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Abstract

Vision-language models (VLMs) increasingly leverage diverse knowledge sources
to address complex tasks, often encountering conflicts between their internal para-
metric knowledge and external information. Knowledge conflicts can result in
hallucinations and unreliable responses, but the mechanisms governing such in-
teractions remain unknown. To address this gap, we analyze the mechanisms
that VLMs use to resolve cross-modal conflicts by introducing a dataset of multi-
modal counterfactual queries that deliberately contradict internal commonsense
knowledge. We localize with logit inspection a small set of heads that control the
conflict. Moreover, by modifying these heads, we can steer the model towards its
internal knowledge or the visual inputs. Finally, we show that attention from such
heads pinpoints localized image regions driving visual overrides, outperforming
gradient-based attribution in precision.

1 Introduction

Vision—language models (VLMs) |Alayrac et al.|[2022], |L1 et al, [2022], [Liu et al,| [2023]], Team
[2024], |Deitke et al.| [2024]] have shown remarkable versatility in various multimodal tasks, from
image understanding to image generation. They draw on their ability to combine two key sources of
information: a rich set of world knowledge acquired during pretraining, and contextual cues provided
in the input prompts. However, these two sources can sometimes contradict each other, for example
when the pretraining knowledge becomes outdated [Lazaridou et al.|[2021]], Luu et al.| [2022] or when
prompts include intentionally misleading visual information Liu et al.|[2024d]. Such conflicts often
lead to hallucinations in model responses |Cui et al.|[2023], [Liu et al.| [2024a]],|Guan et al.| [2024], yet
the internal mechanisms responsible for these errors remain poorly understood.

In this work, we analyze how VLMs resolve conflicts between visual input and internal knowledge
by framing the problem through counterfactual image-text pairs. We prompt the VLMs with images
depicting unusual or absurd scenes taken from the WHOOPS! dataset|Guetta et al.|[2023]], followed
by a sentence encouraging a typical knowledge-based continuation. As shown in Fig. [I each input
prompt is associated with a counterfactual pair of completions. For instance, the model may be
shown an image of a wolf howling at the sun, a scene that contradicts commonsense knowledge, and
asked to complete the prompt accordingly (see top-left panel). We construct the dataset such that
VLMs, when prompted with text alone, generate commonsense responses while in the presence of the
image, change their prediction to align with the visual context, even when it contradicts their internal
knowledge. Building on the approach of |Ortu et al.| [2024]], we identify which internal components of
the model contribute the most to factual versus counterfactual predictions. We find that a small subset
of attention heads mediates this competition, and targeted interventions on these heads can reliably
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How Does Counterfactual Visual Context Interact with the Internal Knowledge of VLMs?
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Figure 1: Overview of Our Approach. (Left) We construct prompts that induce a conflict between a
vision-language model’s internal factual knowledge and counterfactual visual context. (Right) We
then analyze which components in the model mediate this tension, identifying attention heads and
visual patches that favor factual or visually grounded predictions.

alter the model’s outputs. We also show that these heads are more effective than gradient-based
methods in identifying the most important parts of an image to resolve multimodal conflicts in VLMs.

In summary, our contributions are as follows:

1. We construct WHOOPS-AHA!, a dataset that combines images containing counterfactual
scene elements and commonsense textual queries, designed to analyze conflicts between
visual context and internal knowledge (Sec. A.1));

2. We identify the attention heads that promote factual and counterfactual responses, ranking
their importance with logit attribution (Sec. fi.2));

3. By reweighting these heads, we show that we can control the tendency of the model to rely
on the visual evidence or its internal knowledge and vice versa (Sec. -3);

4. We demonstrate that direct attention attribution from conflict-resolution heads provides
more accurate identification of counterfactual image regions than traditional gradient-based
attribution methods (Sec. {.4).

2 Related Work

Most prior work on knowledge conflicts has focused on language models and unimodal tasks, leaving
the multimodal domain underexplored [2024]).

The analyses of knowledge conflicts in language models have largely been behavioral, showing that
when resolving conflicts between contextual and internal knowledge, language models can overrely on
their internal knowledge or contextual information, depending on factors such as model size Longpre]
and conflicting external information [Chen et al.| [2022]]. Wang et al| [2024]] found that
even SOTA language models often fail to report inconsistencies between in-context information and
their internal knowledge. Few works have analyzed the internal mechanisms underlying conflict
resolution. 2024] identified two heads that mediate between factual and counterfactual
information, while Jin et al| [2024] showed that pruning specific heads can steer the model’s reliance
toward internal or contextual sources.

In the multimodal domain, studies on VLMs have primarily focused on benchmark construction
and black-box evaluation [[Le et al.,[2023| [Han et al., 2024} [Golovanevsky et al,[2025b| [Guan et al.,
[2024]. For example, Han et al.| introduced a dataset probing contextual knowledge conflicts
introduced by deceptive visual elements in prompts, while [Golovanevsky et al.| [2025b] proposed
NOTICE, using semantically corrupted image pairs to analyze attention heads behavior in LLaVA and
BLIP. Additionally, [2023]] introduced COCO-Counterfactuals, a dataset comprising
minimally-edited counterfactual image pairs, and developed ConflictVis to
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evaluate conflicts between visual input and parametric knowledge. However, both studies limited
their analyses to evaluating model behavior and prompt structures, without investigating the internal
mechanisms by which models resolve such conflicts.

During the final phase of this project (June 2025), we discovered concurrent research by|Golovanevsky
et al.| [2025al], which introduces steering vectors to control model predictions and examines how
varying visual input affects the competition between modalities. Their approach uses pairs of images,
one consistent with the model’s internal knowledge and one modified to introduce a counterfactual
variation, focusing on simple object attributes such as color or size. Our approach differs in that we use
images depicting complex scenes that contradict common sense, combined with captions specifically
designed to generate commonsense responses aligned with the model’s internal knowledge, thereby
generating a conflict.

3 Background and Methods

3.1 Model Architectures

This study investigates how visual input interacts with the model’s internal knowledge during text
generation in VLMs. Given a sequence of k image-text tokens, a VLM encodes the image using a
vision encoder and the text using an embedding matrix, producing the residual stream x € R4**,
where d is the hidden dimension of the model. The residual stream is processed through L layers,
each composed of an attention block a’ and an MLP block m'. After the final layer, it is projected to

the vocabulary space via an unembedding matrix Wy, € R4*IV1,

We focus on two models: LLaVA-NeXT-7b [Liu et al., [2024b]] and Gemma3-12b [Kamath et al.,
2025]]. LLaVA-NeXT has 32 layers with 32 attention heads per layer, while Gemma3 has 48 layers
with 16 attention heads per layer. Both models use a visual encoder to process image features, but
generate only textual output.

3.2 Dataset Construction

To study how VLMs resolve conflicts between visual context and internal parametric knowledge,
we introduce WHOOPS-AHA!, a dataset specifically designed to support mechanistic analysis of
multimodal knowledge conflicts. To the best of our knowledge, this is the first dataset explicitly
created for conducting mechanistic investigations in this context. Each instance in WHOOPS-AHA!
is constructed to provoke a targeted semantic contradiction between these two sources of information

WHOOPS-AHA! builds on the WHOOPS! collection [Guetta et al., 2023]], which features 500 visually
implausible, semantically rich scenes annotated with textual descriptions and explanations of their
underlying anomalies Each example in WHOOPS-AHA! consists of (i) a counterfactual image, (ii)
a sentence referring to the image, and (iii) two sets of plausible continuations: (Sgact) reflecting
common sense knowledge, and (S¢ot,) consistent with the counterfactual scene represented in the
image. For each image in WHOOPS!, we use GPT-40 to generate a sentence that references the
anomaly, while remaining consistent with commonsense (factual) completion without visual input.
GPT-4o0 is also prompted to produce a set of plausible factual tokens St,cy and visually-grounded
counterfactual continuations S..f,. For instance, for the case of an image representing a wolf howling
at the sun (see Fig. [T), the sentence proposed by GPT-40is "The wolf is howling at the",
Stact = {"moon", "night", ...} Scota ={"sun", "daylight","morning",..}. Al
generated content is manually verified to ensure a clear distinction between factual and counterfactual
continuations. Full prompt details are provided in appendix [F}

3.3 Analytical Tools

Logit Inspection To identify the internal components of VLMs responsible for the competition
between inner knowledge and conflicting visual context, we trace the evolution of token logits across
the model’s architecture. Specifically, we apply the Logit Lens technique [Nostalgebraist, [2020],
which projects intermediate hidden representations into the vocabulary space. This approach has
been used in previous work to analyze token-level information flow [Nanda et al., 2023, Halawi et al.|
2023 [Yu et al.| [2023| |Ortu et al.l 2024]] in LLMs. In our setting, we apply the Logit Lens to the last
token of the prompt and extract the logits corresponding to the tokens in St,ct and Seof, at various
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layers and components of the model to identify the components that contribute to the promotion of
one mechanism over the other.

Targeted Intervention on Attention Heads To test the causal role of specific attention heads in
promoting predictions aligned with either factual inner knowledge or counterfactual visual context, we
intervene directly on their attention patterns during inference. We define two groups of heads based
on Logit Inspection: factual heads (Hg,ct), which favor predictions based on inner knowledge, and
counterfactual heads (Hcofa), Which favor visually grounded alternatives. We apply a multiplicative
intervention to their attention weights at the final token position (i.e., the last row of the attention
matrix), after the softmax operation. Let Al = [Aﬁimmg, Aﬁimxt] denote the last row of the
attention weights for head h at layer [, divided between image and text tokens. The intervention is
defined as

Aliimg & (L) - Al g ()
if (h,1) € Heofa, and
hl
Aﬁllst,text A (1 - )‘) : Al(ast,)text @

if (h, l) € Hact-

This targeted and bidirectional intervention alters the flow of information in a controlled way, allowing
us to test whether modulating the influence of these heads changes the model predictions toward the
factual or counterfactual outcome.

Identification of Conflict-Inducing Visual Tokens To isolate the visual tokens responsible for
introducing counterfactual information that conflicts with the inner knowledge of the model, we apply
two methods. Both are based on a threshold parameter 7 € [0, 1], which controls the sensitivity of
token selection.

1. Most-Attended Visual Tokens: Given a set of attention heads, we select the visual tokens
that receive at least 7 times the maximum attention weight within each head. We then take
the union of these tokens across all heads.

2. Gradient-Based Token Importance: We compute the gradient of the logit associated with
a target token (e.g., from St,ct Or Scota) With respect to the input visual token embeddings.
Visual tokens whose gradient magnitudes exceed 7 times the maximum are selected as
influential.

By varying 7, we control how many image patches are selected—from none when 7 is 1, to all when
7 is 0. This allows us to ablate different image portions and analyze how they affect the model
predictions.

4 Results

4.1 Inducing the Conflict between Inner Knowledge and Visual Context

To systematically induce competition between visual input and internal knowledge, we construct
the WHOOPS-AHA! dataset as described in Sec. [3.2] Each example of WHOOPS-AHA! includes a
counterfactual image, a sentence describing the image, and two sets of plausible next-word candidates
proposed by GPT-40: St,.t, consistent with commonsense knowledge, and S, aligned with the
counterfactual visual context. We identify ¢¢,.t as the token in S,y With the highest probability using
only the textual part of the prompt. We consider only the first token if a candidate word is tokenized
into multiple tokens. Then, using the full multimodal input (image and text), we select t.¢, as the
token with the highest probability from S..¢,. For example, when prompted with the sentence " The
wolf is howling at the",LLaVA-NeXT and Gemma3 predict the factual token moon with
probabilities of 78% and 100%, respectively. However, when the corresponding image is included,
both models shift to the counterfactual token sun, with probabilities of 26% (LLaVA-NeXT) and 44%
(Gemma3), while the probability of moon drops to 17% and 0.02%. We filter out ambiguous cases
in which S¢, contains tokens with a probability higher than S, in the text-only setup, keeping
436 examples for LLaVA-NeXT and 432 for Gemma3. In the following sections, we always prompt
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Figure 2: Factual Prevalence in Attention and MLP Blocks. The plot shows the factual prevalence
of attention and MLP blocks in LLaVA-NeXT across layers, indicating whether each component
promotes predictions aligned with factual knowledge or counterfactual visual context. Positive values
correspond to blocks favoring the factual (commonsense) continuation. Negative values indicate
preference for the counterfactual continuation induced by the image. The results reveal a functional
distinction: attention blocks tend to support counterfactual information (left), whereas MLP blocks
frequently promote the model’s internal knowledge (right).

the model with image and text using tf,ct and t.of, to assess whether different model components
promote internal knowledge or contextual information. Notably, introducing the image reduces the
preference of the model for the commonsense token: the prediction of the factual token ¢, drops
to 27% for LLaVA-NeXT and 24% for Gemma3. This setup ensures that the image introduces a
counterfactual signal that conflicts with the model’s inner knowledge, allowing us to analyze how
visual input alters the model’s prediction compared to its default behavior based on factual knowledge
alone.

4.2 The Tension Between Inner Knowledge and Visual Context is Localized

Building on the controlled knowledge conflict induced by WHOOPS-AHA!, we study how the
competition between factual and counterfactual continuations is resolved internally and which
components mediate it. To do this, we use the Logit Lens technique to analyze the hidden state
at the final token position of the prompt, after each attention block and MLP, projecting it into the
vocabulary space (see Sec. [3.3). We then compute, across the dataset, how often the logit of the
factual token ¢, is larger than that of the counterfactual token ¢..¢,. This gives an accuracy score for
each component that reflects whether it tends to promote the factual or counterfactual mechanism. To
measure the strength of this tendency, we compute the factual preference strength, which is defined
as the difference between the fraction of examples for which tg,ct > tcofa and 0.5, the random
baseline. A value near zero indicates no consistent tendency to favor factual versus contextual
information across the dataset, while higher values reflect stronger, more polarized behavior. This
method allows us to localize the components that modulate the interaction between visual inputs and
internal knowledge.

Functional Separation Between Attention and MLP Layers. We first compare the contributions
of attention and MLP blocks to the prediction of g, and teofa. Figure [2] shows the results for
LLaVA-NeXT (see appendix [C] for similar results on Gemma3). Attention blocks exhibit a stronger
tendency to favor the counterfactual visual context, whereas MLP blocks are more aligned with the
internal factual knowledge. In particular, the influence of attention blocks increases from the middle
layers (around layer 15), peaking in the final four layers. MLP blocks similarly show their strongest
alignment to factual knowledge in the upper layers, with a peak at the final layer. This pattern is
consistent with previous findings on the role of upper-layer MLPs in retrieving factual knowledge
[Geva et al.| |2021] Meng et al., 2022} Dai et al., 2022].

Localization of the Modality Conflict to Individual Attention Heads. We next examine the role
of individual attention heads. Figure 3}left shows the tendency for each attention head to promote
or suppress the factual token in LlaVa-NeXT (see Appendix, Fig. [§ for Gemma3). The distribution
shows that only a small subset of heads exhibit a strong, consistent alignment with ¢act OF Leofa.
Moreover, consistently with the results at the block level, these factual and counterfactual heads are
concentrated in the final layers of the model, indicating that the conflict between inner knowledge
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Figure 3: Contribution of Attention Heads to Factual and Counterfactual Predictions. (Left)
Factual accuracy of individual attention heads in LLaVA-NeXT, based on Logit Lens projections at
the final token position. Blue indicates heads that tend to favor the factual token (reflecting inner
knowledge), while red indicates heads that favor the counterfactual token (introduced by the visual
context). (Right) Mean attention to image tokens at the final generation step for heads in each group.
Each group contains 20 attention heads. Counterfactual heads attend significantly more to the image
(60%) than factual heads (28%) or the model-wide average (22%), indicating that visual information
is directly propagated to the output and plays a key role in counterfactual predictions.

and visual context is resolved late in the forward pass. In the analyses of the next sections, we focus
on the 20 heads that promote the factual and counterfactual tokens more strongly. We specifically
choose 20 heads because this represents the optimal balance between effectiveness and stability
of intervention. Indeed, the incremental improvement in factual accuracy begins to diminish after
this point (see Appendix, Fig. [I0). On average, the factual heads favor the tg.; 85% of the time,
and the counterfactual ones .., 15% of the time, indicating strong alignment with their respective
information sources.

Factual and Counterfactual Heads Exhibit Distinct Visual Attention Patterns. We then investi-
gate whether heads associated with the factual mechanism or the counterfactual visual context exhibit
distinct attention patterns — specifically, whether they attend to different token modalities (image or
text). Since the counterfactual information is introduced through the image, a natural hypothesis
is that counterfactual heads attend more strongly to visual tokens, while factual heads rely more
on textual content. To test this hypothesis, for each group of heads, we sum the attention weights
assigned to visual tokens in the last row of each head and average across the dataset. Figure 3}right
reports the average amount of attention to the image for the two groups of heads. Heads favoring the
counterfactual token #.¢, attend to image tokens significantly more (61%) than those aligned with
inner knowledge (29%) or the model-wide average (22%).

Although the counterfactual signal originates in the image, it is not a priori clear that this information
is transmitted directly to the final token. The model could, in principle, diffuse or encode this signal
in different positions across intermediate layers. However, the observed attention patterns suggest
that the visual context influences the output token directlyin late layers of the model, with limited
intermediate processing. These findings are consistent for Gemma3, and we report the analysis in

appendix [C]

4.3 Targeted Intervention on Selected Attention Heads Causally Shifts Model Behavior

Having identified attention heads aligned with either factual knowledge or counterfactual visual
context, we next examine whether these components play a causal role in shaping model predic-
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tions. To this end, we apply the targeted intervention strategy introduced in section [3.3] modi-
fying the attention weights to steer the output of the model towards one mechanism or the other.

Guided by our earlier observation that counter-
factual heads attend more to visual tokens, we
design a bidirectional intervention that selec-
tively adjusts attention values based on head
type and token modality. For counterfactual
heads, we modify their attention to image to-
kens; for factual heads, we target their attention
to text tokens. In both cases, we apply a multi- o ===

plicative adjustment at the final token position.

Each intervention simultaneously enhances the - g 2
attention of one group to its relevant modality
while suppressing the other group’s attention, for
instance increasing the attention to image tokens
for counterfactual heads while reducing atten-
tion to text tokens for factual heads, and vice
versa. This approach enables us to modulate the
relative influence of factual and counterfactual
mechanisms on the model prediction.
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Figure 4: Intervention on Target Attention
Heads. Change in factual accuracy under different
levels of intervention strength (\). For A < 0, we
boost the counterfactual heads (on image tokens)
and weaken the factual heads (on text tokens); for
A > 0, we do the opposite. The intervention is
Figure [] shows the results of our intervention applied at the final token position, modifying only
for LLaVA-NeXT (orange profile) and Gemma3 the relevant attention values in the last row.
(green profile). For LLaVA-NeXT, the baseline

accuracy, defined as the proportion of examples

in which the factual token ¢, receives a logit higher than the counterfactual token fcqf,, 1S 22%.
When we increase attention from factual heads and decrease it from counterfactual heads, the
factual accuracy increases to 74%, indicating a strong shift towards predictions of inner knowledge.
Conversely, reversing the intervention reduces the accuracy to 16%, confirming that these heads
causally influence whether the model favors factual or counterfactual content. A similar trend can
be observed for Gemma3, with an even stronger relative effect driven by its lower baseline factual
accuracy of 18% and a peak of 83%.

To ensure plausible interventions, we constrain the scaling parameter to A € [—3, 3] and monitor the
position of the higher-logit token in the full next-token distribution. For example, using LLaVA-NeXT,
the average rank of the token ¢, shifts from 3 at A = 0 to 31 at A = 3, indicating that while the
intervention is highly effective, it introduces some deviation in the overall logit distribution, an
expected effect when strongly modulating internal components. To support this choice of intervention
range, we also assess its impact on generation quality; the full results, based on KL divergence
between generated outputs, are reported in Appendix [E]

As a control experiment to isolate the effect of targeted interventions, we randomly select 100
attention heads and apply the same intervention for varying A values. This manipulation does not
produce a substantial deviation from the baseline, confirming that the observed effects are specific to
the heads identified as aligned with factual or counterfactual mechanisms. The complete results for
the control experiment are reported in Appendix Fig. [0]

4.4 Counterfactual Predictions Depend on Localized Image Regions

In the previous sections, we analyzed the conflict between contextual information and internal
knowledge using WHOOPS-AHA! prompts, which induce a competition between counterfactual
visual cues and factual model knowledge. This analysis revealed that specific attention heads at
the final token position mediate this conflict, with heads aligned with the visual context attending
strongly to image tokens and thereby injecting visually grounded information into the generation
process. However, two key questions remain open. (i) Is the counterfactual visual signal localized
to specific image regions or spread across the input? (ii) Is the visual signal passed directly to the
last token position, or is it mediated by successive layers and tokens before reaching the output
in the upper layers? To address these questions, we perform two complementary analyses: (i) we
identify the image patches most responsible for driving counterfactual predictions using attention
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Figure 5: Ablation of Relevant Pixels. The plot shows the effect of ablating different percentages of
image pixels in LLaVA-NeXT. The green line corresponds to pixels selected based on the highest
attention from counterfactual heads, while the orange line corresponds to pixels with the highest
gradient magnitude with respect to the counterfactual token. The gray line shows a random baseline
where pixels are removed uniformly at random.

The British guards are known
for their distinctive
bearskin hats which
are typically

The surgeon with careful
precision cuts the

black rainbow tissue fruit

Figure 6: Qualitative Examples of Visual Regions Driving Counterfactual Predictions. High-
lighted image regions correspond to visual patches identified as most responsible for counterfactual
predictions using attention-based attribution. In both examples, the model generates a visually
grounded but factually incorrect token (e.g., rainbow, fruit) instead of the commonsense alternative
(black, tissue). The highlighted areas align with semantically meaningful and visually anomalous
content, demonstrating that counterfactual outputs are grounded in localized, interpretable image
features.

and gradient-based attribution methods, as described in section@; and (ii) we ablate the identified
patches by setting the corresponding visual token embeddings to zero at the input of the transformer,
and measure the resulting change in inner knowledge accuracy. In addition to the quantitative analysis,
we inspect the selected image patches to assess whether they correspond to intuitive counterfactual
regions or visually salient objects contradicting the model’s internal knowledge. To test the specificity
of our findings, we also perform a control experiment in which we randomly sample an equivalent
number of image patches for ablation. This allows us to assess whether the identified regions are
uniquely responsible for triggering counterfactual predictions or whether any removal of visual input
affects the model’s behavior.

Quantitative Analysis of Patch Attribution and Ablation The results of the experiments are
shown in Figure[5] We observe that the ablation of visual patches identified through attention-based
attribution leads to a sharp and consistent increase in factual accuracy as more pixels are removed
(green profiles). For instance, in the case of LLaVA-NeXT, factual accuracy improves markedly with
the ablation of just 10-30% of the top-ranked patches and eventually plateaus around 80%. This
suggests that counterfactual predictions are primarily driven by a small, localized subset of visually
salient regions. Gradient-based attribution (shown in red) also yields a substantial increase in factual
accuracy, though the effect is less pronounced and saturates earlier, suggesting lower precision in
identifying counterfactual-driving regions. In contrast, ablating an equivalent number of randomly
selected patches results in only minor fluctuations in accuracy, never approaching the improvements
achieved through targeted attribution. These findings confirm the causal role of the identified regions
and support the hypothesis that counterfactual signals are spatially localized and semantically specific.
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Qualitative Analysis of Visual Attribution To assess the semantic coherence of the identified
visual regions, we qualitatively examine examples where attribution methods highlight specific
patches as responsible for counterfactual predictions (see Fig. [] In many cases, these regions
correspond to intuitive scenes that directly contradict commonsense knowledge, such as unusual
objects, implausible substitutions, or visual features that override typical textual expectations. For
instance, when the model predicts “rainbow” instead of “black” for a bearskin hat, the highlighted
patches focus on the hat’s unrealistic coloring (Fig. [e}top). Similarly, when “fruit” replaces “tissue” in
a surgical scene, the attention centers on the bright, unexpected presence of oranges on the operating
table (Fig. @-bottom). These observations confirm that the model’s counterfactual outputs are not
arbitrary but grounded in semantically meaningful and localized image features.

5 Discussion

Our work explores how VLMs internally handle conflicts between visual input and internal factual
knowledge, building upon earlier studies of similar phenomena. Specifically, we extend the inter-
pretability framework of |Ortu et al.| [2024]], originally developed for textual language models, into the
multimodal domain. Recent related studies, such as|Liu et al.|[2024c]] and|[Han et al.|[2024], have
constructed diagnostic benchmarks to measure model susceptibility to conflicting visual and textual
cues; however, these works primarily focus on evaluating model outputs without deeply analyzing
internal conflict-resolution mechanisms. Likewise, datasets such as HallusionBench [[Guan et al.|
2024 and PhD [Liu et al.| [2025]] differ significantly from our dataset in their goals and methodologies:
HallusionBench utilizes carefully controlled image-question pairs to systematically induce halluci-
nations, while PhD employs extensive synthetic generation to broadly cover diverse hallucination
patterns. In contrast, our WHOOPS-AHA! dataset is specifically designed to elicit clear, controlled
knowledge conflicts by pairing visually anomalous scenes with commonsense textual prompts, delib-
erately provoking model-internal tensions rather than broadly diagnosing hallucinations. Thus, while
all these datasets address related multimodal conflicts, our approach uniquely emphasizes controlled,
interpretable conflict scenarios to facilitate detailed mechanistic analysis. Methodologically, our
focus on mechanistic interpretability shares conceptual similarities with recent approaches such
as |Golovanevsky et al.| [2025b]]. However, while Golovanevsky et al|[2025b| introduce a novel
method to identify attention heads with broad functional roles across tasks in VLMs, they do not
examine how models resolve conflicts between visual input and internal knowledge. In contrast, we
directly localize this competition to a small set of attention heads and demonstrate their causal role
through targeted interventions that shift model predictions. Unlike general hallucination mitigation
strategies proposed by |Liu et al.|[2024a] and |[Leng et al.| [2023]], which typically apply training
or decoding methods at scale, our method emphasizes precise localization of conflict triggers and
inference-time interventions. Although our analysis is not a ready-to-deploy solution, it offers a
foundational mechanistic understanding crucial for developing targeted, interpretable interventions in
multimodal models.

6 Conclusion

In this work, we investigated how counterfactual visual inputs interact with the internal knowledge
representations of VLMs during generation. To this end, we introduced WHOOPS-AHA!, a dataset
that pairs visually anomalous scenes with textual prompts designed to elicit either a commonsense
(factual) continuation or one grounded in the visual counterfactual. This setup enables fine-grained
analysis of how conflicting visual and textual cues influence model behavior. We showed that a small
set of attention heads mediate this competition. These heads also exhibit distinct modality preferences
and play a causal role in determining the model’s output. By intervening on their attention weights,
we were able to shift predictions in a controlled way, favoring either the internal knowledge or the
visual context. Finally, we demonstrated that these heads provide accurate attribution of the visual
regions responsible for counterfactual completions, outperforming standard gradient-based attribution
techniques. These findings contribute to a deeper mechanistic understanding of multimodal reasoning
in VLMs and offer a foundation for developing more interpretable and controllable systems under
conflicting input conditions.
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A Reproducibility

We run the experiments on one NVIDIA H100 GPU, and two GPUs for the gradient-based attribution
tests. We use the HuggingFace Transformers library [Wolf et al.,[2020]] with public implementations
of LLaVA-NeXT and Gemma3. The total compute time is 15 GPU hours. The WHOOPS! dataset
was released with a CC-By 4.0 license.

B Limitations

The analysis relies on the Logit Lens technique to project intermediate hidden states into token
logits. Although this method has been widely adopted for interpretability, it is known to introduce
distortions due to projection from non-final residual states [Belrose et al., [2023]], and should be
interpreted as an approximate diagnostic rather than a precise decoding proxy. In our setting, we
use a representative factual and counterfactual token per example to enable controlled comparisons.
Although this simplifies the generative landscape of the model, it offers a practical and interpretable
probe of the underlying mechanisms. Future work could explore more model behavior across full
generations to complement this approach. Our attribution and intervention methods focus on attention
heads and target the final token position. This design isolates interpretable causal signals while
remaining tractable, though it does not capture the possible contributions of other components, such
as MLP layers or visual encoders. Extending this framework to broader architectural elements
is a promising direction. Finally, the WHOOPS-AHA! dataset is constructed from synthetic and
curated inputs, which allow precise manipulation of visual-textual conflict. Although this setting
facilitates analysis, future extensions to more naturalistic data could further validate the findings in
less constrained contexts.

C Experimental Analysis for Gemma-12b
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Figure 7: Factual and Counterfactual Contributions of MLP and Attention Blocks in Gemma3.
Layer-wise deviation from 50% factual accuracy for attention and MLP blocks, as measured by the
relative logits of ¢, and t.of, via Logit Lens. Positive values indicate a bias toward the factual token,
while negative values indicate preference for the counterfactual token. Consistent with trends observed
in LLaVA-NeXT, attention blocks in Gemma3 increasingly support counterfactual predictions in
higher layers, while MLP blocks show stronger alignment with internal factual knowledge.
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Figure 8: Factual and Counterfactual Contributions of Attention Heads for Gemma3. (Left)
Factual accuracy of individual attention heads in Gemma3, computed using Logit Lens projections
of the final token’s hidden state. Blue indicates heads that more frequently favor the factual token
(tfact), While red indicates those that favor the counterfactual token (fcof,). As in LLaVA-NeXT,
highly polarized heads are concentrated in the upper layers. (Right) Mean attention to image tokens
at the final generation step. Counterfactual heads attend more strongly to image tokens (52%) than
factual heads (25%) or the model-wide average (22%), highlighting the direct role of visual input in
modulating counterfactual predictions.

Image A Caption

0 The image is a digital artwork of a young boy with a contemplative
expression. He has short, light brown hair and striking blue eyes. The
boy is wearing a striped shirt with a collar and a patterned tie.

3 The image is a digital artwork of a young child. The child is depicted
with a contemplative expression, looking slightly to the side with a
thoughtful gaze. They are holding a piece of paper or a small object in
their hand, which appears to...

10 Jimmy Wooster spr Spr Spr Spr Spr Spr Spr Spr Spr Spr Spr Spr Spr spr spr
SPI SPI SPI SPI' SPI' SPI' SPI' SPI SPr SPr SPr SPr Spr Spr Spr Spr Spr spr spr
SPr SPI SPI SPI SPI' SPI SPI' SPI' SPI SPI SPr SPr

0 The image is a dramatic and evocative artwork depicting a young girl
standing in the center, holding a flag with the colors of the French
flag—>blue, white, and red.

3 The image depicts a young girl standing in the center, holding a small,
tattered flag with the design of the French flag.

10 The image shows a Telephone PpppppPPPPPPPPPP PP
Telephone Pppppppppppppppppp Telephone Pppp

Table 1: Effect of Intervention Strength on Caption Generation Quality. Examples of captions
generated by LLaVA-NeXT under different intervention strengths (A = 0, 3, 10). As intervention
magnitude increases, captions begin to diverge from the original output. At moderate levels (|A| = 3),
outputs remain coherent but show lexical and structural variations. At high levels (|A| = 10),
generations often degrade into repetitive or nonsensical sequences.
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D Additional Results
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Figure 9: Control Experiment: Intervention on Random Attention Heads. Change in factual
accuracy under varying levels of intervention strength () applied to 100 randomly selected attention
heads. The results show no substantial deviation from baseline, confirming the specificity of the
identified target heads.
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Figure 10: Effect of Intervening on Varying Numbers of Attention Heads. Change in factual
accuracy as a function of the number of attention heads involved in the intervention. Each value
x indicates that « heads are selected from both the factual and counterfactual groups. Intervention
strength is fixed at A\ = 3. The results highlight that intervening on 20 heads provides the optimal
trade-off, maximizing factual accuracy without excessively affecting model stability.

E Impact of Intervention on Text Generation

To quantify the impact of our intervention on text generation quality, we prompt the model to generate
captions with and without intervention, and manually inspect the quality of the outputs as we increase
the intervention strength, |A|. We empirically observe that for || greater than three, the quality of the
generated captions degrades, and most of the time, they become agrammatical when |A| > 10 (see
Table [T).

We also attempted to quantify the quality of the generated text after the intervention with a KL-
divergence with the generated text before the intervention (| A| > 0), which we consider as a reference
for a well-structured sentence. Figure [TT|shows the average KL-divergence across all examples in
WHOOPS—-AHA! as we increase |A| in LLaVA-NeXT.

The KL divergence sharply increases for |A| < 3, and then the growth slows down and stabilizes
around |A| = 12 for A < —20 and 18 for A > 20. When the KL is smaller than 10, for A between -3
and 3, the output sentences have a similar quality to those generated before intervention.

16



[
ol

KL Divergence
=
o

o

Figure 11: KL Divergence Between Generated Captions at Different Intervention Strengths
in LLaVA-NeXT. Symmetric increase in KL divergence around \ = 0, with rapid divergence until
|A| = 3 and stabilization near |A| = 10. Higher intervention magnitudes cause substantial shifts in
the generated token distribution, indicating degradation in caption quality.

ss0o F  Prompts For Dataset Generation

Prompt Used to Generate Dataset Instances.

You are a helpful assistant expert in LLMs research.

Counterfactual Dataset Generation Prompt

Objective: Generate captions for images that highlight a clear contrast between common (factual)
and unusual (counterfactual) scenarios involving the subject depicted. Each caption must include the
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subject of the image and end with "___" indicating the blank space where a single-word token is placed.
Definitions: - **Factual token**: A single word that represents typical, expected behavior or attributes
of the main subject shown in the image. - **Counterfactual token**: A single word introducing a
surprising, unexpected, or unusual element related explicitly to the same main subject; it makes sense
only if the image explicitly illustrates this twist.

Context Provided: For each image, you will receive the following textual information: - Selected
Caption: A primary description identifying the main subject clearly. - Crowd Captions: Alternative
descriptions from multiple annotators. - Designer Explanation: Explanation emphasizing the unusual
or counterintuitive aspect involving the subject. - Crowd Explanations: Multiple explanations focusing
on the unusual aspects related directly to the subject of the image.

Task Instructions:

Caption Construction: - Create exactly one neutral sentence (caption) clearly containing the main
subject depicted in the image, but avoiding the description of unusual aspects contained in the image. -
The sentence must end with an intentional blank ("___"). - Critical Requirement: The caption must
compel the model to complete the blank differently based on the context: - **Without the image**:
complete with a factual token (typical scenario involving the subject). - **With the image**: complete
with a counterfactual token (unexpected scenario explicitly depicted). - Important Constraint: Use
neutral language with NO textual hints indicating abnormality. The main subject must explicitly appear
in the caption to establish context clearly. Only the image content itself should disambiguate the
scenario. - The caption should not contain any unusual or counterintuitive elements; the unusual aspect
should be reflected solely in the image content and in the counterfactual tokens. - Make sure that if you
substitute the blank with a factual or counterfactual token, the sentence is fluent and grammatically
correct.

Explicit Single-Word Token Generation: - Generate exactly **ten single-word factual tokens** repre-
senting common scenarios involving the main subject that could complete in a grammatically correct
way the sentence. - Generate exactly **ten single-word counterfactual tokens** representing surprising
scenarios involving the same subject, justified solely by the provided image, and that could complete
the sentence in a grammatically correct way. - Strictly enforce single-word tokens; no multi-word
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phrases or sentences. - Ensure clear differentiation without conceptual overlap between factual and
counterfactual tokens.

JSON Output Format: Provide each caption and tokens following this exact schema:

{ "caption": "Neutral sentence explicitly containing the main subject and ending with an intentional
blank (’___’)", "factual_tokens": ["tokenl", "token2", "token3", "tokend", "token5", ...], "counterfac-
tual_tokens": ["tokenl", "token2", "token3", "token4", "tokenS", ...], "context": { "selected_caption":
"Primary description clearly stating the main subject of the image", "crowd_captions": ["Caption
1", "Caption 2", "..."], "designer_explanation": "Explanation highlighting the unusual aspect directly
involving the main subject", "crowd_explanations": ["Explanation 1", "Explanation 2", "..."] } }
Your role is to craft neutral captions explicitly containing the main subject of each image, along with
precisely differentiated factual and counterfactual single-word tokens. The explicit presence of the
main subject in the caption must guide factual versus counterfactual completions, relying solely on the

provided image for disambiguation.

Prompt Used to Generate Factual and Counterfactual Tokens.

You are presented with an image and an incomplete sentence describing its content. The image
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intentionally portrays an unusual scenario that contrasts typical or factual knowledge.

Your task is to generate two lists of tokens:

1. Factual Tokens (5 tokens): These tokens should represent words or concepts that accurately and
typically complete the sentence based solely on common knowledge, without considering the unusual
image.

2. Counterfactual Tokens (5 tokens): These tokens should represent words or concepts that correctly
complete the sentence when explicitly considering the unusual content depicted in the image, even if it
contradicts common factual knowledge.

Please format your response clearly as a JSON object as follows:

“‘json { "sentence": "INCOMPLETE_SENTENCE", "factual_tokens": ["tokenl", "token2", "token3",
"token4", "token5"], "counterfactual_tokens": ["tokenl", "token2", "token3", "token4", "token5"] } *“
Choose tokens that clearly differentiate between typical knowledge and the unusual scenario depicted
by the provided image.
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