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ABSTRACT

Fairness has often been seen as an ethical concern that needs to be considered at
some cost on the utility. In contrast, in this work, we formulate fairness, and es-
pecially fairness in ranking, as a way to avoid unjust biases and provide a more
accurate ranking that results in improvement on the actual unbiased utility. With
this in mind, we design a fairness measure that, instead of blindly forcing some
approximate equality constraint, checks if the outcome is plausible in a just world.
Our fairness measure asks a simple and fundamental statistical question: ”What is
the chance of observing this outcome in an unbiased world?”. If the chance is high
enough, the outcome is fair. We provide a dynamic programming algorithm that,
given a ranking calculates our fairness measure. Secondly, given a sequence of
potentially biased scores, along with the sensitive feature, we provide a fair rank-
ing algorithm based on our fairness measure. Finally, we run some experiments
to understand the behavior of our ranking algorithm against other fundamental
algorithms.

1 INTRODUCTION

In the past decade, fairness has become a key concept in machine learning and automated decision
making. Specifically, in recommendation systems and hiring platforms, fairness means that ranking
mechanisms should be unbiased and not discriminate based on demographic characteristics or other
protected attributes.

The group of individuals in a ranking task is called candidates who may have sensitive attributes.
The algorithmic methods that address fairness differ in the representation of candidates, the type
of bias, mitigation objectives, and mitigation methods such as worldviews Zehlike et al. (2021).
In response to worldviews, Friedler et al. Friedler et al. (2021) highlight the need to understand
the difference between our belief about fairness and the mathematical definition of fairness. They
present two views that represent the two ends of the spectrum: WYSIWYG (”what you see is what
you get”) and WAE (”we are all equal”). WYSIWYG assumes that what we see is nearly the same as
the real properties, with just a ϵ distortion. WAE assumes that biased observations cause differences
in utility distributions among the candidates.

In this work, we introduce a stochastic variant of WAE, that we refer to as Stochastic-WAE. Based
on stochastic-WAE, we provide a fairness measure that poses a fundamental statistical question:
What is the likelihood of observing this outcome in an unbiased scenario?. If this likelihood is high
enough, we consider it fair. We present Stochastic-WAE that captures randomness while keeping it
independent of sensitive data. It recognizes that probability distributions for different groups, such
as females and non-females, should be the same, despite potential score gaps in specific subsets.

Given a ranking, we provide a dynamic programming algorithm that answers the above question
and calculates our fairness measure. This can be used on top of other ranking algorithms to measure
their fairness. Next, we design a ranking algorithm that respects our fairness measure. Specifically,
we design an algorithm that, given a measure δ and given a sequence of potentially biased scores,
along with the sensitive feature, provides a fair ranking with maximum possible utility such that its
fairness measure is at most δ.
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1.1 PROBLEM SETTING

Let Ω be the set of all possible candidates that originate from a society that is originally faced with
bias. For simplicity of presentation, we focus on a single binary group with a score that includes an
unknown preexisting bias against women. Let

id(ω) =

{
1 if ω is a woman,
0 otherwise,

where ω ∈ Ω. We receive the set of candidates C = (ω1, . . . , ωn) and their corresponding biased
scores (ŷ1, ŷ2, . . . , ŷn). We define the following quantity which represents the minority proportion

p =

∑n
j=1 id(ωj)

n
.

A permutation over the candidate sample C is called a ranking. Let τ : {1, . . . , n} → C be the
observed-score-based ranking on C, i.e., ŷτ(1) ≥ · · · ≥ ŷτ(n), in which τ(i) is the candidate at rank
i. The utility of τ based on DCG approach is defined as follows Zehlike et al. (2022):

U(τ) =

n∑
i=1

ŷτ(i)

log2(i+ 1)
. (1)

In the context of ranking algorithms, the worldview of “We are all equal (WAE)” implies that indi-
viduals with similar qualities should have an equal chance of being ranked similarly Zehlike et al.
(2022).

In this work, we adopt a statistical approach to similarity, and hence, we assume that the unbiased
scores for men and women, in which discrimination based on gender is absent, are taken from the
same unknown probability distribution. Let yi be the i-th candidate’s unbiased score which is taken
from an unknown probability distribution PY where a random variable Y : Ω → R represents the
unbiased score for a given candidate. Based on the statistical WAE worldview, the value of yi is
independent of the group to which the candidate ωi belongs. Therefore, (y1, . . . , yn) is an indepen-
dent and identically distributed (i.i.d.) random sequence. Let the permutation σ be an ordering of
y1, . . . , yn s.t. yσ(1) ≥ . . . ≥ yσ(n). The permutation σ is an unbiased ranking for C.

Since the unbiased scores are taken the same distribution, we have E [Y (ω) | id(ω) = 1] =
E [Y (ω) | id(ω) = 0], and consequently, intuitively, the arrangement of women and men in cut-off
points of the ranking should not be statistically rare. Next we formalize this notion.

1.2 DEFINING FAIRNESS IN RANKING VIA STATISTICAL-WAE WORLDVIEW

For a ranking τ : {1, . . . , n} → C, let Fτ = {Sτ
1 , . . . , S

τ
n} where Sτ

i = {τ(1), . . . , τ(i)}. We
call Sτ

i the i’th partial set corresponding to τ . Hence, Sτ
1 ⊂ Sτ

2 ⊂ · · · ⊂ Sτ
n. Let Xτ

i be the
number of women in Sτ

i . Sort Y (ω1), Y (ω2), . . . , Y (ωn) to obtain an unbiased ranking σ such that
Y (ωσ(1)) ≥ Y (ωσ(2)) ≥ · · · ≥ Y (ωσ(n)).

Similarly, Xσ
i is the number of women in the i’th partial set Sσ

i . Since Y is a random variable, one
can see that σ is a random permutation and so Xσ

i is a random variable. For the sake of simplicity,
we will denote Xσ

i by Xi in the rest.
Definition 1. For a ranking τ : {1, . . . , n} → C, the partial set Sτ

i is said to be ”δ-rare” if and
only if the following inequality holds:

Pr[Xi ≤ Xτ
i ] < δ.

Moreover, we say Xτ
i is in the δ-tail of PXi

.

Now, we want to formalize the notion of fairness concerning the statistical WAE worldview pre-
cisely.
Definition 2. A ranking τ : {1, . . . , n} → C is called δ-fair if and only if none of the members of
the Fτ are δ-rare.

This definition explicitly says that none of the partial sets associated with a fair ranking is in the
δ-tail of PXi

. In other words, a ranking is δ-fair, if the occurrence probability of the least probable
partial set is not lower than δ.
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2 OTHER RELATED WORKS

One simple approach to define fairness is that the proportion of women among the top batches of
candidates must be close to the minority proportion. Yang et al. Yang and Stoyanovich (2017)
propose several quantifiers for this notion such as Normalized discounted difference and Normalized
discounted ratio in which they calculated the sum of discounted differences between the portion of
women and men in some cut-offs of the ranking.

Kleinberg and Raghavan introduced another approach in this framework Kleinberg and Raghavan
(2018) in which they assumed the candidates are partitioned into two groups (protected and priv-
ileged) and each candidate has an unknown unbiased score which is called potential. Moreover,
same as what we assumed for the unbiased scores, they studied the case that the potentials for both
groups come from a power law probability distribution. To maintain fairness, they propose to dis-
credit the observed scores for the privileged group by downgrading them by a factor. This work
enforces some assumptions on the probability distribution of the potential function. In comparison,
we do not require any assumptions on the distribution. In both works, it seems likely that a member
of the privileged group faces unfair discrimination since the main concern is to give some artificial
benefits to the protected group to maintain the desired diversity in the outcome.

In the context of mitigation objectives, in addition to worldviews that we mentioned before, there are
two other main concepts, namely, Equality Opportunity, and Intersectional discrimination Zehlike
et al. (2021). Equality of Opportunity (EO) is a philosophical idea which intends to eliminate unfair
barriers so that everyone has a fair chance to reach good positions in life Friedler et al. (2021);
Hardt et al. (2016;?); Khan et al. (2021); Kleinberg and Raghavan (2018); Dworkin (1981); Roemer
(2002); Zehlike et al. (2020); Arneson (2018); Khan et al. (2021). Heidari et al. Heidari et al. (2019)
use the EO framework to figure out how a person’s outcome is influenced by two main factors:
circumstance and effort. Circumstances include factors that are not the individual’s acts, such as
gender, race, and the family they were born into. The effort includes factors such as the individual’s
decisions and acts that can justify differences. There are different ideas about EO, such as, which
factors to consider and how to model the relationship between circumstance and effort.

Information Access Systems (IAS) rank and display content based on perceived merit, with con-
tent producers increasingly recognized as important stakeholders Joachims (2002). These interests
can be assessed individually or by group characteristics like gender or race. One of measures for
promoting fairness in rankings is pairwise accuracy Kuhlman et al. (2019); Fabris et al. (2023a;b).

Intersectional Discrimination states that candidates may belong to multiple protected groups at the
same time, like being both African-American and Female Crenshaw (1997); Makkonen (2002);
Schumacher et al. (2024) and seeks fairness for both simultaneously Collins (2022); Noble (2018);
Shields (2008); Yang et al. (2019). In the context of ranking, if fairness means having a fair share
in the top positions, it might be possible to have fairness for each gender group (men and women)
and each racial group (caucasian and non-caucasian) separately. However, there could still be a
problem if you look at a group that’s both Black and women, like Black women. They might not be
well-represented, even if each gender and racial group seems okay on its own Collins (2022); Noble
(2018); Shields (2008); Yang et al. (2019).

Score-based and supervised learning-based ranking methods employ distinct strategies to tackle
bias issues Zehlike et al. (2021); Hajian et al. (2016). In score-based ranking Yang and Stoyanovich
(2017); Yang et al. (2020; 2019); Stoyanovich et al. (2018); Kleinberg and Raghavan (2018); Celis
et al. (2017; 2020); Asudeh et al. (2019), three key approaches are utilized to address bias. The first
involves intervention in the score distribution, to reduce inequality inequalities in candidate scores.
The second approach is scoring function intervention which includes modifying how the scoring
scoring process operates. The third aspect focuses on intervening in the ranked outcome to ensure
the final ranked list is fair for everyone.

In supervised learning Biega et al. (2018); Beutel et al. (2019); Geyik et al. (2019); Lahoti et al.
(2019); Singh and Joachims (2018; 2019); Zehlike et al. (2017; 2020; 2022), bias mitigation methods
are categorized into three main groups: pre-processing, in-processing, and post-processing. Pre-
processing methods focus on rectifying bias in the training data. In-processing methods aim to train
models that inherently lack bias. Post-processing methods come into play after generating rankings,

3
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re-evaluating, and adjusting the ranking outcomes based on specific fairness criteria Zehlike et al.
(2021).

The objective function of the model aims to find a balance among three components: application
utility (i.e. classifier accuracy), group fairness, and individual fairness. However, this can make the
learning process challenging as it involves managing multiple aspects that may not align easily La-
hoti et al. (2019). Zehlike et al. Zehlike et al. (2020) proposed an algorithm by utilizing the optimal
transport theory to optimize decision-maker utility within the constraints of fairness. In another
work Zehlike et al. Zehlike et al. (2021) explored various several approaches that employ distinct
interpretations of utility, and we will clarify their formulations as needed. They also describe vari-
ous interpretations of utility. In score-based ranking, the simplest method of determining utility is
the sum of the scores of its elements disregarding candidate positions. Another approach involves
incorporating discounts based on position. This is rooted in the observation that placing high-quality
items at the top of the ranked list is more crucial, as these items are more likely to capture the atten-
tion of the consumer of the ranking. An alternative approach involves measuring the utility achieved
by candidates from a specific demographic group.

3 RANKING ALGORITHMS

In this section, we provide an algorithm to measure the fairness in ranking based on our fairness
criteria. Next, we design an algorithm that fairly ranks a given candidate set.

3.1 AN ALGORITHM TO MEASURE RANKING FAIRNESS

In algorithm 1, as we assumed the unbiased scores of all candidates come from the distribution PY ,
at each step of a ranking (consider the process as a step-by-step procedure that puts the candidates
in their place respectively from the first to the nth place), the probability of the next candidate to
be a woman is the proportion of unranked women to the total number of remaining candidates. We
prove the following theorem.

Theorem 1. For a given candidate sample C = (ω1, · · · , ωn), let n1 and n2 be the total number
of women and men respectively. Let a tuple (i,m) represent the event of seeing m men in the first i
candidates of a fair ranking. Then, by statistical WAE worldview, the following equation holds

Pr [(i,m)] =

(
n2 − (m− 1)

n− (i− 1)

)
Pr [(i− 1,m− 1)]

+

(
n1 − (i− 1−m)

n− (i− 1)

)
Pr [(i− 1,m)] .

This theorem allows us to calculate the probability of a partial set using the probabilities of the pre-
vious step’s partial sets. This enables us to develop a dynamic programming algorithm to calculate
the partial set probabilities which is represented in Algorithm 1.

By Theorem 1 the probability of the event that at most k women are among the first i candidates in
an unbiased environment, Pr[Xi ≤ k], is stored in P [i, i − k] (defined in line 9 of Algorithm 1).
Hence, we can verify the δ-fairness of a given ranking using Algorithm 2.

3.2 OBTAINING FAIR RANKING WITH HIGHEST UTILITY

The main goal of Algorithm 3 is to find a fair ranking that has the maximum utility among all
possible fair rankings. In order to do so, we follow a sequence of greedy operations and use dynamic
programming to choose the best (highest utility) ranking at each step. The following theorem allows
us to construct the required ranking permutation inductively, as the algorithm 3 does.

Theorem 2. For a positive real number δ and a candidate set C, Algorithm 3 outputs a δ-fair ranking
that has the highest utility.
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Algorithm 1 Probabilities Of Partial Sets
1: Input Dataset of candidates C.
2: Let n, n1 and n2 be the total number of candidates, women, and men respectively.
3: Let Q be a n× n2 matrix in which the Q[i,m] corresponds to the probability of the event that

m men occur in the first i candidates of an unbiased ranking.
4: Initialize Q:

Q[i,m] =


0 : i < m
n1

n : (i,m) = (1, 0)
n2

n : (i,m) = (1, 1)

5: for i = 1, 2, . . . n do
6: for m = 1, 2, . . . ,min(i, n2) do

Q [i,m] =

(
n2 − (m− 1)

n− (i− 1)

)
Q [i− 1,m− 1]

+

(
n1 − (i− 1−m)

n− (i− 1)

)
Q [i− 1,m]

7: end for
8: end for
9: Let P be a n× n2 matrix in which the P [i,m] corresponds to the probability of the event that

at least m men are among the first i candidates of an unbiased ranking.
10: Initialize P :

P [i,m] =


0 : i < m

1 : m = 0
n2

n : (i,m) = (1, 1)

11: for i = 1, 2, . . . n do
12: for m = 1, 2, . . . ,min(i, n2) do

P [i,m] =

i∑
j=m

Q[i, j]

13: end for
14: end for
15: return P

Algorithm 2 VerifyFairnessByPartialSets
1: Input Dataset of candidates C, a permutation (ranking) function τ , a real positive number δ
2: Let n be the total number of candidates.
3: P ← Probabilities Of Partial Sets(C)
4: for 1 ≤ i ≤ n do:
5: mi = number of men in {τ(1), . . . , τ(i)}
6: if P [i,mi] < δ then report unfair and terminate.
7: end if
8: end for
9: Report fair.

4 EXPERIMENTAL RESULTS

In this section, we report the experimental results in which we compared the average true utility of
several algorithms on several synthetic data sets. Synthetic datasets are artificially created datasets
that imitate the properties and structure of real-world data through a clear and understandable pro-
cess. By true utility we mean the value of the utility function (that is introduced in (1)) on the
unbiased scores which in reality we are not aware of, but since we are using synthetic datasets, we
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Algorithm 3 FindTheBestRankingByPsets

1: Input candidate set C, observed scores of candidates Ŷ , a real positive number δ
2: Let n, n1 and n2 be the total number of candidates, women, and men respectively.
3: Let Yw and Ym be the sorted scores of women and men, respectively.
4: P ← CalculateProbabilitiesOfPartialSets(C) ▷ Algorithm 1
5: Let U be an n× n2 matrix that stores the highest utility that can be obtained by a fair ranking

of i candidates with m men among them in U [i,m].
6: Let R be a table with lists as entries that store the corresponding ranking of U [i,m].
7: Initialize U as follows:

U [1, 0] =

{
Yw [0] If P [1, 0] > δ

−∞ O.W

U [1, 1] =

{
Ym [0] If P [1, 1] > δ

−∞ O.W

8: for i = 2, . . . , n do
9: for m = 0, . . . ,min(i, n2) do

10: if P [i,m] < δ then U [i,m] = −∞
11: break
12: end if
13: if i−m− 1 < n1 then

u1 =
Yw[i−m− 1]

log2(i+ 1)
+ U [i− 1,m]

14: end if
15: if m ¿ 0 then

u2 =
Ym[m− 1]

log2(i+ 1)
+ U [i− 1,m− 1]

16: end if
17: Handle the extreme cases of i− 1−m = n1 and m = 0.
18: U [i,m] = max(u1, u2)
19: Update R
20: end for
21: end for
22: Let π = R[n, n2].
23: Output π

can assume that the unbiased scores are provided initially. Each data set consists of a set of candi-
dates which are grouped by their gender and a set of unbiased scores for all of them which comes
from a distribution independent of their gender. As the literature implies, we assume the male can-
didates are the privileged ones so we set the observed scores of the male candidates the same as their
unbiased scores. The observed scores of women candidates are obtained by their unbiased scores
decremented by a random bias. We assume the unbiased scores come from a normal distribution
and without loss of generality1, we set the average to be 15. We report the results for two different
standard deviations 5 and 10. The distribution of bias may vary, but here because of the paper size
limit, we just study two cases of Normal and Uniform and Exponential distribution. For the case
that the bias comes from Normal or Exponential distribution, we report the results for the bias av-
erage range of 0 to 5 and for the Normal case specifically, we report the outcome for three different
standard deviations 0.5, 1, and 2 which seem more realistic in practice. In the body of the paper,
we study the cases where the number of male and female candidates are equal. In the appendix, we
provide the experiments where the portion of men and women are not equal.

1Because by the linearity of expectation, if we add a constant value to all of the scores, the mean of the
scores would be shifted by the same value. Moreover, this constant shift does not change the order of the
candidates and the utility function as defined in (1) would be shifted by a function of that constant value.
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Figure 1: Utility of Algorithms Over Unbiased Scores, 50 women - 50 men

We implemented Algorithm 3 (which is called Partial Set in our graphs) as well as some other
algorithms motivated by the literature. Here we re-introduce some previously studied algorithms
that will be used in our experiments.

Round Robin: This is the most trivial approach for satisfying fairness criteria. If the portion of
men to women is β, we simply put the best-unranked woman after each β men. For the sake of
simplicity, we suppose β is 1, 1

3 and 3.

Correlated Fair Gen: Yang et al. Yang and Stoyanovich (2017) propose an algorithm (called Rank-
ing Generator) which randomly ensures that the number of protected candidates does not fall far
below the minority proportion p. For each step of the Ranking generator algorithm, a Bernoulli
experiment with the success probability 1− p is done and if the experiment succeeds, we put a man
in that place.

Correlated Fair Gen: In the correlated approach, called Correlated Fair Gen, we update the mi-
nority proportion p in each step and place the candidate using a Bernoulli experiment as in the above
algorithm. This modified version is represented here just to enrich our experiments.

Due to the page limit, we just report the experiments of the cases in which the population of men and
the population of women are equal. We note that, we do not observe a huge change in the behavior
of the algorithms when we change the portion of men and women.

The main statement that we want to conclude from these experiments is that the Partial Set algorithm,
which is in some sense more moderate than Greedy and Round Robin, almost every time can do
better than both of them on unbiased scores. Because the Partial Set algorithm cares about fairness
and utility at the same time and is a mix of Greedy and Round Robin reasonably. In the following
experiments, the comparisons clarify when our algorithm does and when it does not better than the
other two.
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As shown in Figure 3.2, in all of the experiments, Partial Set and Greedy algorithms are almost
the same when the bias average is low. And when the bias average increases, Greedy goes down
faster than any other algorithm and if the bias average is not higher than a large value, the Partial
Set algorithm has the highest utility among them all. But when the bias average exceeds a certain
threshold, the Round Robin wins and it makes sense.
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