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Abstract

Long-term time series forecasting (LTSF) has tra-
ditionally relied on large parameters to capture
extended temporal dependencies, resulting in sub-
stantial computational costs and inefficiencies in
both memory usage and processing time. How-
ever, time series data, unlike high-dimensional
images or text, often exhibit temporal pattern
similarity and low-rank structures, especially in
long-term horizons. By leveraging this structure,
models can be guided to focus on more essen-
tial, concise temporal data, improving both accu-
racy and computational efficiency. In this paper,
we introduce TimeBase, an ultra-lightweight net-
work to harness the power of minimalism in LTSF.
TimeBase 1) extracts core basis temporal com-
ponents and 2) transforms traditional point-level
forecasting into efficient segment-level forecast-
ing, achieving optimal utilization of both data
and parameters. Extensive experiments on di-
verse real-world datasets show that TimeBase
achieves remarkable efficiency and secures com-
petitive forecasting performance. Additionally,
TimeBase can also serve as a very effective plug-
and-play complexity reducer for any patch-based
forecasting models. Code is available at https:
//github.com/hqh0728/TimeBase.
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1. Introduction
Long-term time series forecasting (LTSF) has been stud-
ied with significant interest in various domains, ranging
from energy management, traffic accident preservation, and
extreme disaster warning. With the rapid advancement of
deep learning, an increasing number of models have been
proposed (Qiu et al., 2024; Zheng et al., 2023; Ang et al.,
2023; Chen et al., 2023; Wu et al., 2021; Zhou et al., 2023a;
Wang et al., 2023b; Lin et al., 2023a; Ding et al., 2018; Chen
et al., 2018; Wang et al., 2024c; Chen et al., 2019; Wang
et al., 2023a; Huang et al., 2024c; Zhou et al., 2023b; Wang
et al., 2024b; Lin et al., 2024a; Miao et al., 2025; Yi et al.,
2024), including MLP-based (Liu et al., 2022; Huang et al.,
2024a; Miao et al., 2024), RNN-based (Lin et al., 2023b),
and Transformer-based (Liu et al., 2021b; Zhang and Yan,
2023), approaches, all of which employ thousands to mil-
lions of parameters to capture long-range dependencies and
forecast future outcomes.

Generally, a higher number of parameters increases the
model capacity, which can lead to better predictive per-
formance (Zhou et al., 2023c; Zhao et al., 2024). In the
fields of computer vision (CV) and natural language pro-
cessing (NLP), large models have achieved significant suc-
cess (He et al., 2016; Liu et al., 2023). For instance, Vision
Transformers (ViT) (Dosovitskiy, 2020) have demonstrated
outstanding capabilities in image recognition, while large
language models (LLM) have made breakthrough advances
across various language tasks (Devlin, 2018; Radford et al.,
2019). Recently, large models are being explored for LTSF
to capture complex temporal patterns and long-range de-
pendencies (Cheng et al., 2024; Liu et al., 2025a; 2024d;
2025b). For example, some LLM-based forecasting meth-
ods are proposed with tens of billions of parameters (Jin
et al., 2023). However, despite their impressive performance
on specific forecasting tasks, these models suffer from high
computational costs and resource-intensive requirements.

In fact, images and text, as high-dimensional data, contain
multiple dependencies and complex underlying physical
rules (Liu et al., 2021a), which necessitate the use of more
parameters to model their rich semantic structures. How-
ever, as shown in Figure 1(a), one-dimensional time series
data is typically much more regular, exhibiting obvious tem-
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Figure 1. Illustration of temporal pattern similarity and approximate low-rank characteristics in long-term time series.

Figure 2. Comparison of forecasting performance and model efficiency in terms of MSE, MACs, parameters, memory usage, and CPU
inference speed for 720-horizon forecasting in Electricity.

poral patterns. Moreover, in long-term time series data, this
regularity can even manifest as low-rank characteristics (Liu
et al., 2012), which can be reflected through singular value
decomposition as shown in Figure 1(b), indicating that there
is a considerable amount of redundant information (Jones
and Brelsford, 1967; Hochreiter and Schmidhuber, 1997).
This raises an important question: Is it truly necessary to
employ such a large number of parameters to learn these
regular time series patterns (Tan et al., 2024; Zuo et al.,
2024; Khayati et al., 2024)?

In this study, we design an extremely lightweight time series
forecasting network, TimeBase, which is centered around
basis component extraction and segment-level forecasting.
As illustrated in Figure 2, TimeBase utilizes only 0.39k
parameters, reducing MACs by 120× and parameter count
by more than 2.6× 103 times compared to DLinear. Com-
pared to the standard linear lightweight model SparseTSF, it
reduces MACs by 4.5×, parameter count by 2.5×. Despite
being a minimal model, TimeBase demonstrates superior
predictive performance on real-world datasets of various

domains and scales. Additionally, TimeBase can also serve
as a very effective plug-and-play tool for patch-based fore-
casting methods, enabling extreme complexity reduction,
i.e., 77.74%∼93.03% for PatchTST in MACs, prompting
prediction accuracy. Our contributions can be summarized
as follows:

• Considering the temporal pattern similarity and low-
rank characteristic, we demonstrate that basis compo-
nent extraction with segment-level forecasting is an
effective approach for LTSF to fully utilize both data
and model. This method can significantly reduce the
unavoidable ultra-high complexity and large model
parameters associated with current LTSF models.

• We propose TimeBase, which is currently the lightest
time series forecaster and an effective plug-and-play
complexity reducer. It requires only 0.39k param-
eters, achieving 4.5× reduction in MAC and a 2.5×
decrease in the number of parameters compared to
the previously lightest model SparseTSF. Besides, it
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could make 77.74%∼93.03% computation reduction
for PatchTST.

• TimeBase not only maintains an extremely small model
size but also achieves competitive forecasting perfor-
mance across various real-world datasets. Specifically,
TimeBase ranks Top2 on 29 out of 34 average metrics
(MSE and MAE) across 17 normal scale datasets when
compared to the ten state-of-the-art baselines.

• TimeBase offers a potential strategy for designing
LTSF models with more efficiency and could provide
valuable insights for the development of backbone ar-
chitectures in large pre-trained LTSF models.

2. Related Work
Long-term time series forecasting (LTSF) aims to predict
future sequences of considerable length using extended his-
torical windows (Ang et al., 2024). The advancement of
deep learning has significantly enhanced the accuracy of
LTSF, with various foundational models, such as Transform-
ers (Zhou et al., 2021; Zhang and Yan, 2023), Temporal
Convolutional Networks (TCNs) (Luo and Wang, 2024),
and Recurrent Neural Networks (RNNs) (Lin et al., 2023b),
being employed to design long-term forecasting networks.
These models are designed based on the different proper-
ties of time series, such as series decomposition (Wu et al.,
2021), frequency domain (Xu et al., 2024), and periodic
characteristics (Wu et al., 2023). As to series decomposi-
tion, for instance, Autoformer (Wu et al., 2021) introduces
a series decomposition block that utilizes moving average
techniques to decompose complex temporal variations into
seasonal and trend components, each undergoing separate
time series modeling. Additionally, FEDformer (Zhou et al.,
2022) further enhances the representation capabilities of the
series decomposition block by employing multiple kernels
moving average to decompose data at various granulari-
ties, thereby improving forecasting performance. Consid-
ering the frequency domain characteristics of time series,
FITS (Xu et al., 2024) operates on the principle that time
series can be manipulated through interpolation in the com-
plex frequency domain, achieving performance comparable
to state-of-the-art models for time series forecasting. On
the other hand, periodicity is a significant factor considered
by many LTSF methods. TimesNet (Wu et al., 2023)pro-
poses the use of Fourier Transform to capture multiple pe-
riodic lengths of time series, expanding one-dimensional
time series into several two-dimensional components, which
are processed through two-dimensional networks to handle
high-dimensional data. SparseTSF (Lin et al., 2024b) di-
rectly utilizes the prior periodicity, thereby reducing the
scale of network parameters. CrossGNN (Huang et al.,
2024b) employs moving average techniques based on pe-
riodicity to expand single-granularity time series data into

multi-granularity data, enriching the information contained
within the dataset. In this paper, we propose TimeBase,
which further leverages the approximate low-rank nature of
long-term time series and significantly reducing the parame-
ter scale.

3. Method
3.1. Problem Definition

In LTSF, the objective is to predict future values over an
extended time horizon based on very long look-back win-
dows. Formally, let X = [x1, x2, ..., xT ] ∈ RT denote the
historical time series data, where T ≫ 1 is the length of
look-back window. The goal is to forecast the future val-
ues Y = [xT+1, xT+2, ..., xT+L] ∈ RL with a forecasting
horizon L ≫ 1. However, the exceptionally long horizon
scale T and L substantially increases model size, leading
to a rapid and considerable growth in the need of computa-
tion resources, which may be unnecessary for time series
data that follow simple and regular patterns. Consequently,
our focus shifts to designing models that not only deliver
robust and efficient performance but also remain extremely
lightweight.

3.2. TimeBase

In practical, regular time series often exhibit prominent
segment-level patterns (Lin et al., 2024b), with approxi-
mate low-rank characteristics (Jones and Brelsford, 1967).
For example, traffic flow typically follows a daily period,
with similar patterns recurring each day. To effectively lever-
age time series data and accomplish efficient forecasting, we
propose TimeBase, implemented through Basis Extraction
and Segment-level Forecasting by two extremely small-
scale linear layers. This approach drastically reduces the
model parameters to the hundred level while maintain-
ing state-of-the-art (SOTA) forecasting performance. Most
existing multivariate time series (MTS) are homogeneous,
meaning that each sequence within the dataset exhibits simi-
lar patterns. Based on this property, we employ the Channel
Independence (Nie et al., 2023) to simplify the forecast-
ing of MTS into separate univariate forecasting tasks. An
overview of TimeBase is shown in Figure 3.

3.2.1. BASIS COMPONENT RECONSTRUCTION

First, we need to determine the basis length P from the
time series and segment the series accordingly. The de-
termination process can be categorized into two scenarios:
(1) The time series has a predefined prior period much
smaller than look-back window, for instance, in domains
like electricity or traffic, the cyclic patterns often follow a
daily periodicity, allowing us to directly assign P = 24 as
the segment length from hourly sampled data. (2) When the
time series lacks clear periodicity or the period exceeds
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Figure 3. Overview of TimeBase. The core of TimeBase lies in extracting temporal basis components and segment-level forecasting.
It aims to demonstrate that even the most minimalistic models can exhibit strong predictive power, providing a design foundation for
more effective time series models. In addition, TimeBase can also serve as a plug-and-play reducer to decrease the complexity of any
patch-based models.

1/6 the input horizon, frequency analysis (e.g., FFT) (Wu
et al., 2023) on the training set Xtrain can help identify domi-
nant components, whose wavelengths may serve as the basis
length. In this case, a relatively smaller P is recommended
to enhance the expressiveness of basis components.

Based on the predefined basis length P , we divide
the one-dimensional time series X ∈ RT into N =⌈
T
P

⌉
non-overlapping segments, denoted as Xhis =

[X1, X2, . . . , XN ] ∈ RN×P , each of length P , analogous
to non-overlapping patches (Nie et al., 2023). When the
length of XN is insufficient to meet P , the corresponding
values from XN−1 will be used to fill in the gaps. The
segment operation can be represented as:

Xhis = Segment[N,P ](X) (1)

where N and P in Segment[N,P ](·) represent the num-
ber of rows and columns of the transformed 2D ma-
trix. The maximized rank of the matrix Xhis is Rmax =
min(N,P ). Given that typical time series exhibit similar
temporal patterns and low-rank characteristics, we have
R ≪ min(N,P ). In this context, directly designing a
model for forecasting leads to unnecessary resource con-
sumption. Fortunately, inspired from Basis Representa-
tion (Benson, 1998) and Linear Decomposition (Dantzig
and Wolfe, 1960), a series fundamental temporal pattern
can be identified, referred to as the basis components
Xbasis ∈ RR×P to capture compact information and min-
imize the model size. Just as any vector in a coordinate
system can be represented as a linear combination of its ba-
sis vectors, the combination of basis components in specific
time series can represent its any segment-level temporal
pattern (Hochreiter and Schmidhuber, 1997). Conversely,

we can approximate the full-rank basis components using:

Xbasis = BasisExtract(Xhis) (2)

where BasisExtract(·) is implemented by a simple lin-
ear layer. Formally, Xhis can be expressed as a linear
combination of basis components, represented as X⊤

his =
X⊤

basisWE+B, where WE ∈ RN×R is the combined weight
and the bias term B ∈ RR denote the temporal noise ϵ. By
rearranging, we derive XT

basis = X⊤
hisW

† − BW †. There-
fore the objective of Eq. (2) is to learn a linear layer of
Whis = W † and Bhis = −BW † to approximate the ba-
sis components. Next, we leverage the well-learned basis
components to realize segment-level forecasting:

Xpred = SegmentForecast(Xbasis) (3)

Here, Xpred ∈ RN ′×P represents N ′ future segmented
time series, where N ′ =

⌈
L
P

⌉
. The operation

SegmentForecast(·), implemented also through a linear
layer, aggregates the basis components for forecasting. Fi-
nally, Xpred is unfolded to obtain prediction result Y ∈ RL:

Y = Flatten(Xpred)1:L (4)

3.2.2. BASIS ORTHOGONAL RESTRICTION

To make that the learned Xbasis effectively captures the es-
sential and diverse temporal patterns, an orthogonal con-
straint can be applied. From the perspective of the data
space, the orthogonality of the basis vectors enhances its rep-
resentation power, providing them ability to express as any
vector in the data space through linear combination (Dantzig
and Wolfe, 1960). Therefore, the temporal basis component
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should also be diverse and distinct, preventing the extraction
of very single time-series patterns. Based on this, we apply
the Basis Orthogonal Restriction.

Specifically, we penalize the deviation of Xbasis from an
orthogonal set by adding a regularization loss Lorth:

G = X⊤
basisXbasis (5)

Lorth = ∥G− diag(G)∥2F (6)

where G is the gram matrix of Xbasis and ∥ · ∥F denotes the
Frobenius norm. This term encourages Xbasis to approach
an orthogonal configuration, ensuring that each basis com-
ponent captures unique and uncorrelated temporal patterns.
The overall training objective is then updated to:

L = Lprediction + λorthLorth (7)

Here, Lprediction represents the original prediction loss, i.e.,
mean squared error (MSE) for regression, and λorth is a
hyperparameter that controls the weight of the orthogonal
regularization term.

3.3. Parameter Scale of TimeBase

Theorem 3.1 (Parameter Scale of TimeBase). Let T denote
the length of look-back window, L is the length of the fore-
cast, P represents the length of the segment, and R gives
the number of basis components. The parameter scale of
TimeBase can be expressed as:

Number =
R

P︸︷︷︸
a

×T +
R+ 1

P︸ ︷︷ ︸
b

×L+R (8)

Theorem 3.1 shows that the parameter scale of TimeBase
grows linearly with both the look-back window length T and
the forecast horizon L. In a typical long-term forecasting
setup where T = L = 720, the number of parameters in
TimeBase, with a complexity of O(aT+bL), is significantly
smaller than that of DLinear (Zeng et al., 2023), which
requires 2TL parameters, and SparseTSF (Lin et al., 2024b),
which uses TL

P 2 + P , both with O(TL) complexity.

4. Experiment
In this section, we demonstrate the advantages of Time-
Base in competitive forecasting performance, extremely
light efficiency and very effective plug-and-play function.
More experiment details and additional experiment results
are available at Appendix C.

4.1. Experiment Setup

Datasets We conduct experiments on 21 widely-used
and publicly available real-world datasets, including
17 normal-scale benchmarks: ETTh1, ETTh2, ETTm1,
ETTm21, Weather2, Electricity3, Traffic4,Solar Energy (Lai
et al., 2018), Wind (Li et al., 2022), , METR-LA (Li et al.,
2017), Exchange Rate (Lai et al., 2018), ZafNoo (Poy-
atos et al., 2020) and CzeLan (Poyatos et al., 2020),
AQShunyi (Zhang et al., 2017), AQWan (Zhang et al., 2017),
and 4 very large datasets: CA (4.52B), GLA (2.02B), GBA
(1.24B),SD (0.38B) (Liu et al., 2024c). Adhering to the
established protocol in (Wu et al., 2021; Qiu et al., 2024;
Liu et al., 2024c), we partition the datasets into training,
validation, and test sets with a ratio of 6:2:2 for four ETT
datasets, CA, GLA, GBA, SD, and 7:1:2 for the remaining
datasets. The statics of dataset is summarized in Table 1.

Table 1. Dataset Statistics. Var is the number of variables, Length
is the dataset length, T is the length of look-back window, L is
the forecasting horizon, Freq is the sampling frequency, Scale
represents the number of data points.

Dataset Var Length T L Freq Scale

N
or

m
al

Sc
al

e
B

en
ch

m
ar

k

ETTh1 7 14,400 720 96∼720 1hour 0.1M
ETTh2 7 14,400 720 96∼720 1hour 0.1M
ETTm1 7 57,600 720 96∼720 15mins 0.4M
ETTm2 7 57,600 720 96∼720 15mins 0.4M
Weather 21 52,696 720 96∼720 10mins 1.1M

Electricity 321 26,304 720 96∼720 1hour 8.1M
Traffic 862 17,544 720 96∼720 1hour 15.0M
Solar 137 52,560 720 96∼720 10mins 7.2M
Wind 7 48,673 720 96∼720 15mins 0.4M

METR-LA 207 34,272 720 96∼720 5mins 7.1M
Exchange 8 7,588 720 96∼720 1day 60.7K
AQshunyi 11 35,064 720 96∼720 1hour 0.4M
AQWan 11 35,064 720 96∼720 1hour 0.4M
ZafNoo 11 19,225 720 96∼720 30mins 0.2M
CzeLan 11 19,934 720 96∼720 30mins 0.2M
PM2.5 184 11,688 720 96∼720 3hours 2.2M
Temp 184 11,688 720 96∼720 3hours 2.2M

L
ar

ge

CA 8600 525,888 720 96∼720 5mins 4820G
GLA 3834 525,888 720 96∼720 5mins 2020G
GBA 2352 525,888 720 96∼720 5mins 1240G
SD 716 525,888 720 96∼720 5mins 380G

Baselines We compare TimeBase with 10 baselines,
which comprise the SOTA long-term forecasting models:
TimeMixer (Wang et al., 2024d), iTransformer (Liu et al.,
2024a), PatchTST (Nie et al., 2023), DLinear (Zeng et al.,
2023), TimesNet (Wu et al., 2023), FEDformer (Zhou et al.,
2022), Autoformer (Wu et al., 2021), and Informer (Zhou
et al., 2021), relatively efficient models: FITS (Xu et al.,
2024) and SparseTSF (Lin et al., 2024b).

1https://github.com/zhouhaoyi/ETDataset
2https://www.bgc-jena.mpg.de/wetter
3https://archive.ics.uci.edu/ml/datasets
4https://pems.dot.ca.gov/
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Table 2. Long-term time series forecasting results in 17 normal scale datasets, comparing TimeBase with other baselines. Results are
averaged across different forecasting horizons L ∈ {96, 192, 336, 720}. The input length H is set to 720 across all models. Best results
are marked in red ; second-best results are underlined in blue .

TimeBase SparseTSF TimeMixer FITS iTransformer DLinear PatchTST TimesNet FEDformer Autoformer Informer
Methods

(ours) (2024b) (2024d) (2024) (2024a) (2023) (2023) (2023) (2022) (2021) (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.396 0.414 0.407 0.419 0.454 0.474 0.417 0.430 0.454 0.467 0.437 0.448 0.420 0.440 0.505 0.499 0.523 0.524 0.726 0.641 1.445 0.930

ETTh2 0.347 0.397 0.344 0.386 0.379 0.426 0.334 0.382 0.392 0.422 0.479 0.471 0.344 0.391 0.433 0.455 0.429 0.470 1.086 0.802 5.486 1.892

ETTm1 0.356 0.380 0.362 0.384 0.381 0.414 0.359 0.382 0.370 0.401 0.361 0.383 0.355 0.385 0.408 0.425 0.438 0.466 0.564 0.522 1.138 0.818

ETTm2 0.250 0.314 0.252 0.316 0.283 0.347 0.252 0.314 0.278 0.338 0.271 0.337 0.251 0.319 0.300 0.354 0.409 0.462 0.431 0.463 3.594 1.473

Weather 0.219 0.263 0.244 0.286 0.238 0.281 0.244 0.286 0.233 0.273 0.242 0.299 0.223 0.264 0.254 0.293 0.355 0.391 0.446 0.457 0.567 0.513

Electricity 0.167 0.258 0.168 0.264 0.171 0.274 0.172 0.266 0.166 0.264 0.169 0.272 0.169 0.266 0.238 0.334 0.235 0.348 0.236 0.343 0.408 0.464

Traffic 0.418 0.278 0.414 0.280 0.419 0.300 0.426 0.291 0.406 0.290 0.418 0.285 0.394 0.266 0.641 0.346 0.638 0.400 0.684 0.421 1.028 0.588

AQShunyi 0.674 0.506 0.760 0.546 0.736 0.536 0.763 0.548 0.722 0.520 0.757 0.572 0.690 0.503 0.788 0.559 1.130 0.757 1.392 0.878 1.688 0.966

AQWan 0.779 0.499 0.826 0.526 0.822 0.521 0.813 0.519 0.843 0.538 0.883 0.560 0.810 0.513 0.857 0.543 0.932 0.565 1.001 0.654 1.123 0.744

CzeLan 0.225 0.262 0.240 0.292 0.234 0.282 0.250 0.304 0.245 0.296 0.242 0.290 0.229 0.275 0.258 0.312 0.266 0.314 0.289 0.368 0.347 0.426

ZafNoo 0.495 0.445 0.531 0.490 0.505 0.464 0.520 0.480 0.540 0.500 0.540 0.495 0.510 0.469 0.545 0.502 0.601 0.539 0.667 0.635 0.726 0.696

Exchange 0.309 0.392 0.316 0.410 0.330 0.426 0.302 0.400 0.301 0.401 0.312 0.410 0.308 0.400 0.326 0.425 0.380 0.472 0.447 0.589 0.432 0.581

METR-LA 1.253 0.754 1.302 0.764 1.270 0.740 1.296 0.760 1.253 0.734 1.300 0.759 1.210 0.706 1.390 0.812 1.550 0.876 1.639 0.974 1.894 1.146

PM2.5 0.428 0.437 0.467 0.477 0.465 0.474 0.460 0.469 0.480 0.492 0.449 0.457 0.458 0.466 0.466 0.475 0.560 0.547 0.621 0.650 0.636 0.663

Solar 0.216 0.254 0.216 0.264 0.244 0.296 0.229 0.279 0.233 0.285 0.227 0.276 0.226 0.275 0.243 0.295 0.252 0.291 0.306 0.380 0.327 0.411

Temp 0.187 0.338 0.295 0.412 0.302 0.423 0.315 0.442 0.302 0.423 0.292 0.418 0.291 0.406 0.304 0.427 0.343 0.456 0.404 0.587 0.471 0.682

Wind 0.940 0.709 1.014 0.736 1.044 0.758 1.023 0.745 1.025 0.748 1.018 0.739 0.968 0.703 1.101 0.799 1.230 0.841 1.237 0.947 1.381 1.033

4.2. Forecsating Performance of TimeBase

As shown in Table 2, across 17 normal-scale benchmarks,
TimeBase achieves Top-2 performance on 16 datasets, with
the only exception being ETTh2, where its accuracy still
remains highly competitive. These results further demon-
strate the robustness and effectiveness of TimeBase across a
wide range of forecasting tasks. Compared to the standard
linear model DLinear, TimeBase reduces MSE and MAE by
8.82% and 7.64%, respectively. When compared with the
currently most lightweight models, FITS and SparseTSF,
TimeBase achieves an average reduction of 6.15∼6.34% in
MSE and 4.85∼5.44% in MAE. Furthermore, against some
of the most powerful models to date, such as TimeMixer,
iTransformer, and PatchTST, TimeBase achieves the best
results on 23 out of 34 average forecasting metrics and ranks
second on 6, when carefully tuned. Despite its extremely
compact size, TimeBase delivers competitive forecasting ac-
curacy, thanks to its compact yet effective modeling design.

4.3. Efficiency Analysis

Main Efficiency Comparision In addition to its impres-
sive predictive performance, TimeBase offers another major
advantage: its exceptionally lightweight design. Here, we

provide a more comprehensive comparison, examining both
static and runtime metrics, which include (1) Parameters:
The total number of trainable parameters, reflecting the
model’s size. (2) MACs (Multiply-Accumulate Opera-
tions): A standard measure of computational complexity
in neural networks, representing the number of multiply-
accumulate operations required by the model. (3) Max
Memory: The peak memory usage during training. (4)
Epoch Time:The time required to train the model for one
epoch, averaged over three runs. (5) Infer Time: Infer
Time indicates the average inference time per sample on
CPU.

The look-back window for each model are set as 720, and
the max memory is recorded with a constant batch size
of 12. The efficiency analysis presented in Table 3 high-
lights the remarkable advantages of TimeBase over other
state-of-the-art models in terms of both static and runtime
metrics. TimeBase achieves a substantial reduction in the
number of parameters and computational complexity com-
pared to many parameter-heavy models. Specifically, com-
pared to lightest model SparseTSF, TimeBase reduces the
parameter count by up to 61% and the MACs by over 78%,
while also using significantly less memory (29% reduction)
and training faster (34% reduction in epoch time). These
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Table 3. Efficiency comparison of TimeBase and other state-of-the-art models on the Electricity dataset with a forecasting length of 720.
To ensure fair comparison, the look-back window is set as 720 for all models. MACs here indicate the computational cost for processing a
single sample, and memory usage is measured with a batch size of 12 for all models.

Model Parameters MACs Max Mem.(MB) Epoch Time(s) Infer Time (CPU)

Informer (2021) 22.45M 7.85G 1424.99 143.05 72.67ms
Autoformer (2021) 22.14M 8.97G 4348.89 225.78 126.75ms
FEDformer (2022) 22.14M 10.48G 2361.76 558.03 203.31ms
PatchTST (2023) 8.69M 14.17G 18034.33 827.34 249.02ms
DLinear (2023) 1.04M 333.04M 158.21 41.08 3.25ms

FITS (2024) 133.60K 42.73M 496.70 43.13 3.95ms
iTransformer (2024a) 5.47M 1.79G 828.32 65.62 30.41ms
TimeMixer (2024d) 5.58M 30.30G 1376.14 537.26 71.59ms
SparseTSF (2024b) 1.00K 12.71M 125.20 31.30 2.59ms

TimeBase(ours) 0.39K 2.77M 88.89 20.60 0.98ms
Reduction 2.56×↓ 4.58×↓ 1.40×↓ 1.51×↓ 2.64×↓

results further demonstrate that TimeBase not only main-
tains strong predictive performance but also offers superior
efficiency, making it well-suited for resource-constrained
environments.

Efficiency in Ultra-long Look-back Window Addition-
ally, we evaluate the efficiency of TimeBase under ultra-
long look-back windows, comparing it with DLinear. The
comparison focuses on three key metrics: running time
per iteration, GPU memory usage, and parameter count, as
shown in Figure 4. As the look-back window increases
from 720 to 6480, with a fixed batch size of 12 and predic-
tion length of 720, TimeBase consistently demonstrates its
lightweight nature. Even with a ninefold increase in input
sequence length, TimeBase’s running time only increases
by 0.05 seconds, GPU memory usage expands by a factor of
3.8, and the number of parameters grows by only 3.1 times.
These results highlight the model’s extreme efficiency and
scalability in handling ultra-long sequences.

4.4. Performance on Large-Scale Datasets

To further validate the robustness of TimeBase under ex-
treme conditions, we conduct experiments on four large-
scale datasets. As shown in Table 5, TimeBase consis-
tently outperforms or matches strong baselines across all
forecasting horizons, underscoring its effectiveness in han-
dling large-scale forecasting tasks. Notably, TimeBase ranks
within the top two across all horizons, highlighting its advan-
tages in both prediction quality and computational efficiency.
Compared to state-of-the-art models such as iTransformer,
DLinear, and PatchTST, TimeBase achieves lower forecast-
ing errors while significantly reducing computational cost,
as reflected by its much lower Multiply–Accumulate Op-
erations (MACs). Even on the largest dataset, CA with
8600 variables, TimeBase requires only 42.11M∼74.30M
MACs, showcasing its exceptional capability in scenarios

with limited computational resources or extremely large
input scales.

4.5. Plug-and-Play Complexity Reducer for PatchTST

Settings TimeBase can be seamlessly integrated into
any patch-based forecasting model to extract basis com-
ponents prior to patching the input time series. For patch-
based methods, the general prediction pipeline can be ab-
stracted as Y = Head(Encode(Patch(X))). With the
incorporation of TimeBase, the pipeline becomes Y =
Head(Encode(BasisExtract(Patch(X)))), where the ex-
traction of basis components significantly reduces the num-
ber of required patches, thus greatly simplifying model
complexity. We validate the plug-and-play capability of
TimeBase by applying it to the widely recognized PatchTST
model, resulting in the variant PATCHTST (W/ TIMEBASE).
To ensure a fair comparison in terms of forecasting accu-
racy, computational complexity, and parameter count, we
set the input sequence length to 720 for both PatchTST and
PATCHTST (W/ TIMEBASE).

Quantitative Analysis of TimeBase Integration As
shown in Table 4, PATCHTST (W/ TIMEBASE) achieves
comparable or even slightly improved forecasting accuracy,
measured by MSE and MAE, while significantly reducing
both parameter count and computational cost. Specifically,
across 56 forecasting metrics on 7 datasets, PATCHTST (W/
TIMEBASE) outperforms the original PatchTST on 43 met-
rics, while the remaining 13 show only a marginal average
degradation of 1.54%, which can be considered negligible.
In terms of overall performance, PATCHTST (W/ TIME-
BASE) reduces MSE and MAE by 1.27% and 1.13%, re-
spectively, indicating that the basis extraction does not harm
predictive power, and may even offer slight improvements.
On the efficiency front, TimeBase enables dramatic reduc-
tions: MACs are reduced by 77.74% to 93.03%, and the
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Figure 4. Comparison of efficiency metrics between TimeBase and other lightweight model with varying look-back windows. (a) Running
time per iteration (s/iter), (b) GPU memory consumption, and (c) Parameter count as the look-back window increases from 720 to 6480.

Table 4. Performance of TimeBase as a Plug-and-Play Component for Patch-Based Methods. The input length is set as 720.

Model PatchTST PATCHTST (W/ TIMEBASE)

Metric MSE MAE MACs Params MSE MAE MACs Params

96 0.377 0.408 11.05 M 0.15 M 0.364↓3.45% 0.398↓2.45% 0.77M↓93.03% 0.03M↓80.00%
192 0.413 0.431 12.02 M 0.29 M 0.402↓2.66% 0.424↓1.62% 0.84M↓93.01% 0.04M↓86.21%
336 0.436 0.446 13.47 M 0.50 M 0.423↓2.98% 0.437↓2.02% 1.24M↓90.79% 0.06M↓88.00%

ETTh1

720 0.455 0.475 17.34 M 1.05 M 0.475↑4.40% 0.49↑3.16% 1.58M↓90.89% 0.11M↓89.52%
96 0.276 0.339 11.05 M 0.15 M 0.275↓0.36% 0.339↓0.00% 1.28M↓88.42% 0.03M↓80.00%
192 0.342 0.385 12.02 M 0.29 M 0.334↓2.34% 0.381↓1.04% 1.39M↓88.44% 0.05M↓82.76%
336 0.364 0.405 13.47 M 0.50 M 0.36↓1.10% 0.407↑0.49% 1.25M↓90.72% 0.06M↓88.00%

ETTh2

720 0.395 0.434 17.34 M 1.05 M 0.397↑0.51% 0.436↑0.46% 1.19M↓93.14% 0.09M↓91.43%
96 0.298 0.352 258.69 M 1.51 M 0.29↓2.68% 0.345↓1.99% 28.87M↓88.84% 0.52M↓65.56%
192 0.335 0.373 266.43 M 2.61 M 0.331↓1.19% 0.368↓1.34% 29.73M↓88.84% 0.65M↓75.10%
336 0.366 0.394 278.05 M 4.27 M 0.364↓0.55% 0.386↓2.03% 31.02M↓88.84% 0.83M↓80.56%

ETTm1

720 0.420 0.421 309.01 M 8.69 M 0.419↓0.24% 0.416↓1.19% 34.46M↓88.85% 1.32M↓84.81%
96 0.165 0.260 258.69 M 1.51 M 0.165↓0.00% 0.256↓1.54% 57.59M↓77.74% 0.65M↓56.95%
192 0.219 0.298 266.43 M 2.61 M 0.222↑1.37% 0.293↓1.68% 29.73M↓88.84% 0.65M↓75.10%
336 0.268 0.333 278.05 M 4.27 M 0.273↑1.87% 0.332↓0.30% 61.89M↓77.74% 1.26M↓70.49%

ETTm2

720 0.352 0.386 309.01 M 8.69 M 0.353↑0.28% 0.385↓0.26% 68.77M↓77.75% 2.24M↓74.22%
96 0.149 0.199 776.08 M 1.51 M 0.145↓2.68% 0.195↓2.01% 86.60M↓88.84% 0.52M↓65.56%
192 0.193 0.243 799.30 M 2.61 M 0.189↓2.07% 0.238↓2.06% 89.18M↓88.84% 0.65M↓75.10%
336 0.240 0.281 834.14 M 4.27 M 0.243↑1.25% 0.284↑1.07% 92.62M↓88.90% 0.83M↓80.56%

Weather

720 0.312 0.334 927.04 M 8.69 M 0.314↑0.64% 0.334↓0.00% 103.38M↓88.85% 1.32M↓84.81%
96 0.141 0.240 11.86 G 1.51 M 0.128↓9.22% 0.223↓7.08% 1.32G↓88.87% 0.52M↓65.56%
192 0.156 0.256 12.22 G 2.61 M 0.145↓7.05% 0.238↓7.03% 1.36G↓88.87% 0.65M↓75.10%
336 0.172 0.267 12.75 G 4.27 M 0.160↓6.98% 0.255↓4.49% 1.42G↓88.86% 0.83M↓80.56%

Electricity

720 0.207 0.299 14.17 G 8.69 M 0.197↓4.83% 0.288↓3.68% 1.58G↓88.85% 1.32M↓84.81%
96 0.363 0.250 31.86 G 1.51 M 0.360↓0.83% 0.252↑0.80% 4.27G↓86.60% 0.55M↓63.58%
192 0.382 0.258 32.81 G 2.61 M 0.371↓2.88% 0.256↓0.78% 4.39G↓86.62% 0.70M↓73.18%
336 0.399 0.268 34.24 G 4.27 M 0.396↓0.75% 0.278↑3.73% 4.58G↓86.62% 0.92M↓78.45%

Traffic

720 0.432 0.289 38.05 G 8.69 M 0.422↓2.31% 0.284↓1.73% 5.09G↓86.62% 1.51M↓82.62%

number of parameters is decreased by 56.95% to 91.43%.
For example, on the Traffic dataset, the parameter count
of PatchTST ranges from 1.51M to 8.69M, whereas the
TimeBase-enhanced variant achieves the same task with
substantially fewer parameters and computations. These
results demonstrate that the low-rank nature of long-term
time series often leads to substantial computational redun-
dancy, which can be effectively mitigated by TimeBase via
basis component extraction. Its plug-and-play design al-

lows seamless integration with existing patch-based models,
enabling users to boost efficiency significantly without the
need for architectural re-design or retraining from scratch.

4.6. Hyperparameter Analysis

This section explores the impact of two key hyperparame-
ters on the performance of TimeBase: the number of basis
functions R and the orthogonal loss weight λorth. Fig-
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Figure 5. Effect of orthogonal loss weight λorth across Traffic, Electricity, ETTh1, and ETTh2.

Table 5. Long-term time series forecasting results in large scale
datasets. Input lengths of all models are set to 720.

Methods TimeBase iTransformer DLinear PatchTST

Metric MAE MACs MAE MACs MAE MACs MAE MACs
96 0.259 42.11M 0.309 7.24G 0.279 1.78G 0.266 7.61G

192 0.299 47.06M 0.340 7.45G 0.312 3.57G 0.358 15.22G
336 0.317 54.49M 0.337 7.76G 0.355 6.24G 0.321 26.63GCA

720 0.386 74.30M 0.441 8.61G 0.386 13.38G 0.439 57.07G
96 0.302 18.77M 0.361 3.23G 0.358 795.39M 0.314 3.39G

192 0.338 20.98M 0.345 3.32G 0.385 1.59G 0.397 6.78G
336 0.397 24.29M 0.413 3.46G 0.447 2.78G 0.407 11.87GGLA

720 0.452 33.13M 0.489 3.84G 0.488 5.97G 0.473 25.44G
96 0.183 11.52M 0.206 1.98G 0.189 487.94M 0.198 2.08G

192 0.194 12.87M 0.198 2.04G 0.212 975.87M 0.224 4.16G
336 0.199 14.90M 0.231 2.13G 0.237 1.71G 0.208 7.28GGBA

720 0.206 20.32M 0.229 2.36G 0.237 3.66G 0.227 15.61G
96 0.163 3.51M 0.194 606.99M 0.187 148.54M 0.175 633.47M

192 0.173 3.92M 0.199 624.73M 0.184 297.08M 0.174 1.27G
336 0.179 4.54M 0.185 651.35M 0.208 519.88M 0.195 2.22GSD

720 0.183 6.19M 0.216 722.32M 0.202 1.11G 0.218 4.75G

Figure 6. Effect of basis number R.

ure 5 shows the MSE results as the orthogonal loss weight
λorth is varied across [0.00, 0.04, 0.08, 0.12, 0.16, 0.20].
For datasets such as ETTh1, and ETTh2, prediction perfor-
mance fluctuates with different values of λorth. However,
for Traffic and Electricity, the performance remains rela-
tively stable. Overall, an appropriate value of λorth can
enhance forecasting performance, which are varied across
different datasets. In Figure 6, the number of basis number
R is varied from [2, 4, 6, 12, 18, 24, 30], and the correspond-
ing MSE results for Traffic, Electricity datasets are reported.
The results show that using too few basis components (e.g.,

R = 2) leads to a noticeable performance drop. However,
once R exceeds a modest threshold (typically R ≥ 4), the
model performance stabilizes. These findings indicate that
TimeBase can achieve strong forecasting performance with
a small number of basis components. In practice, we typi-
cally set R = 6 for most datasets. For datasets with more
complex temporal patterns, a larger R is recommended to
enhance the expressive capacity of the basis components.

5. Conclusion
Considering the temporal pattern similarity and low-rank
characteristics, we design TimeBase, the lightest known
model for long-term forecasting, with only 0.39K param-
eters, 2.77M MACs computation, 88.89M memory usage,
and a CPU inference speed of 0.98ms. This demonstrates
that even the most minimalist models can achieve strong
predictive performance, providing a design foundation for
more efficient time series models. Furthermore, TimeBase
can function as a plug-and-play tool to reduce the complex-
ity of any patch-based models. This approach (1) enables
long-term time series forecasting models to be deployed
on resource-constrained edge devices, and (2) offers new
insights for lightweight model designs, encouraging time
series researchers to fully leverage sequential data and inspir-
ing the development of backbone networks for pre-trained
large LTSF models.
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A. Lightweight Forecasting Survey
As for lightweight forecasting , many Linear-based models have emerged, aiming to achieve lightweight forecasting solutions
(Wang et al., 2024a). The main differences of them from TimeBase are summarized in Table 6. DLinear (Zeng et al.,
2023) introduces a linear model based on trend and seasonal decomposition, whose competitive forecasting performance
empirically demonstrated the feasibility of using Linear for LTSF. Following this, TiDE (Das et al., 2024) provides theoretical
proof that the simplest linear analogue could achieve near-optimal error rates for linear dynamical systems. Later, numerous
Mixer-based works emerge, such as MTS-Mixer (Li et al., 2023), TSMixer (Ekambaram et al., 2023) and HDMixer (Huang
et al., 2024a), which stack standard MLP layers to efficiently capture correlations across different dimensions of multivariate
time series. Furthermore, Koopa (Liu et al., 2024b) addresses the challenge of dynamic and unstable time series systems
by disentangling time-variant and time-invariant components using Fourier filters and designing a Koopman Predictor
to advance the respective dynamics. TimeMixer (Wang et al., 2024d) tackles the issue of different granularity levels in
micro and macro series by proposing mixing blocks, fully leveraging disentangled multi-scale series in both past extraction
and future prediction phases. These works represent efficient time series forecasting models based on Linear structures
(1.03 M ∼ 31.07 M). More recently, FITS (Xu et al., 2024) further reduces model complexity to 10K parameters by
employing low-pass filtering to extract a compact set of frequency-domain features via linear layers, while SparseTSF (Lin
et al., 2024b) leverages periodic structures in the data to achieve an even more compact design with only 1.0K parameters.
However, it still remains challenging when faced with stricter deployment constraints on edge devices and higher efficiency
demands (Chatfield, 2013). To address this, we propose TimeBase to significantly reduce data complexity by extracting
temporal basis components using the low-rank characteristics in long-term time series. Our approach could require only
0.39K parameters to achieve competitive predictive performance.

Table 6. Differences between TimeBase and other lightweight linear-based models. Model size refers to the parameter count, and
performance is evaluated using the MSE metric, both assessed in the 720-horizon electricity forecasting task.

Linear-based Model TimeBase(Ours) SparseTSF FITS TimeMixer Koopa DLinear MTS-Mixer TSMixer HDMixer TiDE

Model Size Extremely Light Extremely Light Extremely Light Light Normal Light Light Light Light Normal
(0.39 K) (1.0 K) (10 K) (5.57M) (30.04 M) (1.03M) (2.02M) (1.05M) (4.81M) (31.07M)

Performance Perfect Perfect Perfect Perfect Perfect Perfect Good Good Good Good
(0.208) (0.208) (0.209) (0.209) (0.215) (0.209) (0.213) (0.236) (0.243) (0.241)

Forecasting Type Segment-level Segment-level Frequency-level Point-level Point-level Point-level Point-level Point-level Point-level Point-level

Plug-and-play ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

B. Effectiveness Analysis of TimeBase
Low Rank Characteristics Assume we have a historical time series matrix Xhis ∈ RN×P , whereN represents the number
of temporal segments and P denotes the length of each segment. According to the definition of singular value decomposition
(SVD), any matrix X ∈ RN×P can be decomposed as:

Xhis = UΣV T (9)

where U is an N ×N orthogonal matrix, Σ is an N × P diagonal matrix containing the singular values, and V is an P × P
orthogonal matrix. We can establish a threshold to compute the approximate rank:

Rank(Xhis) ≈ #{σi ∈ Σ : σi > ϵ} (10)

where σi is the singular values of Xhis for a small threshold ϵ > 0, and #{·} is the number. Figure 1 (b) illustrates the
singular value distribution from real-world long-term time series data. The rapid decay of the singular values indicates
that a large portion of the matrix’s information is captured by only a few dominant components, thereby confirming its
low-rank nature. Thus, Due to the extreme similarity in temporal patterns across different segments, long-term time series
Xhis ∈ RN×P often exhibits approximate low-rank characteristics:

Rank(Xhis) ≪ min(N,P ) (11)

Generalization of TimeBase Specifically, in the context of TimeBase, the right singular vectors in V T of Eq(9) can
be interpreted as candidate basis components E ∈ RR×P , where R ≪ min(N,P ) specifies the number of significant
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components to be retained. Next, to reconstruct the time series data Xhis using these basis vectors, it can be achieved by a
linear layer in a deep learning framework, which applies the following transformation: XT

his ≈ ETWE +B. Based on this,
we can get ET ≈ (XT

his −B)×W †
E , and the prediction is XT

pred = ETWpred +Bpred. The prediction error is defined as:

r = XT
pred −ETWpred −Bpred (12)

By ignoring the bias term Bpred, the norm of the error is:

∥r∥2 = ∥Xpred −WpredE∥2 (13)

To derive the optimal coefficient matrix Wpred, we need to solve the following optimization problem:

min
Wpred

∥Xpred −WpredE∥22

=min
Wpred

Tr
(
(Xpred −WpredE)(Xpred −WpredE)T

)
=min

Wpred
Tr(XpredX

T
pred)− 2Tr(WpredEXT

pred) + Tr(WpredEETWT
pred)

(14)

Next, we take the derivative:

∇Wpred∥Xpred −WpredE∥22
=∇Wpred Tr(XpredX

T
pred)− 2Tr(WpredEXT

pred) + Tr(WpredEETWT
pred)

=− 2XpredE
T + 2WpredEET

(15)

Setting the derivative equal to zero, we get:

Wpred = XpredE
T (EET )−1 (16)

Substituting the optimal coefficient Wpred into the error expression, we obtain the error:

r = Xpred −XpredE
T (EET )−1E

= Xpred(I−ET (EET )−1E)
(17)

Here, P = I−ET (EET )−1E is a projection matrix. The norm property of the projection matrix can be bounded:

P = ∥I−ET (EET )−1E∥2 = 1− σmin, (18)

where σmin represents the smallest singular value of EET . Since singular values are equivalent to eigenvalues in this
context:

σmin = λmin(EET ) (19)

Next, based on the fact that the spectral norm of the projection matrix is bounded above by 1
λmin(EET )

(Golub and Van Loan,
2013), and utilizing the inequality property of matrix norms, ∥AB∥2 ≤ ∥A∥2∥B∥2 (Horn and Johnson, 2012), we obtain:

∥r∥2 ≤ 1

λmin(EET )
∥Xpred∥2 (20)

where λmin(EET ) denotes the smallest eigenvalue of the Gram matrix EET . This result highlights that the generalization
capability of TimeBase to arbitrary time series relies on learning a well-represented basis matrix E. If E exhibits a favorable
eigenvalue distribution (i.e., λmin(EET ) is large), the upper bound on prediction error is lower, highlighting the importance
of a learned high-quality basis components.

C. Experiment Details
C.1. Experiment Setups

We briefly describe the selected 10 state-of-the-art baselines as follows: 1) iTransformer (Liu et al., 2024a) simply inverts
the duties of the attention mechanism and the feed-forward network to encode each individual series into variate tokens and
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for forecasting. 2) PatchTST (Nie et al., 2023) is a strong versatile transformer baseline using channel-independence and
patching. 3) TimesNet (Wu et al., 2023) is a task-general foundational model for time series, reshaping 1-dim temporal
data to 2-dim space and using 2-dim backbone to deal with the data. 4) FEDformer (Zhou et al., 2022) introduces a
frequency-enhanced decomposer to model seasonal-trend time series in an efficient manner. 5) Autoformer (Wu et al.,
2021) employs an auto-correlation mechanism and series decomposition block to improve long-sequence forecasting. 6)
Informer (Zhou et al., 2021) utilizes a sparse self-attention mechanism and a distilling operation to handle long time series
more efficiently. 7) DLinear (Zeng et al., 2023) is a simple linear-based model combined with a decomposition module. 8)
FITS (Xu et al., 2024) introduces an innovative method for time series forecasting using a complex-valued neural network,
effectively capturing both the magnitude and phase of the data. This dual representation enables a more thorough and
efficient analysis of time series signals. 9) SparseTSF (Lin et al., 2024b) simplifies the time series forecasting process by
down sampling the original sequences at fixed intervals. 10) TimeMixer (Wang et al., 2024d) tackles the issue of different
granularity levels in micro and macro series by proposing mixing blocks.

Implementation Details We build TimeBase using PyTorch 1.13.0 (Paszke et al., 2019). The model is trained with the
Adam optimizer (Kingma, 2014) with L2 loss over 30 epochs. After the first three epochs, a learning rate decay of 0.8 is
applied, and early stopping is employed with a patience threshold of five epochs. In TimeBase, Channel Independence (CI)
(Nie et al., 2023) is involved to simplify the multivariate forecasting process to univariate time series forecasting. Due to its
highly simplistic design, TimeBase requires minimal hyperparameter tuning. The segment length P is set to the natural
period of the dataset (e.g., P = 24 for ETTh1), or respectively shorter when dealing with datasets that exhibit extremely long
periods (e.g., P = 4 for Weather). We perform a grid search for TimeBase to find the optimal hyperparameters, specifically
for the regularization parameter λorth = [0.00, 0.04, 0.08, 0.12, 0.16, 0.20] to accommodate variances between datasets, as
well as the learning rate between 0.01 and 0.5. The loss function is MSE. To enhance the reliability of our results, we re-run
baselines in an uniform and fair setting. For SparseTSF, PatchTST, DLinear, FITS, TimeMixer, Fedformer, and TimesNet,
we utilized their official code repositories. For Autoformer and Informer, we leverage the code provided in the official
DLinear repository to run these models. To ensure a fair comparison with standard LTSF baselines such as (Xu et al., 2024;
Lin et al., 2024b), which utilize a uniform input length of 720, we also adopt an input length of 720 for all models. It is
important to note that we have corrected the bug involving test loader where drop last=True during testing on the
test set, ensuring that drop last=False is used instead, which ensures a fair comparison in LTSF(Qiu et al., 2024).

C.2. Additional Results

Figure 7. Visualization of the synthetic data generated using the equation Y = | cos(X)| sin(100X). The dataset comprises 5000
samples, which are split into training (60%), validation (20%), and testing (20%) sets.

Effectiveness on Synthetic Data The synthetic dataset derived from the function Y = | cos(X)| sin(100X) is shown in
Figure 7, and it provides a controlled and challenging benchmark to evaluate the forecasting performance of TimeBase.
The data was sampled with high frequency to capture intricate oscillations, divided into training, validation, and testing
sets in a 6:2:2 ratio. The basis number is set as 6 for TimeBase to achieve efficient basis extraction. TimeBase consistently
demonstrated superior accuracy and efficiency across varying prediction lengths. For a forecasting length of 100, it achieved
an MSE of 0.007 and an MAE of 0.070, utilizing only 0.19K parameters and 0.077M MACs, substantially less than its
competitors. At a forecasting length of 200, TimeBase maintained robust accuracy (MSE = 0.010, MAE = 0.082) while still
requiring minimal resources (0.23K parameters, 0.093M MACs). For a length of 300, it continued to excel in efficiency
and delivered competitive accuracy (MSE = 0.013, MAE = 0.094), outperforming DLinear and approaching PatchTST’s
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Table 7. Performance of TimeBase on synthetic data for a forecasting length of 100, 200, 300.
L Model MSE MAE MACs Params

10
0 TimeBase 0.007 0.070 0.077M 0.19K

DLinear 0.015 0.081 0.1M 100K
PatchTST 0.011 0.085 1.28M 219K

20
0 TimeBase 0.010 0.082 0.093M 0.23K

DLinear 0.021 0.124 0.2M 200K
PatchTST 0.017 0.083 1.48M 420K

30
0 TimeBase 0.013 0.094 0.099M 0.26K

DLinear 0.039 0.180 0.3M 300K
PatchTST 0.023 0.136 1.69M 622K

accuracy but at a fraction of the computational cost.

C.3. Ablation Study

Figure 8. MSE comparison with and without orthogonal constraint across different prediction lengths for Traffic, Electricity, ETTh1, and
ETTh2 datasets.

Figure 8 illustrates the MSE results for various prediction lengths, both with and without the orthogonal constraint. The
inclusion of the orthogonal constraint consistently leads to improvements across all datasets, with gains up to 0.036 in MSE.
This indicates that the orthogonal constraint helps the model learn more representative basis components, enhancing both the
model’s representational capacity and predictive performance. The positive impact across multiple datasets and forecasting
horizons demonstrates the value of incorporating the orthogonal constraint into the training process.

C.4. Segment Length Analysis

Figure 9. MSE results for different segment lengths (P = [6, 12, 18, 24, 30]) across various prediction lengths on Traffic, Electricity,
ETTh1, and ETTh2 datasets.

This section explores the impact of segment length on the forecasting performance of TimeBase across the Traffic, Electricity,
ETTh1, and ETTh2 datasets. The analysis evaluates how varying the length of sub-sequence segments, denoted as P , affects
prediction accuracy for different forecasting horizons. Figure 9 shows that across all datasets and forecasting horizons, the
best performance is consistently achieved when the segment length is set to P = 24. In contrast, shorter or longer segment
lengths (P = 6, 18, 30) result in noticeably higher MSE values, indicating suboptimal performance. This suggests that
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the choice of segment length significantly affects the model’s ability to capture temporal patterns effectively. The superior
performance at P = 24 highlights the importance of aligning the segment length with the inherent periodicity of the data.
Deviation from this optimal segment length reduces the model’s capacity to accurately represent the underlying time series
dynamics, thus leading to a degradation in forecasting accuracy. This analysis underscores the necessity of selecting an
appropriate segment length that corresponds to the temporal nature of the data. The findings suggest that segmenting the time
series into periods of P = 24 yields the most representative and predictive sub-sequences, enhancing overall forecasting
performance.

C.5. Performance on Further Prediction

To better illustrate its strengths in long-term time series forecasting, we extended the maximum prediction horizon beyond
720 to include 1080, 1440, and 1800 time steps. We compared its performance against well-established LTSF models,
such as iTransformer and DLinear, across multiple datasets (ETTh1, ETTh2, and Electricity). As shown in Table 8, the
results underscore that TimeBase consistently outperforms these models in ultra-long-term forecasting tasks. It achieves
this while maintaining linear growth in model complexity (measured by parameters, MACs), demonstrating scalability
as the prediction length increases. Specifically, TimeBase not only yields lower Mean Squared Error (MSE) values but
also achieves these results with significantly fewer parameters and MACs compared to its counterparts. For example, in
the ETTh1 dataset at a prediction length of 1800, TimeBase achieves an MSE of 0.714 with only 0.7K parameters and
0.1M MACs. In contrast, iTransformer and DLinear exhibit higher MSEs of 0.812 and 0.796, respectively, while using
523.9K and 2.59M parameters, and 6.78M and 18.15M MACs. Similar trends are observed across the ETTh2 and Electricity
datasets, where TimeBase demonstrates robust accuracy and efficiency advantages. These findings validate TimeBase’s
effectiveness in ultra-long-term forecasting tasks, particularly when resource efficiency is critical. Moreover, the linear
growth in computational cost ensures its feasibility for deployment on edge devices.

Table 8. Further prediction length on Electricity, ETTh2 and ETTh1. The input length is set as 720 for all models.
L 1080 1440 1800

Metric MSE Param MAC MSE Param MAC MSE Param MAC

E
L

C
. TimeBase 0.234 0.5 K 3.47 M 0.264 0.6 K 4.16 M 0.295 0.7 K 4.85 M

iTrans. 0.253 5.65 M 1.85 G 0.272 5.84 M 1.91 G 0.325 6.03 M 1.97 G
DLinear 0.255 1.6 M 499.45 M 0.290 2.1 M 665.86 M 0.321 2.59 M 832.26 M

E
T

T
h2 TimeBase 0.478 0.5 K 0.07 M 0.543 0.6 K 0.09 M 0.552 0.7 K 0.1 M

iTrans. 0.501 431.1 K 5.58 M 0.575 477.4 K 6.18 M 0.597 523.9 K 6.78 M
DLinear 0.583 1.6 M 10.89 M 0.672 2.1 M 14.52 M 0.652 2.59 M 18.15 M

E
T

T
h1 TimeBase 0.551 0.5 K 0.07 M 0.636 0.6 K 0.09 M 0.714 0.7 K 0.1 M

iTrans. 0.602 431.1 K 5.58 M 0.708 477.4 K 6.18 M 0.812 523.9 K 6.78 M
DLinear 0.582 160 M 10.89 M 0.693 2.1 M 14.52 M 0.796 2.59 M 18.15 M

C.6. Extension to Multi-Seasonality

In time series forecasting, many real-world datasets exhibit multiple seasonalities, which are crucial for accurate modeling
and prediction. For example, traffic data often contains both daily and weekly seasonal patterns, which can significantly
influence forecasting accuracy. TimeBase, initially designed for univariate time series forecasting, can be extended to handle
such multi-seasonal data by learning distinct period bases for each individual seasonality and combining their outputs to
generate more accurate predictions. This extension allows TimeBase to model complex periodic patterns while retaining its
minimalistic architecture. Mathematically, the multi-seasonal extension of TimeBase can be formulated as follows:

MSTimeBase =
∑
i

TimeBase(X;P = pi) (21)

where X represents the input data and P = pi denotes the different period bases corresponding to each seasonality. By
learning multiple period bases (p ∈ [24, 168] hours, for example), the model can capture both short-term and long-term
seasonal patterns and combine them to enhance the accuracy of the forecast. To evaluate this extension, we applied the
multi-seasonality approach to the Traffic dataset, considering both daily and weekly seasonalities. The results, summarized
in Table 9, demonstrate that incorporating multiple seasonalities into TimeBase improves the prediction performance with
only a modest increase in computational cost and model complexity. Specifically, the model’s Mean Squared Error (MSE)
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Figure 10. Visualization of the learned basis components on the Electricity dataset and the corresponding Pearson correlation coefficients.

and Mean Absolute Error (MAE) improve when compared to the original TimeBase model, despite only a slight increase in
the number of parameters and computational cost. This extension underscores the versatility and power of TimeBase in
dealing with complex, multi-seasonal patterns, making it suitable for a wide range of LTSF tasks. The ability to extend
TimeBase while maintaining its lightweight nature reflects its potential for scalable deployment in real-world applications,
where seasonalities often vary and need to be captured for accurate forecasting.

Table 9. Performance of TimeBase extended to multi-seasonality. The prediction length is 720 for Traffic dataset.

Model MSE MAE MACs Params R
iTransformer 0.450 0.313 1.01 G 11.61 M /

TimeBase 0.456 0.301 9.93 M 0.51 K 8
MSTimeBase 0.450 0.295 16.76 M 0.49 K 6

C.7. Basis Visualization

Figure 10 displays the basis components extracted by TimeBase from the Electricity dataset, along with the Pearson
correlation matrix between them. The results show that the Pearson correlation coefficients between most basis components
are close to zero, indicating low correlation among them. This suggests that TimeBase is capable of extracting distinct and
representative basis components from the approximate low-rank structure of long-term time series data. By identifying
these representative basis components, TimeBase can perform segment-level forecasting using a compact set of basis
components. This approach significantly reduces the number of parameters required by the model while maintaining
competitive forecasting performance. The ability to leverage such compact representations is key to TimeBase’s parameter
efficiency and contributes to its strong performance on long-term time series forecasting tasks.

C.8. Full Results
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Table 10. Full Long-term time series forecasting results in normal scale datasets, comparing TimeBase with other baselines. Input lengths
of all models are set to 720. Top 2 results are highlighted in bold.

TimeBase SparseTSF TimeMixer FITS iTransformer DLinear PatchTST TimesNet FEDformer Autoformer InformerMethods (ours) (2024b) (2024d) (2024) (2024a) (2023) (2023) (2023) (2022) (2021) (2021)
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.349 0.384 0.362 0.389 0.410 0.441 0.380 0.402 0.389 0.421 0.378 0.402 0.377 0.408 0.437 0.454 0.485 0.500 0.555 0.558 1.269 0.855
192 0.387 0.410 0.404 0.412 0.448 0.465 0.415 0.424 0.424 0.446 0.415 0.425 0.413 0.431 0.456 0.469 0.481 0.498 0.599 0.575 1.487 0.943
336 0.408 0.418 0.435 0.428 0.482 0.490 0.439 0.439 0.456 0.469 0.449 0.449 0.436 0.446 0.494 0.494 0.522 0.521 0.853 0.702 1.544 0.945ETTh1
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