attribution methods (sec. 5.4).

2 Related Work

Knowledge Conflicts in Vision-Language Models VLMs frequently encounter situations where
visual input contradicts their internal parametric knowledge, yet the mechanisms governing conflict
resolution remain poorly understood [Xu et al., 2024]. Early work on multimodal conflicts focused
primarily on behavioral evaluation through benchmark construction. Han et al. [2024] introduced
datasets that probe contextual knowledge conflicts with deceptive visual elements, while Liu et al.
[2024c] developed ConflictVis to evaluate conflicts between visual input and parametric knowledge.
Le et al. [2023] created COCO-Counterfactuals using minimally edited counterfactual image pairs
to study model behavior under visual contradictions. However, these studies limit their analysis to
evaluating model outputs and prompt structures without investigating the internal mechanisms by
which models resolve conflicts.

Mechanistic interpretability in VLMs. Mechanistic interpretability, which seeks to reverse en-
gineer deep neural networks, has made significant strides in text-only models [Elhage et al., 2021,
Geva et al., 2023, 2021, Hanna et al., 2023, inter-alia]. Recently, attention has shifted to VLMs. For
instance, Neo et al. [2025] explores how LLaVA processes visual information, and Basu et al. [2024]
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examines knowledge retrieval in VLMs for visual question answering. Despite these advances, the
mechanistic investigation of how VLMs resolve conflicts between modalities remains underexplored.

Internal dynamics of multimodal conflicts. Although interest in VLM interpretability is growing,
mechanistic studies of how these models process conflicting information remain limited. In the
context of LLMs, research has focused on understanding how models resolve conflicts between
contextual and internal knowledge [Ortu et al., 2024, Yu et al., 2023, Jin et al., 2024]. Recent work
has started to explore the internal mechanisms of VLMs in handling multimodal conflicts. Recent
work has begun exploring internal mechanisms in VLMs: Hua et al. [2025] analyze conflicts between
text and image, while Golovanevsky et al. [2025b] introduced NOTICE, using semantically corrupted
image pairs to study attention heads in LLaVA and BLIP. Although they identified attention heads
with distinct functional roles in tasks, their focus was not specifically on the resolution of conflict
between visual and internal knowledge. Recently, Golovanevsky et al. [2025a] introduced a method
that uses steering vectors to control model predictions. They examined how varying visual input
affects the competition between modalities, utilizing image pairs, one aligned with the model’s
internal knowledge and the other modified to introduce a counterfactual variation. Their approach
focuses on simple object attributes, such as color or size, as a means of probing these conflicts.

3 Dataset

3.1 Requirements for Mechanistic Analysis of Multimodal Conflicts

Mechanistic interpretability of VLMs requires datasets that enable precise analysis of internal
information flow. To support this goal, we identified four key requirements for a suitable dataset:

• Controlled Conflict Induction: Conflicts between visual input and internal knowledge
must be systematically induced and verifiable, enabling causal analysis.

• Token-Level Precision: The dataset should allow token-level inspection and interventions,
with prompts designed to elicit specific, predictable continuations.

• Commonsense Knowledge Grounding: Scenarios must rely on the model’s internal
parametric knowledge, providing strong, consistent priors that can be challenged by visual
input.

• Topical Generality: To test broad knowledge and contextual understanding, the dataset
should cover a wide range of topics rather than narrow or highly specific domains.

To meet these requirements, we construct WHOOPS-AHA!, a dataset specifically designed to support
mechanistic interpretability techniques for VLMs. To the best of our knowledge, no existing dataset
combines these characteristics, making WHOOPS-AHA! a necessary resource for studying controlled
knowledge conflicts in multimodal models. Although designed for our experiments, it may also
benefit the broader community interested in the mechanistic analysis of multimodal conflicts.

3.2 Dataset Construction

WHOOPS-AHA! addresses these requirements by building on the WHOOPS! collection [Guetta
et al., 2023], which features 500 visually implausible, semantically rich scenes annotated with
textual descriptions and explanations of their underlying anomalies Each example in WHOOPS-AHA!
consists of (i) a counterfactual image depicting an unusual scene, (ii) a sentence referring to the
image, and (iii) two sets of plausible continuations: (Sfact) reflecting common sense knowledge, and
(Scofa) consistent with the counterfactual scene represented in the image.

Construction pipeline. For each image in WHOOPS!, we use GPT-4o to generate a sentence
that references the anomaly, while remaining consistent with commonsense (factual) comple-
tion without visual input. GPT-4o is also prompted to produce a set of plausible factual to-
kens Sfact and visually-grounded counterfactual continuations Scofa. For instance, given an im-
age representing a wolf howling at the sun (see fig. 1), the sentence proposed by GPT-4o is
"The wolf is howling at the", Sfact = {"moon", "night",...} Scofa = {"sun",
"daylight","morning",..}. Full prompt details are provided in app. G.
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Quality control and validation. To ensure dataset quality, we implemented an LLM-as-a-judge
approach [Zheng et al., 2023], using GPT-4.1 [OpenAI, 2025] and Gemini-2.5-Flash [Comanici et al.,
2025]. Models evaluated each completion for grammatical correctness (1–3 scale) and for alignment
with common knowledge or visual anomalies (1–5 scale). Across the dataset, the average grammatical
score was 2.94± 0.25 for completions of inner knowledge and 2.93± 0.28 for completions aligned
with the image. Alignment with knowledge or visual anomalies received a mean score of 4.43± 0.97
and 4.69± 0.92, respectively.

To validate this setup, we compared LLM ratings with those of 2 human evaluators on a 20-item
subset. Full details, including prompts, scoring instructions, and agreement results, are provided in
app. B.

4 Background and Methods

4.1 Model Architectures

A VLM encodes image-text tokens with a visual encoder and text embeddings, propagating the
resulting residual stream through layers with attention and MLP blocks. The final output is projected
to the vocabulary space. We focus our analysis on the residual stream, attention, and MLP blocks,
and individual attention heads.

We focus on two models: LLaVA-NeXT-7b [Liu et al., 2024b] and Gemma3-12b [Kamath et al.,
2025]. LLaVA-NeXT has 32 layers with 32 attention heads per layer, while Gemma3 has 48 layers
with 16 attention heads per layer. Both models use a visual encoder to process image features, but
generate only textual output.

4.2 Analytical Tools

Logit inspection. To identify the internal components of VLMs responsible for the competition
between inner knowledge and conflicting visual context, we apply the Logit Lens technique [Nostal-
gebraist, 2020], which projects intermediate hidden representations into the vocabulary space. This
approach has been used in previous work to analyze token-level information flow [Nanda et al., 2023,
Halawi et al., 2023, Yu et al., 2023, Ortu et al., 2024] in LLMs. In our setting, we apply the Logit
Lens to the last token of the prompt and extract the logits corresponding to the tokens in Sfact and
Scofa in the output of the MLP and Attention blocks, and for all the attention heads of the model to
identify the components that contribute to the promotion of one mechanism over the other.

Targeted intervention on attention heads. To test the causal role of specific attention heads in
promoting predictions aligned with either factual inner knowledge or counterfactual visual context,
we intervene on their attention patterns during inference. We define two groups of heads based
on Logit Inspection: factual heads (Hfact), which favor predictions based on inner knowledge, and
counterfactual heads (Hcofa), which favor visually grounded alternatives. We apply a multiplicative
intervention to their attention weights at the final token position (i.e., the last row of the attention
matrix), after the softmax operation. Let Ahl

last = [Ahl
last,img,A

hl
last,text] denote the last row of the

attention weights for head h at layer l, divided between image and text tokens. The intervention is
defined as

Ahl
last,img ← (1 + λ) ·Ahl

last,img (1)

if (h, l) ∈ Hcofa, and

Ahl
last,text ← (1− λ) ·A(hl)

last,text (2)

if (h, l) ∈ Hfact.

This targeted and bidirectional intervention alters the flow of information in a controlled way, allowing
us to test whether modulating the influence of these heads changes the model predictions toward the
factual or counterfactual outcome.

Identification of conflict-inducing visual tokens. To isolate the visual tokens responsible for
introducing counterfactual information that conflicts with the inner knowledge of the model, we apply
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Figure 2: Factual prevalence in attention and MLP blocks. Factual prevalence of LLaVA-
NeXT shows whether each block favors predictions aligned with factual knowledge (positive) or
counterfactual visual context (negative). The results reveal a functional distinction: attention blocks
tend to support counterfactual information (top), whereas MLP blocks frequently promote the model’s
internal knowledge (bottom).

two methods. Both are based on a threshold parameter τ ∈ [0, 1], which controls the sensitivity of
token selection.

1. Most-Attended Visual Tokens: Given a set of attention heads, we select the visual tokens
that receive at least τ times the maximum attention weight within each head. We then take
the union of these tokens across all heads.

2. Gradient-Based Token Importance: We compute the gradient of the logit associated with
a target token (e.g., from Sfact or Scofa) with respect to the input visual token embeddings.
Visual tokens whose gradient magnitudes exceed τ times the maximum are selected as
influential.

By varying τ , we control how many image patches are selected—from none when τ is 1, to all when
τ is 0. This allows us to ablate different image portions and analyze how they affect the model
predictions.

5 Experimental Results

5.1 Inducing the Conflict between Inner Knowledge and Visual Context

Given a model, we select tfact as the highest probability token in Sfact using text-only prompts, and
tcofa as the highest probability token from Scofa using multimodal input. Selecting from these sets
ensures that we capture the completions most aligned with the model’s internal knowledge (text-only)
or most influenced by visual information (multimodal), allowing us to reliably study the interaction
and potential conflicts between the two sources of information. For example, "The wolf is
howling at the" yields tfact = “moon" (with probability of 78% and 100% in LLaVA-NeXT
and Gemma3 respectively) in text-only mode, but shift to tfact = “sun" (26% LLaVA-NeXT, 44%
Gemma3) when the image is included, while the probability of moon drops to 17% and 0.02%.
After filtering ambiguous cases where counterfactual tokens dominate in text-only scenarios, we
retain 436 examples for LLaVA-NeXT and 432 for Gemma3. The systematic shift from factual
to counterfactual predictions (factual accuracy drops to 27% and 24%, respectively) confirms that
visual input successfully overrides internal knowledge. This setup ensures that the image introduces
a counterfactual signal that conflicts with the model’s inner knowledge, allowing us to analyze how
visual input alters the model’s prediction compared to its default behavior based on factual knowledge
alone.

5.2 The Tension Between Inner Knowledge and Visual Context is Localized

Building on the controlled knowledge conflict, we apply Logit Lens to identify which model com-
ponents mediate the competition between tfact and tcofa. For attention and MLP blocks, we report
factual preference strength—the deviation from a random baseline (0.5) in factual accuracy—where
positive values indicate bias toward internal knowledge and negative values toward visual context.
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Figure 3: Contribution of attention heads to factual and counterfactual predictions. (Left)
Factual accuracy of individual attention heads in LLaVA-NeXT, based on Logit Lens projections at
the final token position. Blue indicates heads that tend to favor the factual token (reflecting inner
knowledge), while red indicates heads that favor the counterfactual token (introduced by the visual
context). (Right) Mean attention to image tokens at the final generation step for heads in each group.
Each group contains 20 attention heads. Counterfactual heads attend significantly more to the image
(60%) than factual heads (28%) or the model-wide average (22%), indicating that visual information
is directly propagated to the output and plays a key role in counterfactual predictions.

For individual attention heads, we report raw factual accuracy (the fraction of examples where factual
logits exceed counterfactual logits) to identify heads with strong directional preferences.

Functional separation between attention and MLP layers. We first compare attention and MLP
contributions to predicting tfact and tcofa (Figure 2 for LLaVA-NeXT; see app. D for Gemma3).
Attention blocks exhibit a stronger tendency to favor the counterfactual visual context, whereas MLP
blocks are more aligned with the internal factual knowledge. In particular, the influence of attention
blocks increases from the middle layers (around layer 15), peaking in the final four layers. MLP
blocks similarly show their strongest alignment to factual knowledge in the upper layers, with a peak
at the final layer, consistent with prior findings on upper-layer MLPs retrieving factual knowledge
[Geva et al., 2021, Meng et al., 2022, Dai et al., 2022].

Localization of the modality conflict to individual attention heads. We next examine the role of
individual attention heads. Figure 3-left shows the tendency for each attention head to promote or
suppress the factual token in LlaVa-NeXT (see fig. 9 for Gemma3). The distribution shows that only
a small subset of heads exhibit a strong, consistent alignment with tfact or tcofa. Moreover, consistent
with the results at the block level, these factual and counterfactual heads are concentrated in the
final layers of the model, indicating that the conflict between inner knowledge and visual context
is resolved late in the forward pass. In the analyses that follow, we focus on the 20 attention heads
that most strongly promote the factual and counterfactual tokens. We chose 20 heads as this provides
an optimal balance: it maximizes factual accuracy while minimizing potential disruptions to model
stability that could arise from intervening in too many heads (see app. E). On average, the factual
heads favor the tfact 85% of the time, and the counterfactual ones tcofa 15% of the time, indicating
strong alignment with their respective information sources.

Factual and counterfactual heads exhibit distinct visual attention patterns. We then investigate
whether heads associated with the factual mechanism or the counterfactual visual context exhibit
distinct attention patterns – specifically, whether they attend to different token modalities (image or
text). Since the counterfactual information is introduced through the image, a natural hypothesis
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Figure 4: Intervention on target attention heads. Change in factual accuracy under different levels
of intervention strength (λ). For λ < 0, we boost the counterfactual heads (on image tokens) and
weaken the factual heads (on text tokens); for λ > 0, we do the opposite. The intervention is applied
at the final token position, modifying only the relevant attention values in the last row.

is that counterfactual heads attend more strongly to visual tokens, while factual heads rely more
on textual content. To test this hypothesis, for each group of heads, we sum the attention weights
assigned to visual tokens in the last row of each head and average across the dataset. Figure 3-
right reports the average amount of attention to the image for the two groups of heads. Heads
favoring the counterfactual token tcofa attend to image tokens significantly more (61%) than those
aligned with inner knowledge (29%) or the model-wide average (22%). Although the counterfactual
signal originates in the image, it is not a priori clear that this information is transmitted directly to
the final token. The model could, in principle, diffuse or encode this signal in different positions
across intermediate layers. However, the observed attention patterns suggest that the visual context
influences the output token directly in late layers of the model, with limited intermediate processing.
These findings are consistent for Gemma3, and we report the analysis in app. D.

5.3 Targeted Intervention on Selected Attention Heads Causally Shifts Model Behavior

Having identified attention heads aligned with either factual knowledge or counterfactual visual
context, we next examine whether these components play a causal role in shaping model predictions.
To this end, guided by our earlier observation that counterfactual heads attend more to visual tokens,
we apply the targeted bidirectional intervention strategy described in sec. 4.2 that selectively adjusts
attention values based on head type and token modality, modifying the attention weights to steer the
output of the model towards one mechanism or the other. As a control experiment to isolate the effect
of targeted interventions, we randomly select 100 attention heads and apply the same intervention for
varying λ values. This manipulation does not produce a substantial deviation from the baseline. The
complete results for the control experiment are reported in app. E.

Figure 4 shows the results of our intervention for LLaVA-NeXT (orange profile) and Gemma3
(green profile). When we increase attention from factual heads and decrease it from counterfactual
heads using LLaVA-NeXT, the factual accuracy increases to 74%, indicating a strong shift towards
predictions of inner knowledge. Conversely, reversing the intervention reduces the accuracy to 16%,
confirming that these heads causally influence whether the model favors factual or counterfactual
content. A similar trend can be observed for Gemma3, with an even stronger relative effect driven
by its lower baseline factual accuracy of 18% and a peak of 83%. Comprehensive details about the
choice of the parameter λ are reported in app. F.

5.4 Counterfactual Predictions Depend on Localized Image Regions

The previous analysis reveals that specific attention heads at the final token position mediate the
conflict between contextual information and internal knowledge, with heads aligned with the visual
context strongly attending to image tokens, injecting visually grounded information into the generation
process. However, two key questions remain open. (i) Is the counterfactual visual signal localized
to specific image regions or spread across the input? (ii) Is the visual signal passed directly to the
last token position, or is it mediated by successive layers and tokens before reaching the output in
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Figure 5: Ablation of relevant pixels. The plot shows the effect of ablating different percentages of
image pixels in LLaVA-NeXT. The green line corresponds to pixels selected based on the highest
attention from counterfactual heads, while the orange line corresponds to pixels with the highest
gradient magnitude with respect to the counterfactual token. The gray line shows a random baseline
where pixels are removed uniformly at random.

fruit

The surgeon with careful 
precision cuts the 

tissue

The British guards are known 
for their distinctive
bearskin hats which

are typically

black rainbow

Figure 6: Visual regions driving counterfactual predictions. Highlighted image regions, identified
through attention-based attribution, show the most influential visual patches for counterfactual
predictions. In both examples, the model generates visually grounded but factually incorrect tokens
(e.g., rainbow, fruit) instead of commonsense alternatives (black, tissue). The highlighted areas align
with semantically meaningful, visually anomalous content, indicating that counterfactual outputs are
grounded in localized image features.

the upper layers? To address these, we conduct two analyses: (i) using attention and gradient-based
attribution to identify the image patches driving counterfactual predictions, as described in sec. 4.2;
and (ii) ablating these patches by setting their visual token embeddings to zero and measuring the
change in factual accuracy. A control experiment is also performed where an equivalent number of
randomly selected patches are ablated.

Quantitative analysis of patch attribution and ablation. The results (Figure 5) show that ablating
patches identified through attention-based attribution leads to a sharp and consistent increase in factual
accuracy as more pixels are removed (green profiles). For LLaVA-NeXT, factual accuracy improves
markedly with the ablation of just 10–30% of the top-ranked patches and eventually plateaus around
80%. Gradient-based attribution (shown in red) also yields a substantial increase in factual accuracy,
but with less pronounced effects, suggesting lower precision in identifying counterfactual-driving
regions. In contrast, ablating an equivalent number of randomly selected patches results in only minor
fluctuations in accuracy. These findings confirm the causal role of the identified regions and support
the hypothesis that counterfactual signals are spatially localized and semantically specific.

Qualitative analysis of visual attribution. To assess the semantic coherence of the identified
visual regions, we also qualitatively examine examples where attribution methods highlight specific
patches as responsible for counterfactual predictions (see fig. 6. In many cases, these regions
correspond to intuitive scenes that directly contradict commonsense knowledge, such as unusual
objects, implausible substitutions, or visual features that override typical textual expectations. For
instance, when the model predicts “rainbow” instead of “black” for a bearskin hat, the highlighted
patches focus on the hat’s unrealistic coloring (fig. 6-left). Similarly, when “fruit” replaces “tissue” in
a surgical scene, the attention centers on the bright, unexpected presence of oranges on the operating
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table (fig. 6-right). These observations confirm that counterfactual outputs are grounded in localized,
semantically meaningful image features.

6 Discussion

Our work extends the interpretability framework of Ortu et al. [2024] to VLMs, exploring how they
handle conflicts between visual input and internal knowledge. Previous studies, such as Liu et al.
[2024c] and Han et al. [2024], have constructed diagnostic benchmarks to measure the susceptibility
of the model to conflicting visual and textual cues; however, these works primarily focus on evaluating
the model output without analyzing in-depth the internal conflict resolution mechanisms. Likewise,
datasets such as HallusionBench [Guan et al., 2024] and PhD [Liu et al., 2025] differ significantly
from our dataset in their goals and methodologies: HallusionBench utilizes carefully controlled
image-question pairs to systematically induce hallucinations, while PhD employs extensive synthetic
generation to broadly cover diverse hallucination patterns. In contrast, our WHOOPS-AHA! dataset
deliberately induces controlled knowledge conflicts by pairing visually anomalous scenes with
commonsense prompts, emphasizing mechanistic analysis over general hallucination detection for
deeper mechanistic insights. Our approach aligns with Golovanevsky et al. [2025b] in terms of
mechanistic interpretability but diverges in its focus on resolving conflicts between visual input and
internal knowledge. While Golovanevsky et al. [2025b] identify attention heads with broad roles
across tasks, we pinpoint specific attention heads involved in conflict resolution and demonstrate
their causal role through targeted interventions. Unlike broad hallucination mitigation methods
[Liu et al., 2024a, Leng et al., 2023], our work emphasizes precise localization of conflict triggers
and inference-time interventions. Although not a ready-to-deploy solution, our analysis lays the
groundwork for developing targeted, interpretable interventions in multimodal models.

7 Conclusion

We investigated how VLMs internally resolve conflicts between visual input and parametric knowl-
edge through mechanistic analysis. Our WHOOPS-AHA! dataset enables controlled study of these
conflicts by pairing counterfactual images with commonsense textual prompts. Three key findings
emerge from our analysis: (i) multimodal conflicts localize to a small set of attention heads in the
model’s upper layers, with distinct functional roles. Counterfactual heads attend primarily to visual
tokens while factual heads focus on textual content; (ii) targeted interventions on these heads causally
shift model predictions between knowledge-based and visually-grounded outputs; (iii) attention
patterns from conflict-resolution heads provide more precise visual attribution than gradient-based
methods, identifying semantically meaningful image regions responsible for counterfactual predic-
tions. These results contribute to a mechanistic understanding of multimodal reasoning and provide a
foundation for developing more interpretable and controllable VLMs. Our approach demonstrates that
complex multimodal behaviors can be traced to specific, identifiable components, opening pathways
for targeted interventions in scenarios where visual input conflicts with model knowledge.

Limitations

Methodological limitations. The analysis relies on the Logit Lens technique to project intermediate
hidden states into token logits. Although this method has been widely adopted for interpretability, it is
known to introduce distortions due to projection from non-final residual states [Belrose et al., 2023],
and should be interpreted as an approximate diagnostic rather than a precise decoding proxy. In our
setting, we use a representative factual and counterfactual token per example to enable controlled
comparisons. Although this simplifies the generative landscape of the model, it offers a practical and
interpretable probe of the underlying mechanisms. Future work could explore more model behavior
across full generations to complement this approach. Our attribution and intervention methods focus
on attention heads and target the final token position. This design isolates interpretable causal signals
while remaining tractable, though it does not capture the possible contributions of other components,
such as MLP layers or visual encoders. Extending this framework to broader architectural elements
is a promising direction.
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Scope and generalizability. We focus on late-fusion, LLaVA-style architectures, which are par-
ticularly well-suited for controlled image-understanding tasks. These models are among the best
open-source architectures for visual understanding, making them ideal for the interpretability meth-
ods employed in our study. Our interest is specifically in how visual input interacts with internal
knowledge during textual generation, so we chose models that are designed with a focus on image
understanding. While early or mid-fusion models also use attention to integrate visual features into
the language stream, they may differ significantly in how information is communicated between the
modalities [Serra et al., 2024]. The point of injection of visual features varies, but the underlying
mechanism of cross-modal communication through attention remains consistent across these mod-
els. By focusing on late-fusion models, we ensure a more controlled and traceable examination of
visual-to-text interactions in widely used open source multimodal models, though this choice limits
the generalizability of our findings to models with different fusion strategies. Finally, the WHOOPS-
AHA! dataset is constructed from synthetic and curated inputs, which allow precise manipulation of
visual-textual conflict. Although this setting facilitates analysis, future extensions to more naturalistic
data could further validate the findings in less constrained contexts.

Ethical Considerations

This work aims to improve our understanding of how VLMs resolve conflicts between internal factual
knowledge and contradictory visual context. Our analysis is intended to contribute to foundational
research in model interpretability, with the broader goal of developing more transparent and con-
trollable multimodal systems. The techniques presented are diagnostic and exploratory in nature,
designed to support responsible development and analysis of multimodal systems. We believe that
studying the dynamics of conflicting information sources is essential for anticipating model failure
modes, mitigating unintended behaviors, and building more robust AI systems. All models and data
are used in accordance with their intended research licenses, and WHOOPS-AHA! is released solely
for non-commercial, research purposes under compatible terms. We used AI assistants (e.g., GitHub
Copilot) to support code completion during experiment implementation; all generated code was
manually reviewed and supervised by the authors.
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A Reproducibility

We run the experiments on one NVIDIA H100 GPU, and two GPUs for the gradient-based attribution
tests. We use the HuggingFace Transformers library [Wolf et al., 2020] with public implementations
of LLaVA-NeXT and Gemma3. The total compute time is 15 GPU hours. The WHOOPS! dataset
was released with a CC-By 4.0 license.

B LLM-as-a-Judge: Detailed Validation and Analysis

B.1 Evaluation Setup

We used GPT-4.1 (gpt-4.1-2025-04-14) and Gemini-2.5-Flash (gemini-2.5-flash-image-preview)
thorugh OpenRouter [OpenRouter, Inc., 2025] to evaluate each dataset completion along two dimen-
sions:

• Grammatical correctness:
– 1 (No) All completed sentences contain grammatical errors.
– 2 (Some do not make sense) Some completed sentences have grammatical errors.
– 3 (Yes) All completed sentences follow proper grammar rules.

• Knowledge/Anomaly Alignment (1–5 scale)
– 1 = Poor alignment: Completion ignores or misrepresents common knowledge or visual

anomalies
– 5 = Excellent alignment: Completion clearly reflects correct knowledge or accurately

captures anomalies in the image.

B.2 Aggregate Statistics

Metric Mode Gemini-2.5-Flash GPT-4.1 Average Exact Agreement

Grammatical Correctness
Text-only 2.95± 0.23 2.93± 0.26 2.94± 0.25 95.0%

With Image 2.92± 0.30 2.93± 0.26 2.93± 0.28 92.8%

Knowledge/Anomaly Alignment
Text-only 4.55± 0.98 4.31± 0.94 4.43± 0.97 69.5%

With Image 4.76± 0.93 4.60± 0.91 4.68± 0.92 80.2%

Table 1: LLM-as-a-Judge evaluation results. Gemini-2.5-Flash and GPT-4.1 for Text-only and
Image-based Scenarios

We report the average results for all dimensions in Tab. 1. The results shown a that the judges rate the
sentence and the completions mostly grammatical correct and aligned with the common knowledge
or the anomaly in the image.

To measure agreement between the two judges, we calculate the exact agreement rate. We observed a
strong ceiling effect in our data, with the distribution of responses being heavily imbalanced. Overall,
the results demonstrate that the LLM as a judge setup produces consistent and interpretable ratings
across both factual and counterfactual scenarios, with high alignment between models (Gemini vs.
GPT-4.1). These findings support the reliability of LLM-based evaluation for large-scale dataset
validation.

B.3 Human Validation

To assess how well the LLM-as-a-judge setup reflects human evaluation, we sampled 20 entries from
our dataset and asked 2 human evaluators, both graduate students at a local institution, to complete
the same tasks as the LLMs. To measure agreement between human evaluators and LLM judgments,
we averaged the ratings of the human evaluators and rounded to the nearest integer for each category,
and then measured the exact and adjacent agreement rates.

For grammatical correctness in text-based completions, we observed 60% agreement, and 70% for
image-associated completions. For alignment, the agreement was 35% for text-only completions and
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65% for image-associated completions. However, when considering adjacent category agreement
(i.e., when responses were within one point of each other on the scale), the agreement increased to
85% for text-based completions and 100% for image-associated completions.

B.4 Prompt and Instruction

Prompt Used to Instruct LLM-as-a-Judge with Image

You will evaluate sentence completions that should describe UNUSUAL or ANOMALOUS elements
visible in the provided image. Focus on identifying completions that capture strange, unexpected, or
contradictory visual elements.
EVALUATION CRITERIA:
1. GRAMMATICAL CORRECTNESS: Are the completed sentences grammatically valid?
Check syntax, word order, agreement, and grammatical structure of each completed sentence.
→ "Yes" = ALL completed sentences follow proper grammar rules → "Some do not make sense" =
SOME completed sentences have grammatical errors → "No" = ALL completed sentences contain
grammatical errors
Focus on: subject-verb agreement, article usage, word order, tense consistency
2. KNOWLEDGE ALIGNMENT: How well do completions reflect unusual/anomalous visual elements
in the image? IMAGE CONTEXT: Rate how accurately completions describe the strange/unusual
elements you can SEE in the image.
SCORING RUBRIC: • 5 = Perfectly captures unusual/anomalous visual elements in the image - highly
accurate and relevant • 4 = Mostly accurate - minor gaps or imprecisions • 3 = Partially accurate - some
correct elements, some missing/wrong • 2 = Minimally accurate - mostly incorrect with few relevant
elements • 1 = Completely inaccurate - fails to reflect unusual/anomalous visual elements in the image
SENTENCE: "{text}" COMPLETIONS TO EVALUATE: {tokens}
INSTRUCTION: Look carefully at the image and identify what appears unusual, unexpected, or
anomalous. Then evaluate how well the completions capture these strange elements.
IMPORTANT: You must respond with valid JSON only. Do not include any text before or after the
JSON.
Required JSON format: {{ "grammatically_correct": "Yes, all are grammatically correct" | "Some are
not grammatically correct" | "No, they are not grammatically correct", "knowledge_reflection_score":
1-5, "reasoning": "Explain your evaluation for each criterion, citing specific completions" }}"""

Prompt Used to Instruct LLM-as-a-Judge without image

You will evaluate sentence completions that should reflect normal, expected real-world knowledge
real-world scenarios based on common knowledge and typical experiences.
EVALUATION CRITERIA:
1. GRAMMATICAL CORRECTNESS: Are the completed sentences grammatically valid?
Check syntax, word order, agreement, and grammatical structure of each completed sentence.
→ "Yes" = ALL completed sentences follow proper grammar rules → "Some do not make sense" =
SOME completed sentences have grammatical errors → "No" = ALL completed sentences contain
grammatical errors
Focus on: subject-verb agreement, article usage, word order, tense consistency
2. KNOWLEDGE ALIGNMENT: How well do completions reflect "normal, expected real-world
knowledge? REAL-WORLD CONTEXT: Rate how well completions reflect typical, widely-accepted
real-world scenarios.
SCORING RUBRIC: • 5 = Perfectly captures normal, expected real-world knowledge - highly accurate
and relevant • 4 = Mostly accurate - minor gaps or imprecisions • 3 = Partially accurate - some correct
elements, some missing/wrong • 2 = Minimally accurate - mostly incorrect with few relevant elements
• 1 = Completely inaccurate - fails to reflect normal, expected real-world knowledge
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SENTENCE: "{text}" COMPLETIONS TO EVALUATE: {tokens}
Consider what would be normal, expected, and typical in real-world scenarios. Then evaluate how well
the completions reflect this common knowledge.
IMPORTANT: You must respond with valid JSON only. Do not include any text before or after the
JSON.
Required JSON format: {{ "grammatically_correct": "Yes, all are grammatically correct" | "Some are
not grammatically correct" | "No, they are not grammatically correct", "knowledge_reflection_score":
1-5, "reasoning": "Explain your evaluation for each criterion, citing specific completions" }}"""

Instruction Given to Human Evaluator

Task Instructions You will be asked to evaluate sentences and their possible completions. Sometimes,
an image will also be provided. Your job is to judge whether the completions are appropriate, whether
the sentence is grammatically correct, and how well the sentence and completions reflect knowledge or
the content of the image.
Please follow these criteria carefully for each question:
1. Is the sentence grammatically correct?
Ignore meaning here; only focus on grammar and syntax. Mark "Yes" if the base sentence with all the
possible completions is grammatically well-formed. Mark "Some do not make sense" if at least one
completion create a grammatically incorrect sentence. Mark "No" if the sentence with all the possible
completions contains grammar errors. 2. How well do the sentence and completions reflect common
knowledge (or reflect strange/anomalous things in the image)?
If the question refers to common knowledge: Judge how typical, reasonable, or widely accepted the
sentence + completion is.
Example: “The sun rises in the east” should score high (5).
Example: “The sun rises in the north” should score low (1).
If the question refers to strange/anomalous things in the image: Judge how accurately the sentence and
completions capture unusual, odd, or unexpected elements visible in the image. Score higher if the
completion clearly reflects what is strange in the image.
Score lower if it ignores or misrepresents the anomaly. Use the 1–5 scale consistently:

1 = Not at all accurate/appropriate
3 = Neutral or partially accurate
5 = Very accurate and appropriate
Please read each question carefully and provide your evaluations with attention.

C MLP Intervention

We also tested whether intervening on MLP blocks could produce effects comparable to those
observed with attention heads. Specifically, we applied interventions to the last three MLP blocks at
the final token position in both LLaVA-NeXT and Gemma3. The results, reported in Figure 7, show
only marginal changes in factual accuracy relative to the baseline. This effect is substantially weaker
than the gains obtained from targeted attention-head interventions (Figure 4).

These findings reinforce two key conclusions. First, MLP interventions are less precise: they modify
the residual stream broadly, affecting a much larger number of parameters and acting indiscriminately
across modalities. This broad influence makes it harder to isolate causal mechanisms and increases
the risk of introducing unintended side effects. Second, the limited efficacy of MLP interventions
indicates that factual–counterfactual conflicts are primarily mediated by attention mechanisms, not
by MLP transformations. This aligns with prior evidence that late-layer MLPs often retrieve factual
associations, whereas attention heads are more directly responsible for integrating conflicting cross-
modal signals.
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Figure 7: Effect of MLP interventions. Factual accuracy when intervening on the last three MLP
blocks at the final token position in LLaVA-NeXT and Gemma3. The observed improvements
are minor compared to targeted attention-head interventions (Figure 4). This suggests that MLP
interventions are less effective and less precise, reinforcing our decision to focus on attention
mechanisms as the main locus of conflict resolution.

For these reasons, our analysis centers on attention interventions, which provide both stronger causal
leverage and more interpretable control over the balance between internal knowledge and visual
input.
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D Experimental Analysis for Gemma-12b
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Figure 8: Factual and counterfactual contributions of MLP and attention blocks in gemma3.
Layer-wise deviation from 50% factual accuracy for attention and MLP blocks, as measured by the
relative logits of tfact and tcofa via Logit Lens. Positive values indicate a bias toward the factual token,
while negative values indicate preference for the counterfactual token. Consistent with trends observed
in LLaVA-NeXT, attention blocks in Gemma3 increasingly support counterfactual predictions in
higher layers, while MLP blocks show stronger alignment with internal factual knowledge.
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Figure 9: Factual and counterfactual contributions of attention heads for gemma3. (Left) Factual
accuracy of individual attention heads in Gemma3, computed using Logit Lens projections of the
final token’s hidden state. Blue indicates heads that more frequently favor the factual token (tfact),
while red indicates those that favor the counterfactual token (tcofa). As in LLaVA-NeXT, highly
polarized heads are concentrated in the upper layers. (Right) Mean attention to image tokens at
the final generation step. Counterfactual heads attend more strongly to image tokens (52%) than
factual heads (25%) or the model-wide average (22%), highlighting the direct role of visual input in
modulating counterfactual predictions.
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Image λ Caption
0 The image is a digital artwork of a young boy with a contemplative

expression. He has short, light brown hair and striking blue eyes. The
boy is wearing a striped shirt with a collar and a patterned tie.

3 The image is a digital artwork of a young child. The child is depicted
with a contemplative expression, looking slightly to the side with a
thoughtful gaze. They are holding a piece of paper or a small object in
their hand, which appears to...

10 Jimmy Wooster spr spr spr spr spr spr spr spr spr spr spr spr spr spr spr
spr spr spr spr spr spr spr spr spr spr spr spr spr spr spr spr spr spr spr
spr spr spr spr spr spr spr spr spr spr spr spr

0 The image is a dramatic and evocative artwork depicting a young girl
standing in the center, holding a flag with the colors of the French
flag—blue, white, and red.

3 The image depicts a young girl standing in the center, holding a small,
tattered flag with the design of the French flag.

10 The image shows a Telephone P p p p p p p p p p p p p p p p p p
Telephone P p p p p p p p p p p p p p p p p p Telephone P p p p

Table 2: Effect of intervention strength on caption generation quality. Examples of captions
generated by LLaVA-NeXT under different intervention strengths (λ = 0, 3, 10). As intervention
magnitude increases, captions begin to diverge from the original output. At moderate levels (|λ| = 3),
outputs remain coherent but show lexical and structural variations. At high levels (|λ| = 10),
generations often degrade into repetitive or nonsensical sequences.
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E Details on the Number of Heads Selected and Control Experiment

Figure 10 reports the control experiment, where the intervention was applied to 100 randomly
selected attention heads. The results show no measurable change in factual accuracy, confirming that
improvements are not due to random head selection but to the specific heads identified in our method.

Figure 11 examines the effect of varying the number of intervened attention heads, with intervention
strength fixed at λ = 3. We observe that factual accuracy increases as the number of heads grows,
reaching its peak at 20 heads. Beyond this point, further interventions do not yield additional gains
and may introduce instability. This demonstrates that intervening on 20 heads provides the best
balance between accuracy improvement and model robustness.
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Figure 10: Intervention on Random Attention Heads. Change in factual accuracy under varying
levels of intervention strength (λ) applied to 100 randomly selected attention heads. The results show
no substantial deviation from baseline, confirming the specificity of the identified target heads.
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Figure 11: Effect of intervening on varying numbers of attention heads. Change in factual
accuracy as a function of the number of attention heads involved in the intervention. Each value
x indicates that x heads are selected from both the factual and counterfactual groups. Intervention
strength is fixed at λ = 3. The results highlight that intervening on 20 heads provides the optimal
trade-off, maximizing factual accuracy without excessively affecting model stability.

F Details on the Intervention Parameter Choice

To ensure plausible interventions, we constrain the scaling parameter to λ ∈ [−3, 3] and monitor the
position of the higher-logit token in the full next-token distribution. For example, using LLaVA-NeXT,
the average rank of the token tfact shifts from 3 at λ = 0 to 31 at λ = 3, indicating that while the
intervention is highly effective, it introduces some deviation in the overall logit distribution, an
expected effect when strongly modulating internal components.

To further support this choice of intervention range, we also prompt the model to generate captions
with and without intervention, and manually inspect the quality of the outputs as we increase the
intervention strength, |λ|. We empirically observe that for |λ| greater than three, the quality of the
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generated captions degrades, and most of the time, they become agrammatical when |λ| > 10 (see
Table 2).

We also attempted to quantify the quality of the generated text after the intervention with a KL-
divergence with the generated text before the intervention (|λ| > 0), which we consider as a reference
for a well-structured sentence. Figure 12 shows the average KL-divergence across all examples in
WHOOPS-AHA! as we increase |λ| in LLaVA-NeXT.

The KL divergence sharply increases for |λ| < 3, and then the growth slows down and stabilizes
around |λ| = 12 for λ < −20 and 18 for λ > 20. When the KL is smaller than 10, for λ between -3
and 3, the output sentences have a similar quality to those generated before intervention.
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Figure 12: KL divergence between generated captions at different intervention Strengths in
LLaVA-NeXT. Symmetric increase in KL divergence around λ = 0, with rapid divergence until
|λ| = 3 and stabilization near |λ| = 10. Higher intervention magnitudes cause substantial shifts in
the generated token distribution, indicating degradation in caption quality.

G Prompts For Dataset Generation

Prompt Used to Generate Dataset Instances.

You are a helpful assistant expert in LLMs research.
Counterfactual Dataset Generation Prompt
Objective: Generate captions for images that highlight a clear contrast between common (factual)
and unusual (counterfactual) scenarios involving the subject depicted. Each caption must include the
subject of the image and end with "___" indicating the blank space where a single-word token is placed.
Definitions: - **Factual token**: A single word that represents typical, expected behavior or attributes
of the main subject shown in the image. - **Counterfactual token**: A single word introducing a
surprising, unexpected, or unusual element related explicitly to the same main subject; it makes sense
only if the image explicitly illustrates this twist.
Context Provided: For each image, you will receive the following textual information: - Selected
Caption: A primary description identifying the main subject clearly. - Crowd Captions: Alternative
descriptions from multiple annotators. - Designer Explanation: Explanation emphasizing the unusual
or counterintuitive aspect involving the subject. - Crowd Explanations: Multiple explanations focusing
on the unusual aspects related directly to the subject of the image.
Task Instructions:
Caption Construction: - Create exactly one neutral sentence (caption) clearly containing the main
subject depicted in the image, but avoiding the description of unusual aspects contained in the image. -
The sentence must end with an intentional blank ("___"). - Critical Requirement: The caption must
compel the model to complete the blank differently based on the context: - **Without the image**:
complete with a factual token (typical scenario involving the subject). - **With the image**: complete
with a counterfactual token (unexpected scenario explicitly depicted). - Important Constraint: Use
neutral language with NO textual hints indicating abnormality. The main subject must explicitly appear
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in the caption to establish context clearly. Only the image content itself should disambiguate the
scenario. - The caption should not contain any unusual or counterintuitive elements; the unusual aspect
should be reflected solely in the image content and in the counterfactual tokens. - Make sure that if you
substitute the blank with a factual or counterfactual token, the sentence is fluent and grammatically
correct.
Explicit Single-Word Token Generation: - Generate exactly **ten single-word factual tokens** repre-
senting common scenarios involving the main subject that could complete in a grammatically correct
way the sentence. - Generate exactly **ten single-word counterfactual tokens** representing surprising
scenarios involving the same subject, justified solely by the provided image, and that could complete
the sentence in a grammatically correct way. - Strictly enforce single-word tokens; no multi-word
phrases or sentences. - Ensure clear differentiation without conceptual overlap between factual and
counterfactual tokens.
JSON Output Format: Provide each caption and tokens following this exact schema:
{ "caption": "Neutral sentence explicitly containing the main subject and ending with an intentional
blank (’___’)", "factual_tokens": ["token1", "token2", "token3", "token4", "token5", ...], "counterfac-
tual_tokens": ["token1", "token2", "token3", "token4", "token5", ...], "context": { "selected_caption":
"Primary description clearly stating the main subject of the image", "crowd_captions": ["Caption
1", "Caption 2", "..."], "designer_explanation": "Explanation highlighting the unusual aspect directly
involving the main subject", "crowd_explanations": ["Explanation 1", "Explanation 2", "..."] } }
Your role is to craft neutral captions explicitly containing the main subject of each image, along with
precisely differentiated factual and counterfactual single-word tokens. The explicit presence of the
main subject in the caption must guide factual versus counterfactual completions, relying solely on the
provided image for disambiguation.

Prompt Used to Generate Factual and Counterfactual Tokens.

You are presented with an image and an incomplete sentence describing its content. The image
intentionally portrays an unusual scenario that contrasts typical or factual knowledge.
Your task is to generate two lists of tokens:
1. Factual Tokens (5 tokens): These tokens should represent words or concepts that accurately and
typically complete the sentence based solely on common knowledge, without considering the unusual
image.
2. Counterfactual Tokens (5 tokens): These tokens should represent words or concepts that correctly
complete the sentence when explicitly considering the unusual content depicted in the image, even if it
contradicts common factual knowledge.
Please format your response clearly as a JSON object as follows:
“‘json { "sentence": "INCOMPLETE_SENTENCE", "factual_tokens": ["token1", "token2", "token3",
"token4", "token5"], "counterfactual_tokens": ["token1", "token2", "token3", "token4", "token5"] } “‘
Choose tokens that clearly differentiate between typical knowledge and the unusual scenario depicted
by the provided image.
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