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ABSTRACT

Additive Gaussian Processes (AGPs) have emerged as an extension of Gaussian
Processes (GPs), offering a more interpretable and flexible approach by decom-
posing the target function into sums of multiple GPs, each influenced by different
subsets of features. Despite their enhanced, expressive structure, AGPs struggle
to provide local explanations and offer only global feature importance with no-
table shortcomings. To bridge this gap, this paper introduces an interpretative
framework for AGPs that utilizes Shapley values to provide both local and global
explanations of feature importance. For local explanation, we use the relationship
between the AGP and the Shapley value and guarantee the additivity of the expla-
nation. We then develop a dynamic programming algorithm for efficient compu-
tation of exact Shapley values, whose complexity scales polynomially rather than
exponentially with the number of features. In addition, we use a variance-based
sensitivity approach for the global explanation and develop an efficient dynamic
programming-based algorithm to compute the exact Shapley value as the global
feature importance. We present the effectiveness of the proposed methods on sev-
eral real experiments and discuss their potential in interpretable machine learning,
feature selection, and global sensitivity analysis.

1 INTRODUCTION

Gaussian processes (GPs) are powerful nonparametric models widely used in machine learning for
tasks like regression and classification (Rasmussen & Williams, 2006). They excel at capturing
complex relationships between input features and the output, but their interpretability can be chal-
lenging due to their reliance on a single, global kernel function. Additive Gaussian Processes (AGPs)
extend the GP framework by modeling the target function as a sum of multiple GPs, each represent-
ing the effect of a subset of features (Duvenaud et al., 2011). This additive structure enhances the
model’s ability to capture complex, higher-order interactions among features and is more effective
over standard GPs in terms of flexibility and interpretability. Further, an orthogonalization tech-
nique into AGP is introduced to ensure independence among additive components, thus improving
further interpretability (Lu et al., 2022). The orthogonalization leverages the functional ANOVA
decomposition (Hooker, 2004), which separates a function into additive components representing
the influence of any subsets of features, thus enhancing the clarity of feature importance.

From an interpretability perspective, AGPs provide substantial advantages. Duvenaud et al. (2011)
used the scaling factor of interaction orders to quantify the importance of interaction order features,
providing an understanding of how different features interact globally within the model. This is,
however, shown to be unidentifiable (Lu et al., 2022), and a first-order Sobol index (Sobol, 2001)
is calculated for the global feature importance, which measures the contribution of each feature to
the overall model variance (Lu et al., 2022). Nonetheless, the first-order Sobol index fails to sum up
the total variance and tends to underestimate the total contribution of a feature to the variance when
there are interactions between features (as in AGP) (Owen, 2014; Song et al., 2016). Besides, the
interpretation is still limited to a global context and does not provide insights into the predictions of
individual instances.

To address these shortcomings, this paper explores an approach to interpretability in AGPs using
Shapley values (Shapley, 1953). In particular, the contributions of this paper are two-fold. First,
we propose a framework that leverages the connection between AGPs and the Shapley value, and
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guarantees additive feature attribution. We then put forward an efficient dynamic programming
algorithm to compute the exact Shapley values for local explanations, providing insight into how
individual data points predictions are affected by each feature. Second, we use the variance-based
global sensitivity analysis concepts and formulate the global feature importance by the Shapley
value. Accordingly, we put forward another efficient dynamic programming algorithm to compute
the exact Shapley value for the global explanation. The proposed algorithms address the shortcom-
ings in quantifying the interpretation in AGPs and has applications in feature selection, explanation,
and global sensitivity analysis.

2 BACKGROUND

Notation. In this paper, we denote the set of d features as D, and represent its power set, which en-
compasses all subsets of D, by 2D. The training set containing n samples is denoted by {xxxi, yi}ni=1,
where xxxi ∈ Rd and y ∈ R. The set of all data points xxxi’s is denoted by X ∈ Rn×d, XS refers to the
training set with only features in S, XS refers to the sample space of feature subset S, ∀S ∈ 2D, and
p(xi) refers to the density of feature xi. We use capital letters for sets (except for X), the vectors
are denoted by bold-faced lower-cased letters like xxx, and xxxS refers to only the features of xxx that is in
S. We also show the element-wise product by ⊙, and the mathematical expectation operator by E.

2.1 ADDITIVE GAUSSIAN PROCESSES (AGPS)

We focus on modeling the output y as a function of d-dimensional input features xxx using a hidden
function f(xxx). Duvenaud et al. (2011) introduced a GP model with an additive structure defined as:

f(x) =
∑
S⊆D

fS(xxx), (1)

where fS(xxx) is a function over only the feature subset S. In this framework, the additive decompo-
sition of the function is achieved by structuring the kernel accordingly. In particular, each dimension
i is assigned a one-dimensional base kernel ki(xxx,xxx′) (which only operates on the i-th element of xxx
and xxx′), and the q-th order additive kernels are then constructed as follows (Duvenaud et al., 2011):

kaddq (xxx,xxx
′) = σ2

q

∑
1≤i1≤i2≤···≤id≤d

[
q⊙

l=1

kil(xxx,xxx
′)

]
, (2)

where σ2
q is the variance assigned to all interactions of order q. The overall kernel K used in

AGP is constructed by summing these additive kernels up to the dimensionality of the data, i.e.,
kadd(xxx,xxx′) =

∑d
q=0 k

addq (xxx,xxx′) with kadd0 = σ2
0 . Despite exponentially many terms, a recursive

method is adapted for efficient polynomial-time computation in the AGP (Duvenaud et al., 2011).
Finally, the prediction of an instance like xxx is computed as (Rasmussen & Williams, 2006):

f(xxx) = kadd(xxx,X)⊤ααα, ααα =

(
kadd(X,X) + σ2

nI

)−1

yyy, (3)

where kadd(X,X) and kadd(xxx,X) are the additive kernel matrix and additive kernel vector over the
training data X and between sample xxx and all the training data X , respectively, and σ2

n is the noise
variance in GPs.

2.2 ORTHOGONAL ADDITIVE GAUSSIAN PROCESSES

One challenge with AGPs is identifiability, as many basis functions can sum to f(xxx). Durrande
et al. (2011) addressed this using functional ANOVA decomposition (Hooker, 2004), imposing the
following constraints on basis functions:

1. Zero Mean: Each component function fS(xxx) must have a mean of zero when averaged
over all features outside its subset. Specifically, this means E[fS(xxx)] = 0 for every non-
empty subset S, with the expectation taken over the features not included in S.
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2. Orthogonality: The component functions must be orthogonal to each other. In other
words, for any two distinct subsets S ̸= S′, the condition E[fS(xxx)fS′(xxx)] = 0 must hold,
where the expectation is over the joint distribution of xxxS and xxxS′ .

Durrande et al. (2011) put forward a class of kernel functions that satisfy the above conditions. In
particular, for a base kernel ki, they define constrained kernel k̃i as:

k̃i(xxx,xxx
′) = ki(xxx,xxx

′)−
∫
ki(xxx, s) dp(s)

∫
ki(xxx, s) dp(s)∫ ∫

ki(s, t) dp(s) dp(t)
. (4)

The higher-order kernels k̃addq are then constructed by multiplying corresponding k̃i, and the ad-
ditive constrained kernel is defined as k̃add(xxx,xxx′) =

∑d
q=0 k̃

addq (xxx,xxx′). A function drawn from a
GP with the constrained kernel k̃add is then shown to satisfy the ANOVA decomposition conditions
(Durrande et al., 2011). Lu et al. (2022) extend AGP with the constraint kernels and showed that for
several kernels (e.g., squared exponential or categorical kernels) with a Gaussian density of features,
k̃i has an analytical solution; for all other density measures or kernels, the integration in equation
(4) could be estimated by empirical probability measure based on the training samples.

2.3 SHAPLEY ADDITIVE EXPLANATION

A class of explaining black-box predictive models is based on the Shapley value. Consider a super-
vised learning model h trained on {xxxi, yi}. Computing the Shapley value requires a value function
v : 2D → R to quantify the payoff associated with subsets S ⊆ D for a particular sample. A
common choice for defining payoffs for local explanation is (Lundberg & Lee, 2017):

v(S) = E[h(xxx) | XS = xxxS ]. (5)

Given a value function, the marginal contribution of j to coalition S at xxx is:
∆v(S, j) = v(S ∪ {j})− v(S). (6)

The Shapley value of feature j, ϕj , is the weighted mean of marginal contributions over all subsets:

ϕj =
∑

S⊆D\{j}

|S|! (d− |S| − 1)!

d!
[∆v(S, j)]. (7)

This formulation uniquely satisfies properties like efficiency, symmetry, sensitivity, and linearity
(Shapley, 1953; Lundberg & Lee, 2017). Such an explanation is proven to decompose the model
predictions into the Shapley values of features (Lundberg & Lee, 2017):

h(xxx) = ϕ0 +

d∑
j=1

ϕj (8)

where ϕ0 is the baseline expectation E[f(xxx)] (also refered to as the value of null game v({∅})) and
ϕj is the Shapley value for feature j. Since computing the exact Shapley value requires realizing v
for exponentially many subset S ⊆ D, it is typically approximated from a number of such subsets
by a regression model (Lundberg & Lee, 2017) or a Monte Carlo method (Štrumbelj & Kononenko,
2014; Song et al., 2016) in practice.

3 EXACT SHAPLEY VALUE FOR LOCAL EXPLANATION

AGP and Shapley Value. We now present the local explanation using the Shapley value for AGPs.
Instead of defining a payoff function as in equation (5), we show a relationship between the AGPs
and the Shapley value and obtain the Shapley values of features directly from a trained AGP model.
The following lemma states how to estimate the Shapley value of features for an instance xxx from the
AGP model with the constrained kernel. All the proofs are provided in Appendix A.

Lemma 1 Let f(xxx) be characterized by an AGP with constrained kernel basis k̃i. Then, the esti-
mated local Shapley value for feature i, shown by ϕ̂l

i, is:

ϕ̂l
i =

( ∑
S⊆D,i∈S

σ2
|S|

|S|
⊙
j∈S

k̃j(xxx,X)

)⊤

ααα (9)
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We now show that estimating the Shapley values as in Lemma 1 would provide us with an additive
feature attribution as in equation (8).

Lemma 2 Defining the value of null game v({∅}) = σ0111
⊤ααα, the explanation provided by the Shap-

ley value as in equation (9) is an additive feature attribution such that

f(xxx)− v({∅}) =
d∑

i=1

ϕ̂l
i. (10)

Recursive Formulation and Dynamic Programming. The challenge of computing the Shapley
value using equation (9) lies in the computational complexity, as the sum in equation (9) grows ex-
ponentially with the number of features. We propose a dynamic programming algorithm to compute
the Shapley value more efficiently. Specifically, equation (9) can be expressed recursively as:

ϕ̂l
i =

(
k̃kki
⊙

l̃i(d, 1)

)⊤

ααα. (11)

Here, k̃kki = k̃i(xxx,X), l̃i(q, t) = k̃kkq⊙ l̃i(q−1, t+1)+ l̃i(q−1, t), subject to the boundary conditions

l̃i(i, t) = l̃i(i − 1, t) and l̃i(0, t) =
σ2
t

t . In this recursion, we first factor out k̃kki, as it appears in
all terms of the summation. The term l̃i represents the remaining terms in the sum that exclude k̃kki.
The parameters of l̃i are q, which selects the dimension of the features, and t, which replicates the
weights σ2

t /t in the summation.

The recursion divides the terms into two disjoint sets: those that include k̃kkq and those that do not.
The term k̃kkq ⊙ l̃i(q− 1, t+1) captures the terms where k̃kkq is present, and we recursively remove k̃kkq
from the sum, continuing with the remaining features where we increase t by one as the remaining
features would capture higher-order interactions (and thus |S| is increased by one). The second term,
l̃i(q − 1, t), generates the terms in the summation that exclude k̃kkq . In addition, the first condition,
l̃i(i, t) = l̃i(i−1, t), skips k̃kki since it is already accounted for in equation (11). The second condition,
l̃i(0, t) =

σ2
t

t , serves as the stopping criterion, ensuring that the weights σ2
t /t of the Shapley value

formulation are applied properly.

Example 1 We demonstrate the recursive formula for computing the Shapley value for the first
feature for a case study of three feature. The recursive formula for the Shapley value is given by:

ϕ̂l
1 =

(
k̃kk1
⊙

l̃1(3, 1)
)⊤

ααα (12)

Recursive steps are shown in Table 1. The last row of the table provides the Shapley value of the first
feature, which is equivalent to equation (9).

The recursive formula can be implemented by memorization in dynamic programming algorithms
or alternatively by developing an iterative approach (Cormen et al., 2022). Both algorithms have the
same time complexity of O(d2) for computing the Shapley value, which is a significant improvement
over O(2d) of the crude computation of equation (9).

4 EXACT SHAPLEY VALUE FOR GLOBAL EXPLANATION

It is often important to measure the global importance of features in predicting output. Duvenaud
et al. (2011) use interaction order variance to identify interactions at different orders, though their
method faces the identifiability problem (Lu et al., 2022). A common approach to overcome this is
global sensitivity analysis (GSA), which quantifies how much of the output variance is explained by
each feature. Lu et al. (2022) introduced the first-order Sobol index and provided an analytical so-
lution for its estimation. However, the first-order Sobol index only captures individual contributions
and neglects interactions between features, limiting its ability to fully represent the importance of
features in complex models (Song et al., 2016). Ironically, while AGPs are designed to model fea-
ture interactions, the Sobol index fails to account for them, which is a significant drawback. Shapley
value, on the other hand, is shown to address the shortcomings adequately (Owen, 2014).
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Table 1: Steps for computing the Shapley value of the first feature for an example of three features.

Step Calculation
1. Compute l̃1(3, 1) l̃1(3, 1) = k̃kk3 ⊙ l̃1(2, 2) + l̃1(2, 1)

2. Compute l̃1(2, 2) l̃1(2, 2) = k̃kk2 ⊙ l̃1(1, 3) + l̃1(1, 2)

Use boundary condition: l̃1(1, 3) =
σ2
3

3

l̃1(2, 2) = k̃kk2 ⊙ σ2
3

3 + l̃1(1, 2)

3. Compute l̃1(1, 2) Use boundary condition: l̃1(1, 2) =
σ2
2

2

l̃1(2, 2) = k̃kk2 ⊙ σ2
3

3 +
σ2
2

2

4. Compute l̃1(2, 1) l̃1(2, 1) = k̃kk2 ⊙ l̃1(1, 2) + l̃1(1, 1)

Substitute: l̃1(1, 2) =
σ2
2

2

l̃1(2, 1) = k̃kk2 ⊙ σ2
2

2 + l̃1(1, 1)

Use boundary condition: l̃1(1, 1) =
σ2
1

1

l̃1(2, 1) = k̃kk2 ⊙ σ2
2

2 +
σ2
1

1

5. Substitute into l̃1(3, 1) l̃1(3, 1) = k̃kk3 ⊙
(
k̃kk2 ⊙ σ2

3

3 +
σ2
2

2

)
+
(
k̃kk2 ⊙ σ2

2

2 +
σ2
1

1

)
6. Compute ϕ̂l

1 ϕ̂l
1 =

(
σ2
3

3 k̃kk1 ⊙ k̃kk2 ⊙ k̃kk3 +
σ2
2

2 k̃kk1 ⊙ (k̃kk2 + k̃kk3) + σ2
1k̃kk1

)⊤
ααα

Owen (2014) showed the functional ANOVA decomposition holds true for the variance V, i.e.,

V(f(xxx)) =
∑
S⊆D

V(fS(xxx)). (13)

Accordingly, the following theorem states the relationship between the Shapley value for variance-
based global sensitivity analysis.

Theorem 1 Let ααα be the result of training an additive Gaussian process with a constrained ker-
nel function. Then, the global Shapley value of feature i based on the variance-based sensitivity
analysis, shown by ϕ̂G

i , is

ϕ̂G
i = ααα⊤

( ∑
S⊆D,i∈S

σ4
|S|

|S|
ΓS

)
ααα, (14)

where ΓS = ⊙i∈S

∫
Xi

k̃i(xxx,X)k̃i(xxx,X)⊤dp(xi).

The matrix Γi,∀i ∈ D can also be estimated with an empirical measure and proven to have an
analytical solution with a Gaussian density of features (Lu et al., 2022). Also, the additive holds true
for the global Shapley value as well with the value of the null game being zero, i.e.,

V(f(xxx)) =
d∑

i=1

ϕ̂G
i , (15)

meaning that the Shapley value is the attribution of the variance of f over the features.

Similarly to the local Shapley value, the challenge with computing the global Shapley value in
equation (14) is that the summation includes an exponential number of terms. To address this, we
first need to calculate Γi for i = 1, . . . , d, noting that ΓS = ⊙i∈SΓi. Equation (14) can be written
recursively, analogous to equation (9), as:

ϕ̂G
i = ααα⊤

(
Γi

⊙
l̂Gi (d, 1)

)
ααα, (16)

where l̃Gi (q, t) = Γq⊙ l̃Gi (q−1, t+1)+ l̃Gi (q−1, t), with boundary conditions l̃Gi (i, t) = l̃Gi (i−1, t)

and l̃Gi (0, t) =
σ4
t

t . This recursive formulation mirrors the interpretation of equation (11), with the
key difference that l̂Gi outputs a matrix, and the boundary conditions are adapted for the global
Shapley value formulation in equation (14). However, the time complexity of the dynamic program-
ming approach remains O(d2), offering a significant improvement over the brute-force complexity
of O(2d).
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5 RELATED WORK

Several local explainability methods leverage the Shapley value, with SHAP being a prominent
example (Lundberg & Lee, 2017). SHAP provides additive explanations by attributing the predicted
value to individual features. Model-specific extensions like Tree SHAP and Deep SHAP adapt this
approach to decision trees and deep neural networks, and GP-SHAP offers local explanations for
Gaussian Processes (Chau et al., 2023). Our method for local explanations in AGP is comparable to
these techniques but is distinguished by its ability to compute exact Shapley values without requiring
sampling. This eliminates the time-consuming and complex process of marginalizing over feature
subsets, which is particularly challenging for tabular data and when features are interdependent.

In the context of global sensitivity analysis, our global Shapley value serves as a model-based alter-
native to the Shapley Effect (Owen, 2014; Song et al., 2016). The Shapley Effect uses Monte Carlo
sampling to estimate Shapley values by generating a number of samples. In contrast, our method
fits a model, specifically AGP, and computes exact global Shapley values without any reliance on
sampling. This provides a more precise and efficient approach to global sensitivity analysis.

Our global Shapley value also aligns with methods like SAGE (Covert et al., 2020), which identifies
the most important features within a trained model. It also serves as a tool for feature selection, akin
to wrapper methods such as Lasso, which assess feature importance by first fitting a model. This
capability is not only critical for model interpretability but also enhances the model’s performance
by focusing on the most relevant features.

Yet another similar line of research is functional decomposition-based interpretable models. The
usefulness of functional decomposition for interpretability is discussed in the literature (Molnar,
2020, Chapter 8), and there are several studies showing the relationship between different inter-
pretable models and functional decomposition (ANOVA) (Hiabu et al., 2023; Bordt & von Luxburg,
2023). However, the challenge is identifying exponentially many terms in functional decomposition.
The AGPs, on the other hand, can handle the exponentially many terms as well as the constraints in
the functional ANOVA decomposition in an efficient manner, and the proposed dynamic program-
ming for local and global Shapley values provides an efficient way to compute Shapley values.

6 EXPERIMENTS

Experimental Setup. In our experiments involving AGPs, we employ the squared exponential
kernel function as the primary covariance function. To normalize the input data distribution, we in-
corporate normalizing flows (Rezende & Mohamed, 2015), and utilize the closed-form constrained
squared exponential kernel as proposed by Lu et al. (2022). Due to the high computational complex-
ity associated with training GPs, which scales as O(n3), we utilize inducing points for large-scale
data sets to identify a subset of influential samples that effectively shape the AGP’s decision bound-
aries (Burt et al., 2019). However, unless otherwise stated, all experiments are conducted using the
complete set of available samples.

Synthesized and Real Data Sets. We evaluate our approach using a combination of synthesized
and real-world data sets. Detailed descriptions of the synthesized data sets and the generation pro-
cess, as well as the characteristics of the real-world data sets, are provided in Appendix B. In
experiments where inducing points are applied, Shapley values are computed exclusively from these
points, with all other sample contributions set to zero in the ααα vector. We use the same data sets in
our experiments on feature selection and local explanation.

6.1 FEATURE SELECTION USING GLOBAL SHAPLEY VALUE

For feature selection, we evaluate the performance of the global Shapley value derived from the
AGPs, referred to as AGP-SV, against several established feature selection methods, including
HSIC-Lasso (Climente-González et al., 2019), mutual information (MI) (Vergara & Estévez, 2014),
F-ANOVA (Koller et al., 1996), Lasso (Tibshirani, 1996), and recursive feature elimination (RFE)
(Guyon et al., 2002).
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Figure 1: The comparison of feature selectors on synthesized four data sets; from left to right, the
results over synthesized data set 1 to 4. The lower the mean rank, the better the results.

6.1.1 SYNTHESIZED DATA SETS

We generate four synthesized data sets with predefined influential features to benchmark the perfor-
mance of different feature selection methods. Each data set is processed using the various feature
selectors, and the identified influential features are compared across methods. To ensure an objective
comparison, we compute the mean rank of the influential features based on the importance scores
or rankings provided by each method. This feature selection process is repeated 100 times, and
we calculate the average of these mean ranks to compare the methods comprehensively. Figure 1
presents box plots of the mean ranks across 100 replications for the synthesized data sets. AGP-
SV consistently outperforms all other methods, demonstrating superior performance in identifying
influential features. While HSIC-Lasso shows competitive performance on the first two data sets
with simpler interaction functions (the ideal average of the mean rank is 2 and 3 for the first two
data sets), owing to its ability to detect nonlinear relationships through kernel functions, AGP-SV
significantly outperforms it when dealing with more complex interactions on synthesized data sets
3 and 4, reliably identifying the most influential features even in highly nonlinear settings (the ideal
average of the mean rank is 2.5 and 3 for synthesized data sets 3 and 4).

6.1.2 REAL-WORLD DATA SETS

We extend our comparison of feature selectors to real-world data sets, utilizing tabular data sets such
as “diabetes”, “mode choice”, “query”, and “wine quality”, with detailed descriptions provided in
Appendix B. For the “wine quality” data set, we use 200 inducing points to fit the model and com-
pute the Shapley value since the data set is large and expensive to train an AGP. To evaluate the ef-
fectiveness of the feature selectors, we first identify the most influential features using each method.
Then, we incrementally train a random forest model with 500 estimators, sequentially adding fea-
tures based on their importance rankings. We hypothesize that if the most influential features are
added early in this process, the random forest’s prediction error should decrease more sharply at the
beginning and then level off as less important features are added. Figure 2 illustrates the error rate
of the random forest as more features are included. In nearly all cases, AGP-SV consistently re-
duces the error more effectively than other feature selectors and demonstrates superior performance
in identifying the most influential features across various real-world data sets. HSIC-Lasso demon-
strates a competitive performance over the “diabetes” and “guerry” data sets, but AGP-SV shows
more consistent performance across all data sets and outperforms HSIC-Lasso significantly.

6.2 LOCAL EXPLANATION USING LOCAL SHAPLEY VALUE

In this section, we evaluate the performance of the local Shapley value method against several
state-of-the-art local explanation techniques. Specifically, we compare our approach to Kernel
SHAP (Lundberg & Lee, 2017), Sampling SHAP (Štrumbelj & Kononenko, 2014), Unbiased SHAP
(Covert & Lee, 2021), Bivariate SHAP (Masoomi et al., 2021), LIME (Ribeiro et al., 2016), and
MAPLE (Plumb et al., 2018). All methods are used with their default settings, and we conduct
comparisons on both synthesized and real-world data sets.
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Figure 2: The performance of feature selectors over the real data sets.

Figure 3: The average of mean rank of different explainable methods across four synthesized data
sets (synthesized data sets 1 to 4 from left to right).

6.2.1 SYNTHESIZED DATA SETS

We begin by assessing the performance of the local explainers on four synthesized data sets (de-
tailed information on the generation of these data sets can be found in Appendix B). For each data
set, we randomly select 100 instances and apply each local explainer to generate explanations. We
then calculate the mean rank of the most influential features identified by each method and com-
pare the methods based on the average of these mean ranks across the 100 instances. Figure 3
presents box plots illustrating the performance of the local explainers across the four data sets. For
the first two data sets (from left to right), AGP-SV demonstrates competitive performance with Ker-
nel SHAP, Unbiased SHAP, Sampling SHAP, and Bivariate SHAP, particularly in cases where the
interaction effects are more straightforward (average of mean rank is 2 and 3 for the first two data
sets). However, in the last two data sets, where interactions are more complex, AGP-SV significantly
outperforms the other methods, underscoring its robustness in capturing intricate interactions even
at the local explanation level (the average mean rank is 2.5 and 3 for the last two data sets).
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Figure 4: The effect of feature removal on the prediction of a trained AGP with constrained kernel
over four real data sets.

6.2.2 REAL-WORLD DATA SETS

We extend our comparison of AGP-SV with other local explainers across four real-world tabular
data sets. To conduct this comparison, we train an AGP with the constrained kernel and apply vari-
ous explainable methods to it. The comparison is based on two metrics: the average execution time
over 100 samples and the effect of incrementally removing the least influential features identified by
each method. For the latter, we expect that the removal of the least influential features should have
minimal impact on the AGP’s predictions, particularly in the early stages of the process. Figure 4
shows the logarithm of the average impact of removing up to 60% of the features across 100 sam-
ples. We excluded Unbiased SHAP due to its inability to generate explanations for most samples,
which made its average estimates unreliable, and MAPLE because its poor performance and large
deviations from other methods made the plots difficult to interpret for small differences.

According to Figure 4, AGP-SV demonstrates consistent performance across all data sets, reliably
identifying the most influential features for the 100 samples. For instance, in the “diabetes” data set,
AGP-SV outperforms Kernel SHAP and Sampling SHAP in detecting the most influential features.
Bivariate SHAP, which can detect interactions up to the second degree, also performs well and is
competitive with AGP-SV in identifying the top influential features early on. However, AGP-SV
shows a slight advantage in detecting the third most influential feature.

We also compared the methods based on the execution time required to generate explanations for
100 samples (for Unbiased SHAP, we only included the execution time for the samples where ex-
planations could be generated). Figure 5 presents a box plot of the execution times for the different
explainable methods. The results show that AGP-SV is significantly faster than the other methods
while still providing exact Shapley values. In most cases, the exact Shapley value is calculated in
around one second using the proposed dynamic programming. Coupled with its strong performance
in identifying the most influential features, AGP-SV proves to be a highly efficient and effective
method for feature importance detection.
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Figure 5: The box plot of the execution time in seconds for generating explanations for 100 samples.

7 CONCLUSION AND DISCUSSION

This paper presents a novel interpretative framework for Additive Gaussian Processes (AGPs) by
leveraging the Shapley value to offer both local and global feature importance explanations. The
main contributions include developing an efficient dynamic programming algorithm to compute the
exact Shapley values, which scales polynomially with the number of features, and extending the
variance-based global sensitivity analysis to AGPs for global explanations. Importantly, the AGP
framework retains the predictive capabilities of standard GPs since the additive kernel structure
subsumes typical GPs as a special case. The enhanced interpretability provided by the Shapley-
based explanations makes AGPs a transparent and powerful tool in machine learning, especially for
applications requiring both accurate predictions and clear, interpretable models.

There are some limitations and directions for future research. One key advantage of this approach is
that it provides exact Shapley values, allowing for objective comparisons with other Shapley value-
based explainable methods. This opens up the possibility of systematically varying parameters such
as the number of samples to study how these methods behave under different conditions, thereby
deepening our understanding of their robustness and reliability. Furthermore, while the current work
focuses on tabular data, extending the AGP framework to other data modalities, such as text and im-
age data, remains an important avenue for future exploration. Such extensions would broaden the
applicability of AGPs and enhance their utility in diverse domains where interpretability is critical.
Besides, while the focus of the paper is mainly on the Shapley value as the importance of individ-
ual features, further research could be done by identifying the most significant interactions among
features and quantifying such quantities by relevant indicators such as the Shapley interaction index.

10



REFERENCES

Sebastian Bordt and Ulrike von Luxburg. From shapley values to generalized additive models and
back. In International Conference on Artificial Intelligence and Statistics, pp. 709–745. PMLR,
2023.

David Burt, Carl Edward Rasmussen, and Mark Van Der Wilk. Rates of convergence for sparse
variational gaussian process regression. In International Conference on Machine Learning, pp.
862–871. PMLR, 2019.

Siu Lun Chau, Krikamol Muandet, and Dino Sejdinovic. Explaining the uncertain: Stochastic
shapley values for gaussian process models. Advances in Neural Information Processing Systems,
36:50769–50795, 2023.

Héctor Climente-González, Chloé-Agathe Azencott, Samuel Kaski, and Makoto Yamada. Block
hsic lasso: model-free biomarker detection for ultra-high dimensional data. Bioinformatics, 35
(14):i427–i435, 2019.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

Ian Covert and Su-In Lee. Improving kernelshap: Practical shapley value estimation using linear
regression. In International Conference on Artificial Intelligence and Statistics, pp. 3457–3465.
PMLR, 2021.

Ian Covert, Scott M Lundberg, and Su-In Lee. Understanding global feature contributions with
additive importance measures. Advances in Neural Information Processing Systems, 33:17212–
17223, 2020.

N Durrande, D Ginsbourger, O Roustanta, and L Carraro. Reproducing kernels for spaces of zero
mean functions. application to sensitivity analysis. stat, 1050:17, 2011.

David K Duvenaud, Hannes Nickisch, and Carl E Rasmussen. Additive gaussian processes. In
Advances in neural information processing systems, pp. 226–234, 2011.

Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for cancer
classification using support vector machines. Machine learning, 46:389–422, 2002.

Munir Hiabu, Joseph T Meyer, and Marvin N Wright. Unifying local and global model explana-
tions by functional decomposition of low dimensional structures. In International Conference on
Artificial Intelligence and Statistics, pp. 7040–7060. PMLR, 2023.

Giles Hooker. Generalized functional anova diagnostics for high-dimensional functions of depen-
dent variables. Journal of Computational and Graphical Statistics, 13(3):755–770, 2004.

Daphne Koller, Mehran Sahami, et al. Toward optimal feature selection. In ICML, volume 96, pp.
292, 1996.

Xiaoyu Lu, Alexis Boukouvalas, and James Hensman. Orthogonal additive gaussian processes. In
Proceedings of the 39th International Conference on Machine Learning, pp. 11956–11968, 2022.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances
in neural information processing systems, 30, 2017.

Aria Masoomi, Davin Hill, Zhonghui Xu, Craig P Hersh, Edwin K Silverman, Peter J Castaldi,
Stratis Ioannidis, and Jennifer Dy. Explanations of black-box models based on directional feature
interactions. In International Conference on Learning Representations, 2021.

Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

Art B Owen. Sobol’indices and shapley value. SIAM/ASA Journal on Uncertainty Quantification, 2
(1):245–251, 2014.

Gregory Plumb, Denali Molitor, and Ameet S Talwalkar. Model agnostic supervised local explana-
tions. Advances in neural information processing systems, 31, 2018.

11



Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning.
MIT press, 2006.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional conference on machine learning, pp. 1530–1538. PMLR, 2015.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Lloyd S Shapley. A value for n-person games. Contributions to the Theory of Games, 2(28):307–
317, 1953.

Ilya M Sobol. Global sensitivity indices for nonlinear mathematical models and their monte carlo
estimates. Mathematics and Computers in Simulation, 55(1-3):271–280, 2001.

Eunhye Song, Barry L Nelson, and Jeremy Staum. Shapley effects for global sensitivity analysis:
Theory and computation. SIAM/ASA Journal on Uncertainty Quantification, 4(1):1060–1083,
2016.
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A PROOF

Proof of Lemma 1 To prove this lemma, we use some results from the functional ANOVA decom-
position and the Shapley value. In particular, if we have the functional decomposition as in equation
(1), then the Shapley value of feature i for xxx is (Hiabu et al., 2023):

ϕ̂l
i =

∑
S⊆D

1

|S|
fS(xxx) (17)

Using the AGP, f(xxx) can be written as:

f(xxx) = Kadd(xxx,X)⊤ααα

=

(
σ2
0111 +

∑
S⊆D,i∈S

σ2
|S|

⊙
j∈S

k̃j(xxx,X)

)⊤

ααα. (18)

It follows that the AGPs provide the functional decomposition with the following elements:

f0 = σ2
0111

⊤ααα

fS(xxx) =

( ∑
S⊆D

σ2
|S|

⊙
j∈S

k̃j(xxx,X)

)⊤

ααα, (19)

then the Shapley value for feature i is calculated as:

ϕ̂l
i =

∑
S⊆D,i∈S

1

|S|
fS(xxx) =

( ∑
S⊆D,i∈S

σ2
|S|

|S|
⊙
j∈S

k̃j(xxx,X)

)⊤

ααα, (20)

and that completes the proof.
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Proof of Property 2 To prove the additivity property, we can write:

d∑
i=1

ϕ̂l
i =

d∑
i=1

( ∑
S⊆D,i∈S

σ2
|S|

|S|
⊙
j∈S

k̃j(xxx,X)

)⊤

ααα =

( ∑
S⊆D,D ̸=∅

σ2
|S|

⊙
j∈S

k̃j(xxx,X)

)⊤

ααα. (21)

By adding f0 = σ2
0111

⊤ααα to the above equation, we get the prediction function of the AGP, i.e.,

f(xxx) =

d∑
i=1

ϕ̂i + σ2
0111

⊤ααα. (22)

f0 can be interpreted as the value of the null game v({∅}) as well, and equation (22) indicates the
additivity property of the explanation, and the proof is complete.

Proof of Theorem 1 Given that the functional ANOVA decomposition holds true for the variance
V, i.e.,

V(f(xxx)) =
∑
S⊆D

V(fS(xxx)), (23)

then the global Shapley value based on the variance-based global sensitivity analysis is computed
by:

ϕ̂G
i =

∑
S⊆D,i∈S

1

|S|
V(fS(xxx)) (24)

We now need to compute V(fS(xxx)):

V(fS(xxx)) = V

( ∑
S⊆D

σ2
|S|

⊙
j∈S

k̃j(xxx,X)

)⊤

ααα


= σ4

|S|ααα
⊤cov

(⊙
i∈S

k̃i(xi, Xi)

)
ααα

= σ4
|S|ααα

⊤

(⊙
i∈S

∫
Xi

k̃(xxx,X)k̃i(xxx,X)⊤dp(xi)

)
ααα. (25)

Replacing equation (25) in equation (23), we get

ϕ̂G
i = ααα⊤

 ∑
S⊆D,i∈S

σ4
|S|

|S|
⊙
i∈S

∫
Xi

k̃(xxx,X)k̃i(xxx,X)⊤dp(xi)

ααα

and that completes the proof.

B DATA SETS

For our experiments on real data, we use the following tabular data sets:

• Wine Quality: This data set consists of 1,599 samples and 11 features related to the chem-
ical properties of red wine. It is used to predict the wine quality score, which ranges from
0 to 10. The features include attributes such as acidity, sugar content, and alcohol levels.

• Guerry: The Guerry data set is a historical collection with 86 observations and 17 features,
capturing various social statistics from 19th-century France. It includes data on literacy
rates, crime rates, and donations to the poor, and is used primarily for exploratory data
analysis and social science research.
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• Mode Choice: The Mode Choice data set, derived from a transportation study, includes
840 samples and 6 features. It is used to model the decision-making process of individuals
when choosing a mode of transportation, such as car, bus, or train, based on factors like
income, travel time, and travel cost.

• Diabetes: This medical data set has 442 samples and 10 features, including age, sex, body
mass index (BMI), and blood pressure. It is widely used for regression tasks to predict the
progression of diabetes over one year.

In addition, we generate the following synthesized data in our experiments for explanation and
feature selection:

• Synthesized data Set 1:
Predictors X are generated from a standard normal distribution. The response variable
Y is modeled as Y = (X1X2X3) (including a small noise factor), where only the first
three features contribute significantly to the outcome. The expected mean rank for the most
important features is ideally 2.

• Synthesized data Set 2:
Predictors X1 to X5 are drawn from the standard normal distribution. The response variable
Y is defined such that Y = 0.5 (exp(X1X2X3) + exp(X4X5)). Hence, only the first five
features significantly influence the outcomes in this data set, with the expected mean rank
ideally being 3.

• Synthesized Data Set 3:
Predictors X are similarly generated from the standard normal distribution. The response
variable Y is modeled so that Y is proportional to exp

(∑4
i=1 X

2
i − 4

)
, making the first

four features particularly relevant. Therefore, the expected mean rank of the most important
feature is ideally 2.5.

• Synthesized Data Set 4:
Predictors X follow a standard normal distribution. The response variable Y is modeled as
Y = −10 sin(0.2X1)+ |X2|+X3 +exp(−X4X5), focusing on the first four features. As
a result, the expected mean rank of the most important feature is ideally 3.
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