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Abstract

This article studies the problem of online non-parametric change point detection
in multivariate data streams. We approach the problem through the lens of kernel-
based two-sample testing and introduce a sequential testing procedure based on
random Fourier features, running with logarithmic time complexity per observation
and with overall logarithmic space complexity. The algorithm has two advantages
compared to the state of the art. First, our approach is genuinely online, and no
access to training data known to be from the pre-change distribution is necessary.
Second, the algorithm does not require the user to specify a window parameter over
which local tests are to be calculated. We prove strong theoretical guarantees on the
algorithm’s performance, including information-theoretic bounds demonstrating
that the detection delay is optimal in the minimax sense. Numerical studies on real
and synthetic data show that our algorithm is competitive with respect to the state
of the art.

1 Introduction

In the online change point detection problem, data is observed sequentially, and the goal is to flag
a change if the distribution of the data changes. The problem dates back to the early work of Page
[43], and has now been extensively studied in the statistics and machine learning literature [30, 3, 52].
However, these classical approaches assume that the data are low-dimensional and that the pre-
and post-change distributions belong to a known parametric family. In modern applications, both
assumptions are usually not satisfied. Examples of modern online change point detection problems
include: detecting changes in audio streams [4], in videos [1, 25], in highway traffic data [15], in
internet traffic data [31], or in cardiac time series [61]. Further, such data frequently has high volume,
and online change point detection procedures should still be able to process new data in real time and
with limited memory.

While algorithms for the problem of non-parametric online change point detection have been
proposed—see Section 2 for a brief overview—state-of-the-art methods suitable for modern data
suffer from at least one of the following two limitations. First, most procedures are not genuinely
online from a statistical perspective, in the sense that they either assume the pre-change distribution to
be known completely or they assume having access to historical data known to be from the pre-change
distribution. Second, most approaches require the user to specify a window parameter over which
local tests for a change in distribution will be applied. Choosing such a window is notoriously difficult
[47], and choosing the window too small or too large leads to a reduction in power or an increase
in the detection delay, respectively. Moreover, the window size imposes a limit on the historic data
considered, rendering detecting sufficiently small changes impossible.
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Motivated by the above limitations and challenges, we propose a new algorithm called Online RFF-
MMD (Random Fourier Feature Maximum Mean Discrepancy). On a high level, the algorithm
performs sequential two-sample tests based on the kernel-based maximum mean discrepancy (MMD;
[53, 14]). Crucially, approximating the maximum mean discrepancy using random Fourier features
(RFFs; [45]) leads to a detection statistic that can be computed in linear and updated in constant time.
By embedding these local tests in a sequential testing scheme on a dyadic grid of candidate change
point locations, we obtain an algorithm that does not require a window parameter and features a time
and space complexity logarithmic in the amount of data observed.

This article makes the following contributions:

• Computational efficiency: We propose Online RFF-MMD, a fully non-parametric change point
detection algorithm that does not require access to historical data, has no window parameter, and
features logarithmic runtime and space complexity.

• Minimax optimality: Online RFF-MMD comes with strong theoretical guarantees. In particular,
we derive information-theoretic bounds showing that the detection delay incurred by Online
RFF-MMD is optimal up to logarithmic terms in the minimax sense. While related results are
known in the offline setting [41, 42] and in the parametric online setting [30, 64], ours is the first
result of this kind for kernel-based online change point detection.

• Empirical validation: We perform a suite of benchmarks on synthetic data, the MNIST data, and
the HASC data to demonstrate the applicability of the proposed method. Our approach achieves
competitive results throughout all experiments.

The article is structured as follows. We recall related work in Section 2 and introduce our notations
and the problem in Section 3. Section 4 presents our algorithm and its guarantees, and Section 5 its
minimax optimality. Experiments are in Section 6 and limitations in Section 7. Additional results and
all proofs are in the appendices.

Table 1: Comparison of kernel-based change detectors. Genuinely online — whether the algorithm
can be executed without reference data known to be from the pre-change distribution; Window free
— whether the algorithm requires selection of a window parameter over which the detection statistic
is calculated; Time comp. — runtime complexity per new observation; Space comp. — total space
complexity; n — total number of observations.2

Algorithm Genuinely online Window free Time comp. Space comp.

Scan B-statistics [33] ✗ ✗ O
(
NW 2

)
O(NW )

NEWMA [24] ✓ ✗ O(r) O(r)
Online kernel CUSUM [59] ✗ ✗ O

(
NW 2

)
O(NW )

Online RFF-MMD ✓ ✓ O(r log n) O(r log n)

2 Related work

In the case of univariate data, numerous methods for non-parametric online change point detection
have been proposed; we refer to Ross [49] for a more comprehensive overview. The most successful
among these approaches exploit the fact that all information is contained in the data’s empirical
distribution function, which is a functional of the ranks. Rank-based online change point detection
methods have been proposed by [13, 19, 48]. However, their extension to multivariate data is
challenging as this requires a computationally efficient multivariate analogue to scalar ranks.

To tackle change point detection on multivariate data, many approaches exist; see Wang and Xie [58]
for a survey. For example, Yilmaz [62], Kurt et al. [28] introduce procedures using summary statistics
based on geometric entropy minimization, but assume knowledge of the pre-change distribution. An
alternative non-parametric approach is using information on distances between data points [7, 8].
However, here one can construct alternatives which the procedures will always fail to detect as the
limits of the test statistics employed do not metrize the space of probability distributions.

2In Table 1, where applicable, r denotes the number of random Fourier features, W denotes the size of the
window, and N denotes the number of blocks of historical data. We treat the dimension of the data as fixed.
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One principled approach to tackle this challenging setting is using kernel-based two sample tests
via the MMD, which we recall briefly in Section 3.2. The key property, if the underlying kernel
is characteristic [11, 55], is that the MMD metrizes the space of probability distributions and thus
allows detecting any change. However, the sample estimators of the MMD typically have a quadratic
runtime complexity, which prohibits their direct application in the online setting. To overcome
this challenge, Zaremba et al. [66] propose Scan B-statistics, which achieve sub-quadratic time
complexity by splitting the data into blocks and computing the quadratic-time MMD on each block.
Consequently, Li et al. [32, 33] introduce an online change point detection algorithm that recursively
estimates the Scan B-statistic over a sliding window. Extending this idea, Wei and Xie [59] propose
an algorithm which performs the same operation over grid of windows of different sizes. However,
these algorithms all require the choice of a window parameter and are not genuinely online as they
require historical data known to be from the pre-change distribution. Keriven et al. [24] propose
comparing two exponentially smoothed MMD statistics, where the MMD is approximated by using
random Fourier features. However, the window selection problem is not avoided because, as shown
by the authors, the smoothed statistic can be interpreted as computing differences between MMDs
calculated on two windows of different sizes.

We summarize the kernel-based approaches coming with theoretical guarantees in Table 1 and note
that we present two extensions of our proposed Online RFF-MMD approach in the appendix. The
first allows taking historical data into account (Appendix A.1). The second permits detecting multiple
change points within the same stream, with theoretical guarantees (Appendix A.2).

3 Preliminaries

In this section, we formally introduce the online change point detection problem (Section 3.1) and
recall kernel-based two sample testing together with its RFF-based approximation (Section 3.2).

3.1 Problem statement

We consider a data stream X1, X2, . . . observed online, where the Xt-s are independent random
variables taking values in Rd, with d arbitrary but fixed. Let P,Q ∈M+

1 :=M+
1

(
Rd
)

and P ̸= Q,
whereM+

1

(
Rd
)

denotes the set of all Borel probability measures on Rd. We assume that there exists
an η ∈ N := {1, 2, . . .} such that

Xt ∼
{
P for t = 1, . . . , η

Q for t = η + 1, η + 2, . . .
.

The goal is to stop the process with minimal delay as soon as η is reached, but not before. Note that
we may have η =∞ in which case the process should never be stopped. Formally, one wants to test

H0,n : Xt ∼ P for each t ≤ n and some P ∈M+
1 versus

H1,n : ∃η < n s.t. Xt ∼
{
P if 1 ≤ t ≤ η
Q if η < t ≤ n , and some P,Q ∈M+

1 where P ̸= Q,

for each n ∈ N, until a local null is rejected. A secondary aim, once a local null has been rejected,
is to accurately estimate η. Solving the aforementioned problems boils down to constructing an
extended stopping time N , which, in a sense we make precise in Section 4.3, is close to η. Let
Ft = σ(Xs | s = 1, . . . , t) be the natural filtration generated by the Xs’s up to time t and recall that
a random variable N is an extended stopping time if (i) N takes vales in N ∪ {∞} and (ii) for each
t ∈ N the event {N ≤ t} is Ft-measurable.

Minimizing the distance between η and N is analogous to maximizing the power of a particular
sequential testing procedure, and it is therefore natural to impose some conditions on the sequential
testing analogue of statistical size; we recall the two most frequent ones in the following. In the sequel,
let Pk be the joint distribution of {Xt}t>0 when {η = k} (k ∈ N), and let Ek be the expectation
under this distribution.

1. The average run length until a spurious rejection under the global null should be bounded from
below by a chosen quantity [36]. Specifically, for a given γ > 1 it should hold that

E∞[N ] ≥ γ. (1)
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2. The uniform false alarm probability should be bounded from above by a chosen quantity [30].
Specifically, for a given α ∈ (0, 1) it should hold that

P∞(N <∞) ≤ α. (2)

We show in Section 4.3 that Online RFF-MMD is able to satisfy either of the conditions (1) or (2).

3.2 Fast kernel-based two sample tests

To resolve the change point detection problem (Section 3.1), we embed fast two sample tests based
on RFF approximations to the MMD into a particular sequential testing scheme. In this section, we
briefly recall the MMD statistic and its RFF approximation.

Let HK be a reproducing kernel Hilbert space (RKHS; [2, 56]) on Rd with (reproducing) kernel
K : Rd×Rd → R. Denote by supp(Λ) = {A ∈ σ(Rd) | Λ(A) > 0} the support of a Borel measure
Λ on Rd, where A denotes the closure of a set A and σ(Rd) the Borel σ-algebra on Rd. Throughout
the article, we make the following assumption on the kernel:
Assumption 1. The kernel K : Rd × Rd → R is non-negative, continuous, bounded (∃B >
0 s.t. supx∈Rd K(x,x) ≤ B), translation-invariant (K(x,y) = ψ(x− y) for some positive definite
ψ : Rd → R), and characteristic (supp(Λ) = Rd with ψ(x) =

∫
e−iωTxdΛ(ω)).

To simplify exposition, we also assume that K(0,0) = 1, which can be achieved by scaling any
bounded kernel. The conditions in Assumption 1 are satisfied by several commonly used kernels,
including the Gaussian kernel, mixtures of Gaussians, inverse multi-quadratic kernels, Matérn kernels,
Laplace kernels, or B-spline kernels [55]. Assumption 1 permits to approximate the respective kernel
function by finite-dimensional feature maps through Bochner’s theorem (elaborated below), which,
in turn, allows the effective online estimation of MMD detailed in Section 4.

To any P ∈M+
1 , one can associate the kernel mean embedding µK(P) ∈ HK , taking the form3

µK(P) =
∫
Rd

K(·,x)dP(x), (3)

where the integral is meant in Bochner’s sense [10, Chapter II.2]. The continuity and boundedness
assumptions ensure the existence of µK(P) for any P ∈ M+

1 [55, Proposition 2]. Expression (3)
gives rise to the MMD, which quantifies the distance between two measures P,Q ∈ M+

1 via the
distance between their mean embeddings in terms of the RKHS norm, and takes the form

MMDK [P,Q] = ∥µK(P)− µK(Q)∥HK
. (4)

Crucially, the characteristic assumption ensures that (3) is injective and that the MMD metrizes
the space M+

1 [55, Theorem 9], implying MMDK [P,Q] = 0 iff. P = Q. Given samples

X1, . . . , Xn
i.i.d.∼ P and Y1, . . . , Ym

i.i.d.∼ Q with associated empirical measures P̂n =: X1:n and
Q̂m =: Y1:m, respectively, the squared plug-in estimator of MMDK [P,Q] takes the form

(MMDK [X1:n, Y1:m])
2
=
∥∥∥µK

(
P̂n

)
− µK

(
Q̂n

)∥∥∥2
HK

=

∥∥∥∥∥ 1n
n∑

i=1

K(·, Xi)−
1

m

m∑
i=1

K(·, Yi)
∥∥∥∥∥
2

HK

=
1

n2

n∑
i=1

n∑
j=1

K(Xi, Xj) +
1

m2

m∑
i=1

m∑
j=1

K(Yi, Yj)−
2

nm

n∑
i=1

m∑
j=1

K(Xi, Yj) . (5)

The computation of (5) costs O
(
(max(m,n))2

)
, rendering its use in an online testing procedure

computationally infeasible.

Random Fourier features [45, 54] alleviate this bottleneck in the offline setting; we recall the method
in the following. For some ω ∈ Rd write ζω(x) = e−iωTx, where i =

√
−1. By Bochner’s theorem,

K(x,y) = ψ(x− y) =

∫
Rd

e−iωT(x−y)dΛ(ω) = Eω∼Λ

[
ζω (x) ζω (y)

∗]
,

3For x ∈ Rd, K(·,x) : Rd → R denotes the map x′ 7→ K(x′,x).
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where ∗ denotes the complex conjugate and, using that K(0, 0) = 1, one has that Λ ∈M+
1 . As Λ and

K are real-valued, Euler’s identity implies that
∫
e−iωT(x−y)dΛ(ω) =

∫
cos
(
ωT(x− y)

)
dΛ(ω).

Therefore, using that cos(α − β) = cosα cosβ + sinα sinβ, picking some r ∈ N, and sampling
ω1, . . . , ωr

i.i.d.∼ Λ, a low variance estimator for K(x,y) is given by

K̂(x,y) := ⟨ẑK(x), ẑK(y)⟩ , where ẑK(x) =
1√
r

(
(sin(ωTj x), cos(ω

T
j x))

)r
j=1
∈ R2r. (6)

By noting that K̂ : Rd × Rd → R is the kernel associated with the RKHS HK̂ = R2r, we may
approximate (5) by

MMDK̂ [X1:n, Y1:m] =
∥∥∥µK̂

(
P̂n

)
− µK̂

(
Q̂n

)∥∥∥
HK̂

=

∥∥∥∥∥ 1n
n∑

i=1

ẑK(Xi)−
1

m

m∑
i=1

ẑK(Yi)

∥∥∥∥∥
2

. (7)

Importantly, as the mean embeddings in (7) are Euclidean vectors, their distance can be computed
with the standard Euclidean norm. This leads to a statistic which can computed in linear time and
updated in constant time, allowing its use for sequential testing.

4 Online change point detection via random Fourier features

In this section, we present our proposed stopping time for resolving the change point detection
problem. In particular, we give a precise definition in Section 4.1, an efficient algorithm in Section
4.2, and theoretical guarantees in Section 4.3.

4.1 The RFF-MMD stopping time

The intuitive construction of our RFF-MMD stopping time is as follows. We begin by choosing an
r ∈ N and a kernel K, and construct its RFF approximation (6) using r random features. For every
n ≥ 2, having observed data {X1, . . . , Xn}, we consider log2 n possible sample splits of the domain
{1, . . . , n} at locations n− 2j with j = 0, . . . , ⌊log2 n⌋ − 1. For every such split, we approximate
the MMD between the two samples using (7). A change is declared at the first n for which at least
one such statistic, appropriately normalized so that it is OP (1) under its local null, is larger than a
given threshold. Formally, we have

N = inf

n ≥ 2 |
⌊log2(n)⌋−1⋃

j=0

√
2j(n− 2j)

n
MMDK̂

[
X1:(n−2j), X(n−2j+1):n

]
> λn

 , (8)

where {λn | n ∈ N} is a non-decreasing sequence that we make precise in Section 4.3, taking
requirements (1) or (2) into account.

The first use of an exponential grid in online change point detection appears to be due to Lai [29].
Recently, similar techniques have been used by Yu [63], Kalinke et al. [23], Moen [39]. The dyadic
grid used in (8) has two advantages. First, only a logarithmic number of tests must be performed
with each new observation. Second, the grid is sufficiently dense, so the obtained stopping time
has essentially the same behavior as the computationally infeasible variant, which considers every
possible candidate change point location.

4.2 The RFF-MMD algorithm

We now present an efficient implementation of (8) and analyze its runtime and space complexity. We
show the pseudo code of our proposed method in Algorithm 1; see also Example 1 and Figure 1 for
a summary. The details are as follows. For each new observation Xt, we create a new window W ,
storing z = ẑK(Xt) and c = 1 (Lines 3–4). The window W is then added to the list of all windows
W (Line 5). The remaining algorithm has two main parts.

1. Change point detection. To detect changes, we iterate all |W| − 1 dyadic points i (Line 6), and,
for each i, merge the feature maps coming before i and coming after i (along with their counts)
to compute the MMD statistic (Lines 7–9). If the statistic exceeds the threshold (Line 10; see
Section 4.3 for its value), a change is flagged and we drop the data coming before the change.
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2. Structure maintenance. To set up and maintain the dyadic structure, we merge windows that
have the same counts (Line 16) by first summing their z-s and their c-s (Lines 17–18), and then
replacing them in the list of windowsW accordingly (Line 19). We note that pop removed the
windows beforehand.

Algorithm 1 Online RFF-MMD change point detection

Input: Stream X1, X2, . . . and a sequence of thresholds {λt | t ∈ N}.
Output: Changepoint location and detection time.

1: W ← empty list
2: for Xt ∈ X1, X2, . . . do ▷ Main loop
3: W.z ← ẑK(Xt)
4: W.c← 1
5: W ←W .append(W )
6: for i ∈ 1, . . . , |W| − 1 do ▷ Detect changes
7: c1 ←

∑|W|
j=i+1Wj .c

8: c2 ←
∑i

j=1Wj .c

9: MMDK̂ ←
∥∥∥ 1
c1

∑|W|
j=i+1Wj .z − 1

c2

∑i
j=1Wj .z

∥∥∥
2

10: if
√

c1c2
c1+c2

MMDK̂ > λt then
11: print Change detected at element Xt; most likely at position i.
12: return
13: while |W| ≥ 2 do ▷ Maintain exponential structure
14: W1 ← popW
15: W2 ← popW
16: if W1.c =W2.c then
17: W.c←W1.c+W2.c
18: W.z ←W1.z +W2.z
19: W ←W .append(W )
20: else
21: W ←W .append(W1).append(W2)
22: break

We now analyze the runtime and space complexity of Online RFF-MMD. For each insert operation,
Algorithm 1 performs three steps, which we analyze independently.

1. Setup. The computation of ẑK(Xt), defined in (6), requires computing 2r trigonometric functions
of d-dimensional inner products and thus is in O(rd).

2. Change point detection. The dominating term is computing MMDK̂ , which requires O(|W|r)
computations. Repeating the computation |W| times leads to a cost of O(|W|2r). The calculation
of the threshold is in O(1), which gives an overall cost of O(|W|2r). However, we note that
memoization of all sums allows to implement the change point detection in a single sweep over
W (at each step, the attributes of one W ∈ W are subtracted from one sum and added to another
sum) and thereby reduces the runtime complexity to O(|W|r).

3. Maintenance. In the worst case, O(|W|) merge operations need to be performed. Each merge
requires O(r) operations, which yields a total cost of O(|W|r).

Adding the results obtained in steps 1.–3. shows that the algorithm has an overall runtime complexity
of O(|W|r) = O(r log n) per insert operation. As the algorithm stores, for each W ∈ W , a number
(W.c) and a vector (W.z ∈ R2r), the total space complexity when having observed n samples is
O(|W|r) = O(r log n). We note that r is a fixed parameter in practice and thus constant.

The following Example 1 and the corresponding Figure 1 illustrate how Algorithm 1 operates upon
observing the first 6 samples X1, . . . , X6.
Example 1. When observing the first element X1, the algorithm creates a new window W , storing
the feature map ẑK(X1) and that W has one element (c = 1). Similarly, when observing X2, the
algorithm creates a new window W ′, storing ẑK(X2) and c = 1. As both windows, W and W ′, have
the same counts, the algorithm merges them into a new window W , storing ẑK(X1) + ẑK(X2) and
c = 2, thereby maintaining the dyadic structure. The algorithm proceeds in this manner, resulting
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Figure 1: Schematic representation of the proposed algorithm upon observing the first n = 6 elements.
Merging equal sized “windows” yields the division along dyadic points.

in the construction of the dyadic grid outlined in Section 4.1. For example, when observing X6,
there are again two windows of size 1, which the algorithm merges to store a total of two windows,
one capturing X1, . . . , X4 and the other one capturing X5, X6. We recall that the observations
themselves are never stored explicitly.

Before presenting out theoretical results in the following section, we emphasize that Algorithm 1
matches (8), that is, there is no approximation error.

4.3 Theoretical results

In this section, we analyze the theoretical behavior of the RFF-MMD algorithm. We first study the
behavior of the stopping time defined in (8) under the global null of no change. Theorems 1 and 2
show that with an appropriately chosen sequence of thresholds the stopping time can be made to
attain, respectively, a desired average run length (1) or a desired uniform false alarm probability (2).

Theorem 1. Let N be the extended stopping time defined via (8). For any γ > 1, if the sequence of
thresholds satisfies λn ≥

√
2 +

√
2 log (4γ log2 (2γ)) for all n ∈ N, it holds that E∞[N ] ≥ γ.

Theorem 2. Let N be the extended stopping time defined via (8). For any α ∈ (0, 1), if the
sequence of thresholds satisfies λn ≥

√
2 +

√
2 (log(n/α) + 2 log (log2(n)) + log (log2(2n))) for

each n ∈ N, it holds that P∞(N <∞) ≤ α.

We emphasize that these guarantees do not depend on the number of random features used in
constructing (6) and the bounds on the threshold sequences do not require any knowledge of the
pre-change distribution.

Next, we study the detection delay incurred by (8) when the threshold sequence is chosen to control
the uniform false alarm probability at some level α ∈ (0, 1). In the following, we assume that the
data take values in a compact subset of Rd, and denote the Lebesgue measure of a set by | · |. The
following result shows that with high probability, provided the number of RFFs is chosen sufficiently
large, the detection delay incurred by (8) is bounded from above by a quantity depending only on
the chosen α, the number of pre-change observations, and the squared MMD between the pre- and
post-change distributions.

Theorem 3. Let N be the extended stopping time defined via (8) with threshold sequence
{λn | n ∈ N} defined as in Theorem 2 for a chosen α ∈ (0, 1). If supp (P) ∪ supp (Q) ⊆ X
for some compact set X ⊂ Rd, the quantities η, α, and MMDK [P,Q] jointly satisfy

η ≥ C1
log (2η/α)

(MMDK [P,Q])
2 , (9)

and the number of random features in (7) is chosen so that

√
r ≥ C2

h(d, |X | , σ) +
√
2 log (2/α)

(MMDK [P,Q])
2 , (10)
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then with probability at least 1− α, it holds that

(N − η)+ ≤ 1 ∨ C3
log (2η/α)

(MMDK [P,Q])
2 , (11)

where C1, C2, and C3 are absolute constants independent of η, α, and MMDK [P,Q], and, with
σ2 =

∫
Rd ∥ω∥22 dΛ (ω), we have put

h(d, |X | , σ) = 23
√
2d log (2 |X |+ 1) + 32

√
2d log (σ + 1) + 16

√
2d [log (2 |X |+ 1)]

−1
,

which is likewise independent of η, α, and MMDK [P,Q].

Condition (9) can be interpreted as a signal strength requirement, measuring the strength according
to the number of observations from the pre-change distribution and the squared MMD between
P and Q. The term log(2η/α) reflects the cost of multiple testing when the data are drawn from
P. Such requirements are unavoidable from the minimax perspective in the corresponding offline
problem [63, 42, 41], and the discussion in Yu et al. [64, Section 4.1] suggests that the same is true
for genuinely online change point problems.

The requirement on the number of RFFs in (10) depends on MMDK [P,Q], which is unknown in
practice. However, if one assumes an asymptotic setting with a fixed distance between P and Q, and
α ↓ 0, then (10) suggests that the number of RFFs should be chosen as r = Θ(log 1/α). To put
this result into perspective, we compare it to online change procedures having a window. Here, the
optimal window length also depends on the distance between the pre- and post-change distributions
[33, 59]. However, choosing the window larger than this quantity can lead to an increase in the
detection delay. This is not the case for RFF-MMD: in practice, one may choose the number of RFFs
as large as possible subject to computational constraints, and choosing a larger number of RFFs does
not negatively impact the detection delay.

5 Minimax optimality of RFF-MMD

Recall that with the conditions of Assumption 1, the underlying kernel is characteristic and MMDK

metrizes the space M+
1 . Therefore, MMDK [P,Q] > 0 for any P ̸= Q and we have that (11)

guarantees that our stopping time (8) obtains a finite detection delay, with high probability for any
fixed alternative. Still, one may ask whether the detection delay is optimal. The following theorem
resolves this question and shows that the detection delay of RFF-MMD is essentially optimal from a
minimax perspective, up to logarithmic terms.
Theorem 4. For every kernel K : Rd × Rd → R satisfying Assumption 1 there is a constant CK

depending only on K and absolute constants α0, β0 ∈ (0, 1) independent of K, such that for any
α ≤ α0 it holds that

inf
N : P∞(N<∞)≤α

sup
η>1

P,Q∈M+
1

Pη

(
N ≥ η + CK

log (1/α)

(MMDK [P,Q])
2

)
≥ β0 (12)

with the infimum being over all extended stopping times.

We remark that in the online change point detection literature [40, 46], it is more common to study
the expected risk of a stopping time. For example, for fixed P,Q, it is common to work with the
so-called worst-worst-case average detection delay [37] of a given stopping time N , which is defined
via

sup
η>1

ess supEη

[
(N − η)+ | Fη

]
.

However, in the absence of further restrictions, studying this quantity for the problem at hand does
not seem possible. In fact, as long as P⊗η := P ⊗ · · · ⊗ P and Q⊗η := Q ⊗ · · · ⊗ Q have a total
variation distance smaller than 1, one can couple the given process and a process where all Xt’s
are drawn from Q so that with non-zero probability the two processes have identical sequences. In
this case, we either lose control of the null and α cannot be arbitrarily close to zero, or we maintain
control over the null but with non-zero probability the detection delay is infinite.
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6 Experiments

We collect our experiments on synthetic data in Section 6.1 and on the MNIST data set in Section 6.2.
We refer to Appendix A.3 for additional experiments and a numerical comparison of different
thresholds for the stopping rule. To interpret the change point detection performance of the proposed
method, we compare its average run length (ARL) and expected detection delay (EDD) to the
existing kernel-based methods presented in Table 1.4 For all experiments, we use the Gaussian kernel
K(x,y) = e−γ∥x−y∥2

2 with γ set by the median heuristic [12] or its RFF approximation, depending
on the algorithm. All results were obtained on a PC with Ubuntu 20.04 LTS, 124GB RAM, and 32
cores with 2GHz each.

6.1 Synthetic data

In this section, we evaluate the runtimes of different configurations of the proposed Online RFF-MMD
algorithm and compare its change point detection performance on synthetic data to that of other
kernel-based approaches.

Runtime. Figure 2 summarizes the runtime results of Algorithm 1 with the number of random
Fourier features r ∈ {10, 50, 100, 500, 1 000} and for streams of length up to n = 250 000. The
experiments verify theO(r log n) runtime complexity of the proposed algorithm, derived analytically
in Section 4.2. We note that the dependence on d is linear; we consider d = 1 only.
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Figure 2: Average runtime (10 repetitions) of RFF-MMD per insert operation (left) and total (right).

ARL vs. expected detection delay. To illustrate the EDD for a given target ARL, we reproduce the
experiments of Wei and Xie [59, Figure 4], also taking our method into account. Specifically, we
consider the pre-change distribution P = N (020, I20) and set the parameters of each algorithm as
follows. Matching the settings of the reproduced experiment, we choose Bmax = 50 and N = 15
for online kernel CUSUM; for Scan B-statistics and NewMA, we set B0 = 50. The remaining
parameters of NewMA then follow from the heuristics detailed by the authors [24]. For Online
RFF-MMD, we set r = 1000. We compute the thresholds for a given target ARL by processing
10 × (target ARL) samples with each algorithm, repeating for 100 Monte Carlo (MC) iterations,
and computing the 1 − 1/(target ARL) quantile of the resulting test statistics. For approximating
the EDD of each algorithm, we draw 64 samples from P, respectively, before sampling from Q; we
report the average over 100 repetitions. OKCUSUM and ScanB additionally receive 1 000 samples
from P upfront, to use as a reference sample. For NewMA, we process 400 additional samples from
P for both the MC estimate and the EDD experiment, to reduce its variance.

Having processed the indicated number of samples from P, we then start sampling from either a
mixed normal, a Laplace, or a Uniform distribution. Figure 3 collects the average detection delay; the
respective post-change distribution Q is given on top. The results show that our algorithm achieves a
smaller detection delay than the competitors for all considered post-change distributions, sometimes
by a large margin.

4 All code replicating our experiments is available in the supplement and at https://github.com/
FlopsKa/rff-change-detection.
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Figure 3: Average detection delay from P = N (020, I20) to the Q indicated on top (d = 20, σ = 2).

6.2 MNIST data

In this section, we interpret the MNIST data set [9] as high-dimensional data stream, similar to
Wei and Xie [59, Figure 7], with the goal of detecting a change when the digit changes from 0 to
a different digit. The experimental setup matches that of Section 6.1, but with d = 784. Figure 4
collects our results; the results for the digits 4–6 are similar and in Appendix A.3.1. Similar to
Figure 3, the proposed Online RFF-MMD algorithm shows very good performance. In particular, it
achieves a lower EDD than all tested competitors throughout.
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Figure 4: Average detection delay from MNIST digit 0 to digits 1, 2, and 3 (left to right).

7 Limitations

As with all kernel-based tests, the choice of kernel impacts the power of the test. While our theoretical
guarantees (Section 4.3) hold for any kernel satisfying Assumption 1 and do not require any pre-
change data, one usually selects the kernel or its parameters using a few available samples in practice.
While kernel optimization is not the focus of this work, there exist works [20–22, 34, 50, 51, 16–18] to
(approximately) achieve this goal; it is interesting future work to tackle this problem in the sequential
setting. A separate future direction is considering non-i.i.d. data, for example, data that is strongly
mixing [6] or data exhibiting functional dependence [60].
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• If error bars are reported in tables or plots, The authors should explain in the text how they
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: We make the resources used for our experiments explicit at the end of the introduction
to Section 6. Explicit runtime results are in Figure 2.
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• The answer NA means that the paper does not include experiments.
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provider, including relevant memory and storage.
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experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
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Justification: The research conducted in this work complies with the NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader impacts
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impacts of the work performed?
Answer: [No]
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or
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strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
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• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
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Answer: [Yes]
Justification: We reference all competitors that we compare against in the main part of the paper;
in particular, we summarize these with references in Table 1. The MNIST data set that we use is
referenced in Section 6.2, HASC is referenced in Section A.3.2, and the MazurkaML data set is
referenced in Section A.3.3.
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• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of
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some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
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provided alongside the assets?
Answer: [Yes]
Justification: We release all code replicating our experiments online (see footnote 4) and in the sup-
plement. The code contains detailed instructions for reproducing all results in the ‘README.md’
file.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
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(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may

be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
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writing, editing, or formatting purposes and does not impact the core methodology, scientific
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Answer: [NA]
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A Appendix

This appendix is structured as follows. We detail the extension of Online RFF-MMD to take a known
or observed pre-change distribution into account in Appendix A.1. In particular, we show that in
these settings tighter thresholds are possible. Appendix A.2 shows how to adapt our algorithm to
detect multiple change points and gives corresponding guarantees. Additional numerical results
of MMD-RFF are in Appendix A.3; we include numerical results w.r.t. our tighter thresholds in
Appendix A.3.5. Appendix A.4 collects all our proofs, with auxiliary results in Appendix A.5 and
external statements in Appendix A.6.

A.1 Known or estimable pre-change distribution

In this section, we discuss practical extensions of Online RFF-MMD when additional information
about the pre-change distribution is available. Specifically, in Section A.1.1, we show how the
algorithm can be adapted to settings in which (i) one has access to historical data known to be from
the pre-change distribution, or (ii) one knows the pre-change distribution exactly. In Section A.1.2,
we describe how this additional information allows sharpening the thresholds proposed in Theorems 1
and 2 in the main text.

A.1.1 Incorporating information of the pre-change distribution

To begin with, we consider the setting in which, for some ν ∈ N, historical data X−ν+1, . . . , X0

known to be from the (nonetheless unknown) pre-change distribution P is available. This setting has
been studied in the literature from both the parametric [44] and non-parametric [59] perspectives. It
is straightforward to extend the Online RFF-MMD stopping time defined in the main text to take
advantage of the additional information. Intuitively, for each local test one may prepend the historical
data to the block of data taken to be from the pre-change distribution. More formally, the following
stopping time can be used:

N = inf

n ≥ 2 |
⌊log2(n)⌋−1⋃

j=0

√
2j(n+ ν − 2j)

n+ ν
MMDK̂

[
X(−ν+1):(n−2j), X(n−2j+1):n

]
> λn

 .

This stopping time can be implemented similarly to Algorithm 1, and such an implementation features
the same time and space complexity as the original algorithm.

Next, we consider the setting in which the pre-change distribution P is known exactly. With this
additional information, rather than performing local two sample tests, one may perform local one
sample tests where the RFF approximation to the mean embedding of the data’s empirical distribution
is compared to the RFF approximation to the mean embedding of P. More formally, the following
stopping time can be used:

N = inf

n ≥ 2 |
⌊log2(n)⌋−1⋃

j=0

√
2j MMDK̂

[
P, X(n−2j+1):n

]
> λn


The exact knowledge of P permits a precise approximation or the exact computation of
EX∼P [ẑK (X) | ω1, . . . , ωr], given ω1, . . . , ωr sampled from Λ. Again, this stopping time can
be implemented similarly to Algorithm 1, enjoying the same time and space complexity as the
original algorithm.

A.1.2 Sharper thresholds through knowledge of the pre-change distribution

Access to additional information about the pre-change distribution paves the way to sharpening the
thresholds proposed in Theorems 1 and 2. Indeed, although Theorem 4 suggests the thresholds
proposed in the main paper are unimprovable up to constants, in practice these thresholds will be
quite conservative as they are completely agnostic to the distribution of the data.

The main tool for proving Theorems 1 and 2 is Lemma 5, which controls the tail behavior of the tests
performed by Online RFF-MMD under their respective local nulls. With additional knowledge of the
pre-change distribution, Lemma 5 can be significantly sharpened by taking the second moment of the
feature map into account. To that end, we have the following result.
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Lemma 1. Given two independent samples {X1, . . . , Xn} and {Y1, . . . , Ym} each with mutually
independent entries drawn from some P ∈M+

1 , for any ε > 0, it holds that

P
(
MMDK̂ [X1:n, Y1:m] > ε

)
≤ 4 exp

(
−1

2
min(m,n)ε2

[
σ̃2 + 2ε

]−1
)
,

where σ̃2 = EX∼P [K (X,X)]− EX,Y∼P [K (X,Y )]

Lemma 1 allows the following improvements of Theorems 1 and 2.
Corollary 1. For any γ > 1, replacing the thresholds in Theorem 1 with the scale dependent
thresholds

λn,j =
2
√
2f2(γ)√

min(2j , n− 2j)
+ σ̃f(γ), n ∈ N, j ≤ log2(n) (13)

f(γ) =
√
2 log(16γ log2(2γ))

it holds that E∞[N ] ≥ γ where N is as defined in (8).
Corollary 2. For any α ∈ (0, 1), replacing the thresholds in Theorem 2 with the scale dependent
thresholds

λn,j =
2
√
2f2(α, n)√

min(2j , n− 2j)
+ σ̃f(α, n), n ∈ N, j ≤ log2(n)

f(α, n) =
√

2(log(4n/α) + 2 log(log2(n)) + log(log2(2n)))

it holds that P∞(N <∞) ≤ α where N is as defined in (8).

To put the above results in context, we detail Corollary 1. On large scales (large j-s), where detections
tend to occur, the scale dependent thresholds behave approximately like σ̃

√
2 log(4γ log2(2γ)),

which differs from the threshold used in Theorem 1 by a factor of σ̃. Therefore, when σ̃ is significantly
smaller than 1, the thresholds in (13) will be significantly smaller than those suggested by Theorem 1.
As the kernel is assumed to be bounded from above by 1, these smaller thresholds generally occur.

A.2 Online detection of multiple change points

In this section, we explain how the algorithm in the main part can be extended to detect multiple
change points in an online fashion. Indeed, consider the setting where data X1, X2, . . . are observed
sequentially. There is a sequence of integers (ηk)k∈N with η0 = 0 and ηk < ηk+1 for each k ∈ N,
and a sequence of measures (Qk)k∈N each inM1

+ with Qk ̸= Qk+1 for each k ∈ N such that for
each t ∈ N the data are distributed according to

Xt ∼


Q1 if η0 < t ≤ η1
Q2 if η1 < t ≤ η2
...

.

Consider running Algorithm 1 on this data stream using the threshold sequence given in Theorem 2.
As soon as a change is detected, say at location n, we re-start the algorithm at Xn+1. However, the
index on the threshold sequence is maintained. More precisely: having detected a change at time n, at
the (n+ j)-th iteration (for j ≥ 1), we construct local statistics over the interval {n+ 1, . . . , n+ j}
according to Section 4.1, however the local statistics continue to be compared with the threshold
λn+j . We are able to prove the following guarantee on the change point locations recovered in this
way:
Theorem 5. For any deterministic time T < ∞ let M denote the number of ηk-s taking
values in {1, . . . , T}. Write δk = min (ηk − ηk−1, ηk+1 − ηk) for k = 1, . . . ,M − 1 and
δM = min (ηM − ηM−1, T − ηM ) for the effective sample size associated with the k-th change
point location. For some α ∈ (0, 1), let M̂ be the number of change points detected up to time
T using the threshold sequence given in Theorem 2 and the procedure described above, and let
η̂1, . . . , η̂M̂ be their locations. If ∪Mk=1 supp (Qk) ⊆ X for some compact set X ⊂ Rd,

δk ≥ C1
log (2T/α)

(MMDK [Qk,Qk+1])
2 for k = 1, . . . ,M,
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and the number of random Fourier features is chosen so that

√
r ≥ C2

h(d, |X | , σ) +
√
2 log (2/α)

(mink=1,...M MMDK [Qk,Qk+1])
2 ,

then with probability at least 1− 2α it holds that M̂ =M and

ηk < η̂k ≤ ηk + C3
log (2T/α)

(MMDK [Qk,Qk+1])
2 for k = 1, . . .M.

Here h(d, |X | , σ) is as given in Theorem 3, and C1, C2, and C3 are absolute constants independent
of α and the sequences {δk}k=1,...,M and {MMDK [Qk,Qk+1]}k=1,...,M .

A.3 Additional experiments

In this section, we summarize additional numerical results. The MNIST results with the MC threshold
as in the main text are in Section A.3.1. We include results obtained without threshold estimation
in Section A.3.4. A comparison of the distribution dependent and distribution-free bounds is in
Section A.3.5. Numerical studies on the Human Activity Sensing Consortium (HASC) and on the
MarzukaBL data sets are in Section A.3.2 and in Section A.3.3, respectively.

A.3.1 MNIST data digits 4–9

In the following Figure 5, we collect the change detection performances of the algorithms of Table 1
on MNIST data, where the digit changes from 0 to one of 4–9; the results on the other digits and
the experimental setup are in Section 6.2. As in the corresponding experiment in the main part of
this article, our proposed Online RFF-MMD algorithm consistently achieves the lowest expected
detection delay, highlighting its good practical performance.
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Figure 5: Average detection delay from MNIST digit 0 to digits 4–9 (left to right).

A.3.2 HASC (Human Activity Sensing Consortium) data

This section collects our experiments on the Human Activity Sensing Consortium (HASC; available at
http://hasc.jp/hc2011/) challenge 2011 data set, which is also considered in Liu et al. [35], Li
et al. [33], Wei and Xie [59]. As in Wei and Xie [59], we consider the change from walking to
staying of participant 101. For preprocessing, we order the corresponding csv-files in the data set
lexicographically, omitting the first 1 596 (detailed below) samples of walking, and then concatenating
100 walking observations and 100 staying observations to obtain a total of 10 data sets (with d = 3)
with a single change point each. For obtaining the thresholds for the proposed Online RFF MMD,
NewMA, Scan-B statistics, and OKCUSUM change detection algorithms, we proceed as elaborated
in Section 6.1, that is, we use a Monte Carlo approach with α = 0.1 on all 10 walking data sets.
As per Wei and Xie [59], for ScanB and OKCUSUM, we set the number of windows N = 14 and
the window length w = 114, implying that both algorithms receive 14 · 114 = 1 596 samples from
walking upfront. Likewise, we process 1 596 elements with NewMA upfront. All kernel-based
approaches use the (approximated) Gaussian kernel with the γ > 0 parameter set by the median
heuristic.
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For the density ratio-based (i.e., non-kernel-based) RuLSIF algorithm—which showed the best
performance on HASC in Liu et al. [35]—, we use the python changepoynt implementation and
consider the l2-norm of each three-dimensional observation.5 We then obtain the change scores for
the full data set and select the point with the highest score as predicted change point, as done in Liu
et al. [35, Section 4.2]. To match their setup, we set the window length to 50, the number of windows
to 10, and α = 0.1. Additionally, due to the large number of “too early” cases reported in this setup,
we introduce an offset and take the window length to be equal to the offset. In this setup, we consider
the point with the highest score plus the offset as reported change point. A “miss” can not occur, due
to the scores reported to RuLSIF having at least one maximum. Table 2 collects our results.

Table 2: Comparison of change detection algorithms on 10 data sets derived from the HASC data
set. “Too early” refers to the number of times an algorithm reported a change point before the actual
change occurred. “Miss” reports cases in which no change was reported.

Algorithm Average delay Too early Miss

Online RFF MMD 21.86 2 1
NewMA 34.25 1 5
ScanB 31.20 0 0
OKCUSUM 17.44 1 0
RuLSIF 4.50 8 0
RuLSIF (offset = 30) 20.38 2 0
RuLSIF (offset = 40) 35.0 3 0
RuLSIF (offset = 50) 39.2 0 0

We emphasize that in the above case all algorithms except for the proposed one and RuLSIF receive
1 596 samples upfront, to use as a reference sample. Even though this fundamentally favors the
kernel-based competitors, our proposed method achieves results that are comparable to those of the
other kernel-based approaches and to RuLSIF.

A.3.3 MazurkaBL data

In Kosta et al. [26], the authors found that change points in loudness information of Chopin’s
Mazurkas correspond to score positions having dynamic markings, tempo, or expression markings,
among others. To further validate our algorithm’s performance, we additionally run the proposed
method on the “M17-4” sample (illustrated in Figure 6) of pianist “pid50534-05” of their MazurkaBL
[27] data set with the goal of detecting these changes. Here, the dimensionality is d = 1.
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Figure 6: An excerpt of Frédéric Chopin’s Mazurka Op. 17 No. 4.

As in the main article (see Section 6), we approximate the Gaussian kernel with γ > 0 set by the
median heuristic. For obtaining the thresholds using Monte Carlo iterations, we slice the data along
each annotated change point, where we consider the annotations provided by Kosta et al. [27] as
ground truth, and compute the test statistics obtained by the proposed Online RFF MMD algorithm
individually on each one. We then select the 1− 0.1-quantile across all test statistics so obtained as
threshold.

To detect change points, we again slice the loudness data, but now such that each slice contains
precisely one change point, which yields a total of 25 samples with an average length of 1 561.32.

5The changepoynt library is available at https://github.com/Lucew/changepoynt.
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We process each one of these with our proposed method and consider the first time the test statistic
exceeds the threshold as “change”. In total, our proposed method flags 10 change points too early,
and, on the remaining 15 has an average detection delay of 73.67, with a median detection delay of
64.0.

While, when contrasting these results with the results obtained on the MNIST (Section A.3) and
HASC (Section A.3.2) data sets, detecting changes in the selected loudness data of a Mazurka seems
substantially more challenging, the proposed algorithm still manages to detect many changes with a
relatively small delay.

A.3.4 Distribution-free bound

In this section, we show the change detection performance of the proposed Online RFF-MMD
algorithm if no pre-change sample is used to estimate the threshold. Instead, we use Theorem 1 to
compute the distribution-free threshold sequence {λn | n ∈ N} for a given target ARL. To obtain
an EDD estimate, we sample and process 512 observations from MNIST digit 0 (pre-change) and
1 024 samples from digits 1–9 (post-change), respectively, averaging the detection delay over 100
repetitions. The results are in Figure 7. When comparing to Figure 4 and Figure 5, the figure shows
that our method has an increased detection delay, which is due to the looser distribution-free bound
(see Section A.3.5 for a numerical comparison). Still, except for the change to the digit 5 with a
guaranteed ARL of 105, Online RFF-MMD detects all changes reliably.
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Figure 7: Average detection delay from MNIST digit 0 to digits 1–3, 4–6, 7–9 (top to bottom) with
the distribution-free threshold sequence of Theorem 1.

A.3.5 Threshold comparison

In this section, we compare the tightness of our thresholds in the offline two-sample testing setting.
Specifically, we fix the level α = 0.01 and let P = Q = N (0, 1). We then approximate the
1 − α quantile of MMDK̂

(
P̂n, Q̂n

)
(with n = 1000, K̂ approximating the Gaussian kernel with

r = 1000 RFFs, and γ > 0 set by the median heuristic) by (i) obtaining new samples from P,Q and
(ii) permuting a fixed sample from P,Q for 1 000 rounds. Figure 8 shows the respective histograms
and the estimated quantiles along with the thresholds obtained by Lemma 1 and Lemma 5, respectively.
As one expects, the figure shows that the variance estimate used in Lemma 1 allows to obtain a
tighter bound, where we consider the resampling/permutation-based thresholds as ground truth. We
emphasize that independent of the threshold used, the resulting test is consistent against any fixed
alternative.

A.4 Proofs

This section is dedicated to our proofs. The proof of Theorem 1 is in Appendix A.4.1, that of
Theorem 2 is in Appendix A.4.2, that of Theorem 3 is in Appendix A.4.3, and that of our minimax
result (Theorem 4) is in Section A.4.4. The tighter threshold detailed in Lemma 1 is proved in
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Figure 8: Comparison of different thresholds for the acceptance region of the MMD two-sample test.

Appendix A.4.5 and we state the proof for our multiple change point detection result (Theorem 5) in
Appendix A.4.6.

A.4.1 Proof of Theorem 1

Proof. For ease of reading, for each n ≥ 2 and j = 0, . . . , ⌊log2(n)⌋ − 1, put

M̂n,j :=

√
2j(n− 2j)

n
MMDK̂

[
X1:(n−2j), X(n−2j+1):n

]
. (14)

By the law of total expectation, we have that
E∞ [N ] = E∞ [N | N ≤ 2γ]P∞ (N ≤ 2γ) + E∞ [N | N > 2γ]P∞ (N > 2γ)

≥ 2γ [1− P∞ (N ≤ 2γ)] . (15)

Putting λ =
√

2 log (4γ log2 (2γ)), a union bound argument together with Lemma 5 gives that

P∞ (N ≤ 2γ) = P∞

(
∪2γn=2 ∪

⌊log2(n)⌋−1
j=0 M̂n,j >

√
2 + λ

)
≤

2γ∑
n=1

⌊log2(n)⌋−1∑
j=0

∫
· · ·
∫

P∞

(
M̂n,j >

√
2 + λn | ω1, . . . , ωr

)
dΛ (ω1) . . . dΛ (ωr)

≤ 2γ log2(2γ)e
−λ2/2 =

1

2
. (16)

Finally, plugging (16) into (15) proves the desired result.

A.4.2 Proof of Theorem 2

Proof. Write
πn =

√
2 (log(n/α) + 2 log (log2(n)) + log (log2(2n))) (17)

for each n ∈ N. Applying standard peeling arguments [64, 57], we have that

P∞ (N <∞) = P∞

(
∪∞n=2 ∪

⌊log2(n)⌋−1
j=0 M̂n,j >

√
2 + πn

)
≤

∞∑
l=1

P∞

(
∪2l+1

n=2l ∪
⌊log2(n)⌋−1
j=0 M̂n,j >

√
2 + πn

)
≤

∞∑
l=1

2l max
2l≤n≤2l+1

P∞

(
∪⌊log2(n)⌋−1
j=0 M̂n,j >

√
2 + πn

)
(18a)

≤
∞∑
l=1

2l max
2l≤n≤2l+1

⌊log2(n)⌋−1∑
j=0

P∞

(
M̂n,j >

√
2 + πn

)
, (18b)
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where in line (18a), we apply a union bound and bound the resulting sum by its maximum. Then,
applying Lemma 5 as was done in (16), we obtain that
P∞(N <∞)

≤
∞∑
l=1

2l max
2l≤n≤2l+1

⌊log2(n)⌋−1∑
j=0

∫
· · ·
∫

P∞

(
M̂n,j >

√
2 + πn | ω1, . . . , ωr

)
dΛ (ω1) . . . dΛ (ωr)

≤
∞∑
l=1

l2le−(π
2l
)2/2.

Finally using the facts that (i) exp
(
−π2

2l/2
)
≤ αl−2(l+1)−12−l for all l ∈ N and (ii)

∑∞
l=1 l

−1(l+

1)−1 = 1, we obtain that P∞(N <∞) ≤ α.

A.4.3 Proof of Theorem 3

Proof. We first observe that for any triplet of integers (m,n, ν) satisfying (i)m ≤ n and (ii) ν ≤ n/2,
given two samples

X1:n =
{
X1, . . . , Xn−ν , Ỹn−ν+1, . . . , Ỹn

}
and Y1:m = {Y1, . . . , Ym} ,

with mutually independent entries taking values in some bounded set X ⊂ Rd where the X’s are
sampled from P and the Y ’s and Ỹ ’s are sampled from Q for some P,Q ∈ M+

1 (X ) not identical,
for any ε > 0, it holds that

P
(√

nm

n+m
MMDK̂ [X1:n, Y1:m] ≤

√
2 + ε

)
≤ P

(
2

√
m sup

x,y∈X

∣∣∣K̂ (x,y)−K (x,y)
∣∣∣ > 1

3

[
√
m

(√
2− 1

2
√
2

)
MMDK [P,Q]−

(
ε+

10√
2

)])

+ 4 exp

− 1

18

{[
√
m

(√
2− 1

2
√
2

)
MMDK [P,Q]−

(
ε+

10√
2

)]
∨ 0

}2
 (19)

where MMDK is as in (4) and MMDK̂ is as defined in (7). To show (19), let the X̃’s below be
sampled independently from P and introduce the quantities

∆1 =

∥∥∥∥∥ 1n
[
n−ν∑
i=1

K (·, Xi) +

n∑
i=n−ν+1

K
(
·, X̃i

)]
− 1

m

m∑
i=1

K (·, Yi)
∥∥∥∥∥
HK

∆2 =

∥∥∥∥∥1ν
n∑

i=n−ν+1

K
(
·, X̃i

)
− 1

ν

n∑
i=n−ν+1

K
(
·, Ỹi

)∥∥∥∥∥
HK

.

Note that by the reverse triangle inequality

MMDK [X1:n, Y1:m] ≥ ∆1 −
√
ν

n
∆2.

Consequently, using the above and by repeated applications of the triangle inequality, one has that√
nm

n+m
MMDK̂ [X1:n, Y1:m]

≥
√

nm

n+m

(
1−

√
ν

n

)
MMDK [P,Q]

−
√

nm

n+m

∣∣MMDK̂ [X1:n, Y1:m]−MMDK [X1:n, Y1:m]
∣∣ (20a)

−
√

nm

n+m
|∆1 − E [∆1]| −

√
2m

n+m

√
ν

2
|∆2 − E [∆2]| (20b)

−
√

nm

n+m
|E [∆1]−MMDK [P,Q]| −

√
2m

n+m

√
ν

2
|E [∆2]−MMDK [P,Q]| . (20c)
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For term (20a), applying Lemmas 2 and 3 together with the fact that the X’s and Y ’s take values in
some compact X ⊂ Rd, we obtain that√

nm

n+m

∣∣MMDK̂ [X1:n, Y1:m]−MMDK [X1:n, Y1:m]
∣∣ ≤ 2

√
m sup

x,y∈X

∣∣∣K̂ (x,y)−K (x,y)
∣∣∣.

(21)

For the penultimate term in (20c), applying the bound

E |MMDK [X1:n, Y1:m]−MMDK [P,Q]| ≤ 2

(
1√
n
+

1√
m

)
(22)

for X’s sampled from P and Y ’s sampled from Q, whose proof can be found for instance in Section
A.2 of [14], together with the bound

√
x+ y ≥

(√
2/2
) (√

x+
√
y
)

for all x, y ≥ 0, which holds
due to the concavity of the square root, one has that√

nm

n+m
|E [∆1]−MMDK [P,Q]| ≤

√
nm

n+m
E |∆1 −MMDK [P,Q]|

≤ 2
(
√
n+
√
m)√

n+m
≤ 4√

2
. (23)

Identical arguments together with the fact that m ≤ n implies that (2m)/(m+ n) ≤ 1 give

(20b) ≤
√

2m

n+m

√
ν

2
E |∆2 −MMDK [P,Q]| ≤ 4√

2
. (24)

Therefore, combining (21), (23), and (24), rearranging, and applying the rough bound

P

 K∑
j=1

Zj > x

 ≤ K∑
j=1

P (Zj > x/K)

which holds for any x ∈ R,K ∈ N and any random variables Z1, . . . , ZK , we obtain that

(19) ≤ P

(
2

√
m× sup

x,y∈X

∣∣∣K̂ (x,y)−K (x,y)
∣∣∣ >

1

3

[
√
m

(√
2− 1

2
√
2

)
MMDK [P,Q]−

(
ε+

10√
2

)]
∨ 0

)

+ P

(√
nm

n+m
|∆1 − E [∆1]| >

1

3

[
√
m

(√
2− 1

2
√
2

)
MMDK [P,Q]−

(
ε+

10√
2

)]
∨ 0

)
(25a)

+ P

(√
ν

2
|∆2 − E [∆2]| >

1

3

[
√
m

(√
2− 1

2
√
2

)
MMDK [P,Q]−

(
ε+

10√
2

)]
∨ 0

)
. (25b)

Note that we assume 0 ≤ K(·, ·) ≤ 1. Therefore, arguing as in Lemma 4, one can show that MMD as
defined in (5) has the bounded differences property with constants (41). Hence, applying Theorem 6
to terms (25a) and (25b) one arrives at (19). Turning to the problem of interest we first make explicit
the constants in Theorem 3:

C1 = 2× C3

C−1
2 =

1

3

[(√
2− 1

4
−
√
50 +

√
6√

C3

)]

C3 =
(√

6 +
√
50 +

√
54
)2
×
(
4/(
√
2− 1)

)2
.

Next, define the quantities

k∗ = min
{
k ∈ N | k ≤ η and

√
k ×MMDK [P,Q] ≥

√
C3 log (2η/α)

}
(26a)

tk∗ = min
{
t = 2j | j ∈ N and t ≤ k∗

}
. (26b)
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Note that condition (9) guarantees that (26a) exists and it can be checked that C2 > 0. Let j∗ be the
j appearing in (26b). Consequently, using (19) and the fact that k∗/2 ≤ tk∗ ≤ k∗, we obtain that

P
(
(N − η)+ > k∗

)
≤ P

( ⌊log2(η+k∗)⌋−1⋂
j=0

√
2j(η + k∗ − 2j)

η + k∗
MMDK̂

[
XIj∗,k∗ , XJj∗,k∗

]
≤
√
2 + λη+k∗

)

≤ P

(√
tk∗(η + k∗ − tk∗)

η + k∗
MMDK̂

[
XIj∗,k∗ , XJj∗,k∗

]
≤
√
2 + λ2η

)

≤ P

(
2

√
k∗ sup

x,y∈X

∣∣∣K̂ (x,y)−K (x,y)
∣∣∣ > 1

3

[
√
k∗
√
2− 1

4
MMDK [P,Q]−

(
λ2η +

10√
2

)])
(27a)

+ 4 exp

− 1

18

{[
√
k∗
√
2− 1

4
MMDK [P,Q]−

(
λ2η +

10√
2

)]
∨ 0

}2
 . (27b)

where for typographical reasons we have put:

Ij∗,k∗ := 1 : (η + k∗ − 2j
∗
)

Jj∗,k∗ := (η + k∗ − 2j
∗
+ 1) : (η + k∗),

for j = 0, . . . , ⌊log2 (η + k∗)⌋−1. Now (26a) together with the fact that λ2η+ 10√
2
≤
(√

50 +
√
6
)
×√

log (2η/α) for all α ∈ (0, 1) and η ∈ N guarantees that the term on the right of the inequality in
(27a) is no larger than C2×

√
k∗ MMDK [P,Q]. Hence, appealing to (10) and Theorem 7, we obtain

that (27a) ≤ α/2. Moreover, since for each k ≤ η it holds that{
√
k

(√
2− 1

4

)
MMDK [P,Q]−

(
λ2η +

10√
2

)
≥
√

18× 3 log

(
2η

α

)}

⊆
{
√
k ×MMDK [P,Q] ≥

√
C3 log

(
2η

α

)}

with k∗ defined as in (26a), we obtain that (27b) ≤ 4× (α/2η)
3 ≤ α/2. With these facts in place

the theorem is proved.

A.4.4 Proof of Theorem 4

Proof. Let 1 = (1, . . . , 1)
T ∈ Rd and 0 = (0, . . . , 0)

T ∈ Rd, let δx denote the Dirac measure (for
any set A ∈ σ

(
Rd
)

and any x ∈ Rd, δx(A) = 1 if x ∈ A and 0 otherwise), and let

M∗ =
{
P,Q ∈M+

1

(
Rd
)
| P = pδ1 + (1− p) δ0,Q = qδ1 + (1− q) δ0,

p, q ∈ [1/4, 3/4] and q − p ≥ 1/4} .
Therefore, for any P,Q ∈M∗, making use of the symmetry of K, we have that

(MMDK [P,Q])
2

= EX,X′∼P [K (X,X ′)] + EY,Y ′∼Q [K (Y, Y ′)]− 2EX∼P,Y∼Q [K (X,Y )] (28)

= p2K (1,1) + (1− p)2K (0,0) + 2p(1− p)K (1,0)

+ q2K (1,1) + (1− q)2K (0,0) + 2q(1− q)K (1,0)

− 2 (pqK (1,1) + (1− p)(1− q)K (0,0) + 2 (p(1− q) + q(1− p))K (1,0))

= (K (1,1) +K (0,0)− 2K (1,0)) (p− q)2 (29)
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Moreover, for any P,Q ∈M∗, we also have that

KL (Q ∥ P) = q log

(
q

p

)
− (1− q) log

(
1− p
1− q

)
≤ (q − p)

[
q

p
− 1− q

2− (p+ q)

]
(30a)

≤ 17

6
(q − p) (30b)

≤ 34

3
(q − p)2 , (30c)

where (30a) holds due to the bound x−1
x+1 ≤ log(x) ≤ x − 1 for x ≥ 1, (30b) holds because

p, q ∈ [1/4, 3/4], and (30c) holds due to the bound x ≤ 4x2 for x ≥ 1/4. Combining (29) and (30c),
and additionally making use of the shift invariance of K, we obtain that

KL (Q ∥ P) ≤ 17

3
(K (0,0)−K (1,0))

−1
MMD2

K [P,Q] . (31)

Therefore, putting CK = (1/2)(3/17) (K (0,0)−K (1,0)) for the constant in (12), using (31)
along with the fact thatM∗ ⊂M+

1

(
Rd
)
, we have that

L.H.S. of (12) ≥ inf
N :P∞(N≤∞)≤α

sup
η>1

P,Q∈M∗

P
(
N ≥ η + (1/2) log (1/α)

KL (Q ∥ P)

)
. (32)

Consequently the theorem is proved if we can find absolute constants α0, β0 ∈ (0, 1) and pre- and
post-change distributions P,Q ∈M∗ such that for all α ≤ α0 it holds that

inf
N :P∞(N≤∞)≤α

sup
η>1

P
(
N ≥ η + (1/2) log (1/α)

KL (Q ∥ P)

)
≥ β0. (33)

To show (33), one can use a change of measure argument originally due to Lai [30]. In fact one
can directly use the version of Lai’s argument adapted to finite sample analysis by Yu et al. [64,
Proposition 4.1]. For clarity of exposition, we repeat the argument below. The following holds for
arbitrary P,Q ∈ M∗. For each n ∈ N let Fn be the σ-field generated by {Xi}ni=1 and let P⊗n be
the restriction of the joint law to Fn. We can write

dP⊗n
η

dP⊗n
∞

= exp

(
n∑

i=1

Zi

)
, for n > η

where, as in the main text, the subscripts indicate the time at which the change occurs. For a chosen
α ∈ (0, 1) and an arbitrary stopping time satisfying P∞(N <∞) ≤ α introduce the events

E1 =

η ≤ N ≤ η + (1/2) log (1/α)

KL (Q ∥ P) ,

N∑
i=η+1

Zi ≤ (3/4) log (1/α)


E2 =

η ≤ N ≤ η + (1/2) log (1/α)

KL (Q ∥ P) ,

N∑
i=η+1

Zi > (3/4) log (1/α)

 .

For the first event we have that

Pη (E1) =
∫
E1

exp

(
N∑
i=1

Zi

)
dPη ≤ exp ((3/4) log (1/α))P∞ (E1) ≤ α1/4 (34)

where the first inequality is due to the definition of E1 and the second inequality holds because the
probability of N being finite when no change occurs is bounded from above by α. For the second
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event we have that

Pη (E2) ≤ Pη

(1/2) log(1/α)(KL(Q∥P))−1−1⋃
1=t

η+t∑
i=η+1

Zi > (3/4) log (1/α)


= Pη

(1/2) log(1/α)(KL(Q∥P))−1−1⋃
1=t

η+t∑
i=η+1

(Zi − KL (Q ∥ P)) > (1/4) log (1/α)

 (35a)

≤ (1/2) log(1/α)

KL (Q ∥ P) exp (− log(1/α)) (35b)

≤ α1/4 (35c)

where in particular (35a) holds by subtracting t× KL (Q ∥ P) from both sides of the inequality and
using the fact that for every t in the union it holds that t × KL (Q ∥ P) < (1/2) log(1/α), (35b)
holds due to a union bound argument followed by an application of Hoeffding’s inequality, and (35c)
holds for all α ≤ α0 where

α0 = sup

{
α ∈ (0, 1) | (1/2) log(1/α)α3/4 ≤ inf

P,Q∈M∗
KL (Q ∥ P) and 2α1/4 < 1

}
.

Since the above arguments do not depend on the stopping time N or the change point location η,
the bounds (34) and (35c) together imply that R.H.S. of (32) ≥ 1− 2α

1/4
0 , which proves the desired

result.

A.4.5 Proof of Lemma 1

Proof. It suffices to show that for any ϵ > 0 it holds that

P⊗ Λ

(∥∥∥∥∥ 1n
n∑

i=1

ẑK(Xi)− E|ω ẑK(X)

∥∥∥∥∥ > ϵ

)
≤ 2 exp

(
− 1

2

nε2

σ̃2 + 2ε

)
, (36)

which implies the stated result by using ±E|ω ẑK(X), the triangle inequality, and a union bound.
Here and in the following E|ω (resp. P|ω) refers to the expectation (resp. probability) with ω fixed.
To prove (36), we fix ω = (ω1, . . . , ωr) and let ηi = ẑK(Xi)− E|ω ẑK(X). Then, all ηi-s are zero
mean w.r.t. P and i.i.d. Further, we have for any p ≥ 2 that

E|ω∥η1∥p = E|ω∥η1∥p−2∥η1∥2 ≤ sup ∥η1∥p−2E|ω∥η1∥2 ≤ 2p−2E|ω∥η1∥2,
where the last inequality follows by using the triangle inequality and ⟨ẑK(X1), ẑK(X1)⟩ = 1 to
obtain

sup ∥η1∥p−2 ≤ 2p−2 sup ∥ẑK(X1)∥p−2 = 2p−2.

Hence, we have the bound

E|ω∥η1∥p ≤ 2p−2E|ω∥η1∥2 ≤
1

2
p!2p−2E|ω∥η1∥2

and the ηi-s satisfy the Bernstein condition with B2 = E|ω∥η1∥2 and H = 2. The application of
Theorem 8 yields that for any ε > 0

P|ω

(∥∥∥∥∥ 1n
n∑

i=1

ηi

∥∥∥∥∥ > ϵ

)
≤ 2 exp

(
− 1

2

n2ε2

B2 + εnH

)
≤ 2 exp

(
− 1

2

nε2

B2 + εH

)
.

To lift the conditioning, we observe that

P⊗ Λ

(∥∥∥∥∥ 1n
n∑

i=1

ηi

∥∥∥∥∥ > ϵ

)
= EP|ω

(∥∥∥∥∥ 1n
n∑

i=1

ηi

∥∥∥∥∥ > ϵ

)
≤ 2E exp

(
− 1

2

nε2

B2 + εH

)

≤ 2 exp

(
− 1

2

nε2

EB2 + εH

)
,
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where the last inequality holds by the concavity of exp(−1/x) for x > 0 and Jensen’s inequality.
Finally, we conclude the proof by using that

EB2 = E
(
⟨ẑK(X), ẑK(X)⟩+ ⟨EPẑK(X),EPẑK(Y )⟩ − 2⟨ẑK(X),EPẑK(Y )

)
= EK(X,X)− EK(X,Y ) = σ̃2,

where the boundedness of all terms allows exchanging the expectations by the Fubini-Tonelli theorem.

A.4.6 Proof of Theorem 5

Proof. We first show that with probability at least 1−α no local tests conducted on null intervals will
cause the algorithm to wrongly declare a change. For each n ≤ T define kn = max{k ≤M + 1 |
ηk ≤ n}. With πn defined as in (17), introduce the event

A1 =
{
∩Tn=2 ∩

⌊log2(n−ηkn+1)⌋−1
j=1 M̂n,j ≤ πn

}
. (37)

We therefore have that

P(Ac
1) ≤

T∑
l=1

2l max
2l≤n≤2l+1

⌊log2(n−ηkn+1)⌋−1∑
j=0

P
(
M̂n,j > πn

)
(38a)

≤
T∑
l=1

l2le−(π
2l
)2/2 (38b)

=
α log2(T )

1 + log2(T )
< α,

where (38a) follows by arguments similar to (18a) and (38b) holds due to Lemma 5. Therefore,
if M = 0 we are done. We now tackle the case M > 0. We will show that when M > 0 with
probability at least 1− 2α all true change points are detected and localized at the stated rate. We first
make the constants in Theorem 5 explicit:

C1 = 2× C3

C2 = 4

C3 =
(
2×

(√
2 +
√
4 +
√
6
))2

.

Introduce also the event

A2 =

{
sup

x,y∈X

∣∣∣K̂ (x,y)−K (x,y)
∣∣∣ ≤ h (d, |X | , σ) +

√
2 log(2/α)√

r

}
, (39)

on which the random Fourier feature kernel K̂ is close to K in sup norm sense. Note that by Theorem
7 the event (39) holds with probability at least 1− α/2. Introduce also the sequence of events

Bk =

{
ηk < η̂k ≤ ηk + C3

log (T/α)

(MMDK [Qk,Qk+1])
2

}
, for k = 1, . . .M,

such that on the event Bk the k-th change point is detected and localized at the required rate. If
M̂ < M we employ the convention η̂k = T for all k > M̂ . We now show that on (37) and (39) the
event B1 holds with probability at least T/(2α). Introduce the quantity

n∗1 = min
{
n < η2 | n− η1 = 2j

∗
1 for j∗1 ∈ N,

√
2j

∗
1 MMDK [Q1,Q2] >

√
C3 log(2T/α)

}
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To ease the notation put I∗1 = 1 : η1, J∗
1 = (η1 + 1) : n∗1, and V ∗

1 =
2j

∗
1 (n∗

1−2j
∗
1 )

n∗
1

. Observe that√
V ∗
1 MMDK̂

[
XI∗

1
, XJ∗

1

]
≥
√
V ∗
1 MMDK [Q1,Q2] +

√
V ∗
1

(
MMDK

[
XI∗

1
, XJ∗

1

]
− E

[
MMDK

[
XI∗

1
, XJ∗

1

]])
(40a)

− 2
√
V ∗
1

√
sup
x,y

∣∣∣K̂(x, y)−K(x, y)
∣∣∣

−
√
V ∗
1

∣∣E [MMDK

[
XI∗

1
, XJ∗

1

]]
−MMDK [Q1,Q2]

∣∣
≥ 1

2

√
V ∗
1 MMDK [Q1,Q2] +

√
V ∗
1

(
MMDK

[
XI∗

1
, XJ∗

1

]
− E

[
MMDK

[
XI∗

1
, XJ∗

1

]])
− 4√

2
(40b)

Where (40a) holds by the triangle inequality and arguments similar to (21), and (40b) holds by
arguments similar to (22) together with the fact that on (39) we will have that

sup
x,y

∣∣∣K̂(x, y)−K(x, y)
∣∣∣ ≤ 1

4
min

k=1,...,M
(MMDK [Qk,Qk+1])

2 ≤ 1

4
(MMDK [Q1,Q2])

2
.

Using the above we therefore have that

P (Bc
1) ≤ P

(√
V ∗
1 MMDK̂

[
XI∗

1
, XJ∗

1

]
≤ λT

)
≤ P

(√
V ∗
1

(
E
[
MMDK̂

[
XI∗

1
, XJ∗

1

]]
−MMDK̂

[
XI∗

1
, XJ∗

1

])
>

1

2

√
V ∗
1 MMDK [Q1,Q2]−

(√
4 +
√
6
)√

log(2T/α)

)
≤ α

2T
,

where the final inequality follows from the definition of C3, the bounded difference property of
MMDK , and Theorem 6. By the definition we must have that 2j

∗
1 ≤ δ1/2, therefore on the event

A1 the first change point is detected and the algorithm starts at most mid way between η1 and η2.
Identical arguments to those above therefore give that, on the events A1, A2, and B1 the event B2

holds with probability at least 1−α/(2T ) and having detected the second change point the algorithm
re-starts at most mid way between η2 and η3. By induction and a union bound argument, on the
events (37) and (39) the events B1, . . . BM hold with probability at least 1−Mα/(2T ) ≥ 1− α/2.
Since (37) and (39) jointly hold with probability 1− 3α/2 we are done.

A.5 Auxiliary results

In this section, we collect a few auxiliary results. Besides establishing useful bounds on real numbers
in Lemma 2 and Lemma 3, we show that the bounded differences property of RFF-MMD (Lemma 4)
leads to its exponential concentration (Lemma 5). The latter is one of the key ingredients for deriving
our threshold sequences elaborated Section 4.3.
Lemma 2. For any x, y > 0 it holds that

1

2
min (x, y) ≤ xy

x+ y
≤ min (x, y) ,

and, moreover, both inequalities are tight.

Proof. We first note that

xy

x+ y
=

min (x, y)max (x, y)

min (x, y) + max (x, y)
= min (x, y)

(
1 +

min (x, y)

max (x, y)

)−1

.

For the lower bound we use the fact that 1 + min(x,y)
max(x,y) ≤ 2, where equality holds when x = y. For

the upper bound, we use that 1 + min(x,y)
max(x,y) ≥ 1, where equality holds in the limit when, for instance,

x is fixed and y → +∞.

Lemma 3. For x, y > 0 it holds that
∣∣√x−√y∣∣ ≤√|x− y|.
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Proof. When x = y the statement is trivially true. When x ̸= y it holds that∣∣√x−√y∣∣ = |x− y|√
x+
√
y
≤ |x− y|∣∣√x−√y∣∣ ⇒ ∣∣√x−√y∣∣ ≤√|x− y|.

Lemma 4. The RFF-MMD as defined in (7) between two empirical measures composed respectively
of n and m sample points is a function mapping from (Rd)m+n → R. This function has the bounded
differences property with constants

ci =

{
2/n if i = 1, . . . , n,

2/m if i = n+ 1, . . . , n+m.
(41)

Proof. Recall that if K : Rd × Rd → R is the reproducing kernel for some RKHS HK , for any
P,Q ∈M+

1 , one has that

MMDK [P,Q] = sup
f∈HK :∥f∥HK

≤1

(EX∼P [f (X)]− EY∼Q [f (Y )])

Note that K̂ : Rd × Rd → R as defined in (6) is the reproducing kernel for an RKHS HK̂ whose
elements are vectors in R2r. Introduce the set

Ĝ = {f ∈ HK̂ | ∥f∥HK̂
≤ 1}.

Let MMDK̂(x1:n,y1:m) (x̃i′) stand for (7) with inputs {x1, . . . ,xn} and {y1, . . . ,ym} with the
i′-th x replaced by x̃i′ . We therefore have that

sup
x1,...,xn
y1,...,ym

x̃i′

∣∣MMDK̂ [x1:n,y1:m]−MMDK̂ [x1:n,y1:m] (x̃i′)
∣∣

= sup
x1,...,xn
y1,...,ym

x̃i′

∣∣∣∣∣∣supf∈Ĝ

 1

n

n∑
i=1

f(xi)−
1

m

m∑
j=1

f(yi)



− sup
f∈Ĝ

 1

n

n∑
i=1

f(xi)−
1

n
[f(xi′)− f(x̃i′)]−

1

m

m∑
j=1

f(yi)

∣∣∣∣∣∣
≤ sup

x,x̃

f∈Ĝ

1

n
|f(x)− f(x̃)| = sup

x,x̃

1

n

∥∥∥K̂ (·,x)− K̂ (·, x̃)
∥∥∥
Ĥ

≤ sup
x,x̃

1

n

(∥∥∥K̂ (·,x)
∥∥∥
Ĥ
+
∥∥∥K̂ (·, x̃)

∥∥∥
Ĥ

)
=

2

n

where we used the reverse triangle inequality, the reproducing property, CBS for obtaining the
supremum over a unit ball and that, for any x ∈ Rd one has that〈

K̂ (·,x) , K̂ (·,x)
〉2
HK̂

= cos(0) = 1.

The same calculations can be applied to MMDK̂(x1:n,y1:m) (ỹj′). This proves the desired result.

Lemma 5. Given two independent samples {X1, . . . , Xn} and {Y1, . . . , Ym}, each with mutually
independent entries drawn from some P ∈M+

1 , for any ε > 0, it holds that

P
(√

nm

n+m
MMDK̂ [X1:n, Y1:m] >

√
2 + ε

)
≤ e−ε2/2.
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Proof. It is an immediate consequence of Lemma 4 and Theorem 6 that for any ε′ > 0

P
(
MMDK̂ [X1:n, Y1:m]− E

[
MMDK̂ [X1:n, Y1:m] | ω1, . . . , ωr

]
> ε′ | ω1, . . . , ωr

)
≤ exp

(
−ε

′2

2

nm

n+m

)
. (42)

Moreover, arguing as in the last step of the proof of Proposition 4 in [23] gives

E
[
MMDK̂ [X1:n, Y1:m] | ω1, . . . , ωr

]
= E

 1

n2

n∑
i=1

n∑
j=1

K̂ (Xi, Xj) +
1

m2

m∑
i=1

m∑
j=1

K̂ (Yi, Yj)

− 2

nm

n∑
i=1

m∑
j=1

K̂ (Xi, Yj)

 1
2

| ω1, . . . , ωr


≤
({

1

n
+

1

m

}
E
[
K̂ (X,X) | ω1, . . . , ωr

]
︸ ︷︷ ︸

=1

+

{
n− 1

n
+
m− 1

m
− 2

}
︸ ︷︷ ︸

=−( 1
n+ 1

m )

E
[
K̂ (X,Y ) | ω1, . . . , ωr

]) 1
2

=

({
1

n
+

1

m

}(
1− E

[
K̂ (X,Y ) | ω1, . . . , ωr

]
︸ ︷︷ ︸

≥−1

)) 1
2

≤
√

2 (m+ n)

mn
, (43)

where the first inequality follows from Jensen’s inequality. Consequently, setting ε′ = ε
√

n+m
nm ,

plugging (43) into (42), and integrating over the ω-s with respect to the product measure Λ⊗r :=
Λ⊗ · · · ⊗ Λ yields the desired result.

A.6 External statements

In this section, we collect the external statements that we use, to ensure self-completeness. Theorem 6
recalls McDiarmid’s inequality from Boucheron et al. [5, Section 6.1], which is also known as
bounded differences inequality [38]. Theorem 7 is about the concentration of random Fourier features
and part of the proof of Sriperumbudur and Szabó [54, Theorem 1]. We recall the concentration
result Yurinsky [65, Theorem 3.3.4] on random variables taking values in a separable Hilbert space in
Theorem 8.
Theorem 6 (Bounded differences inequality). Let X be a measurable space. A function f : Xn → R
has the bounded difference property for some constants c1, . . . , cn if, for each i = 1, . . . , n,

sup
x1,...,xn

x′
i∈X

|f (x1, . . . , xi−1, xi, xi+1, xn)− f (x1, . . . , xi−1, x
′
i, xi+1, . . . xn)| ≤ ci. (44)

Then, if X1, . . . , Xn is a sequence of independently distributed random variables and (44) holds,
putting Z = f (X1, . . . , Xn) and ν = 1

4

∑n
i=1 c

2
i for any t > 0, it holds that

P (Z − E (Z) > t) ≤ e−t2/(2ν).

Theorem 7 (RFF exponential concentration). Let K̂ be defined as in (6). Let X be a proper subset of
Rd and denote by |X | its Lebesgue measure. For any t > 0, it holds that

P
(

sup
x,y∈X

∣∣∣K̂ (x,y)−K (x,y)
∣∣∣ > h (d, |X | , σ) + t√

r

)
≤ e−t2/2
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where σ2 =
∫
Rd ∥ω∥22 dΛ (ω) and

h (d, |X | , σ) = 23
√
2d log (2 |X |+ 1) + 32

√
2d log (σ + 1) + 16

√
2d [log (2 |X |+ 1)]

−1
. (45)

Theorem 8 (Hilbert space Bernstein inequality). Let X1, . . . , Xn be a sequence of zero mean
independent random variables taking values in a real and separable Hilbert space X with inner
product ⟨·, ·⟩ and norm ∥·∥ =

√
⟨·, ·⟩. Write S∗

n = supm≤n ∥X1 + · · ·+Xm∥. If the random
variables satisfy the moment condition

E ∥X∥k ≤ 1

2
k!B2Hk−2, for k ≥ 2, i = 1, . . . , n

for some constants B > 0 and H > 0, then for any x > 0 it holds that

P (S∗
n > xB) ≤ 2 exp

(
−1

2
x2
[
1 +

xH

B

]−1
)
.
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